+ All Categories
Home > Documents > Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the...

Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the...

Date post: 16-Feb-2018
Category:
Upload: votu
View: 216 times
Download: 0 times
Share this document with a friend
18
1/24/2012 1 Quantitative analysis of the proteome Stephen Barnes, PhD [email protected] BMG 744 Proteomics-Mass Spectrometry 1 1/25/12 Proteomics Data Standards 2005 MCP - Paris guidelines 2008 HUPO MIAPE and mzML 2008 NCI - Amsterdam principles (6) 2011 NCI Sydney For users of public data Reviewers of journals Multi-site projects with unpublished data 1/25/12 2 Kissinger et al MCP 10:1-9, 2011
Transcript
Page 1: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

1

Quantitative analysis of the

proteome

Stephen Barnes, PhD

[email protected]

BMG 744 Proteomics-Mass

Spectrometry

1 1/25/12

Proteomics Data Standards

• 2005 MCP - Paris guidelines

• 2008 HUPO – MIAPE and mzML

• 2008 NCI - Amsterdam principles (6)

• 2011 NCI – Sydney

– For users of public data

– Reviewers of journals

– Multi-site projects with unpublished data

1/25/12 2

Kissinger et al MCP 10:1-9, 2011

Page 2: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

2

Proteomics Data Standards

• Common descriptive terms • Sufficient experimental description • Data format • Data quality

– Mass accuracy (evidence of calibration) – Repeatability (technical and biological replicates) – False discovery rate (MRM and pseudoMRM) – Degeneracy of MRM – # of peptides to make a match

• Reference materials

1/25/12 3

Kissinger et al MCP 10:1-9, 2011

Use of isotopes – ICAT (do/d8) and ICAT 13C0/

13C8

– d0/d10 propionic anhydride (N-terminal labeling)

– 15N/14N (whole cell labeling)

– 18O/16O (trypsin)

– iTRAQ labeling

• Non-isotope methods – Peptide coverage

– Classical triple quadrupole methods

Quantitative proteomics

4 1/25/12

Page 3: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

3

Isotope-coded affinity technology

This reagent reacts with cysteine-containing proteins (80-85% of proteome)

Labeling can be replacement of hydrogens (X) with deuterium, or better to

exchange 12C with 13C in the linker region (this avoids chromatography issues)

5 1/25/12

6 1/25/12

Page 4: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

4

Quantification from ESI-mass spectrum

Schmidt et al., Mol Cell Prot, 2003

7 1/25/12

8 1/25/12

Page 5: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

5

1/25/12 9

1/25/12 10

Page 6: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

6

1/25/12 11

Time-dependent leucine

incorporation with SILAC

The cells are pre-labeled with leucine-d0. Leucine-d3 is added to the medium and cells sampled at various times later. The peaks annotated with d0 and d3 are the triply charged peaks of the peptide VAPEEHPVLLTEAPLNPK, which contains three leucines.

Ong et al.,

MCP 1:367,

2002

12 1/25/12

Page 7: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

7

1/25/12 13 Brossier et al. unpublished

Verifying absorption of phosphoproteins onto IMAC

1/25/12 14 Brossier et al. unpublished

Page 8: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

8

1/25/12 15

Elongation factor 2 OS=Homo sapiens GN=EEF2 PE=1 SV=4

DSVVAGFQWATK

H:L Ratio 0.8168

Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4

ILLAELEQLK

H:L Ratio 1.6427

Brossier et al. unpublished

18O-labeling

• Trypsin catalyzes the transfer of 18O in 18O-enriched water to both the carboxylate

oxygens of the C-terminus of tryptic

peptides

R-COOH R-C18O2H

• The peptides have an increase in mass of

4 Da

• Generally not considered a large enough

mass difference

16 1/25/12

Page 9: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

9

iTRAQ quantification

• The iTRAQ™ reagents

– React with Lys amino groups and each one adds 145 Da to the molecular weight of the peptide

– Fragmentation produces reporter ions from m/z 114, 115, 116 and 117

– Current iTRAQ kit contains 8 forms with reporter fragment ions of m/z 114, 115, 116, 117, 118, 119 and 121

17 1/25/12

iTRAQ™ Reagent Design

Amine specific

PRG

Peptide Reactive

Group

Charged Neutral loss

Isobaric Tag (Total mass = 145)

Reporter Balance PRG

• Gives strong signature ion in

MS/MS

• Gives good b- and y-ion series

• Maintains charge state

• Maintains ionization efficiency

of peptide

• Signature ion masses lie in

quiet region

Reporter (Mass = 114 thru 117)

• Balance changes

in concert with

reporter mass to

maintain total

mass of 145

• Neutral loss in

MS/MS

Balance (Mass = 31 thru 28)

Isobaric Tag (Total mass = 145)

= MS/MS Fragmentation Site

Isobaric Tag

Total mass = 145

Reporter Group mass

114 –117 (Retains Charge)

Balance Group

Mass 31-28 (Neutral loss)

Amine specific peptide

reactive group (NHS)

N

N

O

O

N

O

O

Slide provided by

Applied Biosystems 18 1/25/12

Page 10: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

10

Other non-isotopic quantitative

methods in proteomics

The coverage (the number of peptides observed for a protein) is sensitive to the amount of the protein

– This can be used to calculate whether a treatment affects the abundance of a protein where fold-change > 2

– Applies to LC-MS (MUDPIT methods)

900 1520 2140 2760 3380 4000 Mass (m/z)

0

8401.3

0

10

20

30

40

50

60

70

80

90

100

% Inte

nsity

2452.17 1366.82

1494.90

2646.33 1267.76 2164.05 2517.29

1388.78 2186.02 3141.45 1544.76 3163.46

2 peptides, 10 fmol

900 1520 2140 2760 3380 4000 Mass (m/z)

0

8401.3

0

10

20

30

40

50

60

70

80

90

100

% Inte

nsity

2452.17 1366.82

1494.90

2646.33 1267.76 2164.05 2517.29

1388.78 2186.02 3141.45 1544.76 3163.46

7 peptides, 50 fmol

900 1520 2140 2760 3380 4000 Mass (m/z)

0

8401.3

0

10

20

30

40

50

60

70

80

90

100

% Inte

nsity

2452.17 1366.82

1494.90

2646.33 1267.76 2164.05 2517.29

1388.78 2186.02 3141.45 1544.76 3163.46

10 peptides, 200 fmol

19 1/25/12

Triple quad MRM analysis

Peptides of interest can be analyzed like small molecules – Choose the parent molecular ion, collide with argon gas

and select a unique fragment

Q1 Q2 Q3 Detector

- + + - -

- -

- - - - - -

Collision gas

N 2

Gas Sample solution

5 KV

• Multiple reaction ion scanning

First filter the [M-H]- molecular ion of the analyte (Q1)

Fragment the molecular ion with N2 gas (Q2)

Select a specific (and unique) fragment ion (Q3)

20 1/25/12

Page 11: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

11

Quantitation experiment for

biotinylated cytochrome c MRM analysis monitored in 50 channels

2 4 6 8 10 12 14 16 18 20 22 24 26 28

Time, min

0.0

1.0e5

2.0e5

3.0e5

4.0e5

4.5e5

11.47

Each colored peak represents a different biotinylated peptide

21 1/25/12

Quantitative Accuracy: Myoglobin

Color Indicates Method Used

iTRAQ

ICPL

ICAT 18O Labeling

Label Free

Label Free + targeted SRM

2D-Gels (nonDIGE)

2D-DIGE

B/A

Rat

io

16

10

6

0

2D Gels Label Free Stable

Isotope

Labeling

Anticipated Mole

Ratio 10

14

12

8

4

2

A = 0.5 pmol

B = 5 pmol

22 1/25/12

Page 12: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

12

2008 ABRF Study - identification of three truncated peptides

23 1/25/12

MALDI-TOF and nanoLC-tandem MS

Bioinformatics analysis

Signaling and protein complexes analysis

Quantitative MRM analysis

Gel-LC for protein separation

Workflow for generation of proteomics data

Microarray analysis Biological and

experimental knowledge

MudPIT 2D-DIGE and other

electrophoresis

microRNA analysis

24 1/25/12

Page 13: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

13

Multiple Reaction Monitoring

Q0 Q1 Q2 Q3

LIT

Q0 Q1 Q2 Q3

LIT

Fragment Peptide Y or B ion

• MRM methods are the gold standard for quantitative analysis of small molecules

− Currently performed on a triple quadrupole instrument − Each tryptic peptide ion is isolated in Q1, fragmented by collision in Q2 and a

specific fragment measured after filtration in Q3

• Proteotypic peptides can represent proteins (like oligonucleotides for DNA) − Generally a 8-aa peptide is unique − Multiple channels - 10-20 msec per channel

25 1/25/12

HIF-1a in kidney cytosol by LC-MRM-MS

26 1/25/12

Page 14: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

14

Multiple reaction ion monitoring of Krebs cycle enzymes

27 1/25/12

y10

y9 y8

y7

y6

626.3118

713.3464

y5

y4

363.2034

y3

261.1557

y2

227.1751 b2

b3

Summation of all MRM channels

Fragment intensities of individual ions derived from m/z 677.4

Full MSMS spectrum

28 1/25/12

Page 15: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

15

1/25/12 29

Verifying and quantifying C-truncation

• aA crystallin is supposedly processed to a 173aa form from the 196aa

translated product. Interestingly, what we see is the removal of an

interior 23aa peptide, so it must be differential splicing, not

posttranslational processing.

• Processed rat aA crystallin has a chymotrypsin cleavage site at 141Phe

• This peptide can be observed as a triply charged peptide

– FSGPKVQSGLDAGHSERAIPVSREEKPSSAPSS

• The C-truncations observed by mass spectrometry imaging are the

following:

– SGPKVQSGLD (truncation at 151)

– SGPKVQSGLDAGHSE (truncation at 156)

– SGPKVQSGLDAGHSER (truncation at 157)

– SGPKVQSGLDAGHSERAIPVSR (truncation at 163)

– SGPKVQSGLDAGHSERAIPVSREEKPS (truncation at 168)

1/25/12 30

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5

Time, min

2000

4000

6000

8000

10000

12000

14000

16000

18000

I n t e

n s i t y

DAY 21 Lens

DAY 50 Lens

DAY 100 Lens

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5

Time, min

0.0e0

5.0e3

1.0e4

1.5e4

2.0e4

2.5e4

3.0e4

I n t e

n s i t y

Full Length αA-Crystallin

SGPKVQSGLDAGHSERAIPVSREEKPSSAPSS

10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 Time, min

200

300

400

500

600

I n t e

n s i t y

XIC from I21 C.wiff (sample 1) - I21 C, Experiment 13, +TOF MS^2 of 524.8 (100 - 2000): 668.325 +/- 0.025 Da, Gaussian smoothed XIC from I50 C.wiff (sample 1) - I50 C, Experiment 13, +TOF MS^2 of 524.8 (100 - 2000): 668.325 +/- 0.025 Da, Gaussian smoothed XIC from I100 C.wiff (sample 1) - I100 C, Experiment 13, +TOF MS^2 of 524.8 (100 - 2000): 668.325 +/- 0.025 Da, Gaussian smoothed

α-Tubulin Sample Control Peptide

APVISAEKAY

11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7

Time, min

0

1000

2000

3000

4000

5000

6000

I n t e

n s i t y

XIC from I21 C.wiff (sample 1) - I21 C, Experiment 10, +TOF MS^2 of 461.8 (100 - 2000): 722.404 +/- 0.025 Da, Gaussian smoothed XIC from I50 C.wiff (sample 1) - I50 C, Experiment 10, +TOF MS^2 of 461.8 (100 - 2000): 722.404 +/- 0.025 Da, Gaussian smoothed XIC from I100 C.wiff (sample 1) - I100 C, Experiment 10, +TOF MS^2 of 461.8 (100 - 2000): 722.404 +/- 0.025 Da, Gaussian smoothed

Bovine Serum Albumin Loading Control Peptide: (1fmole/µl)

AEFVEVTK

SGPKVQSGLD

1-151 aa. Truncation

Page 16: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

16

Concatenation - making 13C-

labeled peptide internal standards

K

K

K

K

K

K

Convert peptide

sequences to

oligo DNA

sequences

Splice together the

individual oligo DNAs to

form a composite cDNA

Insert cDNA into a

plasmid and

recombinantly express

in bacteria in the

presence of Lys-13C615N2

NH2- COOH

K*

K* K*

K*

K*

K*

Treat with trypsin

Anderson & Hunter, 2005

31 1/25/12

Quantitative peptide MRM-MS

• The albumin-depleted plasma proteome is mixed

with the composite 13C,15N-labeled protein

internal standard and then treated with trypsin

• The molecular ions (doubly charged) and the

specific y ions for each peptide and its labeled

form are entered into the MRM script one channel

at a time

• A single run may consist of 30 peptides in 60

channels

• Sensitivity is compromised by “sharing out”

measurement time, but can be compensated for

by carrying out nanoLC

32 1/25/12

Page 17: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

17

Advantage of a C-terminal

labeled lysine

186 301 448 505 642 755 886 987 1115 b ions

A D E F G H I M T K

1133 1062 948 833 686 629 492 379 248 147 y ions

186 301 448 505 642 755 886 987 1123 b ions

A D E F G H I M T K*

1141 1070 956 841 694 637 500 387 256 155 y ions

With the labeled lysine is at the C-terminus, only

the b10 ion contains the isotope atoms

33 1/25/12

References for these talks (1)

• Annan RS, Hudleston MJ, Verma R, Deshaies RJ, Carr SA. A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal. Chem. 73:393, 2001.

• Flory MR, Griffin TJ, Martin D, Aebersold R. Advances in quantitative proteomics using stable isotope tags. Trends in Biotechnology 20: S23, 2002.

• Taupenot L, Harper KL, O’Connor DT. The chromogranin-secretogranin family. New Engl. J. Med. 348: 1134, 2003.

• Lam YW, Mobley JA, Evans JE, Carmody JF, Ho S-M. Mass profiling-directed isolation and identification of a stage-specific serologic protein biomarker of advanced prostate cancer. Proteomics 5: 2927, 2005.

• Lehmann WD, Krüger R, Salek M, Hung CW, Wolschin F, Weckwerth W. Neutral loss-based phosphopeptide recognition: a collection of caveats. J Proteome Res. 6:2866-73, 2007.

34 1/25/12

Page 18: Quantitative analysis of the proteome - uab.edu 1-25-12.pdf · Quantitative analysis of the proteome Stephen Barnes, PhD sbarnes@uab.edu BMG 744 Proteomics-Mass Spectrometry 1/25/12

1/24/2012

18

Bibliography (2) • Ong SE, Mann M. Mass spectrometry-based proteomics turns

quantitative. Nature Chemical Biology. 1:252-262, 2005.

• Gruhler A, Schulze WX, Matthiesen R, Mann M, Jensen ON. Stable isotope labeling of Arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Molecular & Cellular Proteomics. 4:1697-1709, 2005.

• Anderson L, Hunter CL. Quantitative Mass Spectrometric Multiple Reaction Monitoring Assays for Major Plasma Proteins. Molecular & Cellular Proteomics 5:573-588, 2006.

• Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Analytical Chemistry 73, 2836-42, 2001.

• Wang G, Wu WW, Zeng W, Chou C-L, Shen R-F. Label-Free Protein Quantification Using LC-Coupled Ion Trap or FT Mass Spectrometry: Reproducibility, Linearity, and Application with Complex Proteomes. Journal of Proteome Research 5: 1214-1223, 2006.

35 1/25/12

1/25/12 36

Bibliography (3) • Kirkpatrick DS, CDenison C, Gygi SP. Weighing in on ubiquitin: the

expanding role of mass-spectrometry-based proteomics. Nature Cell Biology 7: 750-757 (2005).

• Knuesel M, Cheung HT, Hamady M, Barthel KKB, Liu X. A Method of Mapping Protein Sumoylation Sites by Mass Spectrometry Using a Modified Small Ubiquitin-like Modifier 1 (SUMO-1) and a Computational Program. Molecular and Cellular Proteomics 4:1626-1636 (2005).

• Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Pääbo S, Mann M. Deep proteome and transcriptome mapping of a human cancer cell line. Molecular Systems Biology 7: 548 (2011).

• Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A, Herzog F, Rinner O, Ellenberg J, Aebersold R. The quantitative proteome of a human cell line. Molecular Systems Biology 7: 549 (2011).

• Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global quantification of mammalian gene expression control. Nature 473: 337-342 (2011).


Recommended