+ All Categories
Home > Documents > Quals Study

Quals Study

Date post: 04-Jan-2016
Category:
Upload: jesse
View: 230 times
Download: 0 times
Share this document with a friend
Description:
Some grad level math notes
Popular Tags:
26
Qualifying Exams Study Sheet Jesse Adams August 10, 2014 Contents 1) Previous Material 3 1.a) Calculus ..................................................... 3 1.a.i) Fundamental Theorem of Calculus .................................. 3 1.a.ii) Sums .................................................. 3 1.a.iii) Trig Substitutions ........................................... 3 1.a.iv) Integrals ................................................. 3 1.a.v) Sequences ................................................ 3 1.a.vi) Series .................................................. 4 1.a.vii) Vectors ................................................. 4 1.a.viii)Coordinate Systems .......................................... 4 1.a.ix) Integration Elements .......................................... 4 1.a.x) Multiple Integrals ........................................... 5 1.a.xi) Vector Fields .............................................. 5 1.a.xii) Trig Identities .............................................. 5 1.b) Differential Equations ............................................. 6 2) Numerical Analysis 6 2.a) Linear Algebra ................................................. 6 2.a.i) Basics .................................................. 6 2.a.ii) Norms .................................................. 6 2.a.iii) Singular Value Decomposition ..................................... 7 2.a.iv) Projectors ................................................ 7 2.a.v) QR Factorization ............................................ 7 2.a.vi) Least Squares .............................................. 8 2.a.vii) Conditioning .............................................. 8 2.a.viii)Stability ................................................. 9 2.a.ix) Gaussian Elimination ......................................... 9 2.a.x) Cholesky Factorization ......................................... 9 2.a.xi) Eigenvalues ............................................... 10 2.a.xii) Iterative Methods ........................................... 10 2.b) Numerical Methods ............................................... 11 2.b.i) Functional Iteration .......................................... 11 2.b.ii) Polynomial Interpolation ....................................... 11 2.b.iii) ODEs .................................................. 12 2.b.iv) Basic Concepts ............................................. 12 2.b.v) Methods ................................................. 12 2.b.vi) BVPs .................................................. 13 3) Analysis 14 3.a) Metric Spaces .................................................. 14 3.a.i) p Spaces ................................................ 14 3.a.ii) Lebesgue (L p ) Spaces ......................................... 15 3.a.iii) Normed Linear Spaces ......................................... 15 3.b) Topology .................................................... 15 1
Transcript
Page 1: Quals Study

Qualifying Exams Study Sheet

Jesse Adams

August 10, 2014

Contents

1) Previous Material 31.a) Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.a.i) Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.a.ii) Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.a.iii) Trig Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.a.iv) Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.a.v) Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.a.vi) Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.a.vii) Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.a.viii)Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.a.ix) Integration Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.a.x) Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.a.xi) Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.a.xii) Trig Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.b) Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2) Numerical Analysis 62.a) Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.a.i) Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.a.ii) Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.a.iii) Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.a.iv) Projectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.a.v) QR Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.a.vi) Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.a.vii) Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.a.viii)Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.a.ix) Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.a.x) Cholesky Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.a.xi) Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.a.xii) Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.b) Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.b.i) Functional Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.b.ii) Polynomial Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.b.iii) ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.b.iv) Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.b.v) Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.b.vi) BVPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3) Analysis 143.a) Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.a.i) `p Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.a.ii) Lebesgue (Lp) Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.a.iii) Normed Linear Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.b) Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1

Page 2: Quals Study

3.b.i) Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.b.ii) Defining Topologies and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.c) Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.c.i) Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.c.ii) Specific Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.c.iii) Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.d) Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.d.i) Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.d.ii) Measurable Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.d.iii) Probability Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.e) Convergence and Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.e.i) Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.f) Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.f.i) Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.f.ii) Interchanging Limits and Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.f.iii) More on Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.g) Convergence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.g.i) Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.g.ii) Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4) Principals and Methods 214.a) Dynamics of Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.a.i) Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.a.ii) Phase Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214.a.iii) Dispersion Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.b) Contour Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.b.i) Complex Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224.b.ii) Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.c) Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.c.i) Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.c.ii) Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.d) Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.d.i) Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.e) Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.e.i) Common Functions/Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.e.ii) Other stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.e.iii) Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.e.iv) Other Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.f) Spectral Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.f.i) Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.f.ii) Sturm-Liouville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.g) Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264.g.i) Variation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264.g.ii) Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2

Page 3: Quals Study

1) Previous Material

1.a) Calculus

1.a.i) Fundamental Theorem of Calculus

Given f(x) continuous and Riemann integrable on [a, b],

1. F (x) =∫ xaf(t)dt is continuously differentiable on (a, b), with F ′(x) = f(x).

2.∫ baf(x)dx = [F (x)]

ba = F (b)− F (a).

1.a.ii) Sums

1.

n∑k=1

k =n(n+ 1)

2;

n∑k=1

k2 =n(n+ 1)(2n+ 1)

6;

n∑k=1

k3 =

(n(n+ 1)

2

)2

2.

∞∑n=1

1

n2=π2

6

1.a.iii) Trig Substitutions

1.√b2x2 − a2 ⇒ x =

a

bsec (θ)

2.√a2 − b2x2 ⇒ x =

a

bsin (θ)

3.√a2 + b2x2 ⇒ x =

a

btan (θ)

4. x = tan (θ/2)⇒ sin(θ) =2x

1 + x2, cos(θ) =

1− x2

1 + x2, dθ =

2 dx

1 + x2

1.a.iv) Integrals

1. Arc Length: L =∫ds =

∫ x=b

x=a

√1 +

(dy

dx

)2

dx =

∫ y=d

y=c

√1 +

(dx

dy

)2

dy =

∫ t=f

t=e

√(dx

dt

)2

+

(dy

dt

)2

dt =∫ θ=h

θ=g

√r2 +

(dr

)2

2. Surface Area: A =∫

2πy ds about x-axis, A =∫

2πx ds about y-axis, with ds as defined in arc length.

1.a.v) Sequences

1. Integral test: Given continuous, positive, and decreasing f(x) on [k,∞) with f(n) = an, then if∫∞kf(x) dx

is convergent/divergent, then so is∑∞n=k an.

2. Comparison test: Given two series with 0 ≤ an ≤ bn ∀ n, then∑bn < ∞ ⇒

∑an < ∞;

∑an = ∞ ⇒∑

bn =∞.

3. Limit comparison test: c = limn→∞

anbn

. If 0 < c <∞, then either both converge or both diverge.

4. Alternating series test: Given an = (−1)nbn or an = (−1)n+1bn with bn ≥ 0, if limn→∞

bn = 0 and {bn}decreasing, then

∑an is convergent.

5. Ratio test: L = limn→∞

∣∣∣∣an+1

an

∣∣∣∣. L < 1⇒ convergence, L > 1⇒ divergence.

6. Root test: L = limn→∞

n√|an|. L < 1⇒ absolute convergence, L > 1⇒ divergence.

7. Absolute convergence:∑|an| <∞. Implies convergence, otherwise the series is conditionally convergent.

3

Page 4: Quals Study

1.a.vi) Series

1. Power series:1

a− f(x)=

1

a

∞∑n=0

(f(x)

a

)nprovided |f(x)| < |a|, and a 6= 0.

2. Taylor series: f(x) =

∞∑n=0

f (n)(x0)

n!(x− x0)n

3. Binomial series: (a+ b)n =

n∑k=0

(n

k

)an−kbk

4. (1 + z)k =

∞∑n=0

(k

n

)zn for |z| < 1, and

(k

n

)=k(k − 1) · · · (k − n+ 1)

n!.

5. ez =

∞∑n=0

zn

n!; sin(z) =

∞∑n=0

z2n+1

(2n+ 1)!(−1)n; cos(z) =

∞∑n=0

z2n

(2n)!(−1)n; ln(z) =

∞∑n=1

(z − 1)n

n(−1)n+1

1.a.vii) Vectors

Given a vector function r(t) with r′(t) 6= 0,

1. Unit tangent vector: T(t) =r′(t)

||r′(t)||.

2. Unit normal vector: N(t) =T′(t)

||T′(t)||.

3. Binormal vector: B(t) = T(t)×N(t).

4. Arc length: L =∫ ba||r′(t)|| dt =

∫ t0||r′(u)|| du.

5. Curvature: κ =||T′(t)||||r′(t)||

=||r′(t)× r′′(t)||||r′(t)||3

.

1.a.viii) Coordinate Systems

1. Cylindrical: r2 = x2 + y2, θ = tan−1(y/x), z = z; x = r cos(θ), y = r sin(θ), z = z.

2. Spherical: r = ρ sin(φ), θ = θ, z = ρ cos(φ); ρ2 = r2 + z2; x = ρ sin(φ) cos(θ), y = ρ sin(φ) sin(θ), z =ρ cos(φ); ρ2 = x2 + y2 + z2

1.a.ix) Integration Elements

1. In general, take the determinant: dx =

∣∣∣∣∂(x)

∂u

∣∣∣∣ du =

∂x1

∂u1

∂x1

∂u2

∂x1

∂u3∂x2

∂u1

∂x2

∂u2

∂x2

∂u3∂x3

∂u1

∂x3

∂u2

∂x3

∂u3

du

2. Cylindrical:

(a) Constant radius: dA = r dθ dz

(b) Constant angle: dA = dr dz

(c) Constant height: dA = r dr dθ.

(d) Volume: dV = r dr dθ dz

3. Spherical:

(a) Constant radius: dA = ρ2 sin(φ) dφ dθ

(b) Constant φ: dA = ρ sin(φ) dθ dr

(c) Constant θ: dA = ρ dρ dφ

(d) Volume: dV = ρ2 sin(φ) dρ dφ dθ

4

Page 5: Quals Study

1.a.x) Multiple Integrals

1. Change of variables:

∫∫D

f(x, y) dA =

∫∫S

f(g(u, v), h(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv (similarly for triple integrals).

2. Cylindrical: dA = r drdθ, dV = r dzdrdθ, Spherical: dV = ρ2 sin(φ) dρdθdφ.

1.a.xi) Vector Fields

1. Gradient: ∇f(x, y, z) = 〈fx, fy, fz〉.

2. Conservative vector field: F such that F = ∇f , where f is called the potential function.

3. Given vector field F = P i+Qj on open, simply connected D. If P,Q have continuous 1st order derivatives in

D and∂P

∂y=∂Q

∂xthen F is conservative.

4. Green’s Theorem: C positively oriented, piecewise smooth closed curve enclosing D. P,Q have continuous

1st order partials, then

∫C

P dx+Q dy =

∫∫D

(∂Q

∂x− ∂P

∂y

)dA.

5. Curl: Let F = P i+Qj +Rk. Then

curl(F) = ∇× F =

∣∣∣∣∣∣i j k∂∂x

∂∂y

∂∂z

P Q R

∣∣∣∣∣∣(a) If f(x, y, z) has continuous 2nd order partials, then curl(∇f) = 0.

(b) If F is a conservative vector field, then curl(F) = 0.

6. Divergence:

div(F) = ∇ · F =∂P

∂x+∂Q

∂y+∂R

∂z

7. Stoke’s Theorem: Given smooth surface S bounded by simple, closed, smooth curve C and vector field F,∫C

F · dr =

∫∫S

curl(F) · dS

8. Divergence Theorem: Given simple solid region E, boundary surface S, and vector field F with continuous1st order partials,∫∫

S

F · dS =

∫∫∫E

div(F)dV

1.a.xii) Trig Identities

1. cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)

2. sin(a± b) = sin(a) cos(b)± sin(b) cos(a)

3. sin(2θ) = 2 sin(θ) cos(θ)

4. cos(2θ) = 1− 2 sin2(θ) = 2 cos2(θ)− 1

5

Page 6: Quals Study

1.b) Differential Equations

2) Numerical Analysis

2.a) Linear Algebra

2.a.i) Basics

For a matrix A ∈ Cm×n,

1. Range: Space spanned by the columns of A, i.e. im(A) = range(A) = {y : Ax = y}.

2. Nullspace: ker(A) = null(A) = {x : Ax = 0}.

3. In Rn, null(A) = (range(A>))⊥, and null(A>) = (range(A))⊥.

4. Unitary: Q∗ = Q−1.

5. Symmetric: A> = A.

(a) A real ⇒ real eigenvalues, and is diagonalizable by real, orthogonal Q (i.e. D = Q>AQ).

(b) A−1 symmetric iff A symmetric.

(c) If A, B both symmetric, then AB symmetric iff AB = BA (i.e. they commute).

6. Hermitian: A∗ = A.

(a) Main diagonal is real.

(b) Has real eigenvalues.

(c) Normal, i.e. A∗A = AA∗.

7. Skew Hermitian: A∗ = −A. If A ∈ Rm×n, then it’s skew symmetric.

8. Determinant: det(A) =∏j λj

9. Trace: trace(A) =∑j ajj =

∑j λj

10. Positive definite: x∗Ax > 0 ∀ x 6= 0,x ∈ Cm.

(a) Hermitian pos. def.: Positive definite with A∗ = A.

(b) All eigenvalues real and positive

(c) For λi 6= λj , vi ⊥ vj (eigenvectors are orthogonal).

(d) For HPD A, full rank X ∈ Cm×n, then X∗AX is HPD

11. Spectral Radius: ρ(A) = maxi(|λi|), and ρ(A) ≤ ||A||.

2.a.ii) Norms

1. Must satisfy

(a) ||x|| ≥ 0, with ||x|| = 0⇔ x = 0

(b) ||αx|| = |α| ||x||(c) ||x + y|| ≤ ||x||+ ||y||

2. All vector norms on Cn are equivalent, i.e. ∃ 0 < c1 < c2 <∞ : c1 ||·||∗ ≤ ||·||∗∗ ≤ c2 ||·||∗

3. Induced Matrix Norms: ||A||(m,n) = supx∈Cn

x 6=0

||Ax||(m)

||x||(n)

= sup||x||(n)=1

||Ax||(m)

4. ||ABx|| ≤ ||A|| ||Bx|| ≤ ||A|| ||B|| ||x|| ⇒ ||AB|| ≤ ||A|| ||B||

6

Page 7: Quals Study

5. Frobenius Norm: ||A||F =

∑i,j

|aij |21/2

=

(∑i

||ai||22

)1/2

=√trace(A∗A) =

√∑i

σ2i

6. Nuclear Norm: ||A||∗ = trace(√A∗A) =

∑i σi

7. Unitary matrices Q satisfy ||QA||2 = ||A||2, ||QA||F = ||A||F

2.a.iii) Singular Value Decomposition

Given A ∈ Cm×n, with m ≥ n

1. Reduced SVD: A = U ΣV ∗, with U ∈ Cm×n, Σ ∈ Rn×n≥0 , and V ∈ Cn×n; U , V unitary, and Σ diagonal withdecreasing elements.

2. Full SVD: A = UΣV with

U =[U U⊥

], V ∗ =

[V ∗

(V ∗)⊥

], Σ =

0(m−n)×n

]3. Finding the SVD:

(a) σj ’s are the square roots of the eigenvalues of A∗A or AA∗.

(b) Find eigenvectors: (λjI −A∗A)vj = 0, or (λjI −AA∗)uj = 0.

(c) Find the other matrix: U = Σ−1AV , or V = A∗U Σ−1.

4. Properties:

(a) r = rank(A) = #{σj > 0}.(b) range(A) = span〈u1, . . . , ur〉, null(A∗) = span〈ur+1, . . . , um〉.(c) null(A) = span〈vr+1, . . . , vn〉, range(A∗) = span〈v1, . . . , vr〉.(d) A =

∑rj=1 σjujv

∗j (for rank k < r approx, use the first k; gives min error in 2 and Frobenius norms).

2.a.iv) Projectors

1. Projector: P 2 = P

2. Complimentary Projector: I − P ; range(I − P ) = null(P ) and null(I − P ) = range(P )

3. Orthogonal Projector: P 2 = P and P ∗ = P .

(a) Rank 1 orthogonal projectors (a 6= 0): Pa =aa∗

a∗a; P⊥a = I − Pa.

(b) Onto range of A (arbitrary basis): P = A(A∗A)−1A∗ = AA+

2.a.v) QR Factorization

For a matrix A ∈ Cm×n, and m ≥ n

1. Reduced QR: A = QR, with Q ∈ Cm×n unitary, R ∈ Cn×n upper triangular.

2. Full QR: A = QR with

Q =[Q Q⊥

], R =

[R

0(m−n)×n

]3. Finding Q and R: Gram-Schmidt. By hand, use classical:

qj =aj −

∑j−1i=1 rijqirjj

rij = q∗i aj rjj =

∣∣∣∣∣∣∣∣∣∣aj −

j−1∑i=1

rijqi

∣∣∣∣∣∣∣∣∣∣2

7

Page 8: Quals Study

4. Modified Gram-Schmidt: AR1R2 · · ·Rn︸ ︷︷ ︸R−1

= Q

5. Householder Triangularization: QnQn−1 · · ·Q1︸ ︷︷ ︸Q∗

A = R, with Qk =

[I 00 F

]where F = I − 2

vv∗

v∗v.

6. Algorithms: Pseudocode.

Classical Gram-Schmidt:

f o r j = 1 : nQ[ : , j ] = A[ : , j ]f o r i = 1 : j−1

R[ i , j ] = Q[ : , i ] ’ ∗ A[ : , j ]Q[ : , j ] = Q[ : , j ] − R[ i , j ] ∗ Q[ : , i ]

R[ j , j ] = norm(Q[ : , j ] , 2)Q[ : , j ] = Q[ : , j ] / R[ j , j ]

Modified Gram-Schmidt:

f o r i = 1 : nR[ i , i ] = norm(A[ : , i ] , 2)Q[ : , i ] = A[ : , i ] / R[ i , i ]f o r j = i +1:n

R[ i , j ] = Q[ : , i ] ’ ∗ A[ : , j ]A[ : , j ] = A[ : , j ] − R[ i , j ] ∗ Q[ : , i ]

Householder QR:

% Note that the output i s R = A, and W matr i ce sf o r i = 1 : n

x = A[ i : , i ]x [ 1 ] = s i gn (x [ 1 ] ) ∗ norm(x ) + x [ 1 ]W[ i : , i ] = x / norm(x , 2)A[ i : , i : ] = A[ i : , i : ] − 2 ∗ W[ i : , i ] ∗ (W[ i : , i ] ’ ∗ A[ i : , i : ] )

% To so lve , note that% Rx = Q∗b ,f o r i = 1 : n

b [ i : ] = b [ i : ] − 2 ∗ W[ i : , i ] ∗ (W[ i : , i ] ’ ∗ b [ i : ] )

% Use back s ub s t i t u t i o n to s o l v e f o r xx = R\b

2.a.vi) Least Squares

1. Normal Equations: A∗Ax = A∗b

2. Pseudoinverse: A+ = (A∗A)−1A∗ = R−1Q∗ = V Σ−1U

3. Solution methods:

(a) Cholesky: A∗A = R∗R, where R is upper triangular (requires full rank A). Best for speed, bad for error.

(b) QR: Reduces to Rx = Q∗b, use back substitution. Good method unless A is close to rank deficient.

(c) SVD: ΣV ∗x = U∗b, then solve. Stable even if A close to rank deficient, but more time/memory consuming.

2.a.vii) Conditioning

1. Absolute condition number: κ = supδx

||δf ||||δx||

= ||J(x)||

2. Relative condition number: κ = supδx

(||δf ||||f(x)||

/||δx||||x||

)=

||J(x)||||f(x)|| / ||x||

3. Matrix-vector condition: κ = ||A||||x||||Ax||

4. Matrix condition number: κ(A) = ||A||∣∣∣∣A−1

∣∣∣∣ or ||A|| ||A+|| in rank deficient case.

8

Page 9: Quals Study

2.a.viii) Stability

Given problem f : X → Y , and algorithm f : X → Y , for all x ∈ X,

1. Accuracy:

∣∣∣∣∣∣f(x)− f(x)∣∣∣∣∣∣

||f(x)||= O(εm)

2. Stability: ∃x :||x− x||||x||

= O(εm) and

∣∣∣∣∣∣f(x)− f(x)∣∣∣∣∣∣

||f(x)||= O(εm)

3. Backward stability: f(x) = f(x) for some x as above.

4. Both Householder triangularization is backward stable, and so is MGS provided Q∗b is formed implicitly.

2.a.ix) Gaussian Elimination

1. No pivoting: Use for hand calcs, not stable. A = LU where L = L−11 L−1

2 · · ·L−1m−1 is lower triangular, U is

upper triangular. We have `jk =xjk

xkkfor k < j ≤ m, and

Lk =

1. . .

1−`k+1,k 1

.... . .

−`mk 1

⇒ L =

1 0 · · · 0

`21 1. . .

......

. . .. . . 0

`m1 · · · `m,m−1 1

2. Partial pivoting: Do row interchanges to maximize |xkk|.

U = Lm−1Pm−1 · · ·L2P2L1P1A = (L′m−1 · · ·L′2L′1)(Pm−1 · · ·P2P1)A = L−1PA

where L′k = Pm−1 · · ·Pk+1LkP−1k+1 · · ·P

−1m−1. Solve to get PA = LU .

3. Full pivoting: (L′m−1 · · ·L′2L′1)(Pm−1 · · ·P2P1)A(Q1Q2 · · ·Qm−1) = L−1PAQ = U . Here, L and P are asbefore, and Q = Q1Q2 · · ·Qm is another permutation matrix. Solve for PAQ = LU .

4. Algorithms:

GE No Pivot:

U = A; L = If o r k = 1 :m−1

f o r j = k+1:mL [ j , k ] = U[ j , k ] / U[ k , k ]U[ j , k : ] = U[ j , k : ] − L [ j , k ] ∗ U[ k , k : ]

GE Partial Pivot:

U = A; L = I ; P = If o r k = 1 :m−1

f o r j = k+1:mSe l e c t i >= k : abs (U[ i , k ] ) i s maximizedU[ k , k : ] , U[ i , k : ] = U[ i , k : ] , U[ k , k : ]P [ k , : ] , P [ i , : ] = P[ i , : ] , P [ k , : ]f o r j = k+1:m

L [ j , k ] = U[ j , k ] / U[ k , k ]U[ j , k : ] = U[ j , k : ] − L [ j , k ] ∗ U[ k , k : ]

2.a.x) Cholesky Factorization

1. Given Hermitian positive definite A, solve for A = R∗R, where R is upper triangular.

A =

[a11 w∗

w K

]=

[α 0∗

w/α I

]︸ ︷︷ ︸

R∗1

[1 0∗

0 K − ww∗

a11

]︸ ︷︷ ︸

A1

[α w∗/α0 I

]︸ ︷︷ ︸

R1

= R∗1 · · ·R∗n︸ ︷︷ ︸R∗

I Rn · · ·R1︸ ︷︷ ︸R

where α =√a11.

9

Page 10: Quals Study

2. Algorithm:

Cholesky:

R = Afo r k = 1 : n

f o r j = k+1:nR[ j , j : ] = R[ j , j : ] − R[ k , j : ] ∗ R[ k , j : ] ’ / R[ k , k ]

R[ k , k : ] = R[ k , k : ] / s q r t (R[ k , k ] )

2.a.xi) Eigenvalues

1. Eigenvalue Decomposition: A = XΛX−1, with X nonsingular, Λ diagonal.

2. Characteristic Polynomial: PA(z) = det(zI −A).

3. Similarity Transform: X ∈ Cm×m nonsingular. A, B similar if A = X−1BX.

4. Eigenvalue Multiplicity:

(a) Geometric: # of lin. indep. eigenvectors for λ.

(b) Algebraic: multiplicity of root of char. poly. for λ

(c) algebraic ≥ geometric

5. Defective/Degenerate: λ if algebraic mult. > geometric mult.

6. Nondefective: iff it has an eigenvalue decomposition.

7. Unitary Diagonalization: A = QΛQ∗, with Q unitary. ⇔ A normal.

8. Schur Factorization: A = QTQ∗, with T upper triangular. Every square matrix has one.

2.a.xii) Iterative Methods

1. Want to solve Ax = b starting with initial guess.

2. Jacobi: (D − L− U)x = b⇒ Dx = (L+ U)x + b⇒ x = D−1(L+ U)︸ ︷︷ ︸TJ

x +D−1b︸ ︷︷ ︸cJ

3. Gauss-Seidel: (D − L− U)x = b⇒ (D − L)x = Ux + b⇒ x = (D − L)−1U︸ ︷︷ ︸TGS

x + (D − L)−1b︸ ︷︷ ︸cGS

4. Algorithms:

Jacobi:

D = diag ( diag (A) )f o r i = 1 : c I t e r

x = D \ ( (D − A)x + b)

Gauss-Seidel:

D = diag ( diag (A) ) ; L = − t r i l (A) ; U = −t r i u (A)f o r i = 1 : c I t e r

x = (D − L) \ (b + Ux)

5. Converges if T converges, i.e. ρ(T ) < 1.

10

Page 11: Quals Study

2.b) Numerical Methods

2.b.i) Functional Iteration

Casting nonlinear system as a fixed point problem: x = g(x) for x ∈ Rn, and g(x) = (g1(x), g2(x), . . . , gn(x))>.Iterating x(k+1) = g(x(k)).

1. Contraction Mapping: If ||g(x)− g(y)|| ≤ λ ||x− y|| ∀x, y :∣∣∣∣x− x(0)

∣∣∣∣ ≤ ρ, ∣∣∣∣y − x(0)∣∣∣∣ ≤ ρ with 0 ≤ λ <

1, and∣∣∣∣g(x(0) − x(0)

∣∣∣∣ ≤ (1− λ)ρ, then limk→∞ x(k) = a where g(a) = a, and a unique (in this region).

2. If gi(x) has continuous 1st order ∂s:

∣∣∣∣∂gi(x)

∂xj

∣∣∣∣ ≤ λ

n∀ i, j = 1 : n and x ∈ Bρ(a) = {x ∈ Rn : ||x− a||∞ ≤ ρ},

then x(0) ∈ Bρ(a)⇒ x(k) → a (unique).

3. Nonlinear Systems: g(x) = x−A(x)f(x).

(a) Easy: A(x) = A.

(b) Newton: A(x) = J−1(x) (inverse Jacobian of f).

2.b.ii) Polynomial Interpolation

1. Lagrange: Pn(x) =

n∑j=0

f(xj)φnj(x), where φnj(x) =∏i 6=j

(x− xi)/∏i 6=j

(xj − xi), where xj , j = 0 : n are known

points.

2. Pointwise Error: Rn(x)def= f(x)− Pn(x) =

∏nj=0

(x−xj)(n+1)! f

(n+1)(ξ) for some x0 < ξ < xn.

3. Rolle’s Theorem: ∃ a point between 2 zeros where f ′(z) = 0 for continuous f .

4. Numerical Differentiation/Integration: For f ∈ C([a, b]), xi ∈ [a, b], i = 0 : n then

f(x) = Pn(x) +ωn(x)

(n+ 1)!f (n+1)(ξ) ωn(x) =

n∏j=0

(x− xj)

f ′(xi) =

n∑j=0

f(xj)φ′nj(xi)︸ ︷︷ ︸

approx

+ω′n(xi)

(n+ 1)!f (n+1)(ξ(xi))︸ ︷︷ ︸

err

f (k)(xi) ≈n∑j=0

f(xj)φ(k)nj (xi)

∫ b

a

f(x) dx ≈n∑j=0

(∫ b

a

φnj(x) dx

)f(xj)

5. Weighted Least Squares: f ∈ L2([a, b]). Then Qn(x) =∑nj=0 cjPj(x) with cj =

∫ baf(x)Pj(x)w(x) dx mini-

mizes ||f(x)−Qn(x)||22 =∫ ba|f(x)−Qn(x)|2 w(x) dx, with inner product 〈f(x), g(x)〉w =

∫ baf(x)g(x)w(x) dx.

w(x) ≥ 0 on [a, b], and∫ baw(x) dx > 0.

6. G-S Orthonormalization: Given {gi(x)}ni=0

f0(x) = d0g0(x) d0 = 1/ ||g0||L2

f1(x) = d1 [g1(x)− c01f0(x)] d1 = 1/ ||g1 − c01f0||L2

fn(x) = dn

gn(x)−n−1∑j=0

cjnfj(x)

cij = 〈fi, gj〉

11

Page 12: Quals Study

7. Trig. Interpolation: On [−π, π] xk = kh, k = −n : n, h = π/n.

Un(x) = −1

2

(cne

inx + c−ne−inx)+

n∑j=−n

cjeijx

cj =1

2n

(−1

2

(f(xn)e−ijxn + f(x−ne

−ijx−n)

+

n∑k=−n

f(xk)e−ijxk

)j = −n : n

2.b.iii) ODEs

1. Initial Value Problems:{y′ = f(t,y) y = [y1, y2, . . . , ym]>, f = [f1, f2, . . . , fm]>, c = [c1, c2, . . . , cm]>

y(0) = c autonomous: f(t,y) = g(y)

2. Given a system u(m) = g(t, u, u′, . . . , u(m−1)), let y = (u, u′, . . . , u(m−1)), and{y′n = yn+1 ∀ n = 1 : m− 1

y′m = g(t, y1, y2, . . . , ym)

3. Stability: Test equation y′ = λy, λ ∈ C. Solution: eλty(0), t ≥ 0. Then |y(t)− y(t)| = |y(0)− y(0)| e<(λ)t.

(a) Stable: <(λ) ≤ 0.

(b) Assympytotically stable: <(λ) < 0.

(c) Unstable: <(λ) > 0.

2.b.iv) Basic Concepts

1. Local Truncation Error: dn = Nhy(tn)

(a) Consistent (accurate) if dn → 0 as hn → 0 for all n

(b) dn = O(hpn), p ∈ Z+ ⇒ Nh is accurate order p

2. 0-Stability: If ∃h0, k > 0 : for all mesh fns xn, zn with h ≤ h0

|xn − zn| ≤ k[|x0 − z0|+ max

1≤j≤N|Nhxn(tj)−Nhzn(tj)|

]3. Absolute Stability: Test fn y′ = λy,y(0) = c. Region in C satisfying |yn| ≤ |yn−1|

4. Stiffness: Require extremely small step size for explicit methods. Specifically, if b<λ << −1, where b is theinterval length.

5. A-Stable: Region of absolute stability includes {<(z) ≤ 0}.

6. Rough Problems: Can’t bound derivatives by const. of moderate size. Need to break up solution atdiscontinuities.

2.b.v) Methods

1. Forward Euler: yn = yn−1 + hnf(tn−1,yn−1)

2. Backward Euler: yn = yn−1 + hnf(tn,yn)

3. Trapezoidal Method: yn = yn−1 +hn2

(f(tn−1,yn−1) + f(tn,yn))

4. Taylor Series Method: y′ = f(t,y), yn = yn−1 + hy′n−1 + h2

2! y′′n−1 + · · ·

12

Page 13: Quals Study

5. Explicit Midpoint:{yn−1/2 = yn−1 + h

2 f(tn−1,yn−1)

yn = yn−1 + hf(tn−1/2, yn−1/2)

6. RK Methods: For 1 ≤ i ≤ s

{Yi = yn−1 + h

∑sj=1 aijf(tn−1 + cj , h,Yj)

yn = yn−1 + h∑si=1 bif(tn−1 + cih,Yi)

{Ki = f

(tn−1 + cih,yn−1 + h

∑sj=1 aijKj

)yn = yn−1 + h

∑si=1 biKi

(a) Tableau:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

......

. . . · · ·...

cs as1 as2 · · · assb1 b2 · · · bs

(b) Require: ci =∑sj=1 aij for i = 1 : s, and

∑sj=1 bj = 1

(c) Explicit if aij = 0 for j ≥ i.

(d) Order p if b>AkC`−11 =(`− 1)!

(`+ k)!, 1 ≤ `+ k ≤ p, where C = diag(c).

(e) L-Stable: A-stable and |R(z)| → 0 as |z| → ∞.

7. Linear Multistep Methods:

k∑j=0

αjyn−j = h

k∑j=0

βjfn−j

(a) Adams Family: α0 = 1, α1 = −1, αj = 0 for j > 1.

(b) BDF: Derived from interpolating polynomial. With α0 = 1, this is

k∑i=0

αiyn−i = hβ0f(tn, yn)

(c) Order: Order p if 0 = C0 = · · · = Cp 6= Cp+1, where

C0 =

k∑j=0

αj , Ci = (−1)i

1

i!

k∑j=0

jiαj +1

(i− 1)!

k∑j=0

ji−1βj

(d) Char. Poly.s: ρ(ξ) =

∑kj=0 αjξ

k−j , σ(ξ) =∑kj=0 βjξ

k−j .

(e) 0-Stable: All roots of ρ(ξ) satisfy |ξi| ≤ 1, and if |ξi| = 1 it is simple. Strongly stable if all |ξi| < 1(except ξ = 1), weakly stable if 0-stable but not strongly stable.

(f) Stability Region: z =ρ(eiθ)

σ(eiθ)

8. Predictor Corrector Methods: Use explicit multistep method to predict, then implicit method to correct.

2.b.vi) BVPs

{y′ = A(t)y + q(t) 0 < t < b

B0y(0) +Bby(b) = b

13

Page 14: Quals Study

1. Fundamental solution: Y ′ = A(t)Y , Y (0) = I. Gives general solution:

y(t) = Y (t)

[c +

∫ t

0

Y −1(s)q(s) ds

], Qc = b−BbY (b)

∫ b

0

Y −1(s)q(s) ds, Q = B0 +BbY (b)

unique solution iff Q nonsingular.

2. Green’s Functions:

3. Shooting:

4. Finite Difference:

3) Analysis

1. Pointwise Convergence: ∀ε > 0, x ∈ I, ∃N(ε, x) : |fn(x)− f(x)| < ε, ∀n > N(x, ε).

2. Uniform Convergence: ∀ε > 0, ∃N(ε) : |fn(x)− f(x)| < ε ∀x and n > N(ε). ALT: limn→∞ ||fn − f ||∞ = 0.

3.a) Metric Spaces

1. A pair (M,d), M a set, d : M ×M → [0,∞) a function, satisfying

(i) d(x, y) = 0⇔ x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z)

2. Convergence: Given (M,d), {xn}, x. xn → x if ∀ε > 0 ∃N(ε) : n > N(ε)⇒ d(xn, x) < ε.

3. Equivalence of Metrics: Given (M,d), (M,d′), equivalent if ∀ε > 0, ∃δ : B′(x, δ) ⊂ B(x, ε), and ∀ε′ > 0,∃δ′ : B(x, δ′) ⊂ B′(x, ε′).

3.a.i) `p Spaces

For 1 ≤ p ≤ ∞ the norm is given by

||x||p =

∞∑j=0

|xj |p1/p

, ||x||∞ = sup0≤j<∞

|xj |

`p = {x : ||x||p <∞}. If 1 ≤ p < q ≤ ∞, then `p ⊂ `q (strict).

1. Holder’s Inequality: 1 ≤ p, q ≤ ∞ with 1/p+ 1/q = 1. Then for x ∈ `p, y ∈ `q,

∞∑j=0

|xjyj | ≤

∞∑j=0

|xj |p1/p ∞∑

j=0

|yj |q1/q

2. Jensen’s Inequality: f : [a, b] → R convex (i.e. f(px1 + (1 − p)x2) ≤ pf(x1) + (1 − p)f(x2) for x1 < x2,0 < p < 1), a ≤ x1 ≤ · · · ≤ xn ≤ b, and pi ∈ (0, 1) with

∑i pi = 1 then

f

n∑j=1

pjxj

≤ n∑j=1

pjf(xj)

3. Minkowski Inequality: For x,y ∈ `p, ||x + y||p ≤ ||x||p + ||y||p.

4. “Converse” of Holder: If ∃c > 0 :∑akxk ≤ c ||x||p ∀x ∈ Rn, then ||a||q ≤ c.

5. Continuity: Metric spaces (M,d), (N, d′), function f : M → N . f is continuous at x0 ∈M if ∀ε > 0, ∃ δ > 0 :d(x, x0) < δ ⇒ d′(f(x), f(x0)) < ε.

14

Page 15: Quals Study

3.a.ii) Lebesgue (Lp) Spaces

For 1 ≤ p ≤ ∞ and interval X, the norm is given by

||f ||p =

(∫X

|f(x)|p dx)1/p

, ||f ||∞ = supx∈X|f(x)|

Lp(X) = {f : ||f ||p <∞}. If 1 ≤ p < q ≤ ∞ and X finite, then Lq ⊂ Lp (strict).

1. If 1 ≤ r < s ≤ ∞ and X finite, {fn} ∈ Ls(X), then ||fn − f ||s → 0 ⇒ ||fn − f ||r → 0.

2. If fn → f pointwise and ||fn||p → ||f ||p, then fn → f in Lp.

3.a.iii) Normed Linear Spaces

1. Norms: See norms. A seminorm doesn’t require x = 0 for ρ(x) = 0.

2. Inner Product Space: A function F (x, y) : X ×X → R is an inner product if

(a) F is linear in each argument

(b) F (x, x) ≥ 0 and F (x, x) = 0 iff x = 0

(c) F (x, y) = F (y, x)

A norm is derived from an inner product iff the parallelogram law holds, i.e. ||x+ y||2 + ||x− y||2 =

2 ||x||2 + 2 ||y||2.

3.b) Topology

Topological Space: Set X, collection of open subsets T that satisfy

(i) ∅, X ∈ T

(ii) U, V ∈ T ⇒ U ∩ V ∈ T

(iii) {Uα}α∈I ⊂ T ⇒⋃α

Uα ∈ T

3.b.i) Basic Definitions

1. Open Ball: B(x, ε) = {y : d(x, y) < ε}.

2. Open: If ∀x ∈ U, ∃ε : B(x, ε) ⊂ U , then U open.

(a) Finite intersections of open sets are open

(b) All unions of open sets are open

3. Closed: If complement is open.

(a) Finite unions of closed sets are closed

(b) All intersections of closed sets are closed

4. Interior Point: x ∈ A ⊆ X. x is an interior point if ∃ open Ux ⊆ A.

5. Interior: A◦ = { all interior points of A }.

6. Point of Closure: A ∈ X, x ∈ X is a point of closure of A if ∀ open Ux, Ux ∩A 6= ∅.

7. Accumulation Point: (or limit point) if Ux ∩ (A\{x}) 6= ∅.

8. Closure: A ∈ X, and F(A) = {F : F closed, A ⊆ F}. Then the closure is A = ∩F∈F(A)F .

ALT: A = { all points of closure }

(a) A ⊆ A

15

Page 16: Quals Study

(b) A ⊆ B ⇒ A ⊆ B

(c) A = A

(d) A ∪B = A ∪B(e) ∅ = ∅

9. Gδ: Countable intersection of open sets.

10. Fσ: Countable union of closed sets.

3.b.ii) Defining Topologies and Continuity

1. Base: Collection B = {B(x, ε) : x ∈ X, ε > 0} with

(a) ∪B∈B = X

(b) x ∈ B1, B2 ⇒ ∃B3 ⊂ B1 ∩B2 : x ∈ B3

2. Sub-base: B0 ⊂ X with ∪B∈B0B = X. Then B =

{∩nk=1B

0k ∈ B0

}is a base for the topology.

3. Weak topology: X has two topologies T ,S. S weaker than T means S ⊂ T .

4. Local base:

5. Continuity: Two topological spaces (X, T ), (Y,S), function f : X → Y . f is continuous at x0 if ∀V ∈ Yopen, with f(x0) ∈ V , ∃U ⊂ X with x0 ∈ U , and x ∈ U ⇒ f(x) ∈ V .

(a) A function is continuous iff xn → x⇒ f(xn)→ f(x).

(b) If f continuous, then f−1(open) = open.

6. Convergence: xn → x if ∀U 3 x, ∃N : n ≥ N ⇒ xn ∈ U .

7. Connected: (X, T ) connected if no nonempty sets A,B ⊂ X with A ∪B = X, and A ∩B = ∅.(X, T ) connected and f : X → Y continuous ⇒ (Y,S) connected.

8. Hausdorff Space: For every x, y ∈ X, x 6= y, ∃ open U, V , with x ∈ U , y ∈ V , U ∩ V = ∅.

(a) Convergent sequences have unique limits

(b) Complement of {x} is open.

3.c) Distributions

Topological linear space of functions D. Distributions are complex-valued continuous (with respect to D) linearfunctions D′. I.e. if ϕn → ϕ in D, then 〈T, ϕn〉 → 〈T, ϕ〉.

3.c.i) Basics

1. Taylor’s Formula: ϕ (N + 1)-times differentiable on [−M,M ], ϕN+1 continuous.

ϕ(x) =

N∑j=0

1

j!ϕ(j)(0)xj +

xN+1

N !

∫ 1

0

(1− u)Nϕ(N+1)(xu) du =

N∑j=0

1

j!ϕ(j)(0)xj + xN+1ψ(x)

where ψ(x) is continuous, and has as many derivatives as ϕ.

2. Improper Integrals: f ∈ C(R). Then∫R f(x) dx converges if

limA→−∞

limB→∞

∫ B

A

f(x) dx or limA→−∞

∫ C

A

f(x) dx+ limB→∞

∫ B

C

f(x) dx

exist and are finite, with C arbitrary.

16

Page 17: Quals Study

3. Principal Value: Converges if

limR→∞

∫ R

−Rf(x) dx

exists and is finite.

4. Support: supp(ϕ) = {x : ϕ(x) 6= 0}. Support is compact if ∃M : supp(ϕ) ⊆ [−M,M ].

5. Bump Function: f(x) = exp

{−1

(x− a)(x− b)

}on (a, b) and 0 else.

6. Distribution: T : D → C satisfies

(a) T is complex linear: T (αϕ1 + βϕ2) = αT (ϕ1) + βT (ϕ2) ∀ α, β ∈ C and ϕ1, ϕ2 ∈ D.

(b) T is continuous WRT the topology on D.

3.c.ii) Specific Distributions

1. Principal Value: PV

(1

x

)(ϕ)

def= lim

ε↓0

∫|x|>ε

ϕ(x)

xdx = lim

ε↓0

[∫|x|>ε

ϕ(0)

xdx+

∫|x|>ε

ϕ(x)− ϕ(0)

xdx

]

2.1

x± i0= PV

(1

x

)∓ iπδ(x)

3.c.iii) Function Spaces

1. C∞: infinitely differentiable functions (smooth).

2. C∞0 : subset of C∞ with compact support.

3. CkN : k times continuously differentiable with support in [−N,N ].

4. Schwartz space S : subset of C∞ with limabsx→∞ |x|k |Dαϕ(x)| = 0 for all k, α.

5. C∞0 Convergence: ϕn → ϕ if:

(a) supp(ϕn) ⊆ [−N,N ] independent of n.

(b) Derivatives ϕ(m)n

n→∞−−−−→ ϕ(m) uniformly, i.e. limn→∞

supx∈[−N,N ]

∣∣∣ϕ(m)n (x)− ϕ(m)(x)

∣∣∣→ 0

ALT: T ∈ D′ iff ∀N , ∃B(N), k(N): |〈T, ϕ〉| ≤ B ||ϕ||N,k ∀ϕ ∈ CkN .

6. Order: Smallest k independent of N : above convergence definition holds.

7. Norm: ||ϕ||N,kdef=

k∑j=0

sup[−N,N ]

∣∣∣ϕ(j)(t)∣∣∣

8. Topology: d(ϕ1, ϕ2)def=

∞∑k=0

||ϕ1 − ϕ2||N,k1 + ||ϕ1 − ϕ2||N,k

· 1

2k

9. Convergence: {Tj} ∈ D′. If limj→∞

〈Tj , ϕ〉 = 〈T, ϕ〉 ∀ ϕ ∈ D, then Tj converges to T .

10. Derivatives:⟨T (n), ϕ

⟩= (−1)n

⟨T, ϕ(n)

⟩.

17

Page 18: Quals Study

3.d) Measure Theory

3.d.i) Basic Definitions

1. Dense: A ⊂ B. A is dense in B if B ⊆ A. A set is dense iff (Ac)◦ = ∅.

2. Nowhere Dense: Interior of closure is empty: (A)◦ = ∅. A nowhere dense iff (Ac)◦ = X.

3. (A◦)c = Ac and (Ac)◦ = (A)c.

4. First Category: Countable union of nowhere dense sets (also meager).

5. Residual: Complement of first category (also comeager). Residual sets are dense.

6. Second Category: Not first category.

7. Measure Zero: ∀ ε > 0, ∃ {Bn} countable collection of open balls Bn = B(xn, δn) such that

A ⊂∞⋃n=1

Bn and

∞∑n=1

volume of Bn ≤ ε

8. Baire Category Theorem in R:

(a) The complement of a 1st category set is dense.

(b) The intersection of countably many open dense sets is dense.

9. Cantor Intersection Theorem: Given nonempty closed and bounded {Cn} with C0 ⊇ C1 ⊇ · · · ⊇ Cn ⊇ · · · ,then ∩Ck 6= ∅.

3.d.ii) Measurable Spaces

1. (X,B), set X, collection of subsets B satisfying

(i) X ∈ B, ∅ ∈ B(ii) A ∈ B ⇒ Ac ∈ B(iii) {Aj} ∈ B ⇒

⋃nj=1 ∈ B

This defines an algebra of sets, and if n =∞ a σ−algebra.

2. Measurable: (X,B), (Y, C) measurable spaces. Then f : X → Y is measurable if A ∈ C ⇒ f−1(A) ∈ B.

3. Borel σ−algebra: Given (X, T ), the σ−algebra generated by T .

4. Additive Measure: on (X,B). µ : B → [0,∞]

(a) µ(∅) = 0

(b) {Ak} ∈ B mutually disjoint ⇒ µ (⋃nk=1Ak) =

∑nk=1 µ(Ak) where n can by ∞.

3.d.iii) Probability Spaces

1. A measurable space + a measure, (X,B, P ), with P : B → [0, 1].

2. Borel-Cantelli:

(a) Given (X,B, P ) (P (X) = 1). Let E1, E2, . . . be events (∈ B). Then if

∞∑m=1

P (Em) <∞, P (Emi.o.) = P (lim supEm) = 0

(b) If E1, E2, . . . independent and∑∞n=1 P (En) =∞, then P (Eni.o.) = 1.

3. Independent: E1, . . . , En are independent if P (Ei1 ∩ . . . Eik) =∏kj=1 P (Eij ).

4. Borel Zero-One Law: En independently often (i.o.) can only have probability 0 or 1.

18

Page 19: Quals Study

3.e) Convergence and Compactness

3.e.i) Basic Definitions

In a metric space (M,d).

1. Cauchy Sequence: If ∀ ε > 0, ∃N(ε) : m,n > N ⇒ d(xm, xn) < ε, then {xn} is Cauchy. If xn → x, then{xn} is Cauchy.

2. Complete: Every Cauchy sequence converges to a limit x ∈M .

(a) Rn is complete.

(b) `p is complete.

(c) Lp is complete.

(d) Closed subspace of complete space is complete.

3. Contraction Mapping Theorem: (M,d) complete metric space. f : M → M continuous, and ∃ 0 < k < 1such that d(f(x), f(y)) ≤ kd(x, y) ∀ x, y ∈M . Then there exists a unique z ∈M for which f(z) = z.

4. Sequential Compactness: In (X, T ). A ∈ X is compact if every sequence {xn} ∈ A has a convergentsubsequence with limit in A.

5. Compactness:

(a) In Rn, compact = closed and bounded.

(b) In (M,d), compact = complete and totally bounded or = sequentially compact.

(c) In (X, T ) compact if every open cover has a finite subcover.

(d) Compact sets are closed and bounded.

(e) Closed subsets of compact sets are compact.

(f) Compact sets are complete.

(g) f : M → R continuous and M compact, then f assumes its max and min values.

6. ε−Net: ε > 0, finite collection x1, . . . , xn such that ∪nj=1B(xj , ε) ⊇M .

7. Totally Bounded: M is totally bounded if there is an ε−net for every ε > 0.

8. Open Cover: (X, T ), A ⊆ X, O = {Uα}α∈I (open sets), and A ⊆ ∪α∈IUα.

9. Finite Subcover: Finite subset of O that covers A.

3.f) Uniformity

3.f.i) Basic Definitions

1. Uniformly Continuous: f : (M,d)→ (M ′, d′). If ∀ ε > 0, ∃ δ > 0 : d(x, y) < δ ⇒ d′(f(x), f(y)) < ε.If A ⊂M is compact and f : M →M ′ is continuous, then f is uniformly continuous on A.

2. Uniform Convergence: fn : (M,d)→ (M ′, d′).

(a) fn converges to f if ∀ ε, ∀ x, ∃N(x, ε) : n > N(x, ε)⇒ d′(f(x), fn(x)) < ε.

(b) fn converges uniformly to f if ∀ ε, ∃ N(ε) : n > N(ε)⇒ d′(f(x), fn(x)) < ε ∀x.

(c) {fn} is Cauchy if ∀ ε, ∀ x, ∃N(ε) : n,m > N(x, ε)⇒ d′(fn(x), fm(x)) < ε.

(d) {fn} is uniformly Cauchy if ∀ ε, ∃ N(ε) : n,m > N(ε)⇒ d′(fn(x), fm(x)) < ε ∀x.

3. fn : M →M ′, M ′ complete. fn converges Uniformly iff it is uniformly Cauchy.

4. A ⊂M , fn : A→ R.∑∞n=0 fn(x) converges uniformly on A if the sequence of partial sums converges uniformly.

5. Weirstrass M-test: (for uniform convergence). If ∃Mn ≥ 0 : |fn(x)| ≤ Mn ∀x ∈ A, and∑∞n=0Mn < ∞,

then∑∞n=0 fn converges uniformly.

19

Page 20: Quals Study

3.f.ii) Interchanging Limits and Integrals

Given fn → f uniformly, fn continuous.

1. limh→0 limn→∞ fn(x0 + h) = limn→∞ limh→0 fn(x0 + h), i.e. f is continuous.

2.∫ ∑

fn =∑∫

fn.

3. Given fn → f (uniform not required) on [a, b], f ′n continuous, and f ′n → g uniformly. Then f ′ = g.

3.f.iii) More on Integrals

1. Riemann integrable: Define Mi = max{f(t) : ti ≤ t ≤ ti+1}, mi = min{f(t) : ti ≤ t ≤ ti+1}, and U(f ; ∆) =n∑i=0

Mi(ti+1 − ti), L(f ; ∆) =

n∑i=0

mi(ti+1 − ti) for some partition ∆. If infall ∆ U(f ; ∆) = supall ∆ L(f ; ∆) then

f is Riemann integrable.

(a) f on [a, b] is R-integrable if it is continuous.

(b) f on [a, b] is R-integrable iff the set of points of discontinuity of f has Lebesgue measure zero.

(c) Riemann integral exists ⇒ Lebesgue integral exists, and they are equal (not converse).

2. Lebesgue integrable: Suppose f bounded, −M,≤ f(t) ≤M and partition range: −M −1 = y0 < y1 < · · · <

yn < yn+1 = M + 1. Let µi be the length of {t : yi ≤ f(t) < yi+1}. Then the Lebesgue sum is:

n∑i=0

yiµi.

Alternatively, define

f+(x) =

{f(x) if f(x) ≥ 0

0 elsef−(x) =

{−f(x) textiff(x) ≤ 0

0 else

Then f(x) = f+(x)− f−(x), and

∫X

f dµ =

∫X

f+ dµ−∫X

f− dµ (provided at least 1 of the two integrals on

the right is finite).

3. Simple Function: A1, . . . , An ∈ X pairwise disjoint measurable sets. ϕ(x) =

n∑j=1

αjcAj(x) with αj ≥ 0 is a

non-negative simple function, and has integral

∫X

ϕ dµ =

n∑j=1

αjµ(Aj).

4. Measurable Function: (X,B) a measurable space. f : X → [−∞,∞] is measurable if {t : f(t) < α} ∈ B foreach α ∈ R. Limit of measurable functions is measurable.

3.g) Convergence Theorems

3.g.i) Basic Definitions

1. Lim inf: lim infn→∞

xndef= limn→∞

(infm≥n

xm

), alternatively the leftmost limit point (or ±∞).

2. Lim sup: lim supn→∞

xndef= limn→∞

(supm≥n

xm

), alternatively the rightmost limit point (or ±∞).

3. Markov’s Inequality: (X,B, µ), f : X → [−∞,∞] measurable. ∀ ε > 0, µ ({x : |f(x)| > ε) ≤ 1

ε

∫X

|f | dµ.

4. Chebyshev’s Inequality: (X,B, µ), f : X → [−∞,∞] measurable. ∀ ε > 0, µ ({x : |f(x)| > ε) ≤ 1

ε2

∫X

|f |2 dµ.

20

Page 21: Quals Study

3.g.ii) Theorems

1. Fatou’s Lemma: {fn} sequence of non-negative measurable functions. Then

∫X

lim inf fn dµ = lim inf

∫X

fn dµ.

2. Monotone Convergence: {fn} sequence of non-negative measurable functions, and for almost every x,

{fn(x)} is nondecreasing with limit f(x). Then limn→∞

∫X

fn dµ =

∫X

limn→∞

fn dµ =

∫X

f dµ.

3. Corollary: gn ≥ 0 measurable. Then

∫X

∞∑n=1

gn dµ =

∞∑n=1

∫X

gn dµ.

4. Lebesgue Dominated Convergence: (X,B, µ), {fn} measurable, and fn → f a.e.. Suppose ∃g ∈ L1:

|fn(x)| ≤ |g(x)| a.e., ∀ n. Then limn→∞

∫X

fn dµ =

∫X

limn→∞

fn dµ =

∫X

f dµ.

4) Principals and Methods

4.a) Dynamics of Nonlinear Systems

4.a.i) Dimensional Analysis

1. Set x = Lx, t = T t, u = Cu, where · is dimensionless. Then ∂x = ∂xdxdx = 1

L∂x, ∂t = ∂tdtdt = 1

T ∂t.

2. Discrete Symmetries: Example: sign invariance, i.e. given solution u to differential equation, −u is also asolution.

3. Continuous Symmetries: Translation invariance, e.g. t→ t+ τ , x→ x+ λ.

4. Traveling Wave: Both time and spatially invariant. u(x, t) = u(x− ct) = u(z).

5. Scaling Symmetry: uλ(x, t) = λcu(λax, λbt), with z(x, t) = z(λax, λbt).

6. Buckingham Pi: Given f(x1, . . . , xn) = 0 of n physical variables in k physical units, can restate as F (Π1, . . . ,Πp) =

0, where Πi =

n∏j=0

xajj , and p = n− k.

7. Symmetries → Reductions:

(a) Time translation (t→ t+ τ) → steady solutions (u(x, t) = u(x))

(b) Space translation (x→ x+ λ) → homogeneous solutions (u(x, t) = u(t))

(c) Rescaling symmetries (u→ uλ) → self similar solutions (u(x, t) = tc/au(x/ta/b))

4.a.ii) Phase Plane

1. Potential Systems: uz = v, vz = f(u).

(a) Potential V (u) = −∫f(u) du = −

∫uzz du. Get phase plane from graph of potential.

(b) Energy E(z) = V (u) + 12u

2z

2. Linearization of FPs: ddz

[uv

]= A

[uv

]where A is the linearized Jacobian evaluated at the fixed point.

General solution for x = Ax is x(t) =∑ni=1 cie

λitvi where Avi = λivi.

21

Page 22: Quals Study

(a) det(A) = λ1λ2, tr(A) = λ1 + λ2 for 2× 2 case.

(b) 0 < λ1 < λ2 < 0⇒ unstable/stable node

(c) λ1 < 0 < λ2 ⇒ saddle

(d) 0 < λ1 = λ2 < 0⇒ unstable/stable improper node

(e) λ1 = λ2, and 0 < <(λ) < 0⇒ unstable/stable spiral

(f) λ1 = λ2, and <(λ) = 0⇒ elliptic FP/center

3. Heteroclinic Orbit: connects two fixed points

4. Homoclinic Orbit: connects a fixed point to itself

4.a.iii) Dispersion Relations

4.b) Contour Integration

4.b.i) Complex Basics

1. Cauchy-Riemann: The function f(z) = u(x, y) + iv(x, y) is differentiable at z = x + iy iff ux = vy andvx = −uy, and all partials are continuous in a neighborhood of z.

2. Analytic: At a point if differentiable at that point; in a region if analytic at every point in the region.

3. Entire: Analytic at every point in C except ∞.

4. Singular Point: Where f is not analytic.

4.b.ii) Integration

1. Cauchy’s Integral Formula: f (k)(z0) =k!

2πi

∮C

f(z)

(z − z0)k+1dz.

2. Laurent Series: f(z) =

∞∑n=−∞

cn(z − z0)n where cn =1

2πi

∮C

f(z)

(z − z0)n+1dz.

(a) Strength: c−n for pole of order n.

(b) Residue: c−1 = 12π

∮Cf(z) dz

(c) Essential singularity: ∞ number of c−n terms.

3. Residue: Res (f(z), z0) = limz→z0

1

(k − 1)!

dk−1

dzk−1

[f(z)(z − z0)k

]for a pole of order k.

4. Residue at ∞: Res (f(z),∞) = Res

(− 1

z2f

(1

z

), 0

)

5. Cauchy’s Residue Theorem: For a simple closed contour C,

∮C

f(z) dz = 2πi

N∑j=1

rj , where rj are residues

of poles in the interior of C.

6. Jordan’s Lemma: If f(z)→ 0 uniformly on Reiθ, 0 ≤ θ ≤ π, and∣∣f(Reiθ

∣∣ ≤ G(R), and limR→∞G(R) = 0,

then limR→∞

∫CR

eikzf(z) dz = 0, for k > 0. Take lower arc for k < 0.

7. Branch cuts: Let x = ze2πi.

22

Page 23: Quals Study

4.c) Fourier Series

Given a 2L periodic function f

f(x) =a0

2

∞∑n=1

an cos(πnLx)

+ bn sin(πnLx)

or =

∞∑n=−∞

cn exp(πnLx)

an =1

L

∫ L

−Lf(x) cos(nx) dx bn =

1

L

∫ L

−Lf(x) sin(nx) dx cn =

1

2L

∫ L

−Lf(x)einx dx

a0 = 2c0; an = (cn + c−n); bn = i(cn − c−n); cn = (an − ibn)/2

4.c.i) Hilbert Space

A complete, normed linear space whose norm comes from an inner product.

1. Inner Product: Satisfies 〈f, f〉 ≥ 0 with = iff f = 0, 〈f, αg〉 = α 〈f, g〉, 〈αf + βg, h〉 = α 〈f, h〉 + β 〈g, h〉,〈f, g〉 = 〈g, f〉.

2. For L2[a, b], 〈f, g〉 =∫ baf(x)g(x) dx.

3. Norm: ||f ||2 = 〈f, f〉.

4. Has a dense orthonormal basis, for L2[a, b] : ϕn = e2πinx/(b−a)/√b− a

4.c.ii) Theorems

1. Riemann-Lebesgue: Given f ∈ L1[a, b], limn→∞ |cn| = 0. More specifically, for f ∈ Cn[a, b] (actually only

need f (n) ∈ L1[a, b]), |ck| ≤c

|k|nfor |k| ≥ 1, and constant c.

2. Parseval’s Identity: For f ∈ L2[a, b], ||f ||2L2 = 2π

∞∑k=−∞

|ck|2.

3. Carlson’s Theorem: f ∈ L2 ⇒ Sn(f)→ f pointwise almost everywhere, where Sn is the partial sum of theFourier series.

4. For f(x) periodic, piecewise smooth on [a, b], and integrable, then in (a, b), limn→∞ Sn(f) = f(x) where f iscontinuous, and limn→∞ Sn(f) = 1

2 (f(x+) + f(x−)) where f is discontinuous (convergence may break down atendpoints).

5. For f(x) periodic, continuous, and piecwise smooth on [a, b], then Sn(f)→ f uniformly. The convergence is atthe rate ||Sn(f)− f ||∞ = O(n1−p), where f (p) ∈ L1[a, b] (or O(n−p) for f ∈ Cp[a, b]).

6. Gibb’s Phenomenon: Apporximately 10% error near discontinuities in function.

7. Can integrate term by term to get Fourier series of F (x) (but need to make it periodic), and differentiate termby term to get Fourier series of f ′(x) on the condition that f ∈ C, f ′ ∈ L1.

4.d) Distributions

Also see distributions.

4.d.i) Basics

1. Null sequence: In C∞0 (R), {ϕm(x)} such that limm→∞

supx∈[−K,K]

∣∣∣∣ dndxnϕm(x)

∣∣∣∣ = 0 for all n ∈ Z+. In S(R),

{ϕm(x)} such that limm→∞

supx∈R

∣∣∣∣xk dndxnϕm(x)

∣∣∣∣ = 0 for all k, n ∈ Z+.

2. Seminorms: Examples are pm,k(ϕ) = supx∈R

∣∣∣∣xk dmϕdxm

∣∣∣∣, and qm,k(ϕ) = supx∈R

∣∣∣∣(1 + x2)kdmϕ

dxm

∣∣∣∣.23

Page 24: Quals Study

3. Continuity: Given {ϕm} → ϕ, then T continuous if T [ϕm]→ T [ϕ].

4. To prove T is a distribution, show that T [αϕ + βψ] = αT [ϕ] + βT [ψ] (linearity) and T [ϕm] → 0 for all nullsequences (continuity). Break up integral and use seminorms to prove.

5. If f ∈ Lloc1 , then Tf is a distribution in C∞0 and S.

6. For ψ smooth, then ψT [ϕ] = T [ψϕ].

7. Change of Variables: T [ϕ] ≡∫T (y(x))ϕ(x) dx ≡

∫T (z)ϕ(y−1(z))

|y′(y−1(z))|dy, where y(x) is the change of

variables.

8. Convolution: Tf ? Tg = Tf?g. If Tfn → Tf , Tgn → Tg, then Tfn ? Tgn → S where S depends only on Tf , Tg(not n).

4.e) Fourier Transforms

F [f(x)] = f(k) =

∫ ∞−∞

f(x)e−ikx dx F−1[f(k)

]= f(x) =

1

∫ ∞−∞

f(k)eikx dk

4.e.i) Common Functions/Distributions

1. Sinc and box: F [sinc(x)] = πχ[−1,1], and F[χ[−1,1]

]= 2 sinc(k)

2. Gaussian: F[e−x

2/a]

=√aπ exp

(−ak2

4

)3. Sin and cos: F [sin(ax)] = iπ [δ(k + a)− δ(k − a)] and F [cos(ax)] = π [δ(k + a) + δ(k − a)]

4. Delta: F [δ(x)] = 1, and F [1] = 2πδ(k)

5. Heaviside: F [H(x)] = πδ(k)− iPV(

1k

)6. Principal Value and sign: F

[PV

(1x

)]= −iπsign(k), and F [sign(x)] = −2iPV

(1k

)4.e.ii) Other stuff

1. Poisson Sum:

∞∑n=−∞

δ(x− 2nπ) =1

∞∑k=−∞

e−ikx ⇔∞∑

n=−∞ϕ(nT ) =

1

T

∞∑k=−∞

ϕ

(2πk

T

)

2. f(k) = f(−k), f ∈ R ⇒ f Hermitian, i.e. f(k) = f(−k);f(x) = 2πf(−x)

3. F [f(x− b)] = e−ikbf(k); F [f(ax)] = 1|a| f

(ka

)4. F

[f (n)

]= (ik)nf(k); F

[∫ x−∞ f(t) dt

]= 1

ik f(k) + πf(0)δ(k)

5. F [xnf(x)] = inf (n)(k)

6. f ∈ L1 ⇒ f is bounded.

7. F : L1(R)→ C(R), F : L2(R)→ L2(R)

8. Parseval’s/Plancherel’s Theorem: If f, g ∈ L1(R), then⟨f , g⟩

= 2π 〈f, g〉, so ||f ||22 = 12π

∣∣∣∣∣∣f ∣∣∣∣∣∣22

(for

f ∈ L2(R)).

9. Convolution: F [f ? g] = f · g, and F−1[f ? g

]= 2πf · g.

10. Multi dimensions: F [f(x)] = f(k) =

∫Rn

f(x)e−ik·x dx; F−1[f(k)

]= f(x) =

1

(2π)n

∫Rn

f(k)eikx dk

11. FT of Distributions: Tf [ϕ] = Tf [ϕ] = Tf [ϕ]

24

Page 25: Quals Study

4.e.iii) Sampling

1. Nyquist Rate: ω0/π, where f(ω) = 0 for |ω| > ω0

2. Sampling frequency: 1/τ > Nyquist rate, i.e. τ < π/ω0.

3. Shannon sampling:

4.e.iv) Other Transforms

1. Hilbert Transform: H[f ] = 1πf ? PV (1/x), so F [H[f ]] = 1

π f(k) · F [PV (1/x)] = −isign(k)f(k).

2. Laplace Transform: L [f ] = F (s) =

∫ ∞0

f(t)e−st dt; f(t) =1

2πi

∫ c+i∞

c−i∞F (s)est ds

4.f) Spectral Theory

4.f.i) Basics

1. Operator: L : X → X. Defined on the domain D(L).

2. Bounded: If ||L|| ≤ ∞, where ||L|| = supu∈X

||Lu||||u||

. This implies ||Lu|| ≤ ||L|| ||u||. Bounded ⇔ continuous.

Find bound by bounding ||Lu||2 = 〈Lu,Lu〉 ≤ c ||u||2, or show unbounded via sequence of uns.

3. Adjoint: An operator L∗ such that 〈Lu, v〉 = 〈u, L∗v〉. If L is bounded and linear, then L∗ exists and isbounded and linear. Also, L∗∗ = L, and ||L|| = ||L∗||.

4. Normal: L∗L = LL∗.

5. Self Adjoint: L∗ = L. formally if they have different domains. All eigenvalues are real. No residualspectrum.

6. Resolvent: Complete normed space X 6= {0} and linear operator L : D → X, D ⊂ X. The resolvent isRλ(L) = (L− λI)−1.

7. Regular value: λ such that Rλ(L) exists, is bounded, and is defined on a dense set in X.

8. Point Spectrum: σp(L) = {λ : (L− λI)−1 d.n.e.}. Eigenvalues of L, Lu = λu. λ ∈ σp(L)⇒ λ ∈ σp(L∗).

9. Continuous Spectrum: σc(L) = {λ : (L− λI)−1 exists and is unbounded}.

10. Residual Spectrum: σc(L) = {λ : (L−λI)−1 exists, possibly bounded, but not defined on a dense set of X}.

11. Rayleigh Quotient: λ =〈Lu, u〉〈u, u〉

.

4.f.ii) Sturm-Liouville

1. Lu =−1

σ(x)((p(x)ux)x + q(x)u(x)) on some domain [a, b]

2. Always self adjoint.

3. Eigenvalues λ1 < λ2 < · · · , and eigenfunctions are orthogonal, complete basis.

25

Page 26: Quals Study

4.g) Green’s Functions

4.g.i) Variation of Parameters

1. Wronskian: W (x) = det

∣∣∣∣u1 u2

u′1 u′2

∣∣∣∣ = u1u′2 − u2u

′1, for solutions Lu1 = Lu2 = 0 of the S-L operator.

2. v′1(x) = −u2(x)f(x)

p(x)W (x); v′2(x) =

u1(x)f(x)

p(x)W (x).

3. up(x) = u1v1 + u2v2 = −u1(x)

∫ x

0

u2(t)f(t)

p(t)W (t)dt+ u2(x)

∫ x

0

u1(t)f(t)

p(t)W (t)dt

4. u(x) = uh(x) + up(x).

4.g.ii) Green’s Functions

Assuming S-L operator L = (pu′)′ + qu.

1. Satisfies LG(x, t) = δ(x− t) as well as boundary conditions of L, and G is continuous at x = t.

2. Jump condition: Gx(t+, t)−Gx(t1, t) = 1p(t)

3. General solution: find 2 linearly indep. homogenous solutions u1, u2. Then

G(x, t) =

{a1(t)u1(x) + a2(t)u2(x) x < t

b1(t)u2(x) + b2(t)u2(x) x > t

Use BCs, continuity, and jump to find a1, a2, b1, b2. Solution of Lu = f on [c, d] is

u(x) =

∫ d

c

G(x, t)f(t) dt =

∫ x

c

Gb(x, t)f(t) dt+

∫ d

x

Ga(x, t)f(t) dt

26


Recommended