+ All Categories
Home > Documents > QL% Chiplm. - DTIC

QL% Chiplm. - DTIC

Date post: 07-Dec-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
193
AD-A252 817 QL% ttaW Ranc end Gem'akny MTT Chiplm. .'A. CNR, Italy NEIFrance ~*A~k~p~u Rdserch Off ice UK IEEE Microwave Theory and Technkqu Society W.- . Approved for ptubl 101dam 92 710 02 86
Transcript

AD-A252 817

QL% ttaW Ranc end Gem'akny MTT Chiplm.

.'A.

CNR, ItalyNEIFrance

~*A~k~p~u Rdserch Off ice UKIEEE Microwave Theory and Technkqu Society

W.- .

Approved for ptubl 101dam

92 710 02 86

Technical Program CommitteeP. Lampariello, University of Rome La Sapienza, Workshop Co-ChairmanR. Sorrentino, University of Perugia, Workshop Co-ChairmanV. Fouad-Hanna, CNET, FranceH. L. Hartnagel, Technische Hochschule, Darmstadt, Germany

Orgpuizing- Committe

Rl. Giorgini, Itelco S.p.a.V., Alleva, Itelco S.p.a.S. Monelli, Itelco S.p.a.S. Catena, University of Perugia

SecretariatN V. Ppni, University of- Perugia .

L. Castellani, University of PerugiaC. Paolotti, University of Rome "La Sapienza"

DISCLIMEl NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Microwave Theoy and Techniqures GocielyC.&G. Italy. Franco and Germany MTT Chaplets

1992 International Workshopon Millimeter Waves

April 22.24, 1992

I'.II.14ZEI del Capillano del l'opolo

Orvieto, Italy

Orcginimcl bX:

Central aind South Ihlily MIT ChapterFrancex mrr n:iaipir

Get maany MTJl ChiapterUntiversity 4, Periugia

IiTLCO S.p.a.. Orvietto

Suoneiid by:

CNIZ. lIlyCNEiT. lkaacc

USAI(DSG Eurorpcan Rc.'%carch Olicic. UKIEEEl Microwavc lci idTlairs Srciety

Univrsity ofrug ia~:~. ItalyCntramve. lhaliana N.pa.. Itaily

I icco S.1 ,.a.. IalyAlcuiai S.pa.. Itazly

Technical P~rogram Comnan1itLic1). La.nParicllo, Uaivcriy of Romec La Saipieni~i. V/or-ksop CO-Citairn lastR. Sorrentino, Univcrsily of i'crugia. WorksJiop Co-ChairmanV. Fouaid--lmna, CNljr, France

I.L.H.Lrtadcl,17cclanischac I-oclaichule, 1Jaransuidt. Germuany

Organiziug CommnitteeAc io Fo

R<. Giorginl, UIteco S.p.a. NTTF; ablV. Allcva, Ilcico S.p.m. 3Y ~ A

S. MOn)Cil, h1clco S.p.a. I acnuelS. Catcnma, University tif P1cruri.i Jt r fi*t on

Secrewarlt 1 Distribetioalf

V. Papiaai, Univcsity of Pecrugia IAvllabilitY Cod ej

L. Calelai, Universiity of I'crugia I A.1adOC. hi'ololii, Uaaiver.%ily of R(omei "LaI Sipicaai;'ts SPec

FOREXA'ORD

Wclcottic Lo thirdcdtitlfilte Itieniattital wavi kshi p o Nlilleter 'Wave.%. licing heldat lte

I'ahjazz.hid Capot, Ie 1'ojvIh lin Orvielt. Alter lte elithitaragij; succe,'ichth pie vetus cditiiiis at

tlie Uniiversiy 44, Rouiteir Vctgati" in IM ;tolad at the Ujniversit y tit- Iertigia in 1I ' it wasidecidled it) or1galize a necw vwikshii.l, a. a comv.lii i.4.1 lx-te*Il Olw ( eitti1.s t1 iS.11il1 Itily (' lcalitrwith the Framie l e tayCt~t i~site IhLNjtwv 'tiL uh chii~isSwey

111C city oif Oricto has beenl chttiscr a~s lte venue I, it- tisi.vt nott simtply beccause it i. icatedmtidway bctiwcn Ittili and P'erugia. but mintly hIr its tunique cltrtit due lt its sugvestlivc mnedieval

aptpearattcc and thc rich artistic patriimiy dalizig luck (it lte Elrutinsci peinid. Thle l'alaz, del

Capitano del liopolo is nlo do)ubt anl cxtraordiiay cmotiatim, betveeti a litylorical mcdievoal pohiizza

and a niudenti atnd Cfficient Cotugm-ss Ccnter.ITELCO S.p.a. Clitusiastically agrecd to sponsoo~r thic wolrk.shop alld bas beenl a fuiidamnuttal partinerini the torgatniJatiii. 1w sticial lirutram is alsti very attractive. mtcludisie a very itice conceit tit twit

Canadian artists. Tr. Goudic arid D. Lawtiott.

Wc would like ito thank all lte invited specaker.- whit kitndly agreed lt participatc ii the

workshopi and the miany otlters who have woied for its 'necess. Wc are deeply graut lt 'sts

Carrara, onc ul' the fiihaers oaf tuicrtiwavcs in Italy. wtim accepted oiur invitation toi welcomi lte

participanits at t01C q~1iipentig C55iil.

I'aulo Lati~mrihlm, antd Roberto Norcutinlo

%Vurksltnp Co.Chaiiraicii

it. r~icieteI. Akoidoneter. lave Aloplici~nont% joid IriTehnhojgy 'gid

K. Crueller. it Net, Passiive A-ier,,i*,a,' Sciner for Airjvtprior Aleavisritwit t of Itlariti #il IauIinus

NI. Aikawn. AIMIC Tecitiinlogy for ConmFuieatini Sysrtms

It. IFunck. New Integrated SubsYmestm fopr llntgrlatAtpiiins

D. Po,rn New Alilhimneter-110a,'e Devices: Realezatiint tand Perfoyrntie

G. Silancr, FiclEffect, Trimoittfo firsfr the ,thihi,,eter. Wuter Range: 'hiYsieal Atoodv~js. Alawlelutj' UlLtImcceml I'eqrune

J. Frcyer. Tims-Tertninual Millimneter- lVaer, Deces~

1I. L. I Ilrttutgel. 'lechioh,gy Iee ,onrlim. 1o'i,,r-tvu ,Vu,,i-,n Vrowtue.%

T. ltoht. O1164:111 Cmntrol 1fillinmler4Vtlatri Circuits

T. Yotwymatiat. Receott IDeehotnns. #of NRI)-;,.,s. Te, impIig

It. 11. Jamset. Adv'anced Design Tee hnu jues fir Leiear adS Nonldinear MAIC's intto lie Atillimleter. WarrRegimon

V. Fi~uad I lanita. CAD) of Millimter. Wa~ve P'assive Cemioments its Siupended Alicratip Techonahegy

A. A. Ohmer Leakage and Crastalk lFffects in Alilimeter-lMaw Integrated Circuits

N. Alemupitius. JD Ainodeling lof Atidhi neter-Wov Circits unitd Anmismnn

- lit. Meinel -

Deutsche. Aerospace G ermuany

- t'--0

1-

Ow~ :f0'tt41 IRAv

z

CC C?

b-4,

~~~4- 3: Cs o ! !00 [email protected] -I

3C0 a o.5 C.3~ ~~~ c. I~. -~

M.. E .*-C a a c , 3.a o 00o. 0=

S.~~DS a .o X. 44C0 w o.cE0

aa~a u. > a aU Ea-~ .Dc 0 0 0 E0 c . O

-. E3 0~

re CL. -30 - T-o

75 am ~ Zg Gc ucX .-L ' a = 2 o o.-= .2o u ' ,a

z I~ o 0k.t *So ua - -.

(0~~~ ~ ~ a .aa a; Z. c

(fl3 c3ca = - -EZ.1*~ 07 uO >~3 *.c.a d

r3= . E me z 'D 0 c0 0 ~cC u.>

3:3

U ouO. o m e 0-c .

c ~ ~ ~ .u* Z cc r

a O-c .- x ~uovul o a ' a, a & - , - 2

'1U .2.3 o. D O -. t E.e

oD CO 0 0 ccD - "5

0~ ~ cC~ .o aD C>.

-a. 0 o0 a loo.~ z E a > - a C c CO.3 a

C 5 Z- = D3 - ! " c ? -; =E Ea- 'c'

w~ oh L~ 0 a ". -m c - . ; ;i -.-

w-- 6 Z4 . o *o0 a~ >.Ca E -c , c L' a -, aS

u. -~. . w. a > E :L,

0 (L~C ~ U 0. .3 E .a0L0 o u

u 4 *Sio. . ... g 0 E cc

ESo - Z o ;; c E.EJ ac~ 5-0 O a c. *gj

3~ -&a o

4 a- 4 a. ol - 1

3: a ;j c a. 6 5 X-E .. CE = .. - Z~ c3 ea c

a aD~.- 0 c o0u

.3 80 a c a cc o o3 .3.>Q a -2 c u 'co-o a o a

C a -7 AL c 3 0

-. *1 E c c M. - .,

c E - t: . '.0a C. a- If 0

c 0~U .0. 0 C. a -j E c

Z5 (2)'O * '. 'ii E 4

.- !! - 82 n.

a 0 clox a a 4

C3 0 ( C. 0 0 A 3600 2 u 420 .

r. C0o E In- E 4. 0o

CL .-. .0 'a ll :

2 2j c '.0

00 C0) m j enCC gr- 'a ii :6 .. v

EQ *u* * LA V. ccCa). Lb !?

> ca .C z- "Ld a: -A

u E 0 = z

E0

D

Zh~ .~ - E;. c. In Z E ; .

cc ! s~ .. W-. C c. 0--

04 -0.0- -

.- 2b 00 r.0 0 s~ a) t0

z 44.~ ~ ' C ) -

a. 0 u .0 u -u .

-0 a 0

I; -SCC I, 4. CC

c 0 L -

Lu E0- 0'. -a 0 W 4c~U CJ~it

C 4. L4aU' C.~~ CL @ 0 In to P0

4m a

XE~ 1=0CL u0~~~~ Q L0r -

E 0~ 0* m~ a*~.'U 0 to * ao

4 ..jS '~.2 vo 0 p ab Z~*

c 'a cx< aza - w s '02 u

sE0 S C E '0 CL> '

a5 C4 C 4u '-( .

-a 14 c 0 0 -~ Y Z.4

U *C

C 'c.4.

0(

c Z4 .. C ~- ~ EY ~ _: ''r4

a c-~

U-

ft C. O ' C4 'c -

0 ~ c 40 a ,. ~

CL . Z! 449 E.

.4 E r. .u cs aCC U. M4 01 2o M" -M U

U 0 i n

a> a 40 0 l~t. jo- c 0 o 0.10 wu c

10 CL a. 3'4) 0. 0 3. E 0 0

C . 0~ Cct w~>~ wco 1( 0 . COt 040 0- CL .

(I - *lv Fa %,; ro

.C.~~~~ 0 -j c- 0 C > C CL -

EC. 'E IL aC O.C 0 -m0~F 4 0 I ~

t. V 0~ Z! 0 .O 'a .'

- ' C O- c I. - - -

0 2~Q . .2 - 42- -

cm 'In ru-00 4) zl ti,

in :, CL . - 44~~

C4 C; CLt 0-: c

Q. *. 0z "C ..

to 3'S 3U.' --!

3-1 C; to .0 c- aO 4

-CF~ c.C 0.j t'- Ca ~

IJ4. in r CL a- i 0

at -7 tcZ E ~ ~ 0 , 3(

Cs. L (I0 4 0 i5.4 4

U35 . 0 - Cuo- C4 CL ow c: c C; '0 0 :e 4 = -

a, W. E! 0, c'4. *

C; x to .4 .-1 4I 2 ft 2 .

CL OL C U

.4mw~ ~ ~~ C4)~ ( L~ 4 C

20 00! 0 O a~ -- COL

CL e. 4 4 I t C. 0-c > - --. (.4 .4 .(."E

uK

E -7

> .2~0 - 4

Z 0 C-

-c C

0I ga *0 0-

*0a*- 0 0%n E : d .: 0 S

- m gm 3 C co" .

ev CC a-E

S., 0V >cc go CL

> .a -: - ' j -l

L 0

it -0 A ( 0 r 4.

~u ~5 O ~ 10

4-

a-- *- -.*1~ -, ., .~

o a.' I

C, I ., 00

a-)

I --C-r a)a.' U

- bvuL'.hc AcIu~,II.Ia

I - ~' .-, 'a.. -~- 0 a' .,.,,, 0'

U64 .4 O~ 4 - a.,

0

-~ -I

-. **6 a.) W W

oa-, -. I~.

- U -. -..4 - -, -. -.

Ia. L 6£. IA. IA. IA. <0

z *-a.~ -.oa;. a., a- -~ -~

C)z

6

- -~ 2-S ri

E 0~ U C)

a-' 0 ~0 LI a' a.

BLOCK DIAGRAM OF A 50 GHzTRANSMITTER AND A RECEIVER

TRANSMITTER RECEIVER

ZSGIIz FM 50 Gjl2

MODULATOR DOUBLER MIXER IF AMPLIFIERVIDEO AND M "E. VIDEO AND

VOICE SIGNALS' c VI SIGNALBUFFER AMPLIFIERS DOBLR .Gz R

MIC ASSEMBLY

BUFFER AMPLIFIER

MIC ASSEMBLY

MATSUSHITAElectric Industrial Company, Ltd.

MATSUSHITAElectric Industrial Company, Ltd.

Major chacerisatcs o( the 50 GlIz communicadon system

F-quency 50.46G!Iz

TransmitLing power 10d~m

Noise figure 13dB

Frequency stability ±100 ppm (-20-60 C)

Modulation FM

Frequency deviation 16 M~lz pp

Intemediae f(nuency 960 MNhIF bidwidth 27 Mliz

Video sigal bandwidth 4 W

Audio signal bandwidth 15 KHz

fELEFUNKENWicol 38 Sendlertechnik38 GHz Wireless Linkfor Digital Data Transmiissiont

transmitting antenna at

1t5 c ocal high point

Mast Antenna feed to

properties whwee trees etc.

O 0 BS block radio pathr~~ ott - air UHF TVRO

reevr

qcan~w rogamae TV studal

pf-gramm. tap Trttl.i

System Concept

+Deutsche Aerospace

Manuf act. Type Freq. Output Modulation Data Rate Hoplength

GHz power kbits/s km________mW

Alc.-Th. TM 440 40 50 FM BW: 15MHz 15

BTRL 29 120 FSK/PSK 8kf70k 10

Telefunken Wicol 38 38 8,000 4

NEC PL 50 50 15 FSK 1,544 2

FUJITSU FC2160 50 10 FMIFSK 20,000 2

MATSUSHITA 50 10 FMV BW: 15MHz

SONY 50 20 FSK 30,000

POINTJ1-TO-POINT Millimeter-Wave Communication systems- v'innre Data

PR13S~ W

Sounder Diagram

Radio and Radar Systems Division AEG

1.0 *1.0

0. 0

o.. . 0.1o.B .. a.Cl

n own C"l-

MOM..r 9 .ot

* Deutsche Aerospace

Manufact. Freq. Output Modulation Bandwidth Runlength

GHz Power MHz mnmW

Univ. Col. 55 60 5 150Ldn.

Univ. Bristol 60 20 PRBS 2 L-0-S200

Experimental Millimeter-Wave System for Mobile Braodband Services IMBS)Performance Data

PHIL/IPS M/IC/ROW A V E

BBODY

BOGY

UPHPSOE

'kDC measurement - Deutsche AerospaceSchematic diagram

Injection

~Quartz

couplr . Pr e-Chamber

SPhotodiode re

Generator Absorber FiringTrigqcrsignal

MiSi Hixor0

Triggergenorator150 KHz

Gignalamplitule

RI I Si Real '°.IITrigger Au (dyn. moas.d

+ Deutsche Aerospace

REQUIREMENTS FOR AN 'AEGOBSTACLE WARNING SYSTEM

Output power 35 mW

Frequency 94 GHzS DETECTION OF CABLES AND WIRES WITH

Sweep range 800 MHz DIAMETERS a3mm

Linearity less than 1 % RANGE OF CA. 500m

Mixer NF 8 db * ALL WEATHER CAPABILITY

Weight less than 50 g * LIGHT WEIGHT AND SMALL VOLUME

Price * less than 5 f * COOPERATION WITH EXISTING(housing) NAVIGATION AIDS

) polymer injection moulding processmore than 10,000 unitsCu-plating applied

Philips Microwave94 GHz seeker dna"

CF ".1,

JCDEACONS

-i;. -IAO CD\EM SJ

%o f

I.UCII-

Figure 2.1: Operational ytem f or ItT! applications

( / + Deutsche Aerospace

Bands 575-58566476-77GHz 5.805___ -______ 5.815____

Applications Automatic coll Transmissions Ancicollision radars

Bandwidth 2*l zIGzFM/cw : 100 MIor 4 channels of 5 Channels of 5 to 20 Pulsed: 500 MHz

__________ MHz MHz _______

Allowed power 3 dBw 3 -16 dBw 16 - 20 d~wRecominanded 10 -13 dB 1030 dB 30 -3dantenna gain I________ __________ __________

Rate I - 3 Mbits/sec Few Mbits/sec ___________

M'vodulation SK. PSK. ASK FSK. PSKC FNM/CW7____ ___ ____ ___ ___ ___ ___ ___ ___ ____ ___ ___Pulsed

from: NESS. President of the CEPT frettuncy group - DRIVE conference. 4 - 612,91

CEPT F requency Allocations forEuropean Road Transport Applications

Radio and Radar Systems Division AEGflew Technologies

Signboard bridge

Vunable trafic sign \\

Radar sensor I

Radar beam ''a- 53'

Trunk cable Signal processing

Application of AyES - Millllmilerwavis Radar Sensor

Deutsche Aerospace

Radar-Sensor Transmission-Unit

'- couplin - Duplaxer tn

n etwo-'rk~HS~FSU(SSS

Output power 5 mW CONFIRMED.

Frequency 61.25 GHz INl2nd harm. Gunn) 2) OPERATES SATISFACTORILY

PRESENCE OF MULTIPATII

Harmonic suppression > 25 dB EFFECTS.(H-irises)

Antenna beamwidth 3) OPERATES IN PRESENCE OF

azimuth 13 degrees OTHER VEHICLES.

elevation 3 degrees(asymetric lens) 4) OPERATES WHEN DIRECT PATH IS

gain 25 dB OBSCURED BY OT'IR VEhIlCLES.

Mixer NF dB S) ERROR RATE JLFE.Q.BE ERROR

(Ku-Band diodes) 5 ORRTE B ERROR

CORRECTION = 04

6) ERROR RATE AFTER ERROR

CORRECTION SO LOW THAT IT IS

DIFFICULT TO MEASURE

(PROBABLY LESS THAN 10-9).

DRIVE - DACAR - ProgramTelefunken Systemtechnik Road test resultsAVES sensor data

- TOYOTA nToR c0wTION. ,r

EG o and Radar Sys ems Group.h... I DATA

___ ___ ___ __ ___ ___ ___ __ ___ _TSNl) RJY(E °9IN IRICXIII 0111

CAL BEAM , F5 F

RAWt

'EAr. UIX ANICE 3 u Rh

I5Po15 q RAIN To M4

ic o r awcyr

REACrVN r,*- ryATEVAIrI

SAFE DIS TANCE EOS OWME PAW T ICE K CIX W

2 IEGNCS Em viJN

FAIhED 4S nas To UKAN

5 GHZ collision avoidance radar 49.5_________AM___________________

rinciple of'operation ,Al

2 1 c*li wc. iea0mC2PDeutsche Aerospace OfSwG,.O FOR Is Fnnit o.: .. ,sojv Iom.u.m frltHtMC2-~iCMU-OP '91

]MElii 104111AOM COG~SIC"'hf4 .sfuGAII GEiaNwv

WORICS1OP ON: ADVANCED CAR ELECTRONICS ANED FRJIRE ThAMTC

Planar quaSi-OptiCal integrationof microwave front-ends Clion Doppler Beacon

91,a sAvoidance Sensing Systems

PlanrS F, $^*1 1970 Bensllx 16Hleis dole.__4* CW _____

1972: RICA 20Gllz T1 55 OGli

1MC ____s~~enna ~~F-CW________1976 J' 'E-F SOO6 s Phlis 10Schttk Bcn-lia 350h G ift FK35

1978 R S 10 3Gil a~ s Sdoiopusn 4ls

1980 Lid 3201 Gilalg 001

AeS'.198 NSsa 16.5 ila

. .... 1986197688 -TK Gl Philips 941z.A G 0Hz

____________________________________ 190___ olsled_ __~ ICS 6

SEL ~ ~ SE 35Gla JpaCkiAR~e

Ouasi-opt~~~~~~~scher98 Toyotau MeM 60icua 6nd 86Gil---------------------------aVS

+~uis DetsheAeosac

Millim tve te1olg issa maur today

oTralgidn ce systemsiaiF0Tolisio avoidane simlfesorse

for8 highip rate production,

hybnwrird and mooShT are avilbe n

+ rotscpe Aroucenhsbenluce

hilmeeave aie hnmomentum atroa

ovr cT-ommuraficatinfosyatimsoLAN radios(CMS

aremal gdrivnce stm

Co c lision aviac se or

c.~ u - 690010cc .80 v-.'D i E

'44w !' CC Ut

C4 4 c~ 'o c -

r , 2:1 4' -p .ulo u, !g i ~~l o 9 . QZ O c .6

m. 40 04 t lc un E: ;; ,

mcoso (Z Cf. E U L

4 - cii cr.3S aE!( )

1Z .4.sU4 Z . -D

un~~' '(S -61 v

-h~ 0 1: F -1 .V:9-n m U" -4m .a..Ec u L

0 1. m 2L ' 2 u S u4 8 ... '

CSZ T r. r. 'D, ,

m o 6 .. E u IDc cu. c 2 t

6 - A.~

"A i~' m- 112

xE5 8. EEO

10 Z, c y; E

,c - . 11

410 r

a k~ cj

go a,

-22 -b ,MgO.,

Z; M. E 9C

.2 Zz

.2~& 6T ~- j.

F 15"E.

L0 EE S!~0. ~

- P. 1

-a D;; ,

3 C)

-0 2 A yp g

cu Le .04- 0.'

-Z,)A .9>

-13~MI 5, JCf2Cf

- -s L" ..)L*1 r

&C

Z~ .'Q .C . . .U . .. e~7 -

v&:g - iD at ZZ

.0 c ar o ,0~ !,- O" 4 Q 'C "1 ,,o*

r ..

Z- 'ZIL,

13a. 0- o coQ E Q ' ' Z'o. mC 4, c, w~ S. V F, 0t 0

-00 : Q'j a- c'~'Ca4. , -, 4& z ~ - 5. ".

C9 T) E t-b w--42CC U00c

wD~ 7a 9l E 4 Z

f0 4 3a . C 2 w 5. MESn-3 1-cC .6 0 E . -c o' 9 ; Z. U=~~~~~~~ CCE 0G~. zm~~0~ a

z~w~m 1 c E .-

!> cA - , - Ic

- 06

q WE Z1, M C- rae3 Z

cc .0 ZQ 4

CL m 0~ Cw ~ ~ ~ ~ -* a -c .; -c

cc E ckm y m ;i 8 o ica c. -

-9 E & cf.~c~ ' owe 2" u w

k - C c 1 E, - "''0FC A T V w 1. f! . u

ogi w. .900 SEO D w 'w L i zf L

zscu~" u~j e- ,w(c-> X6 -o2

A NEW PASSIVE MICROWAVE SCANNER FOR

AIRBORNE MEASUREMENTS OF MARITIM OIL

POLLUTIONS

K. Cruener

DLR, Obcrpfaffcnhofen - Germany

A New Passivel-Ncrpwave Linescannerfor Airborne Measurements of Maritime Oil Pollutions

K. Griner, G. Kahlisch, H. Schreiber, P. Sliwinski* B. Vowinkel

German Aerospace Research Establishment (DLR), Oberpfaffenhofen,FRG* University of Cologne, Cologne,FRG

Abstract opcratcd optical and active microwave scusors in parallelto a multitudc of microwavc radiomcters (iinescanncrs

Ancwpassivemicrowavclincscanncr has bccn developcd and profilcrs). The gcneral aim of these cxerscs was tothat will be used for airborne operational mcasurcmcnts cstablish specifications for an improved operational scn-of maritime oil pollutions. Thc systcem consists of two sor package for quantitative rcgistration of oil pollutionoffset rotating parabolic mirrors and two radiometer scts, at sca undcr nearly all-weathcr conditions.where each set contains threc radiomcters at 18.7, 36.5 In 1989, the German Ministry ofTraffic decided, to realizeand89GHzc enn qucucy.A ftLhcr89GHzradiomc- a new maritimc surveillance system on board a moderntLrisusedforthcmeasurementofthcaveragcradiomctric Do228 aircraft [4]. In addition to improved scnsors util-sky tmeip ture. Th system is ontinuousy calibrated by ized up to this time in the first gcocration aircraft, thc new

'the use of a "hot load' at ambient tcmpecratur and a system will include newly developed sensors, a LaserpClticr cooled 'cold load". A computer system allows Fluorosensor and a multiple frequency microwaveonline data reduction for the estimation of the amount of radiometer which allow a morc thorough analysis of oiloil on the sea surface. spills. This includes a quantification of the spilled volume

over a range covering small discharges up to accidcntalevent% and the classificatiou of oiltypes.

L IntroductionIL The New Radliomder

Pollution of the sea has increased up to levels which cafaresult in severe risks for the marine ecosystem. High loads A. Rcquirtnentsof oil have been observed in many coastal wates. Inaddition to the procurement of'oil combating ips', this Th Archimd exercises offered a unique chance tosituation has led to the demand for airborne sureying studyradiomctcroutputsinthe5GHzto90GHzrange formethods for providing helpful data for oil spill dcan-up different types of oil and oilwater emuisions of varyingoperations following accidental discharges, and to moni- thickness (up to several millimet r) during a variety oftor the legal aspects of per.mat ontributions to an- realitic environmental condatiom A series of findingstime W oltos resulted which, together with some operational restraintsIn Europe, aircraft equipped with remote scsing instru- are now forming the basis for the development of the newmeats haw been provided in various countries in the radiometer.Indetail, basicrcquirmcntsforaradiometerperod 1983-19M8 for a regular survey of coastal waters of second generation armand, in view Of a sCMor systcm of second generation, for - sie. ous mcasurcmcts at several frequencies tothe purpoe of basic research. Since 196, for example, avoid ambiguity problems during the determination oftwo Dornier Do28 aircralts equipped with an IRAW laye tickness and, above all, the oil volume; an errorLi.acanner, a Side Lok in Airborne Radar (SLAR) of volume estimation smaller than 5D% is tolerated,and a scanning 35GHZ-Radiomcr have been flown inthe German- rspoombtareas of th North Sea and the - selectin of frequency bands with reference to possiblcBaltkic Sea, aiming at a coatinuous surveillance of mari- interferceces due to man-made noise and regitrationtime pollution and an improved guidance of oil combat- of oillayer thickness in the 50#m to 3mm range,ting operations. In 1983,1985 and 1988, under thesponsorhip of the European Community, a seris of - simumanous regstration of the sky radiation at leastinternational airborne cxerciscs took place in the North at the highest fr quency band which is the most seasi-Sea (Archimedes Campaigus [1-3D. Different institutions tivcou with respect to variatin oafwcathr conditions,

MS 199 EEEMTS tmalh l b wa Sympoumn. Jun 14,1992 Afaquuqus * Nw Mxico. USA

2

- a scan angle as large as possible to realize wide scan In general, for optimum data evaluation, the sky radiationwidths. which influences the linescanner "uput should also I-

- aspaialresluton s hghas ossbleundr te po- constandymapped with a separte sytem in all frequent.Vis a f sptiaesltn m aim asoposable ndcnsr the o bands. But for simplification and cost reduction only oneraioofetemamu toer abcagleegh:8m dmins(r h furtherC9Hz radiometer with a fixed sector-horn anten-

radlmetr pckag (lngt:88zn, idt:S~m),na has been designed for the sky radiation measurement.- consideration of typical flight altitudes of 300m to Its output delivers a mean-value of the relevant sky radia-

1000 an air.;d veocites ear 0m/. ton which is the optimum basis for numerical estimation100G an ai~af veociiesnea 7O~s.Of the corresponding values at 36.5 and M&7 GHz. TheIL Feuncy Ranges errors resulting from that procedure are expected to be

smaller than 5D%.All requirements, listed above, have been considered-during the development of the new radiometer. 7%e cJDJmP C. The Scanning Principlestruction Of the linesanne was achieved with a compactconfiguration that realime simultaneous imaging at M, Scanning happens with the aid of two parabolic mirrors36-5 an 9 .M rqec ad eetdaer-. installed in a continuously rotating cylinder (Fg2). Bey-

anrvd 8or z Thsie eunc y barnds sethe Ariede- ond both front sides of the cylinder, identical thre-chan-campaigns, measurements at 17GHz regularly resuilted i nel-receivers are placed which are coupled to thethe best volume estimations for thicker layers. A parabolic mirrors via plane reflectors and through holesfrequency around 35GHz seems to be the best com- at the front sides. This scanning principle should be par-Promise with respect to geometrical resolution and bad ticularly advantageous with respect to operational use. itweather capability. 90GHz images are highly resolved and avid osiltn oeet f h anrfetrcomparable in quality to IR images (ig. 1). A sensitivity rttoa wthsad-urnesrdumei hdown to a layer thickness of 5qum exists. Oil-in-water case of a failure of receiver channels. Further it supportsemulion and white caps (false alarm) can be determined a simple method for cmontnuu calibration. A swathqualitatively well in thi freqcy rage widt of 476m is achieved for an ahitudeo30m (O=t).

291 26 01t D

107 1 3 30 362 1Fg L Example for the representation of passive micro- Fg. 2. perspective representation of the MWR coaLigo-

wave oil Spill measurements. Oil slick taken at ratio. developedL To parabolic reflectors in a90GTU during nigh time together with volume rotating cylinder and two receiver Xp- realmestimations (liter); altitude 4000 ft. scan width two scaines per revolutIn Thermal hotlol440.m, mxium variation of brightness sources are used for a onslamam cajibratiom.temperature 21 IL

D. The Calibratlon Principle E. Receiver Front- and Back-End Characteristics

ThU cal~bration of the radiometer output signals is done To realrm optimum radionietric resolution tota powerby using a hot load at ambient temperature and a pchticr- and hetcrodync principles are applied to all channels.cooled cold load. The hot load consists of a sheet of Balanced mizcrs arc used throughout. They show thcabsorbing material that is mounted on the inner wall of lowest noise; figures which arc, presently, obtainable withthe radiometcr main rack. As the effectivesarea of the cold commercial devices at room temperature. The receiverload is mauch smaller, a further mirror is used for focussing housings shown in Fig.2 only contain the sin*i front-endthe beams of the rotating antennas onto the cold load. modules which can be simply removed like a drawer forDuring each revolution of the cylinder a complete series better access during repair. Ilc adjustment of a singleof hot/cold mecasurements for all frequency channels is radiometer channel for calibration happens by the usc ofaccomplished. a variable offset amplifier which is placed in a seperateA cross sectional view of the cold load is shown in Fig. 3. back-end housing, Low pass filtering and AID conversionThe absorber is cooled by a 3-stage Peltier element that follow after low frequency amplificaion.has a power consumption of 45W, this results in a The whole radiometer system is completely computertemperature difference of 51K with reference to the case controlled. Not only calibratioir is done automatically buttemperature. The core of the cooled absorber is made of also a system configuration on the basis of a priority listaluminum in order to get a nearly constant temperature (after switching on the radiometer). Further, during thedistribution up to the tips of the pyramids. The surface is measurements, a numerical correction of the antennacovered with a layer of absorbing material. The reflecting beamn squint angels which result from the displacement ofinn"r wall of the load case has a conical shape resulting in the feedliorns is realized. Digital processing, in addition,an incmed effective area of the cold load. This is impor- allows a continuous observation of the operational condi-tant for the 18GHz channels which have the largest beam tions of the system by monitoring and storing data such aswaist that is also somewhat off axis. The space between the physical temperatures of the housings and calibrationthe; inner wall of the case and th cold load is filled with loads, the noise fiue of the front-ends, and the gain andsmall balls of expanded polystercne in order to prevent offset voltagos of the variable amplifiers. Finally, in theconvect=o of the surrounding air and condensation of case of oil spill measurements, layrthickncss and volumewater. The overall efficiency of the cold load has been is directly processed from the received signals.datrminedwith anexltmal coldload consistingof alarge Different spatial resolutions awe obtained for the single,sheet of absorbing material cooled with liquid nitrogen, frequency bands by optimum utilization of the antenna

apertures especially at 89GHz. However an identical res-olution which would be important for an automatic un-

LMambiguous estimation of t olume could be achievedaueicly

..... ... 5In table 1, the most important radiometer characteristicsPUT DewT 0~:~aa 0 u,0v0 -we listed.

ilL FIrst Mrbarm Masuncmn

00 40O UTTM After itctmion and installation intotheaircraft, the new

. 00000::: systcm bbm Gumfor te frtim inNovember M99

tom had beendveoe for imag representation, toqualify the radiometer. The first rendis showed that theconcept of the now systemn wors vary well and that theresolutaonsmcetspeafled vales(l'ig4).Ontheother

Fag, 3. hand, a depranalysis revealed some spursuos interfr-FW 3 Prncial cnfiuraionof te cM lacs, among other thinp, due to local-oscillator radia-

tion in te M87 and 36.5GEz ranges These problemThe sky-radiometer is calibrated by the same Principle, arise from the absecm or unilines at the receiver inputsHowever here we arm using waveguide ferrite switches to which normally results in higher senitivities for well ad-switch the radiometer input to the loads. The cold load Justed devices. In view of the first measurements aboveconsists of a Waveguide absorber that is also cooled by a oilpolluted sea that are shedulded for April 1992, addi-3-stag etier elementI. tional filtering in the 18.7GHz chianuels will be a short

term solution. It is planned, however, to replace the het-

Tab. 1.Microw aye Radiometer Characteristics

Antenna

Sensor: hncmme skyradiatmetertype: rotating offset parabolic reflector sector horn

angular resolution: 0.8 /2-i0* 4MO 80a

scan-with utilized: 76" 1scan-firequency: 10 revolutionstsec -20 lines/sec..

Receiver front-udw- --.-

channel type center freq. LL noise temp.1,1r heterodyne DSB 89.0 GHz 1-3 GHz 590 K2, 2! heterodyne DSB 36.5 GHz .1-3 Glix 565 K3,3' heterodyne SSB 18.7 G~lz .6-A GlIz 550 Ksky heterodyne DSB 89.0 GMi .1-1 Glix 590 K

erodyne principle by direct receiver principle, at an ap- qdcngwledmeMtpropriate tiznecby using HEMT amplifiers in the 187and3CI5Gz ranges. We wishtopi eres our thanks to or iodstrial partun

*Krupp MaK Raschineaieu and %Wiseaudlhaftllda-tech-nische Beratungen, Dr. Hoffin". Developmnent of theWmrawave Radiometer is fianced by prut from the

e~~mn~ruflkrTechgeFRG.Wethak 0.

technik, for his continued mappart andip 4M--ESQa-e

rheArcimees Exeri ,Commission of

andOuaityor ife EL 1016EN, 228 pp. Lux-

rad~~ometer. Archmede 2Jft andrnce Commssio (rgtofb0~ 9qnidc~~~~~~eekth rersnaEout etonwt 4 rpeaK~ntermmuniSnes, Seis:Evromn

straion resluton cpabiityand righnes ~ Oualiy Gof ouife. ER1249 R pp S 2 M-1 Lux1

temeraur rageawate fo plluedseasu- (he Archiede Ad ei Commision ofaces.he Spurious interference byes extenal AM

MMIC TECHNOLOGY F OR COMMUNCATION SYSTEMS

M. Aikawa

NTT *Japan

-00

(1)

(j-o -a c-

ci) ci) ; (1)0 =n 0

cu a) 0a) > _ C 0

C- c0 (1)U>, 0 I

a-) U)M> 2() W i U)

0_ 0cuE~i 0' I;

]0 0l (f (IMZ,~ Mr (1) 2? c

CL u W' 0 166 6c

(v a) n cun o.0)0 m-C C)

(i0 Q- CU1c n < cii

1 ) .- .- -

C-d

Cd)

ci) S)C)U0 c

0c 6? c

00

0) ! .9 CCE~* ' to0

Ii ' i; " '(.-0 -C InU

o 0 0

0) 0: 0) 0

C vL

C) Z c r o2 1

0 o-C -'2 0

01

o C,

In

60 w U

z rA u) LU l gu

IL 0usU

LL U)(GP) SSOI N~fl3U

C,))U))

-' z< 2)

zz

> 40 z

- z 0

w a)

f-E. CL C)ww0) z E

I-IX

mc (r00C

w0a

0CL

ELL

4:!E' -I

0 L

* 0

CLa

0U)

U)

E

U) .76

C) I

AA

IIL

M ~Q)_zco 8-~0~~ihLLii I i

C\J NV w

E C.)

z 2U 0 E L-z - I]~J

-Z 1 3 E 0 n

WL E E 0-

to IzD~ C/

6 - 0 vU

Lu 0) W LAL

09 .- C) 6 uU) (Up SSO N-OI.Laa) SN>

HO cc .- LnELoa3. LA>

10DDL a l C,

C- C) C

2 y U -

U)(ww-p) ssoi

-0 ) 7Ko EE

Cr U)C) )< 4

5 ) 0 Z.0 c00 -im .6 cc~.

C) z

uI Lu

U- 0CU _

oo D -Z~

09P NOI.LV1OSIo

-7)

U)

0~~ , 0 aC

OD F)

0) to

0)0

LL CM 5

M m 0 n0- - - -

0

LL~

~Ul

U)U

N~~ CC0)~

I 0

C:

N Ua) a)

a))

(Dn

oCC00

La C 0

w zO

-o)Ow a)

W E))

a)U

-< a)>c: >(B cu

00

z SE

N1~l C4- ..

W (0-

Prospects for MMIC Applications in the Communication Field

MMIC MARKET SIZE

(1) MMICs are now at the critical point fortaking off.

DIFFUSION (2) The initial application was satellitePERIOD communication systems.

WIRELESS LAN (3) Presently. digital microwave transmissionsystems are boosting the popularity of

PERSONAL COM. MMICs.

(4) The principal accelerators will be mobilecommunications, subscriber radio.

MSUBSCRIBER RADIO wireless LANs etc..

(SATELLITE cOm. ,, M IC RO W A VE TpR. )+ YEAR

Now is the critical point for taking off.

CONCLUSION

1. Uniplanar MMICs and LUFET MMICs as well as highly-integrated MMICs are

remarkably effective for the cost problem, and multi-layer MMICs are also very

promising for the next generation.

2. In addition, the uniplanar-, LUFET- and multi-layer MMICs are very suited to high-

frequency-band applications.

3. Performances / functions unique to MMICs and Compounded MMIC technology

should be studied and developed more eagerly in order to overcome the

disadvantages of MMICs, and to promote wider, more active MMIC applications in

the communication field.

I ,

NEW INTEGRATED SUBSYSTEMS FOR MILLIMETER -

WAVE APPLICATIONS

R. Funck

Dassault Electroniquc France

~ 4-

J Z

t'~ 1L CCi 0 oa'L

~,~-tu-2 2

AX 0

it2E aE

L g C, .

10 , 8 o0

c~ ~ CCC C

0 c

i6 2. - "'- -; z-- -.

S E oo c Z - 0 E u r 5- 0 .5 " uc0U o0 * a ~ t00 0. 0 * E "3 c: &

a. EE 0 o 0 ~~~~ 2t 0 0 0

0-a * 0 IM

leE E

f; 0

E,, O 0 . 1

CO .3' i F, * 'c

0-0 0

2C '-9 T;;~.

rr U IID u0

lw a 0 0 ~ 0 " 0 ZT n0~' 3 ::0A W)-6 a5 o 0C

". ce

SC! 0 'o2

,c , C rC E

L7 -'O-'

L i IE? ~ L

0 0 0 C

a,, Ca 0)

E z -E -

00 C. t3 I- o~ E

Zo 0 Eaaa~~ ~> E~i!. 0

L ~ ~ C7 ~ ) C0,, E-- 0 0m~~ .iza S a .E.q,

o o

w: umc o- wE mL o. a 0

0 a c cC) 0 m

i0 E_ ii0 a'-&

Os ati LL 0

0 E o~t3 - I20mc O41 v E A 5

,,,a c o e= jC

............. c a0.E J

50

T -E

EOC~' 0 M, = E-

0 -4CD:-0 Cr CL., 'a.Of B

2 'a 5 E E :

E Ow cc 0 ~ 'D E

~o

0 ml 3_mc Eo E oo 74 ,.K

E CO Co -, .F

m~, m Z! c.I 2 -C. Ez0. m

0 ~ ~ c 'D r=0

- ~~~E~ 0 2 0 ,~ .

_: -~ -0a,. q

- E

- § - -0 a :2 CL , 3: 10 'Iu m 8 0w~ v *1*CL 0 0 5 2S-

0 0, C.

2. C 0 N0J

<D C E 2, 1,0

m i0 S,0

0

Efl00 Cn 0.' S c0

0 0 to ~C4 ' V 6 0~l

' c0 0U

o-O QO CO ccs~ E t

Z0 m2- 2 7 -C , "c

1: i~ _ Co D v m0 ui L C,z E E C

0 ZZ CL E m -

0 00 .

E It

J C-E - CI _.

0~~~ 0 E.1( F

0-2 m: 0

'eui a I

51 " ) - II. tIII ,

-. ' ~ -." - -<

,,, 51~ j F, I

44 ,1 ' ,, -

9 4 2 l I(f 11

U)II.

,, , U" ,, ; ' ,---".' F sir...).L

--- , F1 I "C ,,F <+i ,-, ... , : , '. oL "

,+t. : ,U ' , , , . 11 .. 1 "

•- 4 " I. "-' 2 ' IIII'U

(L

L)112 11Z T:

-7U : 20II , I I J , * T' I

1 -" : ') CIS- c. ) ( l o0

c u Ii ,,I'I .D 4,1• ,.• U)(f"lI+ I,,-a"-' "r

L 'If

G~ltS ; ) .'C ( J I ) Iz

son'

-_ II , .. . .- : ., t 4 . , , , .

fr , :2 .oI m "'- wI;

C E - .. . . . - ' ' " ,-i

-Ii,i 54

01,,,2

lr.I c S C

'I *,:, G, P' M1 M 4 '01

I *

J7 r UF S ' 4 ' ,.'

1131 P.A.nOLLAND. of -Il.,'QuaSI optical Tochnoloqv for MM-Wavo Car Eketronics', Workshop 21st

[141 E.KOLLDERG,"Now Solid State Dovicos and Circuits For Millimotor Wave Applications', EuropeanMicrowave Cont 1991. pp.36-5A

[15] A.TCHAMENI,"Surfacos -61octivo-. on fr~quonco', Jou,'n6os de61udos sur los composantsmillim6triquos, Garmy-la flouat (Franco). pp.57-GO

[16] H.CAM,'Addition do puissance on ondos millini6triqus*,Journtos d'tifudas stir las composantsmillim6triquos, Carry-la Rouat (F-ranco). pp.65-68

,17] J. M.GOUTOULE."Dichroiquo millim6triquo zI grando incidence roali.-6 on photogravure'. Journoosd'6tudos stir los camposants rnillimc~tqs. Carry-lo Rouof (Franca), pp.69

[18] C.LETROU,'Concoption do filtros dichroiquos pour Io millim6triquo at to submillim6trique',Journ6os d'6ttudos sur los composants millim6trkquos Camry-lo flouat (Franca), pp.84 -87

[19] P. BOURNE, Amplificatours faible bruit A 35 0! GO GHz', Journ6os d'6tudos sur los composantsmillim6friquos, Carry-Jo flouot (Franca), pp. 39-42

[20] C.TRONCHE,.Tonctions millim6triquosA~ 30 GHz, 44 GHz,ot 90 GHz pour applications spatiaies',Journ6os dettudos stir los cornposants; millir6riuos,Carry-lo flouot (Franca), pp.1I- 16

[211 P.GAMAND,'Lint6gration monolithiquo dans lo domaino millimdtriquo".Journ6as d6tudas sur loscomposants millim6triquos, Cairry-lo FRouot (Franco)J, pp.43-46

[22] P.GAMAND,'D6voloppomont dos MMICr on gamma millim6triquo'. 2t6mas Journ6os d'6tudoMicro-andos of Espaco, Toulouso, Franc, Jan 1992, pp. 153 -156

123] B.ADELSECK. A.CLQQUHOUN,'MMIC Recoivor Modules for Frequencies up to 100 GHzMilitaryMicrowavo 90, pp.305-31 0

[24] B3ADELSECK, ot al.,'Monolithic 60 6Hz Amplifior using Low Noise psoudomorphic HEMTs",European Microwave GonI. 1991, pp.341-345

[25] G.HLDER, of al.. focont MMIC Dovolopmonts and Concopts Loading to Advancod Microwavo andMilimeter Wavo Phased Array Antennas., ESA Workshop on Advanced DoamnformingNotworks for Spaco Applications, nov.91

[26] J.I3UECHLER, of al..*Coplanar Monolithic Silicon IMPATT Transmitter'. European MicrowavoConf. 1991, pp.352-356

[27] K.M.STROHM, of a.,'Planar 100 6Hz Silicon Dotoctor Circuits*, ESSDERC'9I. Lausanne, sept1991.

NEW MILLIMETER - WAVE DEVICES REALIZATION

AND PERFORMANCE

D. Pons

Thomson - CSF LCR - France

FIELD - EFFECT TRANSISTORS FOR THE MILLIMETER -

WAVE RANGE: PHYSICAL ANALYSIS, MODELING AND

EXPECTED PERFORMANCE

G. Salnier

Universit6 de Lille • France

Nj

En 0n

0 00 : 03

cn 0 0W>

0 0

* 0

~3 ,

In U

0 o

C,2~iO~ 0

0, CLag..

-p > 0 0l

:5~ 0 'tr)a 1 . -. 0 ;

(40' E- z A

4,La . )0 0

0 U)

0

0 a

.0 -

- 0 U C

aS 441 -0 00 0c-l

6a a " C

01 In 00 vW. a 0

41: 0

~~*a~ 0.r 0.

0 ~ a

%a 21*;

JI-

CO0)

UI U I

-~I I.U) C

%n! 4)

o- 4C3 0.

.. 4 00 wo

Ci.

S z 630~ g !

a. a 21=8 8~a

rT4 C C4

U) S.

0 u~ ~. ~ z0, mail.~O

3 o03

0 CA--- .2' .

E-4 Z 2. -

2!: .1~ O~r

. a 0

* ~--* a

0 0

Zcn 0

0 0

A 0 a0

U) a W UA

0 0 ' 3 1* U

,a 0% ra; aa.

d A ,a -a. - E ' a

a> 0Z' -96

Cgs0 80 .~~~~- io 0 ' @

. ;L -uo 0. 0. -

E U) a~~ 0~

@90 a ' 1 ff0 o a -6 u aW a 0 .0 g

(n. j.S U 0 @~ @ @ S

z u0 q* Z

02 a C6 00 10 j 0 4 * * I*

lUo

0

0

16

we 0.

S.2 -.00

0e - -4

0r = .! 06

aa 0...a

W= 0. z06 A. 0- 0

C*. e ~ ' a 4.0ZQ0 ag 0D~ ~ .2

A c=

0S~ coI

(n- En0i 4)z C: 0

4 c: go

z~ E)

uIs

CL

U '~ .5 r;C. . i. l

go ~us .~Q -o'

u . s.~ U *r

En . ( .

ci. 0 a

0

a r

C3 1 c u

0) C6 -C'3 :.5 m- - .2 V

(I) L) c 0toi C3 % .4'' t

00 U, -0iI..q~~~~. Z V2 .1-

E-4 44 o0

PC Ui co

.S 0

Cdx 0cci

- 0i 0 0

0 ~' 0

taw-r >1

Q- . be .1 =

0 i 04)a.

43 *~0 o U

o cz* A 0£

to@ V to

0 0

-4e~ Ivci

Ct - -

..,4I: ..

cn 0

~-o C

.... (UCD

.V N0 LL.LJ.Z a I -c

I~~~ cna.X __

ccJ c CL*

C Cx

V. pi 0 C

C A. E0 0

U) C a.

eCni. es~oj WfWI

E -O C hW I

Tk~~ boEnC-

ca~

S -1

0 00

0. .0'-6

11Ii ..m.m~mM

E -m b o 2

(12 ~>

-a a C to

.2 bO bG %!

U) U

U) )s il. .0 we

V ,m ~ -

@04 /1uO Asp e Ilya so

-O -a .. A

t~at

L0 0 e A :

ItA-0 VA

a :6 4

C123co

E 0O 0O 004

Eq

CI) ,

Ea a cQIn 10

.0 _ _ _ _ _ 1S34 III40 1a

C0 ;: F

0

-

0 a

.~Ut

ci 4)L/si Wo.0

U *

UAh

U4U

z 4A

00

Q

130CI)M

+ >

V) U ra0 )

/ .4.4- 0

> 0

W) .2 0

b0 0 SCI0* 0 00

S3 0 04) 0

0 . >

CD r

00

41 000 V

.4c 000

cu. 0,

44 .

;:)0 9.- I-a

P"U

00

> 0

E- z I

0I 0

0

C4

0

E-.4

16.

rtr

I 0

U) \ 0eo or,) ,

.. , .r.z4

aa

zI)

! I)

0-

ul

00

U!

I

1- 0

u'be

0l >

3.

4, 4

op4,

00

.d0 m=:

> 0,.0i 0

0. . 0

-~ .0 -. .

0 S.-c 00 C

0.

V .V

z O 0) CO) .

C) Cu4, Cu .

o Uoz l4,

o 0

ZO EN PUI.A- '

0 4,.0

~ptjokP- c

N CO) 1

0*u~.a.1

Hro4~ 0

cc 0 Z

I& r 1 4

~ 44

* 0

C4 0 4~U) OQIn U ) ~ 441.t1~ ,3

1149 I 0 41

41r. co

p7 4

ua In-

0I . aU (

tn W l< 4 . r-

Io LI

'Ia, i& * . . ,

(3,.;

Ao -0

- -A

*1 g IAU1

0

* g M>

LU I

wc

ofa

>4 Co

C.)

0

Cu a

0 4

0 C61-4 0

o bo

nIn

C

o0 .0

rzln

U)

tsLU LU 0

CiC)

TL -0

0~x 0

04CL x

0 ca 0

00 0 0 0

-o co f

CI

-00

9A(0

LIL

CQ

I c-

r;As 63

00 0

E- 0 0.

-t CUt cu

U))

CUb

0 PO

U) V r.e.2

o 0

0 )wa

oc

o 0o

.0 0' toI

U))

04)

C0

0 10 4)c

C; C

CC,

C.0CIto

03

tuw/) w4 sSil

zl 0Q Sl

us 00

o- CoP".0

wwi q d6 d

'-4 u3LC.) A!,o *

W,)

-t

co

0 0 Ia.

V0 C0

0 0 a

44 4 4 %)U t - c

W S3 9 93 $ S3 b E- r

00 nO0

-. 00 . 0 - -- --

IL .2E,

*0 Q

0 CI o -

0 -n0*-

0.0)2zINR1111

~ a-xe ~ Z4

> 0

00

a00

OD 0

--- -- --------

.....f....... t ru~c

--- --- -- --- -- --- --

0 V

0 % 0l 0 0 ~

AUW3 r.W

0'-

z0 0 ~a

0

AAatn

'-4 94- 9O

-C 46

C-PC

Z0

0)0

~~co w. L

2 c)

CC

0~J

40

CJ13

~ 0

E-4)

CU

E-4 2 1

C4 0

E-l. Sz ua

a5 '52 C) W

5- V

020A z 8~

C)C

.4V 1

o o5'--

.1 1<0 -00

0a 0

4) 'a.>0 Q- >C

0. 0 o

I34

& =.w -

+~ +4w

ub~ .2us

-o -1 -1

N

"i N I I "

CQl

44 S I I s .2cic N

(52 z

C- - "0. w

to I sla• i,,p n,, [, ,

Sac

C l ,- W I, I........

du-c

0 . 4

"' 0 P

rat

XZ >.0

0A

IS>P I "

,4/00

0 E- 0~/-- 1= U

eq 2r4 0,-.

own. E r4 c nE:L C . (

lOSE*We 0 . 0 c

1 as 0

0~ 0

0*4

T- A U

0(c C6

c -r 0 0

P- 06 M-n C.a

0* JOS Uc.: ±. w to r) -

a cn ~ .~CI) C3U-a - - 4W .

> co 3 ' i 2 0

,. U *O00 ~ i* 3 2z . ~1 4

fit I *f

cl)

En=

E-1 'Co 2

0 3I

w...I W11z 0

~~14

o -z

Is, ! oiw "Mm vim

0 Cfl0

ca --

- 0

E. -

04 0 ..-- T-j

&~ wi C.

>) in acl

>)~ is 9-- 13~Z 4) co -a

(VUgaarngj 4) 1 0 r3 E

ra 0 F ' s

00

449 i'luim, ~sia%40c

.a r

zo

0 0

13

z to

Cf V .0 0o -4'u > to

~~~a 00 .a Is 4~O G

uc c t

h .2 t4

0 0 r3

A a"00 U 0 8..4 : .* O

-. 0 .. 1.i

a ov 0

c]A 'AU U

U8 .o I. w CA

x C

CaC

4' 6

C3

9 .0 A

to I;Nj 8' - l

v

Ck

a0'

* S ~ P11 2!I3Sj T 4

4) A) 0-0 -Q >

0~~ ~ ~ .. 2)" ; C-11 .0' 0-.

3. -0 o PC

~~U2U 4) A ) 0~30 a CD 0 , Q

cot% .. Pa. 40 Is

.P- 0 0to &. 00l 4 0 0n C 4

W, ) A) Q

m ~ &. U) cc cc 14) o -4 .. o U) = .

A. ~ - .. o 0 W .Q P4 A.0*0 )

o 0 -. . )Q

cc 0 - S o)-..C404 Q m r.l px.0 c 0 O

5. 0l .0 b O a 0 00 Eo 0c; PC~3 4) b04 A ) 4): 0 . 0 sN1 0..8 -U ; 0 j

Or Q

S-6 04o-0

>~* . ..

-

z ...... ~

0

Q(-

14 .0 % 0

H 4 -4 >)

*~ 0

V)~~4 Ajma pIii~ 'W n

~ s~. b~ 6 cc

*N' C. -.4n

.40

Cl F-*

E--

E-4 V

0~m.

'I IA

oU

E 6 ?14 -

> ZE- -0

zC4) C'

CC a

U) I. 06 4

0 0* 0

U) V)

.0 1., 0 ~ ~ 4cc 0000

(A U)+

0 002 0 10

n U) to-c U) ) b

4:00

0.U C,)a-0 0 tn

tn 0z 00.0

E- (ET.1

hC4

xi I.s4

W U2

10

v L3his

j I~i 4. 4

-g .4

16- SU

.u ctI-o

.jI-

aatc v3 4

0 0' V

dc '4

E~ T$A U.

z 0LU Z "I

4 'Z6

IMPROVEMENTS OF GaAs MESFET

Pulse doped active ]aye:

r 1It allows to improve breakdown voltage and linearity forinstance Chu obtained 23 dB between 1P3 and Po..1 dB

.Such improvement was predicted by Hcliodore

pulse doped

*profile 10 mA/mm

0.lpm 300 f

implanted -100zo% profile JO zo

/ 10050

1profile ______ ___

S -2 -1 V05v -2 -1 ;T

*Example of result: 220 mW output power at 35 GHz (RCA)0.5 pmn x 600 pm gate.

- Highly doped In GaAs channels (Feng and Wang)

Lg 0.25 pm96 mW at 44 GHz 0.6 W/mm, in

121 mW at 60 GHz both cases

-.Pulse doped InGaAs channel : Kim

j Lg =0.25 pm ID)SS = 700 mAlmin

P0 5OmW -0.GW/mw at 60GHz.

L-Otheir improvements : AlGaAs buffer - via holes.

IMPROVEMENTS OF BREAKDOWN VOLTAGE AND PERFORMANCE

BY USING A LOW-HIGH DOPING PROFILE (Takahashi - 1991).

300 0

0

S V(V)

Device Structure. Electric field distributioin IMAX f f(Breakdown V)Structure I : Ti 300A Structure: 11 Ti 0.

[CmU -as*

43

"q 0 5 V

LL LA. j 0A C m.Lo x a 45

x X .. n a: .. 4 .tj V- (N 0

v0 0-~~~' 2

oU 0 . 0 C- .0co 3a. pt ul '1e

~~~..~~~ a a . 0~ Uo~

t-. r- ( <. ~

CN a

.- -i b0-L -a

0 C5~a- 0. *cn l)

012

U'mV

>U s C3

0 40 p"04 - 0 E 1

Sz W ?I 4 10 M .4 4

N'% C.) Wq

C;H0I IZ; Z-I ba=-

~4 4

o3 '- E ~I0

(

In 00V YV

U m a~

cc 9 0 0r

U,~C at' P

U . U .001

a; -(U U. 0 nS

1% >%

0- A-

M m r

SM 2 E E8

c

%A-

Cf)

z ca

0 I

E CD.

~4 >4 U,

~4 0j inIIu Ou

0=

.~ 'I S.~

0

TE-4 of"

cII0-.4

S AndMi F pF

U) z u

-ICO "- F.

00>1 E-4 k __ _ __

E- c*I piww ~aaIN

pQ

8 8

2 - EbA C

ba 0

F. '*'.- -

z~ E3

ob

cn 0

00 1 1 .

rzz

Q00

o--

II

0- 2a 8.i. a.-,

(A*) 0 SJ

o 30Z

0 V0

-I.C6 209~ o ~ U3 ~ 0~ z

-~0 U W3

40 0

060(AO) .U

(13 A) C) -

I. 0_ U0 ) 0

V) vi~

I- L. - m. ~ C

4) ) C U), ~ - 0 0

l' o -o 2

U)

E- k44 c) CU 4C"~~C C:0 )0

C.) ~ U 4) 4)P4~ .u0 0

>4 w0) 0 w0

0 0 OC.

0~ r' JWh4

-3 CSC

U)~~~ qw. ~

0 to

0134 0 S

A0 - N

C) 0

A00

0 .0

A

TWO - TERMINAL MILLIMETER - WAVE DEVICES

J. IFrcyer

University of Miicen - Germany

T Za

o -~0 L0 a

- - - Or04.

0 0. CL~

A~0 1; Q~ CLUuo'~

(DC*-

0 0

-- CL

G Vo o1 N. 0.-

-C CL.

0~- o

r -6 0.

00

U..

0 0 ;r/2 3,-/2 2:-

" W7

oU U

ot

0

U.

w -

Voltae, ijecte cone, to

- ,4

-. o m -- • V

ILI

-r/2 IT 37r/2 2,-rwJ t- No-*

Voltage, injected convectioncurrent an d induced currentof a transit-time device

00

L. A

0 0 6

- 06

U .1ar1

.al, V. -'

zo -U

4J

'0~ 0

4 1

+0.~ 0

o +

4-~~ U0____ ,

4.ga0 Ua64. I ;~-,2 ~. in

08'3

.4 1

E

OUU

a - ~ 00.

r4 1 02

41 061

%. va

& IF V3. .;66

0

o ~'

------------

r Z.

u A

'A

00

- -

-' C. -I_

i r ~ l ,,-

z . "_.o

fU-

'0

Ssa aSwU Le~ .

a r6 V~2

-t LS ca - a

. . 0 V TS

4, Sa 4' a 'a E

4j 0

Ga~~~a 00*~ .a ,~.

L) a

S.. -0 a" U. -? 0 i

0 U 1 H L

.0 5 6 - 4..A 0 - - .

3 E 0 U .0.

(%P4 0z 4.'

ci 0Ga ; .0

0*

I L0 Q

.6

Wn 0

cli c00

+

0 NN

4.J

0,-

1) 4.)

CN C4

0 ___________ c V

U a C4-.

0~ N

L a C

0, 1

' a : 0 OV

0 t'0z

C14

coo

__+C CD,

J~L E. -

L.<

I -U

J .4 ad

(do(d

u -4

A In

0l 1

00

93 0 1.

ClC"

4.

00 0

-

0 .21

10.. '7

G .00

00

4 -)

o a)

IJI-4

0 46'

electron energy

M M

Undopcd n+ -GaAs undopedAIGaAs GaAs

wundopcd GaAs

4.

n+ -GaAsmm

Structure and energy band diagram ofa GaAs/GaAIAs QWITT diode

t(t) - U

0 C -_ -F 0D

11))

tro I-

tn _j

(n x

.0 .0

CUr c jC4

U4J

bo4U

- Pd~pjdi~W s4,p~qA p--~s~u

- o~f4-.

.w < 10

o >~

o ov w-

u Lo

01 A ~ :E a

~Ag

M.,.

0 N1

a .4.

2 x

*I r

I-IId U

0 rd

or

4-) (d

o~~~~~~ .- V.o* a ,.cb*a 4 4 p(M) *... OndlV 2

-io-4iuosa- au!I-dr!4s ,y -e jo Mdet1ZaO1tcd

Iolsqn

*1000GaAs FUNDAMENTAL

100

E*: AC'h

Ga As HARMONIC I.

.......... :.7' 100

....FREOUENCY (GHz)

Cw-output power of Gunn elements(A GaA1As /GaAs launchere InP current limiting cathode)

CU)

- 0 OE-

0 0

v-IL

00

I) Q

I(/ n<.

Al

Maximum efficiency

Impatt 20 % f < 40 GHz for GaAs devicestO % f > 40 GHz

10 - 12 % for silicon devices

Gunn 2 -5 Z for GaAs devices

5.7 % at 94 GHz for lnP devices o

(12 X at 60 GHz, pulsed, for InP

TUNNETT 2 X at 94 GHz

BARRITT 0.4 % at 60 GHz

MITATT 0.5 % at 150 GHz

,,,-. I.t)U '4

11-- 1- M -

C.31

LLa

CP a 3-

/P C2 -12 C31

Noise measure

M= F-I - u,/BI - I/G 4kTOIRDI

F Noise figureG amplification

n primary noise voltage sourceB bandwidthk Boltzmann constantTo room temperatureRD negative diode resistance

M = P f 2-- Q 94 GHz MTUNNETT 18 dB

kT 0 0MMPATT 21 dBi

P : rf power

Afrms : rms frequency deviationf0 : oscillation frequencyQex : external quality factor

Itemble shrtr

10. o lrPoer le 1 0 ni /dr bim . "

-Od 0 -mde I0

Old

I0q

20111oule 1 dn 10-1 * elclr selectiveD

IMPAI I dude alleloolor 60 dO isolalor level meierascillolof 1pretisioe u qt si -Oplkal

re ooetlor

Noise measurement set-up

TECHNOLOGY DEVE LOPMIENTS TOWARDS NANOMETRIC

STRUCTURES

H. L. Hartnagel

University of Darmnstadt - Germany

Basic Considerations towardsTechnology Developments Nanomotric Devices

towardsNanometric Structures

- Dimensional Reduction

H. L Hortnagei a) hot-electron transport - 0- High SpeedsTechn. University Darmstadtinst. f. Hoch trequonztechnik b) high packing densities for highly compiexMerckstr. 25 signal processing61 DarmstadtGermany c) Impedance optimization for capacitances

based on oplimul space-charge layers

) Basic Considerations towvards Nanometric for mm waves:Devices / 0

9 Seectie Eptaxyd) minimization of heat loss far currentcrowding along emitter periphery of

E-bem Lihogaphyand oftpower transistors for mm wavesElectrolytic Processes:

Anodic, Etching and Cathodic -increase of Surface to Volume Ratiometal deponition.

Loca-Stuctre epoitin b pont-ikea) no damage acceptable leading to traps

Electrode Current scanned by b) space-charge layer minimization to obtainPiezo-Actuotors. carrler-density Independent. controllable

conditions)Evaluation of Mnonetric Surfaces

) Outlook

- - (Z IL A -

Ir. *. rz

.. . .... . .. .. .

'' ~ IsS spectra of GaAS

NOPelod Oa w l emd o Nk.S A Y"$,

(flm , t th I n can toto

:eJA

- *4

4

XPS-SPECINA OF DIFFERENJLY TREATED 1100J- CAs - S06lFAtES~~~~~~~*o/ I i.. L(L6I'iiI4, *d AI kS

elmAAt 2 t aINolI-11 6 0 i) I i 4 43 1%U u 6 7

1* 1124185bod f f)Asi -fo. aatont.IsloI K -p eti @ I "Ito l " ( g t t t l . t A 1 0 4 l a l t 0 0I w t 6 4 6 6 V I

sub INlh~ t6 Hall isI 01,11 W63 Proil L M

XPS -SPECTRA OF SAMPLES TREATED BY 111tllN(S. ,,3'.:t~ Selective EPitoxYAt 2P~ Soz,, ?pbo Id A23 6431 12:1:300)

Starting with high -temperature capable amorphousmaskc

Growth required -ith good quality an side walls

Some growth role as with 'volume cage t0 allowfabrication of lateral acces structures

(theIII U Ioe. DIII 1 M 11441 lo "(. wa orhu

--- ---------- -) ..... .... ..

E-Jeam Lithography and Soft Elcctrolytic?rocesses:

Anodic Etching andCathodic Metal Deposition

I)nonometric structurizallon by electron-boom n-Bean Lh09rp y

2) gas-plasma etching through [-boam rosistpattern

a) steep -6ruclures possible H +, 60 KeV into PMMAb) but Ion bombardment spread: o.1 AiSmminimized only by protective no proximity effectgrids or plasma potential n nS

control nobockscatteringonS

3) anadic wet etching through resist patterna) side-sloepness by combined

adjustment ot bias and opt.Illumination

b) passage through verious epitaxialand doping layers by opticalhole generation as required foranodic process

E-Beamn Lithography

pos. resist

PMMA polymethyl metacrylote '-zlPBS polybutlone -1 sult one a

resulution: m SUMI

neg. resist: X ATO a

COP Polyglycidyl methacrylole-co- ethyl acrylate

resulution due to swelling: 1 upm

,rp W 4"atW 3IWVpy "t

electron scattering, 20 keV(v%-i A); proximity effect

A

*hottky- Barrier- Dioden f(~r

SSub-mm-WeIlen-MischungContinuation: Electrolytic Processes

3)c) Selection~ of electrolyte:rouction-limited solutioninstead of difluxianlimited one

d) Equal solution rotestar ooch of the componentsof the semiconductor

a) pulsed-bias

4) cathodic mnetal deposition through resist pattern

a) resulting metal thicknessproportional to local currentdensity

conaIct Whiske, (Pheit

O~~eiea O "deatt"l'se b) theref ore iltuminiation to increasecurrent flow over layers at

-oiaul LaerI ROA reduced conductivity

'0OeM Hevuiy69 c) sometimes side-wolt metaltizationHeavuily Doe voided by intermediate

SiL a," tOU~M. insulating ept layer and01fm-it C6s4ceHi t I Ndacm -3 deposition In darknessIN /AuG o/i j

Ischbeaclocheir otedeanquercpnlt

Changes of surface structure.n air after treatment bi

rted 5 ncr.1 s (f*P t p.- F measured by STM(15min between each

- measurement)

of GaAs towers __' (L

U, I.

z - .

................................................f

STU-Studies of GaAs(I0O) SurfaBces afterSi -

different etch? treatmentsSi H4 + 0,1 S1 02 +-K

lIkaline etchanL , 450*r

4: 20 2:H2 Si ( 0 C2 H , Tetraethyl fthos icate= TEOS (700-C)

-~~ (from liqui source

Si C12 H2 + 2NK,0 (9006C)- dlchlorosiiafle

nitrous oxide

hlOoChemicai Dassivation r. ,, A

then 30min N r N4C1:H20 i:1. LN-jignt) L LPC%/D 750*C

PCVO :300' C

tfinal chip passivatlon againstscratch protection. moisture

IA 2Si C2 H2 barrier, sodium barrier)

-oasivaion3 S C1 H2 + H NH 3 LPGVO)

*thien 10min in (N.H4)2S) u,.tmw Si H4 + N H3SI H, + t

41APOI' S5i (larger stability than Al)

Si ~ Si + 2Fj (600 C

Chemical Vapour Deposition 2(e.g. S10 2 to insulate multilevel metallsatiord

1) amosperic-presureCVDCont.: Electrolytic Processes C

2) low -pressure CVD

3) plasma -assisted CVD 4) d) metal sequences by 1e~eracathodic steps as requiredfor

reacor -ohmic contacts-Hot -wall reco Schottky contacts

- Low -Temperature CVD f or Si submicron techn.) 'hg sabih~letndffso

(reduced thermal broadering of dopants barrier)

by diffusion) e) selective deposition onenery -nhaned ~IQsemliconducllflg Islands Inenerg -enancedCAIDsemnlnsulativog surface in

(possible: SiO2 at 150 A/min for 50*t darknessby UN Ught : in f usdba*Chemical Vapour Deposition f usdba

1984, ed. K.D. Robinson et al

Electrochem. Soc.. Pennington, USA)

DOUBLE -REPLICA TEN PHOTOGRAPH OFH2S03: 11207 ETCHED GaAs SURFACE

-4F

DOUBLE - REPLICA TEM PHOTUGRAPH Of At - FIM SURFACE

Local Structure Deposition byPoint-like Electrode Currentscanned by Piezo-Actuators

1) Point Current Source by3) Position control by plaza actuators similar to

a) needle with Insulation except on tip Scanning Tunnelling Microscope.

,,etal 4) Combination with local etching under point

Insultingcurrent source

local cathodic,. deposition subsequent local first local

metal deposition Aetchingon ridge

b) fine capillary In conducting electrolyte : W

o cpillary filled with 5) Surface preparation by focussed-electrone[lectrolyte (SEM) or focussed-Ion Illumination for

'A". local etching with point or linemetallizations.

2) Pulsed Bias for optimization of results

flow of metallicsource In electrolyte

Direct writing of submicronmetallisation patterns on GaAs

Development of a new process for writing experimentalsetup.*;lubmicron metallisation patterns with aungsten-tip on n-GaAs in an elctrolytic Au-bath

Experimental set-up pulse generator

30w

LL teiion holder

Pt anode

electrolytic solution photoresSt-

Gla - Isolation mgec ter structured

puae -ZPt-solution

tem iperature. 40C

KAhalC~jt:1O etch rate: 4 nMJPtiSO

1--

It

(A11 I

- Soft struciurizalion

-- Local epilaxy

- relevant structure characlerizalion

Evaluation of Nanometric Surfaces will give

- mm-wove devices and IC's

- high packing densities for complex signalprocessing with short interconneclion

I) STM and Its derivatives In particular scanning delaystunneling luminescence - extension to jzm waves

2) Electron-beam evaluation - broad-band approach

a) SEM

b) Scanning beamcathodoluminescence

c) TEM. particularly at angle ortransverse; possibly with doublereplica techniques.

3) Focussed-ion techniquesincl. Ion Scattering Speclrosscopy

£1

OPTICAL CONTROL OF MILLIMETER - WAVE CIRCUITS

T. Itoh

UCLA - USA

I- c-CU L C U 0

CO a)

CU >,

q_ coa

a) IC a U -

cr E caU

o a) 0-;2 6 it'

* w3 01 0) a)

0 cm 6oao .0- (D I

0) 0

CD~. 0-m d Ft

>-D j

Co I o

000CO~

400 0 a)

CL.S0)> 0)

c O 0 .o 0 a . >

(a CD a

E.

o .o

J- :'8iICI

o toIin

Lu .'~~ I

his~

a

- fo

r(flu Ii . 0

*~~t 00C(U2

M CD

- E)

Co U

'U)a f) I** oi *( Duon m 0"Olt'toO

IU-

0 co,'9 C

o onA.-

LS

ss~ (v~ 0

- 00

m c a)

L , ~- U)

Da.

a 4a)

iTLU-L a)CL)

E 8>C L

A m0 0 > 5J ff

I- - c " C

00

(U) i' R) U

CC

F4 p SL

cciw i X A22 Coa0

CL a

Z LL

CD 0. R3-

Z0 2

>00 ? 3

0 -31

(U -o(gp) S (81) I?,

uin

b~z8z

CA0

- w

WaI

a) CLc

0 0

0 U0. C / -S L ca

CCDo .- D~ m

Co.-c

cc _0(0

U))

* 0

( w) v - 4;4 A(EUv3 1

A rU

I- U3

Il11 E~

IM 4 - -3

u*Uo W' A A

6 A-

0

(us

cnU

LLI

IDI

> I - -I - 0

W- C'

r LU

LiaJ LLcoC. LW- "u-) T T/ t

(1W L0. C) vu

- N 0 C m Cc

4~ CL

..6 a E0 U) LL 4!2 t

4) W*c CD

c: cm ) LO aC >U)(

0) z

co. . C - t.- 4

(D C" .. u >0

00 E > 1)1

0)

S c (D

o* m - m--

aE~ iii E"'i0.- ~~~ fa 0 )1

7F CC 0- 0 -L 5

- 4 0

A: IW

C 41

C .T .9C, -91PuVi,- .

L31'

c a-

CO

0 0p ~E SL

C) E

CC

A E9

A 00

CC

Ch CU 0 WCL I CL 4,C

* ' 0 0. 1-

00

01~ ~ 0 ~ ~0 01

a . C* -S

a -7 CL

100

m p 0

j 9j

> 2.

Ii ~ Im

00

C c

cc,

.0 0

w ED

C oc

a) E-,. > 0 mZl)£*nb~cu 07 4; C

(b U-

c .. ..

C Em

-0

CIDs

>? i

C C

E 00

0 0

-0 ca

~m

.~ IL M

01c

>~ 0. C'

>2 ga %. 00:

t- '0 Ez

4iiE

Conclusion

" Coupled Negative Resistance -increase the Q value for MMIC application

" Varactor Diode -

tune the center frequency of the passband

" MESFET Varactor1. In addition to the electronic tuning, optical tuning

is realized.2. Same type of device as the active device generating

negative resistance.3. Operation in three-terminal mode is investigated.4. Show the possibility of using one active device to

generate negative resistance and tune the frequency.

RECENT DEVELOPMENTS OF NRD - GUIDE TECHNOLOGY

T. Yoncyama

Tohoku University - Japan

7HLOPORT

...........

CONTENTS

Recent Dcvclopement in NRD-GuideTechnology I. Introduction

II. NRD-Guide Integrated Circuits

Tsukasa Yoneyama 2.1 RF Front Ends at 35 GHz

2.2 Gunn Oscillator at 60 GHz

Research Institute of Electrical CommunicationIII. Proposal of Planar Antennas Fcd by Leaky

Tohoku University NRD-Guides

Katahira 2-1-1, Aoba-ku 3.1 Review of Uniforn Leaky NRD-Guides

Sendai, 980 Japan 3.2 Periodic Leaky NRD-Guides

3.3 Planar Antennas Fed by LeakyNRD-Guides

3.4 Applications

IV. Conclusions

- LSM.. Mode

........

" - LSE. Mode

-~ 'utiic e14

2

(b) (C) LSm0 1 LSEIO(gu))d wave) (radlald wave)

Fig.2 Opervtion principle of leaky wave NRDg9ide

Fg.I Claslcal tlypes of leaky wave NRD-giiodU

6

Absorber 0."

13 o•.5 9-vn Ex F.q..z .27G'ara .Iwid.3 mm

Dielectric -30 E

30 -20I

a XMetal -30 -20 -10. 0 10 20 30v plates x (mm)

I.4 L-eaky wave NRD.W htvfg enolef Ff AN AN.M pl 0 418 El6dil a teUlpsSof lAy WaSW ww haY" -011

7 3

Slots

0

m Plate0-10 b 1.7mm upper par

b= 12 mmEb,= 2.1 mm

i 20 Leaky wave -- /Absorber

" - Calculated NRO-- ----- Meosureda:

-300 20 00 bo

Fig.3 Radiation pattern of leaky Wave NRD-guide oxa eahaving trapezoid dielectric strip Plate

(b ) Lowerpar

Storucluw of leaky wave ND-guide fed planer anntena

IO

0 10z=130rwn =2.75G0Hz

93 -5 -Z=t80rwnV

-20 -10 2

x (mm)

Dliributlon of vertial component of E1field In the planarant"n

It

I-7

.90 N lt 2 z 75GHz 0 . 72 5 " *i e 2275Gi U

. - -

-ISIA

(dB)- (dB) -2

30 60 0 120 150 . . . . . . . . . . ..0 02013 60 90 1)3 ISOe(C)

(a) 0 ;r inf, 0 bi) J7 nitf

Ag Ag

(a) (b)

F~o Struchwo of Iradolds leaky wave NRDWIIff

Is

(a) (b):

F~g~ Fild dal~butona f boad~de ealy wve ND. uid

b b-5

FiFil diatriunslmn n alt~ eeet~ tut of broadside leaky~ waae NMDbguid

of noce eaae y9afawvlnt

.. .. .. . . .

Slots

0 * (q2 NR-qud

1,- t24.0Matdcfvg notch ArfM Wqnh

2.?Omm I .5m

-20

30 1 0 so i20 ISO ftlgI pmow efiw by WW bdv NRWV

ftfil Radfei PON- I Of '"UP~ Nowy WonHRIUd

mom-

U|

-=90* B 4w. Freq.=24.3GHz . e=90 8w. o" Freq.=24.3GHz

.0j -1 -0

E E, -20 ,-20 \ "

" -25 n -25-

-30 .-.-. '-30 J0o 30 60 90 120 150 180 30 60 90 120 150180

e (") # (")

Fig.12-(a) Radiation p atrn of broadside laky wave NRV- Fig.12-(b) Radiation pastern of broadsWO lky wave NRD-

guide ed planar annien.? (230xisOx7 In mm) guide fed Pnanona (2X ISOX7 In mm)

(In tha vertical plane per. Wel to the slot) (In tha vertica plane peupndlctabr to the slot)

25 26

ADVANCED DESIGN TECHNIQUES

FOR LINEAR AND NON LINEAR MMIC'S INTO THE

MILLIMETER - WAVE REGION

R. H. Jansen

Jansen Microwave • Germany

W0N V3-44 14 .0 0043 COV q44 0384 043 JM 0.00444 0 k ..a4... 0 0 3 ~ *-CO4a4d3% 014 to 3 434afn 3ac..44 380430 2 0 V 4-4-1-140 -0 40. 03 W 3 r . ,4 434 .134J A

4J4~ to 04 C:d a)4 to 01 41 E3 0.4 04C: 43 $4 4 ~0 0.0c W3 0 40J Q1 00

0 0.0 4' 1 *4 0 n413 0> > k 0 A.~

0- J43 0 0)i 3~ V-AW.4 0 sMC0V~o 10 w .-.- A, r_ A 4 >a343 a.4 04.1' .4 1

84 V. WV 43 0 V.0 0 3 034 4144.. 4433 43 ~ ~ 4>*.4 4300 03 3 040a4443 044 0 4Xr 0 aU3 j 4V 4 .-4 113 a V) =U 42 0 14 .0 C M 00 43 ' 4 3 r. 0 1 4 1- )uq --430 4 4 V t u V a E'

u.- 43 a0 0 o43 2r 0 >.J

0 C' * U0 Ow.

0~*. .~0-4 3.4.~l >*0 043 at~0 W~ C4 0X4

.04 IC M0~ 2334

0 * 4J X VE M q4? C 0* 4 4 F-434 t 0 u m4 c.c 0~C a

..g -433 3-0. 0 U 0 4341 41 1 0 0 .~ 4% >M 0*

u W0- C 0 C '- 4 0 4 ... 004 01 -1 'C 114 -0 4> k . - -so 3D14 44 ~ 0 0 -143 ~( 4 4 4 0 1 1 t u -0o * .u (3 - . 0 4 -. %U 4 0 V C: %440 M M3. 14 -1 -4 a d-00 14 4,'- 0* % -ka.~~~84 04 41 o N I 4ma : 1 .

O.D.~*~ U.C441 Ur- IN 0

% 4 14 3 48 14 a. o" ; 3 0r- 430. *-.4 o 8

0- 03 0. 0.40 00 .a3 0 0 In.5

4 0 04 0441 W SO 4 0 ~ co~ V a u.. co~ .

V > 2 0 8 4 C: 3 - 4 > 43 m0 3 > U

-VO 0404% 4 V 4 0 3 14 >3 .0 mo4 o .1

0 14040 0 Q U 1 V0.4 40*.4 Wz- in34 I 43 A 10 1*841 r-43 >1 0In0 0 0 0 3 U 3. 414to- 0 .43 0 4 03 -~0 4 1 00> 24 0. to W W , 04- to .- I 3n 432 ,.4 'TA3 S .4

I -1V33.8 03aw w j W 0 l404 0'4 N0 - 0 .4 0 (' 0- '1 313 0 U'. r A 0

:34 40444 431 143 W 3430 b 0 III=3Is .47.4 .

04u.0~0* 043 3 1 'a ") 4a .4 43C 113340 3 0%48 0a L4a C3 4 i>443.

8 4V ,3 0 -A340 > 00331 -a c43to40a4

>. . 0 ~ ~ :~ o3 0 4 . 034 r 4 W ~ U -4343)t 4430 80 c E8 04338 4. 4 x a I i0 4 0

0 V7% V -.402o43 Fr2' V 90 0A( )0 3.1 0 - 1 0 - A%A W 43, c

4 3 > 0 r_ r, r344 3 >

6.0 3 43 >3 41 .0.0 8 >' ~ 0 ~ ~ * 34 4 0 3 342C >'g3.u 0 1. a

1* 3. 10 0 V fA04 41 4 )IIt 43 5 >,r.. -4 .04. 0 4343 0 43cC. I ; 004a 4- a 0 ) 0 - A13 u ~ 0 4 do 4 1l A 0 4 10 0 43 V A ~ 344 *>2 u 434 01 1 -44 a Wp 03 i3o 0 EO1wZ 13u 4 14~3O 0 0 t4I 0'4 0, 43t' 0" "0. - 4'. 0 u44 , c4 .~3 M 344 ' 0 W 4 a 00

0 40>06 W -A- 0 0 W a 4 0 ava 4 -1 031o 0W043 :.3 A~ 0-4 144

a:4 A 0 'J 00 N 00~ 414k j 0.8 " -.

z '41 E M1 l 3t~ -4 V 03 a:t k.0~ 43, 4 a40 3.->. c -I " a*3 ON m -4q 4IV to.0 9: 'o0- Z3L3 04003

0-1z 43 0 .V 3 34 . :

343 4 0 40 .*: q. V 3> .-1 4 ) U- 3 4 4t -z m a~. 430.0- u4~ 3 u V~M 43- j .c0 03 3 0 4J0 -4 m 0 aI I c M3 %4 M 1".~ -4

Mu 3 4 > go o3g~ 43433k v3 4 . 84 V443444 .'I3 a14 " o44 4 3 M. 4) ;q W VO 0 4:3411 43. 00 0U2-4

U,4 41 = 930to N A 4A .4z >tft 040-'a 00 0~~'2 0 44r 11 ,4 k 3

m .au43 r3.~ V 60% > 2U4 01 .-

/9/ Wertgen, W. and Jansen, R.H.: Efficient direct and iterativeelectrodynamic analysis of geometrically complex MIC and MMICstructures, Intern. Journal of Numerical Modelling, Wiley,vol. 2, 1989, 153-186.

/10/ Jansen, R.H.: Advanced CAD/CAM software for process-relatedMMIC design, Proc. ESA Workshop on MMICs for Space Applic.,Noordwijk, March 1990, paper 7/2.

/11/ Jansen, R.H.: LINMIC+, A European familiy of CAD tools for MICand MMIC design, Microwave Engineering Europe, March/April1991, 21-24.

/12/ Br6mme, R. and Jansen, R.H.: Systematic investigation ofcoplanar waveguide MIC/MMIC structures using a unifiedstrip/slot 3D electromagnetic simulator, IEEE MTT-S Digest,Boston, USA, 1991, 1081-1084.

/13/ Jansen, R.H. and Sauer, J.: High-speed 3D electromagneticsimulation for MIC/MMIC CAD using the spectral operatorexpansion (SOE) technique, IEEE MTT-S Digest, Boston, USA,1991, 1087-1091.

/14/ Jansen, R.H. and Pogatzki, P.: Nonlinear distributed modellingof multifinger FETs/HEMTs in terms of layout geometry andprocess data, Proc. 21st Europ. Microwave Conf., Stuttgart,Germany, Sept. 1991, 609-614.

/15/ Jansen, R.H.: CAD oriented spectral domain modelling ofMIC/MMIC structures, Intern. Workshop IEEE MTT/AP GermanyDigest, Stuttgart, Sept. 1991, 19-31.

/16/ Jansen, R.H.: Novel, process-related design techniques forlinear and nonlinear MMICs, 1991 Asia-Pacific MicrowaveTechnology and Education Workshop, Taiwan, Sept. 1991, paperTA3, 65 pages.

/17/ Jansen, R.H.: A full-wave electromagnetic model of cylindricaland conical via hole grounds for use in interactive MIC/MMICdesign, IEEE MTT-S Int. Microwave Symposium, Albuquerque, USA,1992, accepted for publication.

CAD OF MILLIMETER - WAVE PASSIVE COMPONENTS

IN SUSPENDED MICROSTRIP TECHNOLOGY

V. Fouad Hanna

CNET - France

0 .

0 0, !no c~

0En -J U a as- ) -.j, .

:~c -M Q0

W1 .0

0

LL. - -.0 F- 0 r P< C0 Z.O

x <

U,- N-V 3

- *1

.9- VtCg. .

-o Ac

an -

C

066

= 0 4-U.I

44)

uI. >. a I

CC W 0

z zT

09 >u>. o S

z A. w

U. ul MC in03ij 2

ozA> w! i

o

.2-

E- -a

.. -

ox.

* V6

U- . .EFI H;!20

4--

NitN

C--

- 0

c

0 K)

A '

; ;. 0

- U O CL

V~~

L iio __*

'IYII)

'-a0 N N

6-. LJ N

L-,

100

146)

IIr

a(A

Ct L J

- I

i-4 )- I-

K .D

x It.

0.0

0 u

0.

C 0,0. 4) 0o . ~ - c

r~ -- - .

r C tA ~ ' lnV

. ~ ~ ~ ~ ~ ~ . . ... . . . . .

Ni

a ~-- ~ o It

inc~~~ V. *C

> *E

-do

6 d 'co

19 V_

co

IL 0=

A.

-i ci ; ;Cu

CL~ 0

0 03

0

o 0

0 0

0 0 ) 1or 0 0

- E

4 7,

CD

- -

IL,

u >~

,Y

L.n

iL Al 4

< T

.jT '!.j

In ,(t2P) ;S "

3 -- o

4.419

to

.a..

. '

Sc .-... _- - -- / - -.--a CD

co~

U(a its

0o -- -- -

D 0

.2

00 0

am* ~f

cc

I Itsa -.. -L0

C06

Ir

+ +

Eg +

u2

.0 0

-tI-

5 62 v

; N;t=V

0.) o **I-(y) pn+s 2uj~jur

.Pz

C4

EE

C4.

I0 -

S. 0

va

>- as

V4U

4z,

cm C> C;

U 2 2

a 9

E 0,

'o-o ao

4a to) - f UO

0

0 0 02

u .e.2Z3-

4,

0 . 4, 0 a

0 %

Ia. ;-. *=

00..

0 00

Ccu a-,U

~~J5~c ;.soaos ,

Q -"C 'r l *. t-; cs 9.8'd

009 Cwma .a 'aw -.43

(a* >- =- -tC~~~u- C ..L hWo.. or- - 236

QMw P9 -z '

ISO 2u MR .gU A .0. s

qj

d

;0 <*A 0- 0'.

C3 'DIX OSI To0 .

-- -= -A - -0- D -a-,

Of E- 0. ', 0m ;-

~,, 0b~~ .0 > > 0 -

W-0 C - C.

I,, s c 42~).4. ws 00.

4)

F0. .6.

0> Z0 W 0 oU- C -6 C 0

-- 0~ E0cl cc u ~ a

o o c 0.0 0. Lr' .1 2C

z20 c T3>C~ E) . : a *

!!~~ ~ ~ .;.±..- - . cCel :3 Uu 4)0 E .0

0 a0.(JEl

.2 Z -; tCr 3 2a~ >.6

1 00 -0

0 "u0ci EA t 0c -Vz~~~. :9IIH U C

0 C! C3 x _ _ _ _ _ _ _ _t-

-U~~~( es- x2 C-4 u- Ni- EL.! ,

L~~~* 0 ;E 0 O

C4

r-

00

Cc C4 4 -

C~ C S C

-. 0

LEAKAGE AND CROSSTALK EFFECTS IN MILLIMETER -

WAVE INTEGRATED CIRCUITS

A. A. Oliner

Polytechnic University USA

ILOL)UCTION

isrcdrutglntvet . 1. insuiscoas0,en5ud *silluat-etlv-wo ssirgrates

LEAKAGE AND CROSSTALK EFIEC1'S tissl a.,rssl etuslsad even rinciui performuance. It so tlsroetwer1141 tIs tutdterstand hsow crosstalk cn bs produced a.d wImAt acinnal efrfets

IN MILLIMETER-WAVE INTEUGRI ED CIRCUITS -lit result frots iL.

k "~w..t up attstu between as tlleutt gtntlisssa at ciesrcuit. eerI.. st -, I iiea '. n. l- n U. 0ely aspitd ta each as. so that ona*as ... taeelieltl air S1e te. Ibhis tyie iii croslstslk hs been wel suderatawld faie as latic

Arthur A. Oliner listle, andt at will not Ibe discssved here. We wtill exmuinte. instead, flue crosstakI iAL rexulls frantn thet eacitation of sur/ar santo's witi ste circuit. These surfacev.55- ensn t,-sr rl lusoilsnss the esesst. laotiur. srotund. endt aue c.riausv-lscta. *aigiig lusas direct issteracsims to packiaersnacs

111'sbfeoq ttIgcrit"sPolytechnic University :istfkKC wsral Clank be eocitedl by two prinipal .siedhsatc

Btrooklyn, New York, USA (o) circuit dliscontinusiis. andiltIl.., lcakog. f"sis thet.ssioouln tlniaut motl..

The fact that stgrface waves are excitetd at traneuniossios-tine discontnsstiroa isof couirse well known, but whtat effects tltese surface waves produce line r enrstsine rid intfreqtuntly. We will discuss litre thfe conudhtians under which

New Ailtlress: - it thawis isc tad .lirsautsssuaa cats isuta'ract. witl, oilier gturtiotito of tin intergrarted Circutit.and lita,Leslnglona, Il 02173 disconitinuitiea cats excite packoige guided modes anld psackage tardty resastanst.USA Thse fact that trassiaa-lie dsosinaaf tussle ran lk becomue known only

trw yeiars figs. pritcipally as a resualt. of work by Slsifesaws. Tauji land Glimse.Teleplsuuse: 617813.1-14 Tile leakoCe occurs in Use frme of a surface woe thast proplaates swaty at anFat:- (stalle sngle front tile axis of tlte trasssion line. Far mst printed-circuit

Irasstsssiin lins. tle slansiscant mssde hecemes leoky only at Uise Isiglerflrtjisrnrsr. on tlsot leakage effects Itecane significant principally at nmilliimeterwvvelessctls. 'lle talk wsll tliecstal preciely alisen a douaissin ntntle ran liessoeleaiky, saw tile transamission line, whens it leaks, can interact with other lines andwills tlit~cntinuitirr. antI howv such leakagce can excite packogce guided modtesIolseurs kte dstsssssait. ussoltl casnnot isnteract with package guided modes when itis ptuiely lossuil.

33A Intenatoioal Worlisltjo r Iliflintcr Waves The present talk will bsegin waitt mine tuecessary ltackgrnsud malersulOrieito.i sy inolvingx various* constituent modes and thseie dispersion propertiesi. The thren

AjtriI 22-24, 1992 printed-circui linca that wes consider are miucrosteip line, slt hisa enl coplanarosresisle. We neat dicuss (lie way powee can leak from Use dominant mode sorrittet-csrcuit, lines. Its tnat connection, we first establiash when a mode can

hecaous laky, then describe thes phyyaical Properties of tile leakage, and faitaly r A~Present @evera exasoples of such leakage. After tlust. wa eolamine tile effecl a of U LI E OF TA Icrosstalk due to such leakag.eand alas to trinasunifaaion-line isiontinuities. slangtie linae indicated earlier Y WSalya leaks at juackag effects, and examine howdiscantinoutes and leakage may each insfluence package guided modes and I. IIACKGROUNjD AND REVIEWpsar"t"ct in resnane tm -1u. package a whoil..

A. Cosistittoent 11a-sic Moties on Printed-Thet stems in thet pen'15a1(tion will be on the islysiral prtsteiileo ossd [hi, Circuit Lintespeeaenass tditesietce.B. Dispersion Properties

I. Modes on prinla-ciracal Knols2Z surfisc aves

HI. POWERl LEAKAGE FROM PRINED.

CIRCUIT L-INES

A. Whsen Can a Moede Become Leaky?

B1. Physical Properties of the Leakage

C. Examples of Leakage

'Itl SOURtCES OF CIROSSTALKC

A. Waiveguitie Duscontinuities

BI. Leakage Effects

IV. PACKAGE EFFECTS

A. Guided Modes and Cavity Modes

UI. Coupling Between Leaky Modes andGuided Modes

C. Excitation by Discoatinulies

DISPERSION PROPERtTIES

CONSTITUENT BASIC MODESwavenu iber fi-ja

1. MODES ON PRINTED -CIRCUIT LINES PI = phase constantai - attenuation constant

Nlicrostrlh, Line .i irs duc to material losses, mud to leakageSlot lma losses, where appropri~ate.

Coplanlar Waveguidle (CPW%) If onliy leakamge is included, thecn a is called the

leaikage constant.2. SURFACE WAVES ON THlE SURROUNDING

SUBSTRATrEDisiwrsion means the variation of ivavcnumbcr

(They amv different when ic line doecs or does not 1ave a with frequency.

-nw pl-)

Customary to IjaLoas (Vk4 vs. frequency (or in.6..-*6,normalized form, such as Ii).)

It. 2PxA9 = frce-space wvavenumber

3. MODES OF TIlE PACKAGE Pi), r

Guided Modes and Cavity Modesc - velc~ity a( lirght in fiee space

V, .Phmawe velocity of the nUode

waveguide rontcvty

DISPERSION BIEHAVIOR OF MODES ON DISPERSION IIEJIAVIOR OF SURFACE WAVESP~RINTED - CIRCUIT LINES 1. UngroundedLayer

1. Microstrip Line--- ----

0 S F

k. Mll cdispeni%'e k.. . oft he smafsee. a

Stongly dispersiv at higher frequenciew

2. Slot Line 2. Grounded Layer

3.Colaa Waegii.. 1 slslns

If C~r ~ EXAWLES

-I - -. -- - es lsevv

7

WIIEN CAN A DOMINANT MODE DISPERSION PLOTS FOR VAIUOUS CASESBECOME LEAI?.

I. Con'ci:tor- Ija kct. slo line of CPW 4 inn -iA. ;,j|1

Suppow wUre is l ckakc

k.k. os 0 l. ,--x--- ------/'i 7: k

k . Ie.kaje at all fretences

'n Fralle-plate Ji Ac -formTherefore, for rea power to leak away we must have

or D k. 2. Con4itcbr-bnLcked slat l ine or CFW of TIen;vo ;Jt,

pike < k./ko

Example: CPW of finite width k"/k0. TM,

---- ---- -----/- k, P

At low -rreijuenises -.% ~ bouncL mode

bound 4. lk A~ove <~ k, AL <Itakale 'in su.ace

For f>fc, the dominant mode on U CAlek k wave lerma'.o

on t

17

S. Convent,'oni.l slot line or CPW 4 infin; €e w;% NORMALIZE) PIIASE AND LEAKAGE CONSTANTSOF CONDUCTOt-BACKED SLOT LINE

'-T/ ksIk

° PTH° 1.5

on;

-- P -. /--- - n(., 1

At low -Freluenc;er, 1 >- ; 6 ounJ. wove 1.2

Above ;cr. I - _ eaIk&e in suwriace11TA.ko wave ;orm, 7Mo on 1.00 . 0.570.0 0.1I 0.2 0.3 0.4 0.

4. Conventona- slot line or CPw of ; Wfe 4,wad

------------- lO"i

p rI kl*T 0 *22. hOdS.~." /k, I T0"

-- -- - - -- -------------

Y110'

At low 4rcienice, > L, boi ml Wave.k, k,

Abov F1-2I k V vo o0 o. 0.2 0.3 0.4 0.5wav t;erm,& E0

NORMALIZED PHASE AND LEAKAGE CONSTANTSFOR MICROSTRIP LINE ON AN LEAKCAGE FROM hIIGHIER MODES ON

EPSILAM 10 SUBSTRATE 51ICROSTRIIP LINE4-0

TE, .1m.oe node

2.(jIo sna e av

30~~1. -regionloe~oeo

6 * 13.0 wlI*. 1.0

E1,. 10.3Cz. 13V 100

i.0 f i n GHz0 0.1 02 0.3 0IA 0.5

0.015 'I'icsolulions ame leaky where li~e curves ame showii,Ia~.I~ hi thsat trui.n ju.s alrnvc culagedT Um. SrffW Wnvc

Itnsrver a wide r.uigc or arigic. froin emiri.' to alnwst

Inxia(Wik a-, die fre. 1.ency ck'creaaes luermi cukdt

0.01 If (here is m., (ap cover, k-akagc alga owurs jnob slace

waves wIhers I/ ko 1.

0 0.1 02 03 0.1. 05h/A.

13

WAVEGUIDE DISCONTINUITIES

What occurs physically?

SOURCES OF CROSSTALK

Top viewro

1. Waveguido Discontinuities rnriesbnp

2. Lakage Effects

1. ll1icsL-Mlsm on the line are excited, butdecay away from it, and their power isessentially storml In the neighborhood of the

dliscontinuity. They provide reactance to the

equivalent netwvork of the discontinuity.

2. The lowesgt surface wave (or waves) en tEsurrounding substrate is excited, It riulint

power in surface - wave form ever a widerange of angles, and it provides resusance totlie equivalent network of the discontinuity.

3. If there are addigtional dominannt modir there

will ho some madle conversin Into them. This

effect contributes to resisance~

COWl a. NG -IEl'V.E-FN 'IAAlY Df)IS CO U ii,-.4G III,'Mw*,EN 'LEAK ' M~ODESANI)l'AICAC UUI)EI MO)I*AND P'ACKAGE GUIDED MODES

1. We ran view Use package guided niote in tcrim or apair of surfasen waves at an angle.

zf

lpView t cs0v'lo theJl ui oiuM Lnm~ rrweent the origina

(unperturbed), transmuision line assils andl pacluage guidedtodak espctively. lla solid linin reprentUwcope ail

2. 'Ilia akg ute uieasle x-l~llyfv Ivalqin' FURtTHJERIt NPOIUI ON

tilepacageguied 11(ilenogl ( '110 wo ndalesPacliage guilad made

We halil:

01" 1 H - At Co A

"Aeakfe mode

Bounnd snade

-- A-] A

:2/

EXCITATION OF PACKAGE G.UIDED) EXCITATION OF PACKCACE CAVITYMODES BY IJSCONTINUITIES RtESONANCES I1W DISCONTINUITIES

1. Ilia dicontinuity eciles suimlfmce waves at silt angle. sodust dUtLr j) valises ringe from 0 to I.

2. Mishlreliare, at a particular fl'aqmicncy. they cats coitlipe to nlpackager guided sateills it vitiaes in tiat range, astiedlya large umbuer a(thdem.

3. Inu die alassve cicamsple. 4 package guided mmotlies am ei'il.ihaca ~ ~ ca bwd~aaiinhlumuIlec via On, suwfa wave

4. lly cnitmiuad nn ieuiedms line iniale, wills a g~iven 11 at samppalad ItY ieintabele 11e eamplimig is ordinuarily fpd.r,'e~ney, f, emilli at "UW st mile (Coupile 140) :1 Anmgle Maill, li111 gvef lage at ft" I ,h Inmaua, a packaginepackage gi1de dc and ui pemlsaps none, isolmes ii -sity msiistU For a large packagte m siosantfrarquency iwiri eifeill lat-omee dm,4Y -,am In trequemney

Thecavty . aal hem~uudiemuame eeuplng orMsmak ca nb firwsel by Introucinlmg lam. but doe

rim~mauu at a rodse end as m a m aine a emumhInrrsna, in large pariwagme

23

CROSSTALK DUB TO LEAKAGE

CROSSTALK BETW11EEN LINES ANDDISCONTINUITIES Do the cuup c

YES

iscUEM'. at a djtLwilce!Is therecrosstallk?

2. T'wo Different Linecs

NO Do thy couple?

(The surface wave hiave witvenuiners; tUst. vary firoin k. to NO0 (ur ucgLuivc) ii, tie cuanipusaen along Usic line ksagtJ 'liary

will coupleonmly if dlic h. conimlmeacist is flI. Here, 0 > It.) Wi sand 1)i ummus be dieUse srnauc furcoupsling)

U:i. ir '['lie Is ai liscuatiaaufty oat the Sconad

//~i Is there Lisle,H s s aIl t C r o s s t a l k ?

P~ACKCAGE MODES wuxIr ihAPPENS TO LEAKAGEWHEN THlE P~ACKAGE! IS FINITE?

Two types: Guided rnodcsCavity modes

Infinite width Finite width

EXAMPLE OF GUIDED MODES

If inewa lioundlaig WALt' Cumnjliz wnvenumltier Real waversuulseir

'flu^. Uer. Is a simplle arelatioun between time package Muideil Iinusishirim last it in sol quomI dhoion at

uimes aral surfaces wave, an an unbousleit aulastrate. 'lire Us imt ant sill cn cause vtalk.

am manny package guidled macls faw eacls poild e rfave

way.. If A Is large, they amr clisely tiimsl in wnvencsnblxr.

3D MODELING OF MILLIMETER - WAVE CIRCUITS

AND ANTENNAS

N. Alexopoulos

UCLA • USA

00

o W 2U) .t L.>

4-o 04

o U

U) " "~Ut

aS, -4S~3 -

o.0 w-o C -4

sn 0 C)'

CI 4-> : : . ' )

o~C -b±'fb

-43 ' U) I. 0

coplanar waveguide

microstrip diodes

microstrip filter R

Fig. Balanced mixer

2: 0*O , 77.,

0)0(n UC

C: 'D

4) <

(U;

-8 0.

Dipoles_

Fig. Lincar array of microstrip dipoles Fig Microstrip corporate feed

EnQ)0

040

~ ~ C4

o ~ ~ ( ni 0

bO 0

0- 0 CD~s.*0 CD -43

)d 43

;4 0 * -

00

0 0 U

100 20 Imilmil #2

0 .. . &GH& 8.8GHz 1 i

-10- 60

dB #3.20 -685-

* :1 950 mijl

a2 mil

1~ #4-40

0 30 40 90 120 13 g 160 mil0

Fig. 7. Allay ptaz

VSWR E#26

Fteq.acy (GHz) fo a8.5 GlHz

Fig.S. SWR skuh~quncyFig. 6. An embedded microstuip corporate feed

H-LA -

-W.80 mil

Od

Ld =442 mil, Od 1= iSl

- -- ';/IhI29miI

Fig. Electromignelically coupled] dipole red by a Inicrostripline ~ - Tile Magnaitude of fluicrostrip currenits in anl Isolated EMC dipole

co

00

CCV)

Lc)

4-

3 2

y U

"~ !

I: -- :xx., , '

Microstrip Linear Array of EMC Dipoles with a Corporate Feed

440 m&-A

I... * Relative current distribution in the output ports

0175,41 20m 9l 13.401 2.4211.22 3.1510 2.421i.2? 113.400.275, -21200 945 mdVWR .6

I *e VSWR 1.67m Directivity 5.77

0444, -22.31

0

4..23.341 Fi.1raypttr

-L L0.532, -24.3191 -34a

40"

-60..... 30 60 90 120 I; 0 ISO

S1.0 04-2.IFig. Armsy pattern

-2.35 29.d

f o 8.5 Gliz0.275. -22.34

a))

0~t E 0

C 0m

2 a 0 -) -2 - 3 2 0 - -2 -3y (wavEle'gth') y (wavelx'gths)li ;

* Computation Time

"rianxular basis functionGOAL: To calculate the matrix elements Zi(m, n ) between any

two basis functions(zI,yl) ineUior edge

where boundary .- b d edp

i,j identify type of basis function n

1, Retangular subdomains

i'j = 2, Triangular subdomains (x3.y3) (x.y)

3, Semi-infinite traveling wave modes

in, n are relative distance indices, m = [-50 : 50 1, n = (-50 SO Ref: Ran, Wilton and Glisson, AP-30, pp.409-418, May 1982

Computation time on IBM-3090 for matrix elementsFor each interior edge I., the triangular basis function is defined s

* Z,1 : 2100 sec rcd - - ,

* Z2: 3900 see (z- - z3, y - V3), , in 7.

, Z: 8500sec (.)~.xyin.-Z. otherwise

a Method-of-Momnts Expansion Functions

Basis Functions 1. Rectangular subdomain modes

f(ry ) =pC,'. (x,,) , {P WS (z )P (y )j, z -directed currents

M (z~j) =2C5 'Ai5 x~y)WS(y)P(z)i, vdireeurren

2. Triangular subdomain modesIntegral Equations

< ,(z,,j).f(z,y) > =0, 1,2,.-.,x, V,,J on microstrips R . &(4 - Z _ -_) z, in T;'

<til (z,)- 5 (xii) > =O, .=1,2,..,N, x,y onslots O,

Matrix Form ,,* ',W "l-.-. 3. Semi-infinite traveling wave modes (entire domain modes)

1z ],., [ IN = IV IN . eoilyd/., ,- I U ( Z - Z' )e *jA-.. )p (y )i, z 4reted cments

.40 14-1mle-tU (Y - ,W) iPO( )P (X W, y -directed cuirrents

Matrix Element 313,1 ;.Oo

ZLk s Testing Functions

Subdomain modes only

*Spcctral-Domain Dyadic Green's Function

Y))C~N INJT ItL. k, - (.

JUNCTION Al(~)Gn(~k)G,,.k,,

where

F(k., k,) J F(.,yk-s,?kdx,dy

Fig. I A generic structure of a four port ozicrostrip discontiniuity

DISCONTINUITIES

JUNCTIONS

AND

TRANSITIONS

CU? S'SMUWU~gy~__ fRMs 4 ii...

0-

-10 .10

-3- _ > imulwBzisFncin-30 sharpened open-end.

---0-" Rectangular Basis Function ... open-end "

..... measurement

2 4 6 8 1 12 14 16 18 20 22 24 26 4 6 S 10 12 14 16 S 20 22 246

Frequency (Giz) Frequency (G-Z)

Fig. Phase of S parpmeters of an ope3end Fig. phase of S prpmeters of , sharpened open-end and

(c,-9.9, wI24mil, hI25mii) an open-end (c,=9i.9, w-fff24mil, h-25rmil)

Basic Features Using TJ[riangular Subdomalm

I. Tcanmission li ne have inuae lengt uo.

2.~~~ ~ IdaMurn or eas ufr exctan.t

3. Thea oid ofS abdomtos is optransdated in thePxs plane to facilitatethe"."..t... .. spnde .

c statio of reaction l, mi,- .... ..'..-.. -.. '.::.,:. . .' ;-_:_-.,_,....... -.:.""t"'"(4e too &6tam t from an opnen t.o. ..be.-.. .in l e i ...- .... ...h2..'l

the grid have reactins wich at o Ism

Fig- 71i gaometry Of n opetacad Iad t sharpened opee th

07 T TZT2z0.47

0.3 mitered bend

Right-angl bend .2

,04

03O miteed bend 0.1 Rgt-angle bend

02 . This theory- This theory -.

.01 .... ouviUle and jamnes' measuarement --- Douville and Jamee measurement

-0.2i

. 10 1.2 1.4 .6 1.8 2.0 2.2 0.8 1.0 .2 1.4 1.6 1.8 2.0 2.2

.8 10f (GHz) f (GHZ)

FIX. Frequency dependence of Oo,1z suscep~ce Fig. Frequency dependence of notnlized electric length

for liabt,0n1lC and mitered bend discontinuitie for right-angle bend and mitered bend discntinities

W-.72m h-.08nm) (e,-10.8, w-4.572mrn, h-5.O8mm)

9,9, ws 2 4mla h 25mil, f 24G11

i/ncidenl wv . .

z.

ON. . . . .~."...

. . .. . . . .

OM910.

0..T0gemtyoFr000Chba ndmtrd edducmaii

sa!im!150311p puaq pal01 wI puu paaq al2au-lqsu ioi

0OO001 auui~npuo3 pn2311u0uo jo 3aUmpuadp Aamanba -9t.

z z O*Z WI 91 VI VI 0! TO

90000,(1000

-1000

putaq paialiit

P..q .:t.7q~j V00-0

~~ puaq a2I2nj91000

W001000

9100.0

WIU0PWOWI

U~t1Ufl 30 ~ jo z01mun S O 3fl~~u~4 S~ su~l~nr 31 '1D!'Dpuu3~ijo ziaao2Su0 iu

LZO 60"-. nbO1d

~AA OZ 9! tI

0 z 0. . I z .1 .3

Its

ItsW

V..- ___T______A\__

. . . . . . . . . . . . . . . .;... *'s *: 7

-160S

-2-

S31

-180

-~~ S. 333

.200"

iangular BasisMiteed tee junction

..... Rectangulaxr Basis Function -...... Tee junction

-220 - -204 8 12 16 20 24 4 8 12 16 20 24

Frequency (Gi-z) Frequency (GHz)

Fig. Phase of S33 of a basic tee junction Fig. Magnitude of S parameters of tee and mitered tee junction

(e,9.9, w=24mil, h= 25mil) (,,=9.9. w=24mil, h=25mil)

... .... . . .- .. .- .". .% V .. .. '. .. ".ij.-L..";'.. -

z.. .. , ." . J . - ....- .- :-2..,5..21

IS21

....." " ' "''::A ifw4 asi.s F n."

!'--P'..".. .. -" ......" ." ." L." !." '-,"8

•w. , .. .. ' 1.., .l I• . -; .- ..# -- .. - . -- .- .

-

.~.-147

. Meaurement

.20 " " " . . . ' " "" 6 " " " " "

4 8 12 16 20 24

Frequency (GHz)

Fig. The geometry of tee and mitered tee junctions Fig. Magnitude of S parameters of & basic tee junction(,,-9.9, w-24mil, h-2Smil)

C,.Z. - IF F - 0) ()

C... ..- 0,18A32aab0.09)r)(PF. n) (2)

TOW jko Trspaicd adilm udb-- LI Z. - CIO.l0 + 0.0083taab (oie6S!-r)j .l

23 1005 0.13 0.829 0.039 0.023

24 1.007 0.208 0.678 0.048 0.073 jz ~i~-I2lia ol2~

Table 1. power conservationl check for right-angle bend dlsColifly.(p*amters amt the oame as those in Fig. 4.)

12- 12'

10-

UI MEN = h I

S .. 0L .. . .. . j UW

6, &--j . .. .. ........

cl 102b.21,2.Sm

-~~~~~~~~~~~~ lO2 w 4i. s2nj im 0~~6~ ol-8iU

(Uuotup jejijadS)

jag *czZ lied 3poldutAsv

(Iarv-op loiiwdS)

322 )Lt *Z lied acoduAsV

oGS:og-j=U'fog!oq-j=W 'XaPU! 33UVISIP aA!]WlaJ U

ttatl=%') S!Svq Is~njuvi I )o a d Ini

saoul3unj s~svq e ummilncjiou,. cmI caRaiolaq (u lt)",Z srvilaqia uotli aqj al~~v oj

sluataa xujluw 206OCWgZ uo atuul Butindutoo 'tie--''

-sso, UOjhUIpcj Sujnfl3 joj auegd uefla3Nauj 'I 'A

'SOO 3AVA%-a3ffJftjvjnuugn JO 803 pU!143 UOIJU3)I1 'r'3.

c, Geometry of Microstrip Gap Discontinuity:

LR *9.9Z.

Sh - 25 mis

1 ' -9 9 w - 2 5S tu s

h . 2S.0 mils C," Z.. 0.64704 (pF'D) S 10 milsw . 23.5 mils C2 Z. 0.98044 (pF*Q) h

L / 7. 0.01436 (nHX)

R 17.- 0.983810 Proposed Circuit Model

Li C2

.20 cici Cr el mesueenrooelR L _

t2

.0 C

C " Zo,. 0.83355 (pFQD)40 C2 - 0.63088 (pF*Q)

C3" Z. -0.50581 (pF0)-5o-

1 14 . 0.01896 (nH/0)L2 7 -Z - 0.02196 (n -W )

KC 10 IS 2, 2r R /1-a 1.76299

Frequency (GHz,

Fig. 4 Physical Dimension and the Equivalent Circuit

Fig. 3 Comparison of the Phase of the Open-End Model of a Microstrip Gap Discontinuity

Discontinuity between the Proposed Circuit

Model and the Measured Data

1.00 ..............................

Nlicrostrip Open-End Geometry : 0.990.98

0.97.96

w0.950.93 Full-Wave Analysis

0.92 . uasi-static Value

0910.90

0 5 10 15 20 25

Proposed Circuit Model Frequency (GHz)

0

0.2ZoL 2o

R S -30

40 Circuit Model

S....Ful.Wave Analysis50 ...... Ouasl-Stalic Value

-60Fig Ph ,,sical Dimension and the Equivalent Circuit 0 5 10 15 20 25

Model of a Microstrip Open-End Discontinuity. Frequency (GHz)

Fig. 2 Reflection Coefficient of a Microstrip Open-End(c. = 9.9 , h = 25 mils , W = 25 mils)

Slot with Radial Open Ends

current sory

stripline feed

Potential Applications: Microwave and zniffizneterwave

1.00 0.5 aperture-type antenns whose geometries include0.980.96 0.4

S0.940O.92 .. '0.3 2

Po 0.90 C

0.8802 g 0.2 0BowtieS0.86 f.E0.84 - Circuit Model 0.1

0.82 .......Ful-Wave Analysis,0.80 0.0

0 5 10 Is 20 25

Frequency (r0Hz)

0 90 Log-periodic Bowtie

~4 0s o t-) 040'

o6 - Circuit Model30j

-70 Full-Wave Anialysis lI.80 10a

.901 -- 00 to is 2 25Archimedian Spiral

Frequency (0HZ)

Fig. 5 S Parameters of a Microstrip Cap Discontinuity(c z 9.9 , ht = 25 mils, W = 25 mils , sato 10 mnis)

Distribution of Magnetic Current

10* lowtie Slot Antenna

(898 edges, 2000 mil radius, 40 toil gap)

'.'/. h/~'/.1.0, blf -02. RIX, -0.947

Equiangular Spiral Slot Antenna Equiangular Spiral Slot Antenna

(t, = 1.0, b -300mirus. R = 1OO mils )(,= .L, b -30D mils. R - 1000Mills)e( * - , a =0.3063/rad, n E {O, 1, 2,3), 5 < p < 100 Mils (p - e*'al. 0.3063/red, n JO{0. 12.3), 5<P~.< 1000 ils)

,.3

Normalized Power Pattern (d0) at 8.0 GHz

120 2

5 .~ %

Frequen'cy (OHz) Frequenlcy (OHS)9rO

Axial Ratio ran.. (MD) at 5.0 0Hz

Equiangular Spiral Slot Antenna

n 0.1.2.3 0.005,R<p<R

- .020R .020R

30 Bowtie Slot Antenna with 10011 CPW Feed

(898 edges, 2000 mil radius)

Monofilar Archimedean Spiral Slot Antenna Monofflar Archimedean Spiral Slot Antenna

( 2.2, b 500 mils, w = 40 mils, 0. -, 5.81r 0.. = 8.188) (,= 2.2, b = 500 mils, w - 40 mis, 0id 5.813r. 8.9-1882')

(a +A, a 9.055 ils/ad, A7.087 Milo) ( 9+ ,G 9.055mils/rad, A 7.087 ms)

eOC -3V~

lt. 12. la 4. Normalized Power Pattern (411) 81 12.6 GizFrequency (GHz)

oo. I34 1,Ir L '

CL

CCC

II. 1& 141 . I 11 Nom lie 4oeWatr dB t1. H

Freqtrnvy (GHz) Frequency (GHz)

Axisf RAW Poner (411) at 326 Gill

Bleponenially.Tapercd Slot An~tena ------ CxrCIInll

736 edges, 2000 ani radius, wu 4Ocxp(z/700)ppsls)

Reflction Coefficient for tile Lxpomcntially-TlapciCd Slot

=MOSHE . = 5001

----- expejiment - ---- effItlmcni

kcflcclion Coefficaint, 30 Dcgrcc IBoilic IV/ Fccd llcfCClionl Coefficient for tile 10 Degree Dowtic2. - 100 z. 5m

Monafilar Archimedean Spiral Slot Antenna

(t, .08.OS b =1000 mils, wp = 254 mils, Oa~ = 5.81wo, 0_4j 8.188w

(P aO + 6, a -57.5 mails/rad, A 45 mils)

theory

Geometry of the Monlofilar Arcliimedcan Spiral Rceflcction Coefficient for the Monofilar Spiral Slot Antenna

989 edges, w=254 mnils, r..,n = 1004 muils, r_* = 1434 muils) Z. 10 tOhl"w

Monaflar Arelsimedean Spiral Slot Antenna

Monoilar Archimedoan Spiral Slot Antentux (1 2.2, b = 500 mile, we - 40 nanis. 0.. - 5.81r. G..j - jes, ~)(Rlef: Nakano, 1991 IEEE AP Symposiurn) (p - aS + 6, a - 9.055 rails/cad, A 7.087 ui)

Ito 1 a, Z - - -I

stittu edfilamentary 20 ISM, atN.tnt ouc

10 2'P~ notln feed TS ISO I ,

E rw~ cC Ot muea "Weez)

0DGD ta 4) 0

N G D

(U bi -0

-M~ 00** G

0 Wr. 0 (U

>( V';I)

GDU 0

ci -

~r. r. cc. 0

1.01

cc z

0

90 A

(U.S ~ ~~~ -0~)G *GGi

00 w

-0 A0 C

Oct0 -

0v 0

E. o E; :5 E-CU> 0 w.II~~~I

u E ,.o I "I

.0 - Cia 0) 0

0 0~0Io:. 0 Eo E co- oE

cc u , _. C w 1 -- m -

0 bu 1O

oo CL.

,) I.. E,.U '7g < ° 0

C44

cu U .) C . . 0 _

U) 410 L0w o.

0 .

a.)

00

- 0 >~o * UE

0 'U0 I

'4 f

64u 'A 0-) GD ,

0 .00

PARTECIPANTS' CONTRIBUTIONS

p0, W,I__ I toamno____on

XI even mode ciscontlnuiles , -.

7 -

..... ................ ........... ... .............. .. .. ..... ...... ... . . . . .... . . ." ) 6 -.. v . . " ",

-- 7

rectanguiar "- ut-I-N

:ubdomain modes dd mode

t~dmooe

:-q. 2.Layout of expansion modes for magnetic currents on Sjo~s

:,ucncy (GIL)

-;q. 3 The slut voltages oi even modes and odd modes in a cPV

-'rt-ance bend c=.. w=24mdls=2-1m ih=25mil)

Computational Performance

if the Arbitrary-Geometry Modeling Software , -7

on the IBM 3090 7 h

odd mode odd modeantenna no. of basis I execution time I _toraee

ltinents functions i per frequent-y I requirtul vn mode event mode

(seconds) 1(megabytes) 11

Slot Dipole 200- 500 50 -300 C - 4 :

lDowtie Slot 400- 800 250- 500 2.5 - 11

Monofilar Spiral 500- 800 300- 500 4 - 11 odd eve

Arcbimedian Spiral 700- 2000 450- 2000 8 - 64 mode Mode

Equiangular Spiral 1000. 3000 800. 3500 16- 150 1

Fig. 1. Asymmetric coplanar waveguide discontinuities

A miwtered stop A right-angle step

1.0

0.9

i4 .......

.... .... 0pn d .2 pn

S.

. .............0.2 o 4 - .

Pon2. 1

w0.m, w-O.24N,s-O21, h=0.5mm d=.w

p00.1

0.60

. Ie _ diece cur7.I ret ny G zE h

0.0i I at .00

.0.o....................

Frcquncy (~z)y directed current

F* ... oddq modelagso ve oe ndodmde nI~ jncio (,~., ~s4mt~.IVm1 yh=5) Ii.5 antd feuvln antccreti ejnto

7.

100

00

r_9uN

0Ln

==&am it it it

alll

00140

'ID

C4 0 0C ~ t ? eC5 C4 . A A

x L

U) -a

C:C

oo au V

00

0 U0

U) u.. 0

23 0. >

00

bOC ;z r.fl 0 r-.. i0 F"~

- '~ 0

m . 0 P.t

FREQUENCY DEPENDENT ANALYSIS OF PACKAGING PROBLEMSUSING TIlE THREE-DIMENSIONAL INTEGRAL EQUATIONS TECHNIQUE

II. GIIALI*, M. DRISSI*, J. CITERNE* and V. FOUAD IIANNA**

*Laboratoirc Composants et Syst6mcs pour T6l6communications

URA 834, INSA, 35043 RENNES, FRANCE**CNET/PAB, 92131 ISSY LES MOULINEAUX, FRANCE

ABSTRACTThe main problems associated with packaging technique for microwavc and millimeterintegrated or monolithic circuits are the shielding effects, discontinuity and chip connectionscharacterization. In this paper, a dynamic analysis, based on the three-dimensional integralequations technique associated with the method of moments is presented for thecharacterization of shicldcd discontinuity problems. It uses the three-dimensional Green'sfunction for a general current distribution inside a shielded box. The theory of loadcdscatterers is also used to take into account the effect of existing localized and distributedactive devices or passive loads. Using this last theory, a virtual matched load is simulated,numerically, by introducing localized absorbing loads at circuit sections c3rresponding tooutput ports. Consequently, a scattering parameters extraction technique, based on the use ofthese matched terminations, is developed, and hence the [S] parameters of the studieddiscontinuity are determined from the knowledge of only current or electric field maximawhich are often accurately determined under good matching conditions. The shielding effectson a wide range of planar and three-dimensional discontinuities are given. The behaviour of atypical chip connection as a strip air bridge is also studied and the frequency dependentcharacteristics of these discontinuities are presented.

00

g's 8 2 F7 0 .5

'0 .0 N

,a =0 .n .0

aX -u ;s -E-

-I--

@1 0 0

S. -~.: - t=Is~ E.ut5 5; a=

0 0 ~ o 0 ell

u,24's -- - . c

- =-c 0 a; o)

L5-- .o' -- o

9z '20 u 0E or~ -oc

Cd, o u 0 - c t3 o ot IP. , 0 0'4 o -

5 >: 20. 0v705 o ' u. u-- 3. .. a

2000

00 *5= 00 it

0 r cu u -y

0 0c~~n 0 r-t =t.2 .0 '.0fU'cCf4j

0Z L. ,uc

o r,. r mu-2 o 00 C,. t. a 1:or

rn ' 5- ou- ;o- qua L3 - c60 00

*~~~ ~~~~ M-0 OOll ~~O * u J U2 <

3/)~~~~ Oun 4 o O'',u.

-:U uu - 5 0"'0

as E - - -50 S

.~ ........

Fig. 4: Measured and m~odeled S-Paramecer Fig. 5: Layout of the Oscillator.in snlsiegrounded configuration(SSG).

36.25 UA

36.1

-I .1.5 -0.9 -0.05 .0.6 0 ,47S .0? *Or. .0.6

U" M

Fig. 6: Rcsonancc frequency vs gate- and drain voltage.

'3

P0 15 (dDlo) 12~4

10

.1I -0.95 -0,9 4AS5 4.8 -. 7S .0.7 .0.65 40.6

Fig. 7: Output power vs gat(-- and drain voltage.

Refereces:

I/ W. Hecinrich, "Limits or F1TT Modclting by Lumped Elemnents". E lecironacs Letters, vol. 22. no. 12, S.630-632. Juni 1986

/21 H.P. Fcldlc, "Klein- und Grolgsignal.CAD-Modclic von GaAs MESFETs mit vcrlicnt Elcmentcn",Dissertation Univcrsitat Karlsrulic, 1987

/31 G. Baumann. R. Hierl. "Modular FET model with distributed source configuration for a single anddouble side source grounded MESFEr. Ekcctronics~Uacrs, vol. 27, no. 13, S. 1128-1129, Juni 1991

/4/ K. Kutokawa. *Some Basic Charactcristics or Broadband Negative Resistance Oscillator Circuits%,Pie Bell SystcrnuTechnical Journal, Juli- August. 1969

151 George 1). Vcndclin. Design of Amplifiers and Oscillators by (lhe S-Paramctcr Method. John Wilceyand Sons, Inc.. 1982

3


Recommended