+ All Categories
Home > Documents > Q ELECTRONIC WARFARE QUICK REFERENCE GUIDE · Q RF Propagation RADAR HORIZON RF Propagation TARGET...

Q ELECTRONIC WARFARE QUICK REFERENCE GUIDE · Q RF Propagation RADAR HORIZON RF Propagation TARGET...

Date post: 14-Oct-2019
Category:
Upload: others
View: 4 times
Download: 1 times
Share this document with a friend
1
Q RF Propagation RADAR HORIZON RF Propagation TARGET VISIBILTY Detection & Estimation Probability CRAMER RAO LOWER BOUND Detection & Estimation Probability MAX LIKELIHOOD ESTIMATION Detection & Estimation Probability BINOMIAL Antennas ANTENNA BEAMWIDTH Antennas ANTENNA DIRECTIVITY Antennas ANTENNA GAIN Fourier Relationships CONTINUOUS-TIME FOURIER TRANSFORMATION Fourier Relationships FILTERING Radar Processing RADAR CROSS SECTION Fourier Relationships MODULATION PROPERTY Detection & Estimation Probability RICIAN Detection & Estimation Probability ERROR FUNCTIONS Detection & Estimation Probability NORMAL Detection & Estimation Probability RAYLEIGH RF Propagation WAVELENGTH RF Propagation DOPPLER SHIFT P r =P t G t G r 4πR λ 2 Pr: Received Power Pt: Transmit Power Gt: Transmit Gain Gr: Receive Gain R: Range c: Speed f: Frequency H: Horizon Re: Earth Radius ~ 6,371 km H: Horizon Re: Earth Radius ~ 6,371 km x: Observations p: Probability distribution function (or joint) θ: Distribution parameters can be vectors p: Success probability of each trial k: Number of successes n: Number of trials λ: Wavelength d: Antenna Diameter θ 1d : Half-power beamwidth in one principal plane (degrees) θ 2d : Half-power beamwidth in the other principal plane (degrees) A e : Effective Aperture Area λ: Wavelength μ: Mean σ: Standard Difference A: Distance between the reference point and the center of the bivariate distribution I 0 : Bessel Function of the first kind with order zero μ: Mean σ: Standard Difference A: Distance between the reference point and the center of the bivariate distribution RF Propagation FRIIS TRANSMISSION EQUATION D h = 2HR e λ = f c f d = –2v r / λ Target Height 2Re (Target Range - 2HRe) 2 = CRB = ∂θ ln p(x, θ) [ ] E ∂θ ln p(x, θ) [ ] ( } T { ) -1 f(k; n, p)= Pr(X =k) = ( ) p k (1p) nk k n p(r)= { r σ 2 e r 2 2σ 2 0 (r < 0) (0≤r≤∞) 1.2 1 0.8 0.6 0.2 0.4 0 0 2 4 6 8 10 σ = 0.5 σ =3 σ =1 σ = 4 σ = 2 p(r)= { I 0 ( ) for (r < 0) for (A ≥ 0, r ≥ 0) σ 2 r e 0 2σ 2 (r 2 + A 2 ) σ 2 Ar 0.6 0.5 0.4 0.3 0.1 0.2 0.0 0 2 4 6 8 v = 0.0 v = 2.0 v = 0.5 v = 4.0 v = 1.0 σ = 1.00 μ: Mean σ: Standard Difference A: Distance between the reference point and the center of the bivariate distribution 1 σ 2π p(x) = z =0; σ x =1.0) e (x−μ) 2σ 2 Standard Normal Curve f(z) 0.4 0.1 0.2 0.3 -3 -2 -1 0 3 2 1 68.27% 95.45% 99.73% 3-σ 2-σ 1-σ z 1 2π z 2 2 e[ - ] Joint Density Function Π L(θ; x 1 , ..., x n )= f (x 1 , x 2 , ..., x n | θ)= f (x i | θ) n i = 1 Likelihood Σ ln L (θ; x 1 , ..., x n )= ln f (x i | θ) n i = 1 Log-Likelihood x i : Observations n: Number of Samples f: Is one, or joint, probability distribution(s) θ: Distribution parameters can be vectors μ: Mean σ: Standard Difference A: Distance between the reference point and the center of the bivariate distribution erfc(z)=1erf(z)= 2 π e -t 2 d t erfc(x) 2 1.5 0.5 -2 -4 -2 -4 4 2 1 z erf(z)= 2 π z 0 e -t 2 d t ±1-σ: P (-1 z 1) = 0.6827 ±2-σ: P (-2 z 2) = 0.9545 ±3-σ: P (-3 z 3) = 0.9973 θ BW 3dB 0.886 b Nd cos θ 0 λ Phased Array, Radians θ BW null 1.22 d λ d λ θ BW 3dB 0.88 Parabolic, Radians D 4π θ 1d θ 2d 180 π ( ) 2 40000 θ 1d θ 2d G ant = λ 2 4πA e s(τ) = e j2π(f c τ+ bτ 2 ) , - τ 2 τ p 2 τ p 2 1 B p = b τ p s(): Transmitted Signal Waveform f c : Center Frequency τ: Range Time (fast time) τ p : Pulse Length b: Chirp Rate B p : Pulse Bandwidth γ: Range Frequency * “u” stands for unabsorbed or under K; “a” stands for absorption region or above K Electronic Warfare NOISE JAMMING Sidelobe J self : Self Protect Jammer Power J/S: Jam to Signal Ratio at Radar Receiver S: Radar Received Signal Power P t jam : Jammer Transmit Power G t jam : Jammer Transmit Gain R jr : Range between Jammer and Radar R: Range between Radar Target and Radar λ: Jammer Transmit Wavelength G r radar : Radar Receiver Gain L r radar : Radar Receiver Losses P t radar : Radar Transmit Power G t radar : Radar Transmitter Gain σ: Radar Target Radar Cross Section BW Radar : Radar Transmit Bandwidth BW Jam : Jammer Transmit Bandwidth J: Jammer Power Rmax jammed : Jammed Radar Range (Burn through Range) R max : Max Radar Range J/N: Jammer to Noise Ratio N: Total Noise k: Boltzmann’s constant T s : Receiver Temperature B N : Receiver Noise Bandwidth SNR: Radar Signal to Noise Ratio N f : Receiver Noise Figure (>1) J S = EIRP jam EIRP radar ( ) 4πR 2 σ ( ) ( ) J S = EIRP jam EIRP radar 4πR 2 σ ( ) BW radar ( ) BW jam P t jam G t jam ( ) 2 λ 4πR jr J self = L r radar } EIRP jam If BW jam BW radar 10 1 -150 -140 -130 -120 -110 -100 -90 -80 -70 -60 Reduction in Radar Detection Range due to JNR Normalized Maximum Radar Range Range (km) 10 2 10 3 J S Burn- through range for SNR = 13 dB J/N ~ ( ) 4 R max jammed R max Assume: J >> N BW Jam = BW Radar R max jammed 4 = P t G' t G' r λ 2 (4π) 3 (kT s B N N f +J) * SNR * L r* L t Mainlobe Reduction in Normalized R max 1 0.8 0.6 0.4 0.2 Rmax Rmax Jammed Main Beam Reduction in Radar Detection Range due to JNR Normalized Maximum Radar Range Jammer to Noise Ratio (dB) 0 5 10 15 20 25 30 35 40 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x(t) X(ω) 2π 1 x(t) = X(ω)e jωt dω +-Synthesis X(ω) = x(t)e -jωt dt +-Analysis h(t) * x(t) H(ω) X(ω) X(ω) x(t) H(ω) h(t) H(ω) X(t) h(t) * x(t) 1 δ(t) H(ω) h(t) H(ω) h(t) e jω ο t H(ω) e jω ο t H(ω ο ) H(ω): Frequency Response : Convolution operation Convolution Property Ideal Lowpass Filter Differentiator Fourier Relationships PARSEVAL’S RELATION 2π 1 |x(t)| 2 dt = |X(ω)| 2 dω +-+-T o |x(t)| 2 dt = |a k | 2 +k=-~ T o 1 H(ω) -ω c ω c ω y(t) = =>H(ω) = jω dt dx(t) |H(ω)| ω x(t-t o ) e -jωt o X(ω) Time Shifting Differentiation jω X(ω) dt dx(t) jω 1 t x(τ)dτ X(ω) + πX(0) δ(ω) -Integration Linearity ax 1 (t)+bx 2 (t) aX 1 (ω)+bX 2 (ω) Modulation Duality Property 2π 1 s(t) p(t) [S(ω)P(ω)] Convolution h(t) * x(t) H(ω)X(ω) x(t) t 1/a 1 1 e - a a 1/a 2 1/a |X(ω)| ω < X(ω) π/2 π/4 - π/4 - π/2 ω - a X(ω) - w w ω 1 X(ω) t π T1 sin ωT1 ω 2 2T1 x(t) - T1 T1 t 1 x(t) t π w w π sin wt 2πt 2 S∝σ, range Radar Cross Section (RCS, σ) Scattering σ = = lim 4πr 2 Incident Power Density / 4π Reflected Power to Receiver / Solid Angle |E i | 2 |E s | 2 ( ) P t P r or S σ Radar Processing TYPICAL VALUES OF RCS Radar Processing RADAR AMBIGUITY FUNCTION Radar Processing NOISE POWER Radar Processing SPEED OF LIGHT Radar Processing MAX UNAMBIGUOUS RANGE Radar Processing SIGNAL TO NOISE RATIO S(t): Complex Baseband Pulse τ: Time Delay f: Doppler Shift x(τ, t) =s(t)s * (t-τ)e i2πft dt −∞ = kT s B N N f Noise Power in Receiver Speed of Light (approx) 3x10^8 300 1.62x10^5 1x10^9 1x10^3 Units m/sec m/usec NM/sec Ft/sec Ft/usec R max = c 2PRF PRF High Medium Low PRF 100 kHz 25 kHz 10 kHz Unambiguous Range 1.5 km 6 km 15 km Range Ambiguous Ambiguous Unambiguous Doppler Unambiguous Ambiguous Ambiguous c: Speed of Light PRF: Pulse Repetition Frequency Pr: Received Power Pt: Transmit Power Gt: Transmit Gain Gr: Receive Gain R: Range No: Noise Power L: Losses P R SNR= = P t G t G r σλ 2 G p L (4π) 3 R 4 k B T s B n N f N o ELECTRONIC WARFARE QUICK REFERENCE GUIDE Military Standard Bands U.S. Industry Standard Bands (IEEE Radar Designation) HF VH L F UHF S W * a Millimeter * u International Standard Bands G H G H C M A G H G H G H G H F F F F B B C C C C J 250 Frequency (MHz) Frequency (GHz) 20 30 100 200 300 500 400 300 200 100 80 60 40 30 20 15 10 8 6 5 4 3 2 1.5 12 18 27 110 7 (HF) 8 (VHF) 9 (UHF) 10 (SHF) 12 11(EHF) Band Designation HF VHF UHF L S C X K u K K a V W Frequency Range 3–30 MHz 30–300 MHz 300–1,000 MHz 1–2 GHz 2–4 GHz 4–8 GHz 8–12 GHz 12–18 GHz 18–27 GHz 27–40 GHz 40–75 GHz 75–110 GHz F F F F F F F F RF Propagation Detection & Estimation Probability Antennas f z (z)= -<x<RADIO Wavelength (Meters) Frequency (Hz) 10 3 10 4 10 8 10 12 10 15 MICROWAVE 10 -2 INFRARED 10 -5 VISIBLE 10 -6 ULTRAVIOLET 10 -8 X-RAY 10 -10 GAMMA RAY 10 -12 THE ELECTROMAGNETIC SPECTRUM 10 16 10 18 10 20 = ln L n 1 =(θ|x) = ln f (x i | θ) Σ n i = 1 n 1 Average Log-Likelihood ˆ ˆ P t radar G t radar G r λ 2 S = (4π) 3 R 4 } EIRP radar σ G r radar Radar Processing LINEAR FM WAVEFORM σ f (x 1 , x 2 , ..., x n | θ) = f (x 1 | θ) x f (x 2 | θ) x ... x f (x n | θ) .0001 -40 Insects Birds Human Small Car Fighter Aircraft Bomber: Transport Aircraft Ships -30 -20 -10 0 10 20 30 40 .001 .01 0.1 1.0 10 100 1000 10000 dBsm m 2 Electronic Warfare Fourier Relationships Radar Processing X-band 300 m/s 0.03 m 20 kHz S-band 300 m/s 0.1 m 6 kHz Wavelength 3.00 m 0.10m 0.05m 0.03m f 100 MHz 3 GHz 6GHz 10GHz Band VHF S C X Velocity Wavelength Doppler Shift kT s : = -174 dBm K: Boltzmann’s constant = 1.38*10 -23 J/K B n : Noise Bandwidth T s : System Noise Temperature T s usually set to T 0 = 290K N f : Noise figure of receiver r K: Boltzmann’s constant = 1.38*10 -23 J/K B n : Noise Bandwidth T s : System Noise Temperature T s usually set to T 0 = 290K N f : Noise figure of receiver σ
Transcript

Q

RF PropagationRADAR HORIZON

RF PropagationTARGET VISIBILTY

Detection & Estimation ProbabilityCRAMER RAO LOWER BOUND

Detection & Estimation ProbabilityMAX LIKELIHOOD ESTIMATION

Detection & Estimation ProbabilityBINOMIAL

AntennasANTENNA BEAMWIDTH

AntennasANTENNA DIRECTIVITY

AntennasANTENNA GAIN

Fourier RelationshipsCONTINUOUS-TIME FOURIER TRANSFORMATION

Fourier RelationshipsFILTERING

Radar ProcessingRADAR CROSS SECTION

Fourier RelationshipsMODULATION PROPERTY

Detection & Estimation ProbabilityRICIAN

Detection & Estimation ProbabilityERROR FUNCTIONS

Detection & Estimation ProbabilityNORMAL

Detection & Estimation ProbabilityRAYLEIGH

RF PropagationWAVELENGTH

RF PropagationDOPPLER SHIFT

Pr =PtGtGr 4πRλ

2

Pr: Received PowerPt: Transmit PowerGt: Transmit GainGr: Receive Gain

R: Range

c: Speedf: Frequency

H: HorizonRe: Earth Radius ~ 6,371 km

H: HorizonRe: Earth Radius ~ 6,371 km

x: Observationsp: Probability distribution function (or joint)

θ: Distribution parameters can be vectors

p: Success probability of each trialk: Number of successes

n: Number of trials

λ: Wavelengthd: Antenna Diameter

θ1d: Half-power beamwidth in one principal plane (degrees)θ2d: Half-power beamwidth in the other principal plane (degrees)

Ae: Effective Aperture Areaλ: Wavelength

μ: Meanσ: Standard Difference

A: Distance between the reference point and the center of the bivariate distribution

I0: Bessel Function of the fi rst kind with order zero

μ: Meanσ: Standard Difference

A: Distance between the reference point and the center of the bivariate distribution

RF PropagationFRIIS TRANSMISSION EQUATION

Dh= 2HRe

λ = fc

fd = –2vr / λ

Target Height 2Re

(Target Range - 2HRe)2 =

CRB =∂θ

∂ ln p(x, θ)[ ]E∂θ

∂ ln p(x, θ)[ ]( }T{ )-1

f(k; n, p)= Pr(X =k) =( ) pk (1−p)n−k kn

p(r)={ rσ2 e

r 2

2σ 2−

0

(r < 0) (0≤r≤∞)

1.2

1

0.8

0.6

0.2

0.4

00 2 4 6 8 10

σ = 0.5

σ =3

σ =1

σ = 4

σ = 2

p(r)={− I0

( )for (r < 0)

for (A ≥ 0, r ≥ 0)σ2r e

0

2σ2(r2+A2)

σ2Ar

0.6

0.5

0.4

0.3

0.1

0.2

0.00 2 4 6 8

v = 0.0

v = 2.0

v = 0.5

v = 4.0

v = 1.0

σ = 1.00

μ: Meanσ: Standard Difference

A: Distance between the reference point and the center of the bivariate distribution

1σ 2π

p(x) = (μz=0; σx=1.0)e −

(x−μ)

2σ2

Standard Normal Curve

f(z)

0.4

0.1

0.2

0.3

-3 -2 -1 0 32168.27%95.45%99.73%

3-σ2-σ1-σ

z

12π

z2

2 e[- ]

Joint Density Function

Π L(θ; x1, ..., x

n )= f (x

1, x

2, ..., x

n | θ)= f (x

i| θ)

n

i = 1

Likelihood

Σln L (θ; x1, ..., x

n )= ln f (x

i| θ)

n

i = 1

Log-Likelihood

xi : Observationsn: Number of Samples

f: Is one, or joint, probability distribution(s)θ: Distribution parameters can be vectors

μ: Meanσ: Standard Difference

A: Distance between the reference point and the center of the bivariate distribution

erfc(z)=1−erf(z)= 2π ∫

∞e -t 2 d t

erfc(x)2

1.5

0.5

-2-4 -2-4 42

1

z

erf(z)= 2π ∫z

0e -t2 d t

±1-σ: P (-1 ≤ z ≤ 1) = 0.6827±2-σ: P (-2 ≤ z ≤ 2) = 0.9545±3-σ: P (-3 ≤ z ≤ 3) = 0.9973

θBW3dB ∼ 0.886 b

Nd cos θ0

λPhased Array, Radians

θBWnull ∼ 1.22

dλθBW3dB

∼ 0.88 Parabolic, Radians

D ≈ 4π ≈θ1d θ2d

180π( )2

40000θ1d θ2d

Gant = λ2

4πAe

s(τ) = e j2π(fcτ+ bτ2) , - ≤ τ ≤2

τp

2

τp2

1

Bp = bτp

γ (frequency)

τ (time)

determines signal energy

τpτpτ

BpBpBdetermines resolution

s(): Transmitted Signal Waveformfc: Center Frequency

τ: Range Time (fast time)τp: Pulse Length

b: Chirp RateBp: Pulse Bandwidthγ: Range Frequency

* “u” stands for unabsorbed or under K; “a” stands for absorption region or above K

Electronic WarfareNOISE JAMMING

Sidelobe

Jself: Self Protect Jammer PowerJ/S: Jam to Signal Ratio at Radar Receiver

S: Radar Received Signal PowerPtjam: Jammer Transmit PowerGtjam: Jammer Transmit Gain

Rjr: Range between Jammer and Radar R: Range between Radar Target and Radar

λ: Jammer Transmit WavelengthGrradar: Radar Receiver Gain

Lrradar: Radar Receiver LossesPtradar: Radar Transmit Power

Gtradar: Radar Transmitter Gainσ: Radar Target Radar Cross SectionBWRadar: Radar Transmit Bandwidth BWJam: Jammer Transmit Bandwidth

J: Jammer PowerRmaxjammed: Jammed Radar Range

(Burn through Range)

Rmax: Max Radar RangeJ/N: Jammer to Noise Ratio

N: Total Noisek: Boltzmann’s constant

Ts: Receiver TemperatureBN: Receiver Noise Bandwidth

SNR: Radar Signal to Noise RatioNf : Receiver Noise Figure (>1)

JS

=EIRPjam

EIRPradar( ) 4πR2

σ( )

( )JS

=EIRPjam

EIRPradar

4πR2

σ( ) BWradar( )BWjam

Ptjam Gtjam

( )2

λ4πRjr

Jself = Lrradar

}EIRPjam

If BWjam ≥ BWradar

101-150

-140

-130

-120

-110

-100

-90

-80

-70

-60Reduction in Radar Detection Range due to JNR

Nor

mal

ized

Max

imum

Rad

ar R

ange

Range (km)102 103

Skin Return R4 Jammer R2

J

S

Burn- throughrange for SNR =

13 dB

J/N ~ ( )4Rmaxjammed

Rmax

Assume: J >> NBWJam = BWRadar

Rmaxjammed

4 =

PtG'tG'rλ2

(4π)3(kTsBNNf +J)*SNR*Lr*Lt

Mainlobe

Reduction in Normalized Rmax

1

0.8

0.6

0.4

0.2

Rmax Rmax Jammed

Main Beam↓ Reduction in Radar Detection Range due to JNR

Nor

mal

ized

Max

imum

Rad

ar R

ange

Jammer to Noise Ratio (dB)0 5 10 15 20 25 30 35 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x(t) ↔ X(ω) 2π1x(t) = ∫ X(ω)e jωt dω

+∞

-∞

Synthesis

X(ω) = ∫ x(t)e -jωt dt +∞

-∞

Analysis

h(t)* x(t) ↔ H(ω) X(ω)

X(ω)x(t)

H(ω)

h(t)

H(ω) X(t)

h(t)* x(t) 1

δ(t)H(ω)

h(t)

H(ω) h(t)

e jωοt

H(ω)e jωοt

H(ωο)

H(ω): Frequency Response: Convolution operation

Convolution Property

Ideal Lowpass Filter Differentiator

Fourier RelationshipsPARSEVAL’S RELATION

2π1∫ |x(t)|2 dt = ∫ |X(ω)|2 dω

+∞

-∞

+∞

-∞

∫To|x(t)|2 dt = ∑ |ak|2+∞

k=-∞

~To

1

H(ω)

-ωc ωc ω

y(t) = =>H(ω) = jωdt

dx(t)

|H(ω)|

ω

x(t-to) ↔ e -jωto X(ω)

Time Shifting

Differentiation

↔ jω X(ω)dtdx(t)

jω1∫

t x(τ)dτ↔ X(ω) + πX(0) δ(ω)

-∞

Integration

Linearityax1(t)+bx2(t)↔aX1(ω)+bX2(ω)

Modulation

Duality Property

2π1s(t) p(t)↔ [S(ω)P(ω)]

Convolution

h(t)* x(t) ↔ H(ω)X(ω)

x(t)

t1/a

1

1e

- a a

1/a √2

1/a|X(ω)|

ω

↓< X(ω)

π/2

π/4

− π/4

− π/2

ω− a

X(ω)

- w wω

1

X(ω)

tπT1

sin ωT1

ω2

2T1

x(t)

- T1 T1t

1

x(t)

tπw

sin wt2πt

2

S∝σ, range Radar Cross Section (RCS, σ)Scattering

σ = = lim 4πr2Incident Power Density / 4π

Refl ected Power to Receiver / Solid Angle

|Ei|2

|Es|2

( )Pt

Pr or S

σ

Radar ProcessingTYPICAL VALUES OF RCS

Radar ProcessingRADAR AMBIGUITY FUNCTION

Radar ProcessingNOISE POWER

Radar ProcessingSPEED OF LIGHT

Radar ProcessingMAX UNAMBIGUOUS RANGE

Radar ProcessingSIGNAL TO NOISE RATIO

S(t): Complex Baseband Pulseτ: Time Delay

f: Doppler Shift

x(τ, t) =∫ ∞s(t)s*(t-τ)ei2πft dt −∞

= kTsBNNf Noise Power in Receiver

Speed of Light (approx)

3x10^8

300

1.62x10^5

1x10^9

1x10^3

Units

m/sec

m/usec

NM/sec

Ft/sec

Ft/usec

Rmax = c2PRF

PRF

High

Medium

Low

PRF

100 kHz

25 kHz

10 kHz

Unambiguous Range

1.5 km

6 km

15 km

Range

Ambiguous

Ambiguous

Unambiguous

Doppler

Unambiguous

Ambiguous

Ambiguous

c: Speed of LightPRF: Pulse Repetition Frequency

Pr: Received PowerPt: Transmit PowerGt: Transmit GainGr: Receive Gain

R: RangeNo: Noise Power

L: Losses

PRSNR= = PtGtGrσλ2GpL

(4π)3R4kBTsBnNfNo

* “u” stands for unabsorbed or under K; “a” stands for absorption region or above K* “u” stands for unabsorbed or under K; “a” stands for absorption region or above K

ELECTRONIC WARFARE QUICK REFERENCE GUIDE

Military Standard Bands

U.S. Industry Standard Bands(IEEE Radar Designation)

HF VHF LF LF LF LUHFF LUHFF L S WS WS WK VS WS WK VS WS WKS WS WK VS WKS WK VS W*S W*S WS WK VS W*S WK VS Wa MillimeterS WKS W*S W*S WuS WXS WS WCS W

International Standard Bands

G HG HG HG HCB MB MA KA KB MA KB MB MA KB MB MA KB MB MA KB MG HB MG HA KG HB MG HG HB MG HA KG HB MG HFB MFA KFB MFB MA KB MB MA KB MB MA KB MB MA KB MCB MCA KCB MCB MD EB MA KB MD EB MB MD EB MA KB MD EB MB MLB MJB MA KB MJB MA KB MB MA KB MIB MA KB M

250

Frequency (MHz) Frequency (GHz)

20 30 100 200 300 500 400300200100806040302015108654321.512 18 27

110110110

7 (HF) 8 (VHF) 9 (UHF) 10 (SHF) 1211(EHF)

Band Designation

HFVHFUHF

LSCX

KuK

KaV

W

FrequencyRange3–30 MHz30–300 MHz300–1,000 MHz1–2 GHz2–4 GHz4–8 GHz8–12 GHz12–18 GHz18–27 GHz27–40 GHz40–75 GHz75–110 GHz

F

F

F

F

F

F

F

F

RF Propagation Detection & Estimation Probability Antennas

fz(z)= -∞<x<∞

RADIO

Wavelength (Meters)

Frequency (Hz)

103

104 108 1012 1015

MICROWAVE

10-2

INFRARED

10-5

VISIBLE

10-6

ULTRAVIOLET

10-8

X-RAY

10-10

GAMMA RAY

10-12

THE ELECTROMAGNETIC SPECTRUM

1016 1018 1020

= ln L n1

=(θ|x) = ln f (xi| θ) Σ

n

i = 1n1

Average Log-Likelihood

ˆ

ˆ

Ptradar Gtradar

Gr λ2

S =(4π)3 R4

}EIRPradar

σ

Grradar

Radar ProcessingLINEAR FM WAVEFORM

σ

f (x1, x

2, ..., x

n | θ)= f (x

1 | θ) x f (x

2 | θ) x ... x f (x

n | θ)

.0001

-40

Insects Birds Human Small Car

FighterAircraft

Bomber:Transport

Aircraft

Ships

-30 -20 -10 0 10 20 30 40

.001 .01 0.1 1.0 10 100 1000 10000

dBsm

m2

Electronic Warfare Fourier Relationships Radar Processing

X-band

300 m/s

0.03 m

20 kHz

S-band

300 m/s

0.1 m

6 kHz

Wavelength

3.00 m

0.10m

0.05m

0.03m

f

100 MHz

3 GHz

6GHz

10GHz

Band

VHF

S

C

X

Velocity

Wavelength

Doppler Shift

kTs: = -174 dBmK: Boltzmann’s constant = 1.38*10-23 J/K

Bn: Noise BandwidthTs: System Noise Temperature

Ts usually set to T0= 290KNf : Noise fi gure of receiver

r ∞

K: Boltzmann’s constant = 1.38*10-23 J/KBn: Noise Bandwidth

Ts: System Noise TemperatureTs usually set to T0= 290KNf : Noise fi gure of receiver

σ

Recommended