+ All Categories
Home > Documents > QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Date post: 30-Jul-2015
Category:
Upload: shakibbr
View: 36 times
Download: 2 times
Share this document with a friend
Popular Tags:
127
Transcript
Page 1: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH
Page 2: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER

COMPLEXES: A GAUSSIAN APPROACH

A Thesis

Presented to

The Faculty of the College of Graduate Studies

Lamar University

In Partial Fulfillment

of the Requirements for the Degree

Master of Engineering Science

by

Shakib Bin Reza

July 2012

Page 3: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER

COMPLEXES: A GAUSSIAN APPROACH

SHAKIB BIN REZA

Approved:

__________________________________

Qin Qian

Supervising Professor

__________________________________

Jewel Andrew Gomes

Co-Supervisor

__________________________________

C. Jerry Lin

Committee Member

____________________________________

Robert Yuan

Chair, Department of Civil Engineering

____________________________________

Jack R. Hopper

Dean, College of Engineering

____________________________________

Victor A. Zaloom

Dean, College of Graduate Studies

Page 4: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

© 2012 by Shakib Bin Reza

No part of this work can be reproduced without permission except as indicated by the

“Fair Use” clause of the copyright law. Passages, images, or ideas taken from this work

must be properly credited in any written or published materials.

Page 5: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

ABSTRACT

QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER

COMPLEXES: A GAUSSIAN APPROACH

by

Shakib Bin Reza

Water vapors are widespread in the atmosphere. They readily form hydrogen

bonds and makes complexes with themselves and other acids with bond energies in

between 5 kcal/mol to 12 kcal/mol. Much weaker van der Waals complexes with bond

energies of about 1 kcal/mol can also be formed with other constituents of the

atmosphere, such as O2, N2, CO2, and so forth. Although to date only the presence of O2-

O2 intermolecular complexes in the atmosphere were identified, the presence of other

atmospherically relevant hydrated complexes are very likely, since their bonding energies

are higher than the O2-O2 complexes. Using statistical mechanics, the abundance of these

complexes were estimated and found significant at the ground level. Water itself absorbs

radiation in the IR and near-IR, and is considered as a significant contributor to the

greenhouse effect. If formation of additional IR active frequencies can be found in the

above hydrated complexes, then these new frequencies can contribute to the estimated

greenhouse effect that is not currently considered for making the estimate.

In this study, these concerns were highlighted with theoretical quantum chemical

calculations. The objectives were to prove the formation of H2O-N2 and H2O-CO2

Complexes using Gaussian simulation program, to determine the single point energy of

these complexes, to find out the optimized structure and to calculate the vibrational

Page 6: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

ii

frequencies. To compare the calculated results with the results obtained from laboratory

experiment was another goal of this study.

Quantum chemical simulations of these hydrated complexes have been performed

at various degrees of theories, and basis sets which confirmed the formation of the

complexes at certain conditions. The intermolecular potential energy surfaces for these

complexes have been calculated using a combination of Mөller-Plesset perturbation

theory and Density Functional theory. The results obtained from theoretical studies of the

water–nitrogen complex correlates satisfactorily with the experimental data. For one

water-nitrogen complex we obtained a geometry which has a point group of Cs, Eh=-

186.03(Eh=627.509 kcal/mol) and vibrational peak at 737.80 cm-1

, 1658.54 cm-1

and

2006.1 cm-1

. While for one water-carbon dioxide complex we obtained a C1 point group

geometry with Eh=-265.11 and vibrational peak at 1647.81 cm-1

and 3864.9 cm-1

.Two

molecules of water have been introduced in the complex formation to find out the

solvation effect and minimization of energies in the complexes. For two water-nitrogen

complex we obtained a geometry which has a point group of Cs, Eh= -262.48 and

vibrational peak at 1671.93 cm-1

and 3839.61 cm-1

. We obtained a Cs point group with

Eh= -341.56 for two water-carbon dioxide complex which has frequency peak at 1630.29

cm-1

and 2402.28 cm-1

. Graphical views of the Molecular orbitals were also produced to

explain the overlapping of the orbitals, and electronic distributions in the complexes. It is

expected that the results from this study will provide new insights into the role of van der

Waals complexes in the atmosphere and will be included in climate models. The obtained

frequencies can be used to identify these complexes in the atmosphere and interstellar

spaces. The work concludes with a forward look to work on larger molecules.

Page 7: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

iii

ACKNOWLEDGEMENTS

All the praise is due to Allah, the Most Beneficent and the Most Merciful, for

blessing me with the ability to pursue my graduate studies.

I am deeply indebted to my co-supervisor Dr. Andrew Jewel Gomes for all his

guidance throughout this research. The visions for the current project, the context of the

research, and the content of this thesis, in large part, have been possible because of him.

He has never failed to pepper our conversations with words of encouragement and

provide a listening ear whenever I needed one despite his hectic schedules. His way of

guidance has been an important key factor that motivates me to learn a lot of knowledge

through this research, and I hope this lesson will prevail for the rest of my life.

I would like to extend my appreciation to the committee members, Dr. Qin Qian

and Dr. C. Jerry Lin, for serving in my Graduate committee.

Special thanks go to Dr. Mien Jao, who guided me ceaselessly since the very

beginning I am at this University.

Page 8: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

iv

TABLE OF CONTENTS

LIST OF TABLES …....................................................................................................vii

LIST OF FIGURES ….....................................................................................................ix

Chapter

1. Introduction……………………………………………………………………..............1

1.1 Atmospheric Complexes……………….......…….…………………………….……1

1.2 Overview of the study…...........................................................................................2

2. Literature Review ……………………………………………..……….……….……....4

2.1 Fundamental Interactions…......................................................................................4

2.1.1 Nonvalent Intermolecular Interactions…..........................................................4

2.2 Computational Chemistry….....................................................................................6

2.2.1. Ab Initio Methods…………………………………………..……………...….7

2.2.1.1. Hartree - Fock Method (HF)………………….…..……………..........….8

2.2.1.2. Post – Hartree Fock Methods……………………………………….……9

2.2.1.3. Basis Set………………………………………………….….…….……..9

2.2.2. Density Functions Theory (DFT)….................................................................12

2.2.3. Types of Calculations…...................................................................................13

2.2.4. Terminology…..................................................................................................13

2.2.5. Intermolecular Interaction Energy Calculation…………………….….......…14

2.2.5.1. Supermolecular Approach…....................................................................14

Page 9: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

v

2.2.5.2. Effective ab initio methods for Supermolecular Approach…..................15

2.2.6. The Water Complexes….................................................................................15

3. Previous works…………………………………………………………………….…..17

3.1 Overview of the Study....................................................................................…....17

3.2 Carbon dioxide Experiment............................................................................…....18

3.3 Nitrogen Experiment...................................................................................…........18

4. Methodology......................................................................................................…........20

4.1 Instruments………………………………………………………….....……….…20

4.2 Computational Methods…......................................................................................20

4.2.1 Geometry Optimization and Vibrational Frequency calculations….................20

4.3 Computational Details…………………………………………….........................20

5. Results and Discussion…...............................................................................................22

5.1 Geometry Optimization and Vibrational Frequency Calculations for

Water Complexes...................................................................................….............22

5.1.1 Geometry Optimization Calculation of one Water Nitrogen

Complexes........................................................................................................22

5.1.2 Geometry Optimization Calculation of one Water Carbon dioxide

Complexes…....................................................................................................29

5.1.3 Vibrational Frequencies Calculation....................................................….........35

5.1.4 Geometry Optimization Calculation of two Water Nitrogen

Complex......................................................................................................….37

Page 10: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

vi

5.1.5 Geometry Optimization Calculation of two Water-Carbon dioxide

complex……………………………………………………….......……....…...41

5.2 Molecular Orbital Interaction from Gaussian................................................…........44

5.3 Comparison of IR absorption for nitrogen and Water-nitrogen complex……..........45

5.4 Summery of the Results..................................................................................….......47

6. Conclusion and Future work…......................................................................................48

Reference...............................................................................................................…........50

Appendix A……………………………………………………………………………....56

Appendix B……………………………………………………………………….….…..98

Page 11: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

vii

LIST OF TABLES

Table Page

2.1 Fundamental Interaction.................................................................................................5

2.2 Theoretical Methods in Computational Chemistry................................................…....8

5.1 Details of Structure I of H2O-N2.................................................................................23

5.2 Details of Structure II of H2O-N2.................................................................................23

5.3 5.3 Details of Structure III of H2O-N2.........................................................................24

5.4 Details of Structure IV of H2O-N2……………………………………………………………………………..25

5.5 Details of Structure V of H2O-N2...............................................................................25

5.6 Details of Structure VI of H2O-N2...............................................................................26

5.7 Calculated Energy of Water-Nitrogen complexes by different methods….................26

5.8 Calculated Energy of Water-Nitrogen complexes at different N-H

Distance........................................................................................................................27

5.9 Details of Structure I of H2O-CO2…...........................................................................29

5.10 Details of Structure II of H2O-CO2............................................................................30

5.11 Details of Structure III of H2O-CO2...........................................................................31

5.12 Details of Structure IV of H2O-CO2…......................................................................31

5.13 Details of Structure V of H2O-CO2………...............................................................32

5.14 Calculated Energy of Water-Carbon dioxide complexes by different

Methods......................................................................................................................32

5.15 Calculated Energy of Water-Carbon dioxide complex at different C-O

Distance.......................................................................................................................33

5.16 Details of Structure I of H2O-N2…............................................................................38

5.17 Details of Structure II of H2O-N2…...........................................................................38

Page 12: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

viii

5.18 Details of Structure III of H2O-N2….....................................................................…39

5.19 Details of Structure IV of H2O-N2……….................................................................40

5.20Calculated Energy of two Water-Nitrogen complexes by different methods…….…40

5.21 Details of Structure I of 2H2O-CO2….......................................................................41

5.22 Details of Structure II of 2H2O-CO2………..............................................................42

5.23 Details of Structure III of 2H2O-CO2……................................................................43

5.24 Calculated Energy of two Water-Nitrogen complexes by different methods............43

5.25 Summery of the Results….........................................................................................47

Page 13: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

ix

LIST OF FIGURES

Figure Page

2.1 Summaries of the Non-covalent Interactions……………………………..……...……5

3.1 CO2-H2O Complex Peaks….........................................................................................18

3.2 N2-H2O Complex peaks…............................................................................................19

5.1 Structure I of H2O-N2…………………………………………………………..……22

5.2 Structure II of H2O-N2….............................................................................................23

5.3 Structure III of H2O-N2…...........................................................................................24

5.4 Structure IV of H2O-N2……………………………………………….…..........……24

5.5 Structure V of H2O-N2……………………………………………………....………25

5.6 Structure VI of H2O-N2……………………………………………………...………26

5.7 Energy vs. Distance diagram of Water Nitrogen complex...........................................28

5.8 Optimized structure of H2O-N2……………………………………………...........…28

5.9 Structure I of H2O-CO2…………………………………………………….……...…29

5.10 Structure II of H2O-CO2…........................................................................................30

5.11 Structure III of H2O-CO2…………………………………………………….......…30

5.12 Structure IV of H2O-CO2……………………………………………………...……31

5.13 Structure V of H2O-CO2………………………………………….…………...........32

Page 14: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

x

5.14 Energy vs. Distance diagram of Water Carbon dioxide complex………………..…34

5.15 Optimized structure of Water Carbon dioxide complex……………………….........34

5.16 Spectra of one Water Nitrogen generated by Gaussian..............................................35

5.17 Spectra of Water Nitrogen obtained from MIS……………………….……….........36

5.18 Spectra of one Water Carbon dioxide generated by Gaussian ...........................…...36

5.19 Spectra of Water Carbon dioxide obtained from MIS………………………......….37

5.20 Structure I of two water-nitrogen complex…………………………………....……37

5.21 Structure II of two water-nitrogen complex…………………………………...……38

5.22 Structure III of two water-nitrogen complex..............................................................39

5.23 Structure IV of two water-nitrogen complex……………………………….....…….39

5.24 Optimized Structure of two water-nitrogen complex..................…...........................40

5.25 Structure I of two water-carbon dioxide complex................................…..................41

5.26 Structure I of two water-carbon dioxide complex………………..........................…42

5.27 Structure I of two water-carbon dioxide complex......................................................42

5.28 Structure I of two water-carbon dioxide complex..........................…........................43

5.29 Molecular orbital interaction between water -nitrogen complex…............................44

5.30 Molecular orbital interaction between water- carbon dioxide

complex……….................................................................................................……44

Page 15: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

xi

5.31 Spectra of Nitrogen molecule generated by Gaussian…............................................45

5.32 Spectra of two Water-Nitrogen complexes generated by

Gaussian....................................................................................................................46

5.33 Spectra of Carbon dioxide molecule generated by Gaussian….................................46

5.33 Spectra of Water-Carbon dioxide complex generated by

Gaussian…................................................................................................................47

Page 16: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 1

Chapter 1

Introduction

1.1 Atmospheric Complexes

It is well-documented that the water molecule can form weak (van der Waals)

complexes with atmospheric gases, such as O2 1, 2, 3

. Much weaker (less than 1kcal/mol)

van der Waals interactions with N2 can lead to complexes between abundant

atmospheric gases and water. These weak forces include dispersion forces, electrostatic

interactions, and hydrogen bonding. Weak intermolecular interactions are responsible

for solvation and complexation. They affect optical properties and reaction dynamics of

molecular systems4.

Global warming and climate change are topics of concern everywhere. The factors

affecting atmospheric changes are diverse and for some changes there is not enough

scientific understanding to grasp their impact. Water vapor plays an important role in the

radiative balance of the earth. Water molecules can absorb both the short-wavelength

solar radiation arriving in the atmosphere and the outgoing infrared (IR) surface

radiation. Water complexes could play a role in the chemical and radiative balance of the

atmosphere if their spectroscopic and photochemical properties are sufficiently different

from those of their monomeric constituent 4.

Carbon dioxide is well known for its IR energy absorption capacity, or greenhouse

effect. When it forms a hydrated complex, its IR absorption ability may increase. This

argument can be justified if computational simulation is performed on this hydrated

complex.

At Lamar University research had been going on this topic for past several years.

Page 17: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 2

Using matrix isolation spectroscopic experiments, a wealth of infrared spectral data on

atmospheric reactions with water vapor has been obtained that needs a review and

proper interpretation. The spectroscopic information of these complexes is essential to

estimate their atmospheric abundance and quantify their effect on the atmosphere5.

Computational chemistry has arisen as a powerful tool to calculate physical and

chemical properties of molecules. The types of predictions possible for molecules and

reactions include heats of formation, bond and reaction energies, molecular energies

and structures, vibration frequencies (IR and Raman spectra), etc.6.

Advances in the computational chemistry branch allow the study of the

interaction between two or more molecules 7. Among developed different methods, the

ab initio methods are the most accurate. Ab initio schemes utilize the supermolecular

approach to study intermolecular interaction energy.

1.2 Overview of the study

We have put emphasis on the computational chemistry simulations to compare

the experimental data obtained from the Matrix Isolation FTIR spectroscopic

investigation. A Hartee-Fock as well as post-Hartree-Fock ab initio computation on

hydrated complex with nitrogen and carbon dioxide using the Gaussian 03 program has

been performed. At first single point energy of this complexes are determined which

help to predict the stability and reaction mechanism. Then the equilibrium geometries

and vibrational frequencies were calculated with the Mөller Plesset perturbation theory

of second order (MP2) as well as Density Functional Theory (DFT). A triple basis set

combined with diffuse functions and polarization functions (6-311++G(2d,2p)) were

used to calculate at the above level of theory. Not only monomer water molecule, but

Page 18: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 3

also multiple water molecules interacted with the same counter species have been

considered. Geometry optimization can tell us the most possible geometry in which

these complexes can be in atmosphere while the frequency shifts were compared and

confirmed with experimental spectra obtains with IR spectroscopy.

The goal of this study is to:

1. Theoretically prove the existence of H2O-N2 and H2O-CO2 Complexes.

2. Determine the single point energy of these water complexes.

3. To find out the optimized structures of H2O-N2, H2O-CO2, H2O-N2-H2O, and

H2O-CO2-H2O Complexes.

4. Compare the result obtained from the theoretical analysis to the experimental

study.

A brief description of the Matrix Isolation spectroscopy is given in Chapter 3.

Methodology of this study is discussed in Chapter 4. Chapter 5 contains the results and

discussion. Conclusion and scopes of future study is discussed in chapter 6.

Page 19: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 4

Chapter 2

Literature Review

2.1. Fundamental Interactions

In nature four types of interactions are found. They are strong, weak, electromagnetic

and gravitational8

. In table 2.1 a summary of these interactions is shown.

Electromagnetic interaction is an interaction between charged particles arising from

their electric and magnetic fields. They are long range attractions or repulsions between

charged particles. These forces are responsible for the formation of covalent and

noncovalent bonds.

In noncovalent bonds these interactions may be intermolecular or intramolecular.

Interactions between two or more molecules are called intermolecular interaction while

interaction between the atoms within a molecule are called intramolecular interaction 9.

In Figure 2.1 different types of noncovalent interactions are shown. Our focus is only on

noncovalent intermolecular interactions, which are very important for this study.

2.1.1. Noncovalent Intermolecular Interactions

Intermolecular interactions occur between all types of molecules or ions in all state of

matter. Their range varies from the strong, long distant electromagnetic force to

relatively weak dispersion forces.

These intermolecular interactions can be divided into four broad categories which are

electrostatic, repulsion-exchange, polarization and dispersion interaction.

Page 20: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 5

Table 2.1 Fundamental Interaction10

Figure 2.1 Summaries of the Non-covalent Interactions10

Page 21: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 6

Therefore, the total intermolecular interaction energy for a system is defined as

the sum of these four intermolecular energies:

Eint = Ees + Epol + Edis + Eex (1)

Where, Ees, Epol, Edis, Eex, are electrostatic, polarization, dispersion and exchange

respectively.

-Repulsion – exchange interactions are for the overlapping of charge of occupied orbitals.

It also originated from the exchange effect.

-Electrostatic interactions are between two molecules with permanent dipole. Some

types of electrostatic interaction are charge – charge, charge – dipole, dipole – dipole.

-Polarization interactions occur between two molecules when one has a permanent dipole

and the other has an induced dipole. Sometimes it occurs in non-polar molecule also for

the movement of the valence electron which causes instantaneous dipoles.

-Dispersion interactions occur between two molecules when one has induced dipole

and the other has an instantaneous dipole. It is generally observed in non-polar

molecules and is not considered simple electrical attractions. These types of interactions

are very weak until the molecules or ions are very close to each other 11

.

2.2. Computational Chemistry

Computational chemistry is defined as the application of chemical, mathematical

and computational skills to the solutions of chemical problems6, 12

. Different types of

theoretical methods have been developed to approach computational chemistry. The

grade of rigor of calculations is the differentiating point among these methods. The most

acceptable methods are: Molecular Mechanics, Semi-empirical, and ab Initio. General

Page 22: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 7

characteristics for each method are summarized in table 2.2.

2.2.1. Ab Initio Methods

Ab initio translated from Latin means “from first principles.” This refers to the fact

that no experimental data is used and computations are based on quantum mechanics. Ab

initio method uses Schrödinger’s equation as the start point for the calculations.

In ab initio methods solutions of the Schrödinger equation is done using a series

of rigorous mathematical approximations. Ab initio calculations are defined by “model

chemistry”. This model includes the choice of Methods and Basis set. The ab initio

method is classified in two subclasses: Hartrees Fock and Post Hartree Fock methods.

Page 23: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 8

Table 2.2 Theoretical Methods in Computational Chemistry10

2.2.1.1 Hartree-Fock Method (HF)

Hartree-Fock theory is the most common type of ab initio calculation. It provides a

reasonable model for a wide range of problems and molecular systems. However it has

some limitations. They arise from the fact that Hartee-Fock theory does not include a full

treatment of the effects of electron correlation: the energy contributions arising from

electron interacting with one another. For systems and situations where such effects are

important, Hartee-Fock results may not be satisfactory 6. Hartree-Fock theory often

Page 24: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 9

provides a good starting point for more elaborate theoretical methods which are

better approximations to the electronic Schrödinger equation.

2.2.1.2 Post Hartree-Fock Methods

The electron correlation effects are considered in Post Hartee-Fock methods. Where in

Hartee-Fock method these effects are approximated by the interaction of each electron

with an average electric field produced by all the remaining electrons in the system,

the post Hartee-Fock methods consider the full extent of many particle effects. Although

the correlation energy which originated from the electron correlation is a small percentage

of the total energy of the system but cannot be neglected. So a number of different

techniques have been developed to determine the correlation energy. These techniques are

known as electron correlation methods or post -Hartree-Fock methods. The most

widely used are the Configuration Interaction(CI), perturbation techniques such

asMoller-Plesset perturbation (MP* ,*=2,3,4...) and cluster expansion such as Coupled

Clusters (CC) 10

.

2.2.1.3 Basis Set

A basis set is the mathematical description of the orbitals within a system (which in

turn combine to approximate the total electronic wave function) used to perform the

theoretical calculation. Larger basis sets more accurately approximate the orbitals by

imposing fewer restrictions on the locations of the electrons in space 6.

There are two types of basis functions, commonly used in electronic structure

calculation: Gaussian type orbitals (GTO) and slater type orbital (STO).

Page 25: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 10

Classification of Basis Sets

The classification of basis sets can be done according to the number of basis

functions used to describe each atomic orbital in: minimal, splitting the minimal and

extended basis set.

Minimal Basis Set

Contain the minimum number of basis functions needed to describe each atom. For

example, for hydrogen and helium, this means a single s-function. For the first row in

the periodic table, i t means two s-functions (1s and 2s) and one set of p-functions (2px,

2py, 2pz).

Splitting the minimal basis set

Split orbitals: The next improvement in the basis set is including two or three

basis functions for each atomic orbital. For example double zeta (DZ) and triple zeta

(TZ) basis set. A DZ basis set employs two s-functions for hydrogen (1s and 1s’),

four s- functions (1s, 1s’, 2s and 2s’) and two p-functions (2p and 2p’) for first row

in the periodic table.

Split valence: The orbitals corresponding to the inner shell of electrons are

described with only one basis function while the orbitals corresponding to the valence

shell electron are described with two or more basis functions.

Extended basis set

The "extended" basis sets consider the higher orbitals of the molecule and account for

size and shape of molecular charge distributions. The improvement consist in

including higher angular momentum basis function to account for distortions, such as

polarization and diffusion, caused by the interactions of neighboring atoms.

Page 26: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 11

When two atoms are close enough the distortion of electron density happen due to the

influence of the other nucleus. This charge charge redistribution causes a polarization

effect. For example, it can distort the spherical 1s orbital on hydrogen by mixing in

with an orbital with p symmetry. The positive lobe at one side increases the value of

the orbital while the negative lobe at the other side decreases the orbital. Thus it

becomes polarized 10

.

Similarly it can polarize the p orbitals if it is mix in with an orbital of d symmetry.

These additional basis functions are called polarization functions.

In some cases like in an excited state the normal basis functions we use are not

adequate. To model this kind of state some additional basis functions called diffuse

functions are used.

Pople Style Basis Set

There are many different basis set available in the literature or built into

programs. Among the most used representative notations of Pople style basis set are:

STO-nG basis set, slater type orbital consisting of n primitives Gaussian type

orbital (PGTO). This basis set is a widely used as minimum basis set.

k-nlmG basis set. This basis set is of the split valence type. In this notation k is

the numbers of PGTOs functions that represent the inner shell electrons or core

Page 27: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 12

orbital, while nlm indicates both how many the valence orbitals are split, and how

many PGTOs function are used for their representation.

Two values (nl) indicate a split valence, while three values (nlm) indicate a triple

split valence. The values before the G indicate the s and p – functions in the basis set.

To each one of these basis sets, diffuse and/or polarization functions can be added.

Diffuse functions are s and p – functions, denoted by + for heavy atoms and ++ for

hydrogens and consequently go before the G. Polarization functions are indicated for a

letter inside parenthesis or an asterisk after the G, with a separate designation for

heavy atoms and hydrogens. For example, the 6-31+G (d) or 6-31+G* basis set is a

split valence basis set with one set of diffuse sp-functions on heavy atoms only

and a single d-type polarization function on heavy atoms 6,10,11

.

2.2.2. Density Funtional Theory –DFT

The DFT methods are considered an ab initio method, but different from other ab

initio methods because the wavefunction is not used to describe a molecule, instead the

electron density is used 6. For this reason some theoreticians disagree with this. DFT

includes the effect of electron correlation. In DFT theory electron correlation is

computed as a functional of the electron density, ρ. The functional employed is

computed separately into several components according to the Kohn-Sham equation:

E = ET

+ EV

+ EJ

+ EXC

(2)

Where, ET

is the kinetic energy term that contain the motions of electrons, EV

is

the potential energy term that includes nuclear-nuclear and nuclear-electron

interactions, EJ

is the electron-electron repulsion term and EXC

is the exchange-

correlation term that includes the electron correlation.

Page 28: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 13

Two types of functionals are used here. These are traditional and hybrid functionals.

The local and gradient-corrected or non-local functionals are the traditional functionals.

The most popular gradient-corrected exchange functional is one proposed by Becke12

(B)

and the most usually used gradient-corrected correlation functional is the Lee, Yang and

Parr13

(LYP).

The hybrid functionals define the exchange functional as a linear combination of

Hartree-Fock, local and non-local exchange terms; and the correlation functional as a

local and/or non-local correlation terms. The most known is the Becke’s three-

parameter formulation, B3LYP.

2.2.3. Types of Calculations

The ab initio methods can be used to calculate structural and thermodynamic

properties such as6

:

1. Molecular Geometry

2. Vibrational Frequencies-Force Constants - Vibrational Spectrum

3. Intermolecular Interaction energies

4. Solvation properties

5. Energy Potential Surfaces

6. Energy Barriers to Reactions - Internal, Rotational or Inversion

7. Chemical Reactions - Transition State Theory

8. Ionization Potentials

2.2.4. Terminology

Terminology used in this work is the standard nomenclature of the reference 6

energy_method/energy_basis_set//geometry_method/geometry_basis_set

Page 29: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 14

Where the model to the left of the double slash is the one at which the energy is

computed, and the model to the right of the double slash is the one at which the

molecular geometry was optimized.

2.2.5. Intermolecular Interaction Energy Calculation

The ab initio methods are the most accurate for calculating intermolecular

interaction energy. Ab initio schemes utilize the perturbation and supermolecular

methods as approaches to study the intermolecular interaction energy.

The perturbation methods

treat the interaction between the subsystem wave

functions as a perturbation and the interaction energy is evaluated by perturbation

theory 14

. The different interactions energies, electrostatic energy, polarization energy,

dispersion energy and exchange energy, are calculated separately. Therefore the total

energy is a summation of these contributions.

The supermolecular methods have been the most common procedure for the

calculation of interaction energies 10

.

2.2.5.1 Supermolecular Approach

If we consider a chemical system AB composed of two interacting fragments A and

B. The interaction can be defined as15, 16

:

Eint = E complex – ∑ E molecule (3)

Where, Eint is the intermolecular interaction energy or binding energy, E complex the

energy of the complex AB and ∑ E molecule is the total energy of isolated molecules A

and B.

Page 30: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 15

2.2.5.2. Effective ab initio methods for supermolecular approach

Many ab initio methods such as HF, MP2, and DFT can be used for

intermolecular interaction energy calculation, using the supermolecular approach.

However, not all of them will give satisfactory result.

The Hartree-Fock method does not consider the dispersion energy, which is

involves in electron correlation between electrons on different molecules.

In the post-Hartree–Fock methods, the electron correlation is evaluated.

Therefore, the interaction energy calculated with these methods should give more

value. The post Hartree Fock methods with less computational cost is second–order

Møller - Plesset theory (MP2), this methods give accurate intermolecular interaction

energies 17

.

DFT method demand much less computationally cost than o ther post-Hartree-

Fock methods. The disadvantage of the DFFT method is it cannot evaluate the

dispersion energy. This happens because DFT method does not have a correlation

functional that can describe the dispersion energy18, 19

.

2.2.7 The Water Complexes

Molecular complexes in the Earth’s atmosphere are of two types: collisional, such as

the oxygen dimer O2·O2, or bound– van der Waals complexes – like the water vapor

dimer H2O-H2O. In both cases, it can be assumed that they are at equilibrium with their

parent molecules in the atmosphere. Their formation and loss processes can then be

expressed as a reaction of the type [A] + [B]=[A−B], with an equilibrium constant

usually noted Kp. These complexes have a short atmospheric lifetime (few picoseconds)

and a broad spectrum for absorption of solar radiation. They can be observed in the

Page 31: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 16

UV/Visible spectral ranges. These measurements are often used to obtain cloud top

heights. The abundance of collision complexes depends on the partial pressure of the

parent molecules, such as O2, H2O or N2, and on the temperature. Their atmospheric

abundance and variations are well documented. On the other hand, there have been no

reports of explicit detection of bound complexes in the atmosphere so far. In the past 2–3

decades, lots of laboratory and theoretical studies of bound complexes have been

published.20-25

However in most recent studies it has been found that the inferred abundance of water

complex at the Earth’s surface is at the sub-ppmv level. This is comparable to the surface

concentrations of CO or N2O and shows that knowledge of the abundance of water

vapour complexes is undeniably important to further our understanding of tropospheric

processes.26

Page 32: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 17

Chapter 3

Previous Work

3.1 Overview of the Study

Matrix isolation spectroscopy was developed by George Pimentel in solidified noble

gases, which act as trapping media for reactive species27

.However the experimental

advances were very small as temperature reached was about 66K which is not enough to

hold neon, argon or other noble gases used for trapping 28

. Now a day’s equipment like

FTIR has made matrix isolation spectroscopy more simple and interesting.

The experimental study was based on Matrix Isolation (MI) coupled with Fourier

Transform Infrared Spectroscopy. In this technique, the species to be observed are

trapped in a non-reactive substance like argon, nitrogen, etc. at very low temperature. The

species is referred to as the guest and the non-reactive substance is referred to as the host.

The guest and host molecules are deposited on a cold window present inside the matrix

isolation chamber. The choice of the host and cold window material is mainly dependent

on the kind of experiments to be carried out and also the cost factor.

This method allows a direct search for the weak hydrated complexes. These

complexes have a very short lifetime under normal temperature and pressure. MI is a

good method to increase the life time of these complexes and study them. Gas phase

interaction of the reactive species was avoided by depositing the sample gases using

separate deposition ports and mixing cylinders. MI is sensitive technique and even a

slight change in the vacuum or the temperature during experimentation can change the

outcome of the experiment.

Page 33: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 18

3.2 Carbon dioxide Experiment

Carbon dioxide used in this experiment was of research grade manufactured by Air

Liquid. The experiment was carried out at a temperature of 10-11K and at a pressure of

5.5 E-5 Pa. CO2 was deposited at the rate of 0.54 cc/min for five minutes. The experiment

was carried out for a period of about 7 hours. This is a three layer deposition experiment

in which the CO2 was deposited for 5 minutes on the cold window and the spectra

recorded for an hour and likewise a third deposition was done and the spectra recorded.

Analysis of the spectra showed that water-carbon dioxide complexes were formed

during the course of the experiment an seen to increase. The peak at 1599 cm-1

, 3635 cm-1

and 3727 cm-1

were assigned to water-carbon dioxide complex. The basis for this

assignment is from available literature.

Figure 3.1 CO2-H2O Complex Peaks29

3.3 Nitrogen Experiment

1500 cc of pure nitrogen was stored in the mixing cylinder to deposit on the cold

window. Nitrogen was deposited on the cold window for 20 minutes with a flow rate of

Page 34: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 19

0.5 cc/min. After deposition spectra were recorded every 10 minutes for 2 hours. After

two hours, nitrogen was again deposited for another 20 minutes maintaining the same

flow rate and again spectra were recorded as mentioned above. The above procedure was

done again for a third time and thus nitrogen was deposited layer by layer. Figure 3.2

shows the spectra recorded at 0. 110. 142, 252 and 397 minutes of the experiment.

Figure 3.2 N2-H2O Complex peaks30

Page 35: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 20

Chapter 4

Methodology

4.1 Instruments

Dell workstation with dual processors and 4 Gb RAM was used to perform the

theoretical calculations. All calculations were performed with the Gaussian 03 systems

of programs31

. The structures of all molecules were modeled and visualized using

Gauss view program32

.

4.2 Computational Methods

This section is divided into two parts. In the first part we performed the

geometry optimization, and vibrational frequencies with their infrared

intensities calculations for the water complexes. In the second part, we compared the

result from the Gaussian with the experimental data we already have. DFT, MP2 and

MP4 methods were evaluated and compared to determine the magnitude of difference

in theoretical treatments.

4.2.1 Geometry Optimization and Vibrational Frequency calculations

In this study, we have considered several model of water-nitrogen and water–

carbon dioxide complex. These models were visualized using the Gauss View

programs33

.

4.3 Computational Details

Full geometry optimization calculations using Gaussian 03 packages of

programs34

were made for two lower-energy conformations of Water complexes. The

optimization was performed using MP2, MP4 and DFT methods35-39

. Basis set effects

Page 36: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 21

were evaluated for the two methods using the family of basis set from the 6-31G up to

the 6-311+ (d, p).

In the DFT calculations we used the hybrid density functional B3LYP 11, 12.

In this

hybrid functional, the exchange functional -B3- correspond to Becke-3–Parameter and

the correlation functional –LYP- correspond to Lee-Yang-Parr.

We compare B3LYP and MP2 predictions of internal coordinates (bonds, angles

and dihedral angles) against structural parameters obtained from the X-ray diffractions

of water complexes. The geometry of the two conformers was optimized to better than

0.0001 Å for bond distances and 0.1° for bond angles. The convergence was, for all

conformations and basis sets, of at least 10-9

on the density matrix, and the RMS force

less than 10-4

a. u. for the optimized structures.

Vibrational frequencies calculations were performed for the two lower-energy

conformers optimized of the water complexes using B3LYP method with

different basis sets. Normal–mode analysis was carried out for the optimized

geometries and Infrared (IR) spectra were obtained. We compare the theoretical

frequencies and spectra predicted using B3LYP/6-311+G (d, p) for the two conformers

against experimental frequencies and spectra of water complexes. The spectra were

simulated with a resolution arbitrary of 5 cm-1

. The vibrational motions corresponding

to each normal mode were determined using Gauss View interactive visualization and

animation program30

.

Page 37: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 22

Chapter 5

Results and Discussion

5.1 Geometry Optimization and Vibrational Frequency Calculations for Water

Complexes

5.1.1. Geometry Optimization Calculation of one Water Nitrogen Complex

Non-local DFT and MP2 calculation performed in this work yielded lower- energy

conformation of water-nitrogen complex31-36

. Six geometric configurations for the

complexes have been considered at first. They are depicted in to figure 5 .1-5.6.

and details of these figures are described in table 5.1-5.6. In the table NA, NB, NC refer

Z-matrix coordinates where X, Y, Z refer the Cartesian coordinates. Dihedral refers the

angle between the planes. The atoms were numbered to specify the optimized

structural parameters, i.e. bond lengths and bond angles. The geometry of two

conformers was optimized to better than 0.001 Å for bond distances and 0.1° for bond

angles. The convergence was, for all conformations and basis sets, of at least 10-9

on

the density matrix, and the RMS force less than 10-4

a. u. for the optimized structure.

Figure 5.1 Structure I of H2O-N2

Page 38: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 23

Table 5.1 Details of Structure I of H2O-N2

Figure 5.2 Structure II of H2O-N2

Table 5.2 Details of Structure II of H2O-N2

Page 39: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 24

Figure 5.3 Structure III of H2O-N2

Table 5.3 Details of Structure III of H2O-N2

Figure 5.4 Structure IV of H2O-N2

Page 40: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 25

Table 5.4 Details of Structure IV of H2O-N2

Figure 5.5 Structure V of H2O-N2

Table 5.5 Details of Structure V of H2O-N2

Page 41: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 26

Figure 5.6 Structure VI of H2O-N2

Table 5.6 Details of Structure VI of H2O-N2

Table 5.7 shows the energy calculated by various methods for the above depicted

geometric configuration.

Table 5.7 Calculated Energy of Water-Nitrogen complexes by different methods

Method

RHF MP2 MP4 DFT

Basis set 3-21 G 6-311++G 6-311++G 6-311++G

Structure 2D,2P 2D,2P B3LYP

I -183.869272952 -185.005269629 -185.005269629 -186.004558257

II -183.886002560 -185.029869878 -185.029869878 -186.025318281

III -183.884221702 -185.030112860 -185.030112860 -186.024301519

IV -183.887716898 -184.986862636 -184.986862636 -185.974836132

V -183.887518356 -185.030575601 -185.030575601 -186.025601206

VI -183.868337987 -185.011426403 -185.011426403 -186.008296680

Page 42: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 27

From the table it is clear that Structure V gives the minimum energy in each method

except the Restricted Hartee Fock (RHF).

So further analysis has been done with the Structure V. Minimum energy at different

N-H distance have been calculated for Structure V and shown in Table 5.8 and energy

vs. distance graph is plotted in Figure 5.7.

Table 5.8 Calculated Energy of Water-Nitrogen complexe at different N-H Distance

H2O-N2

Energy

N-H distance MP2

1.47663 -184.958069

1.6138 -184.9701124

1.73684 -184.976853

1.8138 -184.9797468

1.90332 -184.9821955

2.01176 -184.9842027

2.11176 -184.9854072

2.2113 -184.9861899

2.31176 -184.986693

2.4138 -184.9870032

2.5138 -184.9871745

2.6138 -184.9872583

2.7138 -184.9872858

2.8138 -184.9872776

2.9138 -184.9872484

3.01318 -184.9872078

3.11318 -184.9871616

3.21318 -184.9871139

3.42365 -184.9870184

3.53612 -184.9869728

3.72656 -184.9869058

3.91795 -184.9868507

4.72189 -184.9867096

Page 43: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 28

Figure 5.7 Energy vs. Distance diagram of Water Nitrogen complex

From the above diagram it is confirmed that the energy drops up to a certain distance

and it became constant. It is also well established from previous study 50,51

. We found the

minimum energy at a distance of 2.6138. Optimized structure is been shown in Figure

5.8.

Figure 5.8 Optimized structure of H2O-N2

-184.99

-184.99

-184.98

-184.98

-184.97

-184.97

-184.96

-184.96

-184.95

1 1.5 2 2.5 3 3.5 4 4.5 5

Ene

rgy

in H

arte

e

N-H distance in Angstroms

N-H:2.618 Ao,

<NHO: 173.4o,

N=N: 1.113 Ao,

NNH: 177.30o,

HOH:104.59Ao

Page 44: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 29

5.1.2 Geometry Optimization Calculation of one Water Carbon dioxide Complex

Similar calculations have been carried out for water-carbon dioxide complex. Figure

5.9- 5.13 presents the different geometric configuration of water-carbon dioxide

complex which has been considered for geometric optimization. The optimization was

performed using MP2 method.

Figure 5.9 Structure I of H2O-CO2

Table 5.9 Details of Structure I of H2O-CO2

Page 45: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 30

Figure 5.10 Structure II of H2O-CO2

Table 5.10 Details of Structure II of H2O-CO2

Figure 5.11 Structure III of H2O-CO2

Page 46: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 31

Table 5.11 Details of Structure III of H2O-CO2

Figure 5.12 Structure IV of H2O-CO2

Table 5.12 Details of Structure IV of H2O-CO2

Page 47: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 32

Figure 5.13 Structure V of H2O-CO2

Table 5.13 Details of Structure V of H2O-CO2

Table 5.14 shows the energy calculated by various methods for the above depicted

geometric configuration.

Table 5.14 Calculated Energy of Water-Carbon dioxide complexes by different methods

Method

RHF MP2 MP4 DFT

Basis Set 3-21 G 6-31++G 6-31++G 6-311++G

Structure 2D,2P 2D,2P B3LYP

I -

262.141516566

-

263.721476918

-

263.721476736

-

265.097528950

II -

262.098714965

-

263.622527714

-

263.622527714

-

265.071747667

III -

262.135220577

-

263.490383238

-

263.490383238

-

265.100496044

IV -

262.127789033

-

263.658439438

-

263.658439438

-

265.097755308

V -

262.112889952

-

263.636419993

-

263.636419993

-

265.082765115

Page 48: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 33

From the table it is clear that Structure I gives the minimum energy in each method

except the DFT method.

So further analysis has been done with the Structure I. Minimum energy at different

C-O distance have been calculated for Structure I and shown in Table 5.15 and energy

vs. distance graph is plotted in Figure 5.14

Table 5.15 Calculated Energy of Water-Carbon dioxide complex at different C-O

Distance

Energy

C-O Length DFT

5 -265.1006114

2.94 -265.1029411

2.64017 -265.1022879

2.54017 -265.1014094

2.44017 -265.0999122

2.34017 -265.09752895

2.24017 -265.09389581

2.14017 -265.08852994

2.04017 -265.08082351

1.94017 -265.07004507

1.84017 -265.05536322

1.74017 -265.03583987

1.64017 -265.01050303

1.54017 -264.97825510

1.44017 -264.937507

Page 49: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 34

Figure 5.14 Energy vs. Distance diagram of Water Carbon dioxide complex

From the above diagram it is confirmed that the energy drops up to a certain distance

and it became constant. It is also well established from previous study 50,51

. We found the

minimum energy at a distance of 2.6138. Optimized structure is been shown in Figure

5.15.

Figure 5.15 Optimized structure of Water Carbon dioxide complex

-265.12

-265.1

-265.08

-265.06

-265.04

-265.02

-265

-264.98

-264.96

-264.94

-264.92

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Ene

rgy

in H

arte

e

C-O distance in Angstroms

C-O: 2.94 Ao,

<OCO: 86.65o

C=O: 1.160 Ao

Page 50: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 35

5.1.3 Vibrational Frequencies Calculation

Vibrational frequencies for the two complexes were determined through normal-

mode analysis. In this analysis, the two complexes exhibited real frequencies.

Vibrational frequencies were calculated using B3LYP method with the family of

basis sets 6-31G to 6-311+G(d,p), for the complexes.

The values that more resembled the experimental data were the calculated with the

6-31G (d) and 6-311+G (d, p) basis set. Figure 5.16, 5.17 shows a comparison of the

calculated infrared spectra performed with B3LYP method using the 6-31G(d) and

basis set and the spectra obtained from the experiment, for the water nitrogen complex.

Figure 5.16 Spectra of one Water Nitrogen complex generated by Gaussian

Page 51: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 36

Figure 5.17 Spectra of Water Nitrogen complex obtained from Matrix Isolation

Spectroscopy (MIS)

The peak values obtained from Gaussian are at 737.805 cm-1

, 1658.54 cm-1

, 2006.1

cm-1

and 4000 cm-1which are comparable to the peak value obtained from experimental

data 797 cm-1

, 1684 cm

-1 and 2348 cm

-1.

Similar charts have been plotted for water carbon dioxide complex and showed in

Figure 5.18 and 5.19

Figure 5.18 Spectra of one Water Carbon dioxide generated by Gaussian

2140

1684

797

Page 52: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 37

Figure 5.19 Spectra of Water Carbon dioxide obtained from MIS

The peak values obtained from Gaussian are at 1647.81 cm-1

and 3864.9 cm-1

which

are comparable to the experimental data 1687 cm-1

and 3615 cm-1

.

5.1.4 Geometry Optimization Calculation of two Water Nitrogen Complex

Although our study has confirmed the molecular structure of Water nitrogen and

water carbon dioxide complex, complex with multiple water is also a concern. Four

Geometric configurations with two water molecule and one nitrogen molecule has been

studied and depicted in Figure 5.20- 5.23. Details of this figures are described in tabular

form from table 5.16-5.19 Minimum energy of each configuration is also calculated and

showed in table 5.19

Figure 5.20 Structure I of two water-nitrogen complex

1687

3615

Page 53: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 38

Table 5.16 Details of Structure I of H2O-N2

Figure 5.21 Structure II of two water-nitrogen complex

Table 5.17 Details of Structure II of H2O-N2

Page 54: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 39

Figure 5.22 Structure III of two water-nitrogen complex

Table 5.18 Details of Structure III of H2O-N2

Figure 5.23 Structure IV of two water-nitrogen complex

Page 55: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 40

Table 5.19 Details of Structure IV of H2O-N2

Table 5.20 Calculated Energy of two Water-Nitrogen complexes by different

methods

Method

RHF MP2 MP4 DFT

basis set 3-21 G 6-31++G 6-31++G 6-311++G

Structure 2D,2P 2D,2P B3LYP

I -

259.4360565 -

259.4440043 -

259.4440043 -

259.4340343

II -

259.4303925 -

260.9596558 -

260.9596558 -

262.4346973

III -

259.4419479 -

260.9826086 -

260.9826086 -

262.4546049

IV -

259.4757560 -

261.0862785 -

261.0862785 -

262.4883963

It is clear that Structure IV is exhibiting the minimum energy. Optimized structure of

structure IV is shown in Figure 5.24.

Figure 5.24 Optimized Structure of two water-nitrogen complex

Page 56: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 41

We have found an Eh= -262.488399096 for this optimized structure. The point group

is Cs and <OHN=168.36617o

5.1.5 Geometry Optimization Calculation of two Water-Carbon dioxide Complex

Water carbon dioxide complex with two water molecule is also been studied. Three

geometric configurations is analyzed, those are depicted from Figure 5.25-5.27. Their

details have been described in tabular form from table 5.20-5.22. Minimum energy of

each configuration is also calculated and showed in table 5.23

Figure 5.25 Structure I of two water-carbon dioxide complex

Table 5.21 Details of Structure I of 2H2O-CO2

Page 57: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 42

Figure 5.26 Structure II of two water-carbon dioxide complex

Table 5.22 Details of Structure II of 2H2O-CO2

Figure 5.27 Structure III of two water-carbon dioxide complex

Page 58: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 43

Table 5.23 Details of Structure III of 2H2O-CO2

Table 5.24 Calculated Energy of two Water-Nitrogen complexes by different

methods

Method

RHF MP2 MP4 DFT

basis set 3-21 G 6-31++G 6-31++G 6-31++G

Structure 2D,2P 2D,2P B3LYP

I -

337.747553358 -

339.798041829 -

339.798041829 -

341.565330599

II -

337.691043630 -

339.669707515 -

339.669707515 -

341.539613743

III -

337.661450215 -

339.618675197 -

339.618675197 -

341.493912698

Structure I exhibiting the minimum energy. Optimized structure is shown in Figure 5.28.

Figure 5.28 Optimized structure of two water-carbon dioxide complex

Page 59: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 44

5.2 Molecular Orbital Interaction from Gaussian

From Gaussview 03 we have also generated molecular interaction diagram for water-

nitrogen complex and water-carbon dioxide complex. These diagrams show the extent of

interaction by similar color.

Molecular orbital interaction diagram of water nitrogen complex and water carbon

dioxide complexes are shown in Figure 5.29 - 5.30

Figure 5.29 Molecular orbital interaction between one water -nitrogen complex

Figure 5.30 Molecular orbital interaction between water –carbon dioxide complex

Page 60: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 45

From careful observation of the above four figures it can be deduced that water-carbon

dioxide complexes have shown a greater orbital interaction in comparison to water-

nitrogen complexes. The single point energy, calculated for these complexes also support

this. We have found much larger single point energy for water-nitrogen complex (Eh= -

186.0 and -262.48) than water-carbon dioxide complex (Eh=-265.11 and -341.56).

5.3 Comparison of IR absorption for nitrogen and Water-nitrogen complex:

Spectra of only nitrogen molecule and only carbon dioxide molecule are also

generated. In Figure 5.31 we can see that no IR absorbance is occurring while in Figure

5.32 some IR absorbance is clearly seen. So nitrogen molecule does not absorb IR but

Water-Nitrogen complex does.

Figure 5.31 Spectra of Nitrogen molecule generated by Gaussian

Page 61: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 46

Figure 5.32 Spectra of two Water-Nitrogen complex generated by Gaussian

From the spectra of carbon dioxide molecule (Figure 5.33) and Water-Carbon dioxide

complex (Figure 5.34) it is observed that the complex has a wide range of IR absorbance

than the molecule alone.

Figure 5.33 Spectra of Carbon dioxide molecule generated by Gaussian

Page 62: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 47

Figure 5.33 Spectra of Water-Carbon dioxide complex generated by Gaussian

5.4 Summery of the Results

Table 5.4 shows the summery of all the calculated results

Table 5.25 Summery of the Results

H2O-N2 H2O-N2-H2O H2O-CO2

H2O-CO2-

H2O

Bond Distance in

angstrom 2.41318 2.45709 2.86451 2.94447

Energy (Eh) -186.0267798 -262.4883991

-

265.115709 -341.5655444

Symmetry Cs Cs C1 Cs

IR Frequencies

737.80 cm-1

,

1658.54 cm-1

and 2006.1

cm-1

1671.93 cm-1

and 3839.61

cm-1

1647.81

cm-1

and

3864.9 cm-1

1630.29 cm-1

and 2402.28

cm-1

Page 63: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 48

Chapter 6

Conclusion and Future Works

Regarding water-nitrogen complex, the vibrational frequencies generated from

Gaussian are at 737.805 cm-1

, 1658.54 cm-1

, 2006.1 cm-1

and 4000 cm-1

which are within

the error tolerance limit of experimentally obtained wavenumbers of 797 cm-1

, 1684 cm

-1

and 2348 cm-1

. For one water-nitrogen complex we obtained a geometry which has a

point group of Cs, Eh=-186.03. For two water-nitrogen complex we got a point group of

Cs, Eh= -262.48 and vibrational peak at 1671.93 cm-1

and 3839.61 cm-1

.

Similar satisfactory wavenumbers have been found for water-carbon dioxide complex.

Peaks at 1687 cm-1

and 3615 cm-1

were found from experimental data while peaks at

1647.81 cm-1

and 3864.9 cm-1

(for one water-carbon dioxide) and 1630.29 cm-1

and

2402.28 cm-1

(for two water-carbon dioxide) have been found from Gaussian program.

From this research, we may conclude that water-carbon dioxide complexes have

higher single point energy than water-nitrogen complexes. The molecular orbital

interaction diagram generated from Gaussian program also indicated this fact.

We also concluded that nitrogen molecules do not show any IR absorbance value, but

water-nitrogen complexes have some IR absorbance. This indicates that if this complex

is present in the atmosphere it may enhance the greenhouse effect. A wider range of IR

absorbance value has been found for water-carbon dioxide complex than for carbon

dioxide alone. This extensive IR absorbance by water-carbon dioxide complex also

indicates that it may play an important role in greenhouse effect. In addition, single point

Page 64: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 49

energy of complexes decreases while increasing the van der Waals distance, and after a

certain distance it becomes constant.

Lastly, larger hydrated complexes with more than three water molecules are expected

to have similar properties which we found in this work. However, analysis of larger

molecules is beyond the scope of this study. So in presence of higher computational

facility, larger complex with higher basis set can be simulated in Gaussian.

Page 65: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 50

References

1. Igor M. Svishchev and Russell J. Boyd, “van der Waals Complexes of Water with

Oxygen and Nitrogen: Infrared Spectra and Atmospheric Implications,” Journal of

Physical Chemistry 102 (1998): 7294-7296.

2. H.G. Kjaergaard, G.R. Low, T.W. Robinson, D.L. Howard, Journal of Physical

Chemistry 106 (2002): 8955.

3. H.M. Lee and K.S. Kim, Molecular Physics 100 (2002): 875.

4. V. Vaidaand and J. E. Headrick, “Physicochemical Properties of Hydrated

Complexes in the Earth's Atmosphere,” Journal of Physical Chemistry 104 (2000): 5401-

5412.

5. H. G. Kjaergaard, T. W. Robinson, D. L. Howard, J. S. Daniel, J. E. Headrick, and

V. Vaida, “Complexes of Importance to the Absorption of Solar Radiation,” Journal of

Physical Chemistry A 107 (2003): 10680-10686.

6. Foresman, J.B. and A. Frisch. Exploring Chemistry with Electronic Structure

Methods. Pittsburgh, PA: Gaussian Inc., 1996.

7. Y. Ma, “Determination of NonCovalent Intermolecular Interaction Energy from

Electron Densities,” (Ph.D. Dissertation, University of New Orleans, New Orleans, 2004)

8. James O’Connell, “Comparison of the Four Fundamental Interactions of Physics,”

The Physics Teacher (1998): 36, 27.

Page 66: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 51

9. S. S. Zumdahl, Chemical Principle (New York: Houghton Mifflin, 2002) Chapter 4.

10. Liliana F. Alzate Rodríguez, “Ab Initio and DFT Calculations of TNT and its

interaction with clay minerals: changes on TNT spectroscopic signature,” (Master’s

thesis, University of Puerto Rico, 2005).

11. I. N. Levine, Physical Chemistry (New York: Mc Graw-Hill, 2006) Chapter 22.

12. F. Jensen, Introduction to Computational Chemistry. England: John Wiley & Sons

Ltd., 1999.

13. A. D. Becke. “Density-Functional. Thermochemistry. III. The Role of Exact

Exchange,” Journal of Chemical Physics 98 (1993) 5648-5652.

14. P. Arrighini, Intermolecular Forces and Their Evaluation by Perturbation Theory.

Berlin: Springer, 1981.

15. F. B. van Duijneveldt and Van Lenthe, “State of the Art in Counterpoise Theory,”

Chemical Reviews 94 (1994): 1873-1885.

16. B. Jeziorski, R. Moszynski and K. Szalewicz, “Perturbation Theory Approach to

Intermolecular Potential Energy Surfaces of van der Waals Complex,” Chemical Reviews

94 (1994): 1886-1930.

17. G. Cholasinski and M. Gutowski, “Weak Interactions between Small Systems.

Models for Studying the Natural of Intermolecular Forces and Challenging Problems

for ab Initio Calculations,” Chemical Reviews 88 (1988): 943-962.

Page 67: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 52

18. S. F. Boys and F. Bernardi, “The calculation of small molecular interactions by the

differences of separate total energies. Some procedures with reduced errors,” Molecular

Physics 19 (1970): 553.

19. P. Hobza, J. Sponer, and T. J. Reschel. “Study in Gaussian,” Journal of

Computational Chemistry 11(1995): 1315.

20. Paul, J. B., Collier, C. P., Saykally, R. J., Scherer, J. J. and O’Keefe, “A Direct

measurement of water cluster concentrations by infrared cavity ring down laser

absorption spectroscopy,” Journal of Physical Chemistry A 101 (1997): 5211–5214.

21. I.M Svishchev and R.J Boyd, “van der Waals complexes of water with oxygen and

nitrogen: Infrared spectra and atmospheric implications,” Journal of Physical Chemistry

A 102 (1998): 7294–7296, accessed April 2012. doi:10.1021/jp981166d, 1998.

22. T. Tao, M. Higgins, and F. Nelson, “Structure, binding energy, and equilibrium

constant of the nitric acid-water complex,” Geophysics Review. Literature 23 (1996):

797–1800, accessed April 2012, doi: 10.1029/96GL00947.

23. H. G. Kjaergaard, T. W. Robinson, “High level ab initio studies of the low-lying

excited states in the H2O–O2complex,” Journal of Chemical Physics 119(2003): 3717-

3720.

Page 68: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 53

24. Akiyoshi Sabu, Satomi Kondo, Ryu Saito, Yasuko Kasai, and Kenro Hashimoto,

“Theoretical Study of O 2-H2O: Potential Energy Surface, Molecular Vibrations, and

Equilibrium Constant at Atmospheric Temperatures,” Journal of Physical Chemistry A

109 (2005): 1836-1842.

25. J.E Headrick and V. Vaida, “Significance of water complexes in the atmosphere,”

Journal of Physical Chemistry 26 (2001): 479–486.

26. Y. Kasai, E. Dupuy, R. Saito,K. Hashimoto, A. Sabu, S. Kondo, Y. Sumiyoshi,

and Y. Endo, “The H2O-O2 water vapor complex in the Earth’s atmosphere,”

Atmospheric Chemical Physics 11 (2011): 8607–8612.

27. Pimentel, Whittle, and Dows, Journal of Chemical Physics 22, (1954): 1943.

28. I. R. Dunkin. Matrix Isolation Techniques: A Practical Approach. Oxford: Oxford

University Press, 1998.

29. Harimadhav Balu, “Species mobility and surface effects in matrix isolation

spectroscopy,” (Master’s thesis, Lamar University, 2005)

30. Prashanth Jayablu, “Determination of Wavenumbers of van der Waals Complexes

using Matrix Isolation Spectroscopy,” (Master’s thesis, Lamar University, 2005)

31. A. Frisch, R. D. Dennington II, T. A. Keith, A. B. Nielsen, A J. Holder. Gauss

View, Revision A.3, Pittsburgh, PA: Gaussian, Inc., 2003.

Page 69: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 54

32. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.

Cheeseman, V.G. Zakrzewski, Gaussian 03, Revision A.3,Pittsburgh PA :Gaussian, Inc.,

2003.

33. A. Frisch, R. D. Dennington II, T. A. Keith, A. B. Nielsen, A J. Holder, Gauss

View, Revision A.5, Pittsburgh PA: Gaussian, Inc., 2003.

34. S. Chin, T.A. Ford and W.B. Person, Journal of Molecular Structure, 113 (1984):

341.

35. S. Chin and T.A. Ford, Journal of Molecular Structure 133 (1985): 193.

36. A.E. Reed, F. Weinhold, L.A. Curtiss and D.J. Pochatko, Journal of Chemical

Physics 84 (1986):5687.

37. S. Chin and T.A. Ford, Journal of Molecular Structure 152 (1987): 363.

38. M. J. Brasler, V.C.E. Carr, M.G. Gerazounis, N.R. Jugga, G.A. Yeo and T.A.

Ford, Journal of Molecular Structure 180 (1988): 241.

39. T.D. Makomela Journal of Molecular Structure 275 (1992): 3&54.

40. G.A. Yeo and T.A. Ford, Journal of Molecular Structure 141 (1986): 331.

41. G.A. Yeo and T.A. Ford, S. Afr, Journal of Chemical Physics 39 (1986) 243.

42. F.M.M. O’Neill, G.A. Yeo and T.A. Ford, Journal of Molecular Structure 173

(1988): 337.

43. G.A. Yeo and T.A. Ford, Journal of Molecular Structure 168 (1988): 247.

Page 70: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 55

44. D.G. Evans, G.A. Yeo and T.A. Ford, Faraday Discussion on Chemistry 86

(1988): 107.

45. G.A. Yeo and T.A. Ford, Journal of Molecular Structure 200 (1989): 507.

Page 71: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 56

Appendix A

Gaussian Output file for Water-Nitrogen

Entering Link 1 = C:\G03W\l1.exe PID= 2516.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004, Gaussian, Inc.

All Rights Reserved.

This is the Gaussian(R) 03 program. It is based on the

the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),

the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),

the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),

the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),

the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),

the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon

University), and the Gaussian 82(TM) system (copyright 1983,

Carnegie Mellon University). Gaussian is a federally registered

trademark of Gaussian, Inc.

This software contains proprietary and confidential information,

including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be

used, copied, transmitted, or stored only in accord with that

written license.

The following legend is applicable only to US Government

contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is

subject to restrictions as set forth in subparagraphs (a)

and (c) of the Commercial Computer Software - Restricted

Rights clause in FAR 52.227-19.

Gaussian, Inc.

340 Quinnipiac St., Bldg. 40, Wallingford CT 06492

---------------------------------------------------------------

Warning -- This program may not be used in any manner that

competes with the business of Gaussian, Inc. or will provide

assistance to any competitor of Gaussian, Inc. The licensee

of this program is prohibited from giving any competitor of

Gaussian, Inc. access to this program. By using this program,

the user acknowledges that Gaussian, Inc. is engaged in the

business of creating and licensing software in the field of

computational chemistry and represents and warrants to the

licensee that it is not a competitor of Gaussian, Inc. and that

it will not use this program in any manner prohibited above.

---------------------------------------------------------------

Cite this work as:

Page 72: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 57

Gaussian 03, Revision C.02,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,

K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,

V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,

G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,

C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,

A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,

K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,

V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,

O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,

J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,

J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,

I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,

C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,

B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,

Gaussian, Inc., Wallingford CT, 2004.

******************************************

Gaussian 03: IA32W-G03RevC.02 12-Jun-2004

02-Jul-2012

******************************************

%chk=en4.chk

%mem=6MW

%nproc=1

Will use up to 1 processors via shared memory.

----------------------------------------------

# opt rb3lyp/6-311++g(2d,2p) geom=connectivity

----------------------------------------------

1/14=-1,18=20,26=3,38=1,57=2/1,3;

2/9=110,17=6,18=5,40=1/2;

3/5=4,6=6,7=1212,11=2,16=1,25=1,30=1,74=-5/1,2,3;

4/7=1/1;

5/5=2,38=5/2;

6/7=2,8=2,9=2,10=2,28=1/1;

7//1,2,3,16;

1/14=-1,18=20/3(1);

99//99;

2/9=110/2;

3/5=4,6=6,7=1212,11=2,16=1,25=1,30=1,74=-5/1,2,3;

4/5=5,7=1,16=3/1;

5/5=2,38=5/2;

7//1,2,3,16;

1/14=-1,18=20/3(-5);

2/9=110/2;

6/7=2,8=2,9=2,10=2,19=2,28=1/1;

99/9=1/99;

-------------------

Title Card Required

-------------------

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

O

H 1 B1

H 1 B2 2 A1

Page 73: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 58

N 1 B3 2 A2 3 D1 0

N 2 B4 1 A3 4 D2 0

Variables:

B1 0.958

B2 0.958

B3 3.291

B4 4.73264

A1 104.5

A2 104.5

A3 64.19823

D1 0.

D2 0.

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Initialization pass.

----------------------------

! Initial Parameters !

! (Angstroms and Degrees) !

-------------------------- ----------------

----------

! Name Definition Value Derivative Info.

!

----------------------------------------------------------------------

----------

! R1 R(1,2) 0.958 estimate D2E/DX2

!

! R2 R(1,3) 0.958 estimate D2E/DX2

!

! R3 R(3,4) 2.333 estimate D2E/DX2

!

! R4 R(4,5) 1.11 estimate D2E/DX2

!

! A1 A(2,1,3) 104.5 estimate D2E/DX2

!

! A2 L(3,4,5,-2,-1) 180.0 estimate D2E/DX2

!

! A3 L(3,4,5,-3,-2) 180.0 estimate D2E/DX2

!

! A4 L(1,3,4,2,-1) 180.0 estimate D2E/DX2

!

! A5 L(1,3,4,2,-2) 180.0 estimate D2E/DX2

!

----------------------------------------------------------------------

----------

Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06

Number of steps in this run= 20 maximum allowed number of steps= 100.

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Page 74: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 59

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 0.000000 0.000000 0.000000

2 1 0 0.000000 0.000000 0.958000

3 1 0 0.927485 0.000000 -0.239864

4 7 0 3.186174 0.000000 -0.824001

5 7 0 4.260818 0.000000 -1.101923

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.958000 0.000000

3 H 0.958000 1.514961 0.000000

4 N 3.291000 3.650648 2.333000 0.000000

5 N 4.401000 4.732636 3.443000 1.110000 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 0.038645 2.273422 0.000000

2 1 0 -0.888840 2.513286 0.000000

3 1 0 0.038645 1.315422 0.000000

4 7 0 0.038645 -1.017578 0.000000

5 7 0 0.038645 -2.127578 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 621.7622919 3.0013718

2.9869531

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.7464134128 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Harris functional with IExCor= 402 diagonalized for initial guess.

ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn=

5 AccDes= 0.00D+00

HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Page 75: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 60

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A") (A') (A') (A") (A")

(A') (A') (A') (A') (A') (A") (A') (A") (A') (A')

(A') (A") (A') (A') (A') (A") (A") (A') (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A') (A") (A') (A')

(A") (A') (A") (A') (A') (A") (A') (A") (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

The electronic state of the initial guess is 1-A'.

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.025773347 A.U. after 10 cycles

Convg = 0.4338D-08 -V/T = 2.0036

S**2 = 0.0000

**********************************************************************

Population analysis using the SCF density.

**********************************************************************

Orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A")

(A') (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A') (A") (A') (A')

(A") (A') (A") (A') (A') (A") (A') (A") (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

The electronic state is 1-A'.

Alpha occ. eigenvalues -- -19.12558 -14.44371 -14.44204 -1.14548 -

1.01651

Alpha occ. eigenvalues -- -0.58479 -0.53480 -0.48657 -0.48646 -

0.45904

Alpha occ. eigenvalues -- -0.39278 -0.31713

Alpha virt. eigenvalues -- -0.05968 -0.05926 -0.01081 0.03475

0.06677

Alpha virt. eigenvalues -- 0.08062 0.08295 0.12029 0.12320

0.14329

Alpha virt. eigenvalues -- 0.15724 0.16298 0.19004 0.20679

0.23477

Alpha virt. eigenvalues -- 0.26211 0.29693 0.37811 0.51711

0.53348

Alpha virt. eigenvalues -- 0.58713 0.67185 0.68628 0.68804

0.69872

Alpha virt. eigenvalues -- 0.73130 0.73942 0.78507 0.79396

0.79408

Alpha virt. eigenvalues -- 0.80022 0.83662 0.88210 0.92298

0.97245

Page 76: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 61

Alpha virt. eigenvalues -- 1.00529 1.02334 1.07663 1.09260

1.21479

Alpha virt. eigenvalues -- 1.21485 1.22040 1.31490 1.40132

1.55202

Alpha virt. eigenvalues -- 1.71388 1.72340 1.77701 1.81390

1.89021

Alpha virt. eigenvalues -- 1.91296 1.98397 2.21486 2.34981

2.57800

Alpha virt. eigenvalues -- 2.98502 3.62544 3.62839 3.72270

3.72891

Alpha virt. eigenvalues -- 3.74227 3.90958 3.92162 3.95107

3.99704

Alpha virt. eigenvalues -- 4.13863 4.30475 4.37135 4.37671

4.42604

Alpha virt. eigenvalues -- 4.57494 4.57501 4.72669 4.72681

4.74605

Alpha virt. eigenvalues -- 5.00768 5.17552 5.17622 5.59157

6.15028

Alpha virt. eigenvalues -- 6.19876 6.85749 6.87647 7.00651

7.28325

Alpha virt. eigenvalues -- 7.50343 35.09806 35.90074 49.90774

Condensed to atoms (all electrons):

1 2 3 4 5

1 O 7.965964 0.264231 0.279674 -0.001328 0.013224

2 H 0.264231 0.515682 -0.011086 0.000118 -0.000723

3 H 0.279674 -0.011086 0.394741 0.014208 0.015460

4 N -0.001328 0.000118 0.014208 6.448600 0.655911

5 N 0.013224 -0.000723 0.015460 0.655911 6.215637

Mulliken atomic charges:

1

1 O -0.521765

2 H 0.231779

3 H 0.307005

4 N -0.117509

5 N 0.100491

Sum of Mulliken charges= 0.00000

Atomic charges with hydrogens summed into heavy atoms:

1

1 O 0.017018

2 H 0.000000

3 H 0.000000

4 N -0.117509

5 N 0.100491

Sum of Mulliken charges= 0.00000

Electronic spatial extent (au): <R**2>= 360.1588

Charge= 0.0000 electrons

Dipole moment (field-independent basis, Debye):

X= -1.5244 Y= -1.5028 Z= 0.0000 Tot= 2.1406

Quadrupole moment (field-independent basis, Debye-Ang):

XX= -15.9129 YY= -22.1319 ZZ= -18.1597

XY= -4.3382 XZ= 0.0000 YZ= 0.0000

Traceless Quadrupole moment (field-independent basis, Debye-Ang):

XX= 2.8220 YY= -3.3971 ZZ= 0.5751

XY= -4.3382 XZ= 0.0000 YZ= 0.0000

Octapole moment (field-independent basis, Debye-Ang**2):

XXX= -2.0281 YYY= -0.4949 ZZZ= 0.0000 XYY= -11.8200

XXY= 4.2647 XXZ= 0.0000 XZZ= -0.2427 YZZ= -1.2095

Page 77: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 62

YYZ= 0.0000 XYZ= 0.0000

Hexadecapole moment (field-independent basis, Debye-Ang**3):

XXXX= -16.0162 YYYY= -433.0531 ZZZZ= -16.7632 XXXY= -0.5320

XXXZ= 0.0000 YYYX= -27.4332 YYYZ= 0.0000 ZZZX= 0.0000

ZZZY= 0.0000 XXYY= -60.1234 XXZZ= -5.7307 YYZZ= -73.4640

XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.9678

N-N= 5.274641341277D+01 E-N=-5.426420332566D+02 KE=

1.853574064744D+02

Symmetry A' KE= 1.773928988873D+02

Symmetry A" KE= 7.964507587084D+00

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 -0.002521615 0.000000000 -0.000760950

2 1 -0.001352889 0.000000000 0.003002776

3 1 0.003364963 0.000000000 -0.002108960

4 7 0.051798368 0.000000000 -0.013263444

5 7 -0.051288828 0.000000000 0.013130578

-------------------------------------------------------------------

Cartesian Forces: Max 0.051798368 RMS 0.019485894

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.052942793 RMS 0.017754432

Search for a local minimum.

Step number 1 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Second derivative matrix not updated -- first step.

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.55906

R2 0.00000 0.55906

R3 0.00000 0.00000 0.02597

R4 0.00000 0.00000 0.00000 1.67009

A1 0.00000 0.00000 0.00000 0.00000 0.16000

A2 0.00000 0.00000 0.00000 0.00000 0.00000

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 0.00000 0.00000 0.00000 0.00000 0.00000

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.16000

A3 0.00000 0.16000

A4 0.00000 0.00000 0.25000

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.02597 0.16000 0.16000 0.16000 0.25000

Eigenvalues --- 0.25000 0.55906 0.55906 1.67009

RFO step: Lambda=-1.77359680D-03.

Linear search not attempted -- first point.

Iteration 1 RMS(Cart)= 0.01353528 RMS(Int)= 0.00007395

Iteration 2 RMS(Cart)= 0.00005762 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

Page 78: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 63

R1 1.81036 0.00300 0.00000 0.00535 0.00535 1.81571

R2 1.81036 0.00431 0.00000 0.00769 0.00769 1.81805

R3 4.40873 0.00053 0.00000 0.01898 0.01898 4.42771

R4 2.09760 -0.05294 0.00000 -0.03167 -0.03167 2.06593

A1 1.82387 0.00245 0.00000 0.01514 0.01514 1.83901

A2 3.14159 -0.00027 0.00000 -0.00168 -0.00168 3.13992

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.14159 0.00028 0.00000 0.00110 0.00110 3.14269

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.052943 0.000450 NO

RMS Force 0.017754 0.000300 NO

Maximum Displacement 0.027360 0.001800 NO

RMS Displacement 0.013539 0.001200 NO

Predicted change in Energy=-8.882943D-04

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 0.000262 0.000000 0.001476

2 1 0 -0.014478 0.000000 0.962196

3 1 0 0.931736 0.000000 -0.239218

4 7 0 3.199622 0.000000 -0.827897

5 7 0 4.257335 0.000000 -1.104344

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960833 0.000000

3 H 0.962069 1.529286 0.000000

4 N 3.305111 3.678977 2.343043 0.000000

5 N 4.398352 4.745416 3.436284 1.093243 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.121959 -2.273338 0.000000

2 1 0 0.794269 -2.562693 0.000000

3 1 0 -0.085711 -1.311952 0.000000

4 7 0 0.000000 1.029522 0.000000

5 7 0 0.038159 2.122099 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 624.1920946 2.9961732

2.9818600

Standard basis: 6-311++G(2d,2p) (5D, 7F)

Page 79: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 64

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 53.0204714299 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A")

(A') (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A') (A") (A') (A')

(A") (A') (A") (A') (A') (A") (A') (A") (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Harris functional with IExCor= 402 diagonalized for initial guess.

ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn=

5 AccDes= 0.00D+00

HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026779802 A.U. after 11 cycles

Convg = 0.3506D-08 -V/T = 2.0032

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 0.000007664 0.000000000 -0.000077512

2 1 0.000198296 0.000000000 -0.000346431

3 1 -0.000602930 0.000000000 0.000532157

4 7 0.006854763 0.000000000 -0.001664490

5 7 -0.006457793 0.000000000 0.001556276

-------------------------------------------------------------------

Cartesian Forces: Max 0.006854763 RMS 0.002512575

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Page 80: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 65

Internal Forces: Max 0.006641544 RMS 0.002230522

Search for a local minimum.

Step number 2 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 1 2

Trust test= 1.13D+00 RLast= 4.10D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.56118

R2 0.00263 0.56226

R3 -0.00059 -0.00086 0.02584

R4 -0.00979 -0.00830 0.01131 1.46092

A1 0.00191 0.00239 -0.00047 -0.01055 0.16170

A2 0.00044 0.00064 0.00007 -0.00785 0.00036

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 -0.00051 -0.00073 -0.00008 0.00883 -0.00041

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.15996

A3 0.00000 0.16000

A4 0.00004 0.00000 0.24996

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.02575 0.15986 0.16000 0.16164 0.24989

Eigenvalues --- 0.25000 0.55903 0.56425 1.46139

RFO step: Lambda=-1.03469528D-05.

Quartic linear search produced a step of 0.12562.

Iteration 1 RMS(Cart)= 0.00355763 RMS(Int)= 0.00000205

Iteration 2 RMS(Cart)= 0.00000222 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81571 -0.00035 0.00067 -0.00142 -0.00074 1.81497

R2 1.81805 -0.00031 0.00097 -0.00164 -0.00068 1.81737

R3 4.42771 0.00041 0.00238 0.00981 0.01219 4.43990

R4 2.06593 -0.00664 -0.00398 -0.00055 -0.00452 2.06141

A1 1.83901 -0.00035 0.00190 -0.00502 -0.00312 1.83589

A2 3.13992 -0.00027 -0.00021 -0.00159 -0.00180 3.13812

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.14269 0.00030 0.00014 0.00118 0.00131 3.14400

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.006642 0.000450 NO

RMS Force 0.002231 0.000300 NO

Maximum Displacement 0.007492 0.001800 NO

RMS Displacement 0.003557 0.001200 NO

Predicted change in Energy=-1.997916D-05

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.002010 0.000000 0.001624

2 1 0 -0.015033 0.000000 0.961975

Page 81: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 66

3 1 0 0.929439 0.000000 -0.237733

4 7 0 3.203587 0.000000 -0.827972

5 7 0 4.258493 0.000000 -1.105683

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960439 0.000000

3 H 0.961711 1.526868 0.000000

4 N 3.311205 3.682855 2.349496 0.000000

5 N 4.402046 4.747445 3.440340 1.090849 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.119738 -2.276377 0.000000

2 1 0 0.796958 -2.562930 0.000000

3 1 0 -0.083318 -1.315356 0.000000

4 7 0 0.000000 1.032662 0.000000

5 7 0 0.034895 2.122953 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 624.3821144 2.9897165

2.9754692

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 53.0473528060 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A")

(A') (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A") (A') (A') (A')

(A") (A') (A') (A") (A') (A") (A') (A") (A') (A')

Page 82: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 67

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026799874 A.U. after 8 cycles

Convg = 0.3555D-08 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 -0.000041808 0.000000000 -0.000173430

2 1 -0.000098591 0.000000000 0.000146099

3 1 -0.000218385 0.000000000 0.000122570

4 7 -0.000043177 0.000000000 0.000141900

5 7 0.000401961 0.000000000 -0.000237139

-------------------------------------------------------------------

Cartesian Forces: Max 0.000401961 RMS 0.000156080

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.000449003 RMS 0.000249021

Search for a local minimum.

Step number 3 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 1 2 3

Trust test= 1.00D+00 RLast= 1.36D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.56321

R2 0.00407 0.56324

R3 0.00128 0.00075 0.02418

R4 0.01881 0.01169 0.05341 1.73955

A1 0.00362 0.00355 0.00194 0.00954 0.16296

A2 -0.00177 -0.00123 0.00166 -0.05558 -0.00239

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 0.00186 0.00128 -0.00189 0.06062 0.00256

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.15849

A3 0.00000 0.16000

A4 0.00173 0.00000 0.24802

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.02234 0.15585 0.16000 0.16343 0.24585

Eigenvalues --- 0.25000 0.55913 0.56696 1.74608

RFO step: Lambda=-6.77342599D-06.

Quartic linear search produced a step of 0.07410.

Iteration 1 RMS(Cart)= 0.00656748 RMS(Int)= 0.00000214

Iteration 2 RMS(Cart)= 0.00000205 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

Page 83: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 68

R1 1.81497 0.00015 -0.00006 0.00028 0.00022 1.81519

R2 1.81737 0.00013 -0.00005 0.00025 0.00020 1.81757

R3 4.43990 0.00037 0.00090 0.01535 0.01626 4.45616

R4 2.06141 0.00045 -0.00034 -0.00002 -0.00036 2.06105

A1 1.83589 0.00017 -0.00023 0.00107 0.00084 1.83673

A2 3.13812 -0.00026 -0.00013 -0.00183 -0.00196 3.13615

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.14400 0.00028 0.00010 0.00126 0.00135 3.14536

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.000449 0.000450 YES

RMS Force 0.000249 0.000300 YES

Maximum Displacement 0.010557 0.001800 NO

RMS Displacement 0.006566 0.001200 NO

Predicted change in Energy=-3.496192D-06

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.004967 0.000000 0.002558

2 1 0 -0.019856 0.000000 0.962999

3 1 0 0.926848 0.000000 -0.235799

4 7 0 3.209173 0.000000 -0.828774

5 7 0 4.263278 0.000000 -1.108771

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960556 0.000000

3 H 0.961817 1.527535 0.000000

4 N 3.319911 3.692841 2.358098 0.000000

5 N 4.410552 4.757885 3.448746 1.090659 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.117302 -2.281451 0.000000

2 1 0 0.799226 -2.568930 0.000000

3 1 0 -0.080749 -1.320328 0.000000

4 7 0 0.000000 1.036387 0.000000

5 7 0 0.031420 2.126593 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 625.3329504 2.9768837

2.9627795

Standard basis: 6-311++G(2d,2p) (5D, 7F)

Page 84: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 69

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 53.0010612909 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A")

(A') (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A") (A') (A') (A')

(A") (A') (A') (A") (A') (A") (A') (A") (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026806194 A.U. after 8 cycles

Convg = 0.2011D-08 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 0.000001599 0.000000000 -0.000150314

2 1 -0.000010022 0.000000000 0.000006638

3 1 -0.000300409 0.000000000 0.000224825

4 7 -0.000653974 0.000000000 0.000302698

5 7 0.000962806 0.000000000 -0.000383848

-------------------------------------------------------------------

Cartesian Forces: Max 0.000962806 RMS 0.000342265

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.001029000 RMS 0.000380283

Search for a local minimum.

Step number 4 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 1 2 3 4

Page 85: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 70

Trust test= 1.81D+00 RLast= 1.65D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.57466

R2 0.01749 0.57872

R3 -0.00116 -0.00010 0.00673

R4 -0.06025 -0.07647 0.01087 2.23106

A1 0.01510 0.01708 -0.00113 -0.07786 0.17459

A2 0.00174 0.00130 0.01539 -0.04165 0.00189

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 -0.00131 -0.00074 -0.01639 0.04182 -0.00135

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.14835

A3 0.00000 0.16000

A4 0.01261 0.00000 0.23636

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.00357 0.14774 0.16000 0.17077 0.23837

Eigenvalues --- 0.25000 0.55906 0.58934 2.24160

RFO step: Lambda=-3.71049783D-06.

Quartic linear search produced a step of 2.00000.

Iteration 1 RMS(Cart)= 0.01846779 RMS(Int)= 0.00002041

Iteration 2 RMS(Cart)= 0.00002023 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81519 0.00001 0.00044 -0.00032 0.00013 1.81531

R2 1.81757 -0.00003 0.00040 -0.00044 -0.00003 1.81754

R3 4.45616 0.00032 0.03251 0.01356 0.04607 4.50223

R4 2.06105 0.00103 -0.00072 0.00076 0.00004 2.06109

A1 1.83673 0.00002 0.00168 -0.00122 0.00046 1.83719

A2 3.13615 -0.00026 -0.00392 -0.00283 -0.00675 3.12940

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.14536 0.00027 0.00271 0.00192 0.00463 3.14999

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.001029 0.000450 NO

RMS Force 0.000380 0.000300 NO

Maximum Displacement 0.029448 0.001800 NO

RMS Displacement 0.018455 0.001200 NO

Predicted change in Energy=-1.334714D-05

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.013543 0.000000 0.004880

2 1 0 -0.032734 0.000000 0.965311

3 1 0 0.919204 0.000000 -0.229728

4 7 0 3.224756 0.000000 -0.830247

5 7 0 4.276794 0.000000 -1.118005

---------------------------------------------------------------------

Distance matrix (angstroms):

Page 86: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 71

1 2 3 4 5

1 O 0.000000

2 H 0.960623 0.000000

3 H 0.961799 1.527843 0.000000

4 N 3.344252 3.719580 2.382477 0.000000

5 N 4.434846 4.786673 3.473103 1.090682 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.109104 -2.295865 0.000000

2 1 0 0.807183 -2.584333 0.000000

3 1 0 -0.071979 -1.334782 0.000000

4 7 0 0.000000 1.046607 0.000000

5 7 0 0.019661 2.137112 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 627.7825773 2.9410044

2.9272908

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.8629872058 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A")

(A') (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A") (A') (A') (A')

(A") (A') (A') (A") (A') (A") (A') (A") (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Harris functional with IExCor= 402 diagonalized for initial guess.

ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn=

5 AccDes= 0.00D+00

HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

Page 87: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 72

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026820593 A.U. after 8 cycles

Convg = 0.9260D-08 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 -0.000008807 0.000000000 -0.000133005

2 1 0.000051227 0.000000000 -0.000064235

3 1 -0.000223854 0.000000000 0.000242230

4 7 -0.000749227 0.000000000 0.000327183

5 7 0.000930662 0.000000000 -0.000372173

-------------------------------------------------------------------

Cartesian Forces: Max 0.000930662 RMS 0.000347020

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.000995813 RMS 0.000358680

Search for a local minimum.

Step number 5 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 1 2 3 4 5

Trust test= 1.08D+00 RLast= 4.68D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.57110

R2 0.01243 0.57176

R3 0.00005 0.00148 0.00765

R4 -0.00158 -0.00274 -0.00990 1.67772

A1 0.01090 0.01113 0.00086 -0.01756 0.17007

A2 0.00077 -0.00037 0.01891 -0.03675 0.00113

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 -0.00034 0.00091 -0.01991 0.03790 -0.00049

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.14404

A3 0.00000 0.16000

A4 0.01741 0.00000 0.23106

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.00292 0.14300 0.16000 0.16931 0.23487

Eigenvalues --- 0.25000 0.55900 0.58443 1.67986

RFO step: Lambda=-1.50793914D-06.

Quartic linear search produced a step of 2.00000.

Iteration 1 RMS(Cart)= 0.03725458 RMS(Int)= 0.00009490

Iteration 2 RMS(Cart)= 0.00009491 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

Page 88: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 73

(Linear) (Quad) (Total)

R1 1.81531 -0.00006 0.00025 -0.00032 -0.00007 1.81524

R2 1.81754 -0.00009 -0.00007 -0.00034 -0.00040 1.81713

R3 4.50223 0.00019 0.09214 0.00114 0.09328 4.59551

R4 2.06109 0.00100 0.00009 0.00049 0.00058 2.06167

A1 1.83719 -0.00009 0.00092 -0.00171 -0.00079 1.83640

A2 3.12940 -0.00024 -0.01350 -0.00149 -0.01499 3.11441

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.14999 0.00023 0.00926 0.00084 0.01010 3.16009

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.000996 0.000450 NO

RMS Force 0.000359 0.000300 NO

Maximum Displacement 0.059484 0.001800 NO

RMS Displacement 0.037193 0.001200 NO

Predicted change in Energy=-1.032477D-05

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.031030 0.000000 0.009244

2 1 0 -0.058114 0.000000 0.969448

3 1 0 0.903585 0.000000 -0.216899

4 7 0 3.256234 0.000000 -0.832428

5 7 0 4.303802 0.000000 -1.137152

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960586 0.000000

3 H 0.961585 1.527182 0.000000

4 N 3.393305 3.772487 2.431838 0.000000

5 N 4.483859 4.843973 3.522547 1.090988 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.091241 -2.324898 0.000000

2 1 0 0.824795 -2.614040 0.000000

3 1 0 -0.052647 -1.364088 0.000000

4 7 0 0.000000 1.067180 0.000000

5 7 0 -0.006031 2.158151 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 630.5914958 2.8706372

2.8576284

Page 89: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 74

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.5868314465 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A")

(A') (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A") (A') (A') (A')

(A") (A') (A') (A") (A') (A") (A') (A") (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Harris functional with IExCor= 402 diagonalized for initial guess.

ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn=

5 AccDes= 0.00D+00

HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026832787 A.U. after 9 cycles

Convg = 0.9620D-09 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 -0.000060947 0.000000000 -0.000104779

2 1 0.000005848 0.000000000 0.000015161

3 1 0.000086572 0.000000000 0.000074809

4 7 -0.000156203 0.000000000 0.000146235

5 7 0.000124730 0.000000000 -0.000131425

-------------------------------------------------------------------

Cartesian Forces: Max 0.000156203 RMS 0.000084326

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Page 90: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 75

Berny optimization.

Internal Forces: Max 0.000190190 RMS 0.000100732

Search for a local minimum.

Step number 6 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 1 2 3 4 5

6

Trust test= 1.18D+00 RLast= 9.50D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.57187

R2 0.01324 0.57260

R3 -0.00074 0.00026 0.00792

R4 0.00525 0.00723 -0.00261 1.55393

A1 0.01076 0.01071 0.00029 -0.00136 0.16915

A2 -0.00142 -0.00345 0.02027 -0.00768 -0.00107

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 0.00180 0.00392 -0.02097 0.00702 0.00169

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.14213

A3 0.00000 0.16000

A4 0.01942 0.00000 0.22899

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.00244 0.14210 0.16000 0.16862 0.23431

Eigenvalues --- 0.25000 0.55900 0.58602 1.55410

RFO step: Lambda=-4.11386990D-07.

Quartic linear search produced a step of 0.07414.

Iteration 1 RMS(Cart)= 0.00302460 RMS(Int)= 0.00000228

Iteration 2 RMS(Cart)= 0.00000235 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81524 0.00002 -0.00001 0.00003 0.00003 1.81527

R2 1.81713 0.00003 -0.00003 0.00006 0.00003 1.81716

R3 4.59551 -0.00003 0.00692 -0.00067 0.00625 4.60175

R4 2.06167 0.00016 0.00004 0.00005 0.00009 2.06176

A1 1.83640 -0.00001 -0.00006 -0.00006 -0.00012 1.83628

A2 3.11441 -0.00019 -0.00111 -0.00132 -0.00243 3.11198

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.16009 0.00017 0.00075 0.00076 0.00151 3.16160

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.000190 0.000450 YES

RMS Force 0.000101 0.000300 YES

Maximum Displacement 0.004610 0.001800 NO

RMS Displacement 0.003023 0.001200 NO

Predicted change in Energy=-2.504717D-07

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

Page 91: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 76

1 8 0 -0.032103 0.000000 0.009334

2 1 0 -0.060479 0.000000 0.969514

3 1 0 0.902856 0.000000 -0.215447

4 7 0 3.258674 0.000000 -0.831926

5 7 0 4.305529 0.000000 -1.139262

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960599 0.000000

3 H 0.961600 1.527137 0.000000

4 N 3.396606 3.776501 2.435143 0.000000

5 N 4.487129 4.848604 3.525850 1.091037 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.088428 -2.326869 0.000000

2 1 0 0.827587 -2.616121 0.000000

3 1 0 -0.049611 -1.366053 0.000000

4 7 0 0.000000 1.068585 0.000000

5 7 0 -0.010079 2.159576 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 630.7173411 2.8659548

2.8529909

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.5675196545 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A')

(A") (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

Page 92: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 77

(A') (A") (A') (A') (A') (A') (A") (A') (A') (A')

(A") (A') (A') (A") (A') (A") (A') (A") (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026833229 A.U. after 8 cycles

Convg = 0.3313D-08 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 -0.000032810 0.000000000 -0.000091257

2 1 -0.000001046 0.000000000 0.000006591

3 1 0.000078373 0.000000000 0.000067061

4 7 -0.000035112 0.000000000 0.000106264

5 7 -0.000009405 0.000000000 -0.000088659

-------------------------------------------------------------------

Cartesian Forces: Max 0.000106264 RMS 0.000052001

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.000182670 RMS 0.000083379

Search for a local minimum.

Step number 7 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 1 2 3 4 5

6 7

Trust test= 1.77D+00 RLast= 6.87D-03 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.57286

R2 0.01459 0.57475

R3 0.00100 0.00415 0.00807

R4 0.00747 0.01599 0.02478 1.59744

A1 0.01087 0.01014 -0.00202 -0.01279 0.17056

A2 0.00339 0.00660 0.00923 0.04316 -0.00495

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 -0.00256 -0.00520 -0.01145 -0.03868 0.00527

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.07665

A3 0.00000 0.16000

A4 0.07720 0.00000 0.17803

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.00229 0.03768 0.16000 0.17016 0.21980

Eigenvalues --- 0.25000 0.55918 0.58882 1.60045

RFO step: Lambda=-1.33705601D-06.

Quartic linear search produced a step of 2.00000.

Iteration 1 RMS(Cart)= 0.00715446 RMS(Int)= 0.00002949

Iteration 2 RMS(Cart)= 0.00003069 RMS(Int)= 0.00000000

Page 93: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 78

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81527 0.00001 0.00005 0.00002 0.00007 1.81534

R2 1.81716 0.00001 0.00006 0.00005 0.00011 1.81727

R3 4.60175 -0.00005 0.01249 -0.00390 0.00859 4.61034

R4 2.06176 0.00002 0.00018 0.00006 0.00024 2.06200

A1 1.83628 0.00000 -0.00023 -0.00008 -0.00031 1.83597

A2 3.11198 -0.00018 -0.00487 -0.00402 -0.00889 3.10309

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.16160 0.00016 0.00302 0.00234 0.00536 3.16696

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.000183 0.000450 YES

RMS Force 0.000083 0.000300 YES

Maximum Displacement 0.011553 0.001800 NO

RMS Displacement 0.007142 0.001200 NO

Predicted change in Energy=-1.174459D-06

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.033111 0.000000 0.008673

2 1 0 -0.066344 0.000000 0.968736

3 1 0 0.903096 0.000000 -0.211102

4 7 0 3.263315 0.000000 -0.828719

5 7 0 4.307522 0.000000 -1.145376

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960638 0.000000

3 H 0.961657 1.527034 0.000000

4 N 3.401124 3.783843 2.439689 0.000000

5 N 4.491428 4.858001 3.530295 1.091165 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.078244 -2.329602 0.000000

2 1 0 0.837660 -2.619336 0.000000

3 1 0 -0.038635 -1.368761 0.000000

4 7 0 0.000000 1.070623 0.000000

5 7 0 -0.024725 2.161507 0.000000

---------------------------------------------------------------------

Page 94: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 79

Rotational constants (GHZ): 630.5641231 2.8594706

2.8465620

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.5388563052 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A')

(A") (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A") (A') (A') (A')

(A") (A') (A') (A") (A') (A") (A') (A") (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026834982 A.U. after 9 cycles

Convg = 0.4500D-09 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 0.000051140 0.000000000 -0.000051452

2 1 -0.000021114 0.000000000 -0.000021260

3 1 0.000034157 0.000000000 0.000054041

4 7 0.000302890 0.000000000 -0.000015018

5 7 -0.000367074 0.000000000 0.000033689

-------------------------------------------------------------------

Cartesian Forces: Max 0.000367074 RMS 0.000125988

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.000361085 RMS 0.000143883

Search for a local minimum.

Page 95: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 80

Step number 8 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 1 2 3 4 5

6 7 8

Trust test= 1.49D+00 RLast= 1.35D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.57561

R2 0.01960 0.58422

R3 0.00278 0.00716 0.00545

R4 0.03873 0.07787 0.04221 1.99823

A1 0.00880 0.00587 -0.00258 -0.04267 0.17271

A2 0.00330 0.00559 0.00128 0.03082 -0.00255

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 -0.00347 -0.00640 -0.00526 -0.04118 0.00441

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.06080

A3 0.00000 0.16000

A4 0.09190 0.00000 0.16490

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.00243 0.00793 0.16000 0.17134 0.21838

Eigenvalues --- 0.25000 0.55959 0.59537 2.00687

RFO step: Lambda=-3.26873216D-06.

Quartic linear search produced a step of 2.00000.

Iteration 1 RMS(Cart)= 0.01788576 RMS(Int)= 0.00026292

Iteration 2 RMS(Cart)= 0.00027640 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81534 -0.00002 0.00015 0.00002 0.00017 1.81551

R2 1.81727 -0.00005 0.00022 0.00005 0.00026 1.81753

R3 4.61034 -0.00007 0.01718 -0.01553 0.00165 4.61200

R4 2.06200 -0.00036 0.00048 0.00002 0.00050 2.06250

A1 1.83597 0.00004 -0.00062 0.00017 -0.00044 1.83553

A2 3.10309 -0.00015 -0.01777 -0.00890 -0.02667 3.07642

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.16696 0.00015 0.01072 0.00521 0.01593 3.18289

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.000361 0.000450 YES

RMS Force 0.000144 0.000300 YES

Maximum Displacement 0.029466 0.001800 NO

RMS Displacement 0.017859 0.001200 NO

Predicted change in Energy=-3.462857D-06

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.030941 0.000000 0.005017

2 1 0 -0.079309 0.000000 0.964527

3 1 0 0.908840 0.000000 -0.199588

Page 96: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 81

4 7 0 3.270075 0.000000 -0.816776

5 7 0 4.305812 0.000000 -1.160968

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960728 0.000000

3 H 0.961796 1.526958 0.000000

4 N 3.401772 3.793602 2.440564 0.000000

5 N 4.490763 4.873091 3.530393 1.091430 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.047797 -2.329763 0.000000

2 1 0 0.867602 -2.621386 0.000000

3 1 0 -0.005806 -1.368884 0.000000

4 7 0 0.000000 1.071673 0.000000

5 7 0 -0.068488 2.160952 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 624.3623541 2.8585607

2.8455328

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.5259194537 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A')

(A") (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A") (A') (A') (A')

(A") (A') (A') (A") (A') (A") (A') (A") (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Page 97: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 82

Harris functional with IExCor= 402 diagonalized for initial guess.

ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn=

5 AccDes= 0.00D+00

HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026839608 A.U. after 9 cycles

Convg = 0.1486D-08 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 0.000216874 0.000000000 0.000033691

2 1 -0.000047754 0.000000000 -0.000096442

3 1 -0.000092286 0.000000000 0.000056212

4 7 0.001027145 0.000000000 -0.000324453

5 7 -0.001103979 0.000000000 0.000330992

-------------------------------------------------------------------

Cartesian Forces: Max 0.001103979 RMS 0.000413122

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.001152040 RMS 0.000395399

Search for a local minimum.

Step number 9 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 1 2 3 4 5

6 7 8 9

Trust test= 1.34D+00 RLast= 3.11D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.58149

R2 0.02915 0.59962

R3 0.00320 0.00721 0.00360

R4 0.07010 0.12282 0.02602 1.98440

A1 0.00759 0.00428 -0.00107 -0.03408 0.17183

A2 0.00048 0.00014 -0.00140 -0.00560 0.00043

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 -0.00361 -0.00610 -0.00315 -0.02854 0.00300

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.05975

A3 0.00000 0.16000

A4 0.09516 0.00000 0.16167

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.00258 0.00326 0.16000 0.17080 0.21836

Eigenvalues --- 0.25000 0.55981 0.60719 2.00035

RFO step: Lambda=-5.39916053D-06.

Quartic linear search produced a step of 2.00000.

Page 98: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 83

Iteration 1 RMS(Cart)= 0.04310160 RMS(Int)= 0.00157085

Iteration 2 RMS(Cart)= 0.00166953 RMS(Int)= 0.00000021

Iteration 3 RMS(Cart)= 0.00000029 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81551 -0.00009 0.00034 -0.00014 0.00020 1.81571

R2 1.81753 -0.00018 0.00052 -0.00027 0.00026 1.81779

R3 4.61200 -0.00008 0.00331 -0.01447 -0.01116 4.60083

R4 2.06250 -0.00115 0.00100 -0.00108 -0.00008 2.06243

A1 1.83553 0.00009 -0.00088 0.00080 -0.00008 1.83545

A2 3.07642 -0.00007 -0.05335 -0.01169 -0.06504 3.01138

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.18289 0.00014 0.03186 0.00732 0.03918 3.22207

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.001152 0.000450 NO

RMS Force 0.000395 0.000300 NO

Maximum Displacement 0.066959 0.001800 NO

RMS Displacement 0.043161 0.001200 NO

Predicted change in Energy=-2.440442D-06

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.020845 0.000000 -0.004996

2 1 0 -0.107297 0.000000 0.951939

3 1 0 0.926470 0.000000 -0.172059

4 7 0 3.282376 0.000000 -0.786272

5 7 0 4.293773 0.000000 -1.196402

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960832 0.000000

3 H 0.961933 1.527104 0.000000

4 N 3.394357 3.809365 2.434657 0.000000

5 N 4.476089 4.897426 3.519660 1.091389 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 0.026043 -2.321845 0.000000

2 1 0 0.939695 -2.619232 0.000000

3 1 0 0.074138 -1.361115 0.000000

4 7 0 0.000000 1.072413 0.000000

Page 99: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 84

5 7 0 -0.174597 2.149745 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 577.0133334 2.8727743

2.8585425

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.5654104592 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A") (A') (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A')

(A") (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A') (A") (A') (A')

(A") (A') (A') (A") (A') (A") (A") (A') (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Harris functional with IExCor= 402 diagonalized for initial guess.

ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn=

5 AccDes= 0.00D+00

HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026843154 A.U. after 10 cycles

Convg = 0.2364D-08 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 0.000348490 0.000000000 0.000128416

2 1 -0.000039239 0.000000000 -0.000193765

3 1 -0.000233157 0.000000000 0.000098333

4 7 0.000870310 0.000000000 -0.000485745

5 7 -0.000946404 0.000000000 0.000452760

-------------------------------------------------------------------

Cartesian Forces: Max 0.000946404 RMS 0.000394556

Page 100: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 85

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.001047128 RMS 0.000376678

Search for a local minimum.

Step number 10 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 1 2 3 4 5

6 7 8 9 10

Trust test= 1.45D+00 RLast= 7.67D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.58709

R2 0.03715 0.61082

R3 0.00278 0.00614 0.00292

R4 0.04769 0.07795 0.00752 1.60803

A1 0.00957 0.00788 0.00004 -0.00704 0.17033

A2 -0.00242 -0.00444 -0.00189 -0.00833 0.00108

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 -0.00387 -0.00615 -0.00262 -0.01193 0.00186

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.06163

A3 0.00000 0.16000

A4 0.09666 0.00000 0.16030

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.00232 0.00290 0.16000 0.16983 0.21934

Eigenvalues --- 0.25000 0.55992 0.63002 1.61679

RFO step: Lambda=-2.17046510D-06.

Quartic linear search produced a step of -0.25146.

Iteration 1 RMS(Cart)= 0.01356612 RMS(Int)= 0.00011281

Iteration 2 RMS(Cart)= 0.00011814 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81571 -0.00019 -0.00005 -0.00013 -0.00018 1.81553

R2 1.81779 -0.00032 -0.00006 -0.00018 -0.00024 1.81755

R3 4.60083 -0.00007 0.00281 -0.02067 -0.01787 4.58297

R4 2.06243 -0.00105 0.00002 -0.00055 -0.00053 2.06189

A1 1.83545 0.00010 0.00002 0.00058 0.00060 1.83605

A2 3.01138 0.00013 0.01636 0.00114 0.01750 3.02888

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.22207 0.00012 -0.00985 -0.00034 -0.01019 3.21188

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.001047 0.000450 NO

RMS Force 0.000377 0.000300 NO

Maximum Displacement 0.021841 0.001800 NO

RMS Displacement 0.013613 0.001200 NO

Predicted change in Energy=-1.430629D-06

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

Page 101: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 86

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.019232 0.000000 -0.003774

2 1 0 -0.096431 0.000000 0.953855

3 1 0 0.926193 0.000000 -0.180521

4 7 0 3.272910 0.000000 -0.792504

5 7 0 4.291038 0.000000 -1.184844

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960736 0.000000

3 H 0.961804 1.527275 0.000000

4 N 3.385306 3.795027 2.425202 0.000000

5 N 4.469155 4.880975 3.511530 1.091107 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 0.006428 -2.317796 0.000000

2 1 0 0.920281 -2.614251 0.000000

3 1 0 0.052993 -1.357120 0.000000

4 7 0 0.000000 1.067503 0.000000

5 7 0 -0.146386 2.148746 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 594.0293711 2.8841297

2.8701944

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.6207469265 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A') (A") (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

Page 102: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 87

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A')

(A") (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A') (A") (A') (A')

(A") (A') (A') (A") (A') (A") (A") (A') (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Harris functional with IExCor= 402 diagonalized for initial guess.

ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn=

5 AccDes= 0.00D+00

HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026845118 A.U. after 9 cycles

Convg = 0.9245D-09 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 0.000174519 0.000000000 0.000028149

2 1 -0.000008229 0.000000000 -0.000117340

3 1 -0.000128893 0.000000000 0.000124898

4 7 0.000156816 0.000000000 -0.000151616

5 7 -0.000194213 0.000000000 0.000115908

-------------------------------------------------------------------

Cartesian Forces: Max 0.000194213 RMS 0.000108330

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.000222878 RMS 0.000115785

Search for a local minimum.

Step number 11 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 2 3 4 5 6

7 8 9 10 11

Trust test= 1.37D+00 RLast= 2.70D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.57959

R2 0.02462 0.59017

R3 -0.00130 -0.00028 0.00210

R4 0.02245 0.03966 -0.00227 1.62119

A1 0.01356 0.01409 0.00109 0.00060 0.16874

A2 0.00328 0.00514 0.00045 0.02265 -0.00233

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 0.00371 0.00695 0.00106 0.03767 -0.00350

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.05754

Page 103: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 88

A3 0.00000 0.16000

A4 0.09141 0.00000 0.15418

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.00202 0.00252 0.16000 0.16736 0.20824

Eigenvalues --- 0.25000 0.55965 0.60907 1.62463

RFO step: Lambda=-4.54840277D-07.

Quartic linear search produced a step of 0.20290.

Iteration 1 RMS(Cart)= 0.00476787 RMS(Int)= 0.00000500

Iteration 2 RMS(Cart)= 0.00000567 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81553 -0.00012 -0.00004 -0.00018 -0.00021 1.81531

R2 1.81755 -0.00018 -0.00005 -0.00026 -0.00030 1.81724

R3 4.58297 -0.00003 -0.00363 -0.00808 -0.01170 4.57126

R4 2.06189 -0.00022 -0.00011 -0.00006 -0.00017 2.06173

A1 1.83605 0.00003 0.00012 0.00020 0.00032 1.83637

A2 3.02888 0.00008 0.00355 -0.00661 -0.00306 3.02581

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.21188 0.00013 -0.00207 0.00491 0.00284 3.21472

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.000223 0.000450 YES

RMS Force 0.000116 0.000300 YES

Maximum Displacement 0.007584 0.001800 NO

RMS Displacement 0.004771 0.001200 NO

Predicted change in Energy=-3.132696D-07

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.016146 0.000000 -0.005113

2 1 0 -0.096234 0.000000 0.952164

3 1 0 0.929595 0.000000 -0.179270

4 7 0 3.270238 0.000000 -0.790005

5 7 0 4.287024 0.000000 -1.185565

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960622 0.000000

3 H 0.961643 1.527242 0.000000

4 N 3.378813 3.790553 2.419009 0.000000

5 N 4.462145 4.876765 3.504990 1.091019 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Page 104: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 89

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 0.010179 -2.313707 0.000000

2 1 0 0.923566 -2.611228 0.000000

3 1 0 0.057587 -1.353233 0.000000

4 7 0 0.000000 1.065091 0.000000

5 7 0 -0.151798 2.145497 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 591.6064275 2.8935302

2.8794469

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.6588598746 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A') (A") (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A')

(A") (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A') (A") (A') (A')

(A") (A') (A') (A") (A') (A") (A") (A') (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026845468 A.U. after 8 cycles

Convg = 0.3978D-08 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 0.000002863 0.000000000 -0.000060439

2 1 -0.000002420 0.000000000 -0.000013688

3 1 0.000014626 0.000000000 0.000118725

4 7 -0.000058455 0.000000000 -0.000074419

5 7 0.000043385 0.000000000 0.000029821

Page 105: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 90

-------------------------------------------------------------------

Cartesian Forces: Max 0.000118725 RMS 0.000044640

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.000135200 RMS 0.000054991

Search for a local minimum.

Step number 12 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 3 4 5 6 7

8 9 10 11 12

Trust test= 1.12D+00 RLast= 1.24D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.57997

R2 0.02665 0.59589

R3 -0.00021 0.00178 0.00253

R4 0.03776 0.07192 0.00411 1.76365

A1 0.01386 0.01384 0.00069 -0.00817 0.16867

A2 0.02006 0.03254 0.00379 0.08069 -0.00944

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 0.03190 0.05260 0.00645 0.12995 -0.01517

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.05047

A3 0.00000 0.16000

A4 0.07706 0.00000 0.12598

A5 0.00000 0.00000 0.00000 0.25000

Eigenvalues --- 0.00207 0.00253 0.13804 0.16000 0.18064

Eigenvalues --- 0.25000 0.56008 0.61893 1.78488

RFO step: Lambda=-1.87558189D-07.

Quartic linear search produced a step of 0.76790.

Iteration 1 RMS(Cart)= 0.00403836 RMS(Int)= 0.00000176

Iteration 2 RMS(Cart)= 0.00000208 RMS(Int)= 0.00000000

Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81531 -0.00001 -0.00016 0.00004 -0.00012 1.81519

R2 1.81724 -0.00001 -0.00023 0.00009 -0.00015 1.81710

R3 4.57126 0.00000 -0.00899 -0.00202 -0.01101 4.56026

R4 2.06173 0.00003 -0.00013 0.00004 -0.00009 2.06164

A1 1.83637 0.00001 0.00024 0.00002 0.00027 1.83664

A2 3.02581 0.00009 -0.00235 0.00180 -0.00055 3.02527

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.21472 0.00014 0.00218 0.00003 0.00221 3.21693

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.000135 0.000450 YES

RMS Force 0.000055 0.000300 YES

Maximum Displacement 0.006342 0.001800 NO

RMS Displacement 0.004039 0.001200 NO

Predicted change in Energy=-7.193366D-08

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Page 106: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 91

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.013460 0.000000 -0.006154

2 1 0 -0.095544 0.000000 0.950889

3 1 0 0.932521 0.000000 -0.178570

4 7 0 3.267293 0.000000 -0.788731

5 7 0 4.283668 0.000000 -1.185222

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960557 0.000000

3 H 0.961565 1.527284 0.000000

4 N 3.372798 3.786153 2.413184 0.000000

5 N 4.455952 4.872419 3.499076 1.090973 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 0.011274 -2.310054 0.000000

2 1 0 0.924158 -2.608906 0.000000

3 1 0 0.059846 -1.349716 0.000000

4 7 0 0.000000 1.062726 0.000000

5 7 0 -0.153457 2.142853 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 591.3318685 2.9020360

2.8878634

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 73 symmetry adapted basis functions of A' symmetry.

There are 28 symmetry adapted basis functions of A" symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

101 basis functions, 150 primitive gaussians, 107 cartesian

basis functions

12 alpha electrons 12 beta electrons

nuclear repulsion energy 52.6926550285 Hartrees.

NAtoms= 5 NActive= 5 NUniq= 5 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 101 RedAO= T NBF= 73 28

NBsUse= 101 1.00D-06 NBFU= 73 28

Initial guess read from the read-write file:

Initial guess orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Page 107: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 92

Virtual (A') (A") (A') (A') (A') (A') (A") (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A')

(A") (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A') (A") (A') (A')

(A") (A') (A') (A") (A') (A") (A") (A') (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -186.026845609 A.U. after 7 cycles

Convg = 0.8592D-08 -V/T = 2.0031

S**2 = 0.0000

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 -0.000090071 0.000000000 -0.000116062

2 1 0.000006016 0.000000000 0.000042853

3 1 0.000077155 0.000000000 0.000124540

4 7 -0.000153517 0.000000000 -0.000036571

5 7 0.000160416 0.000000000 -0.000014760

-------------------------------------------------------------------

Cartesian Forces: Max 0.000160416 RMS 0.000079906

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Internal Forces: Max 0.000154839 RMS 0.000080376

Search for a local minimum.

Step number 13 out of a maximum of 20

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Update second derivatives using D2CorX and points 4 5 6 7 8

9 10 11 12 13

Trust test= 1.95D+00 RLast= 1.12D-02 DXMaxT set to 3.00D-01

The second derivative matrix:

R1 R2 R3 R4 A1

R1 0.60112

R2 0.06029 0.64940

R3 0.00537 0.01044 0.00360

R4 0.10077 0.17123 0.01833 1.93772

A1 0.00512 -0.00008 -0.00165 -0.03541 0.17238

A2 0.03176 0.04998 0.00669 0.09738 -0.01431

A3 0.00000 0.00000 0.00000 0.00000 0.00000

A4 0.05020 0.07986 0.01109 0.15511 -0.02274

A5 0.00000 0.00000 0.00000 0.00000 0.00000

A2 A3 A4 A5

A2 0.03517

A3 0.00000 0.16000

A4 0.05172 0.00000 0.08411

A5 0.00000 0.00000 0.00000 0.25000

Page 108: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 93

Eigenvalues --- 0.00195 0.00259 0.07921 0.16000 0.17777

Eigenvalues --- 0.25000 0.56024 0.67116 1.99058

RFO step: Lambda=-2.50574917D-07.

Quartic linear search produced a step of 0.02283.

Iteration 1 RMS(Cart)= 0.00073272 RMS(Int)= 0.00000051

Iteration 2 RMS(Cart)= 0.00000059 RMS(Int)= 0.00000000

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

R1 1.81519 0.00004 0.00000 -0.00007 -0.00007 1.81512

R2 1.81710 0.00007 0.00000 -0.00011 -0.00011 1.81699

R3 4.56026 0.00002 -0.00025 0.00078 0.00053 4.56079

R4 2.06164 0.00015 0.00000 -0.00006 -0.00006 2.06158

A1 1.83664 -0.00002 0.00001 0.00013 0.00014 1.83677

A2 3.02527 0.00009 -0.00001 0.00168 0.00167 3.02694

A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

A4 3.21693 0.00014 0.00005 0.00077 0.00082 3.21775

A5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159

Item Value Threshold Converged?

Maximum Force 0.000155 0.000450 YES

RMS Force 0.000080 0.000300 YES

Maximum Displacement 0.001597 0.001800 YES

RMS Displacement 0.000733 0.001200 YES

Predicted change in Energy=-1.254035D-07

Optimization completed.

-- Stationary point found.

----------------------------

! Optimized Parameters !

! (Angstroms and Degrees) !

-------------------------- ----------------

----------

! Name Definition Value Derivative Info.

!

----------------------------------------------------------------------

----------

! R1 R(1,2) 0.9606 -DE/DX = 0.0

!

! R2 R(1,3) 0.9616 -DE/DX = 0.0001

!

! R3 R(3,4) 2.4132 -DE/DX = 0.0

!

! R4 R(4,5) 1.091 -DE/DX = 0.0002

!

! A1 A(2,1,3) 105.2316 -DE/DX = 0.0

!

! A2 L(3,4,5,-2,-1) 173.335 -DE/DX = 0.0001

!

! A3 L(3,4,5,-3,-2) 180.0 -DE/DX = 0.0

!

! A4 L(1,3,4,2,-1) 184.3165 -DE/DX = 0.0001

!

! A5 L(1,3,4,2,-2) 180.0 -DE/DX = 0.0

!

----------------------------------------------------------------------

----------

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Page 109: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 94

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -0.013460 0.000000 -0.006154

2 1 0 -0.095544 0.000000 0.950889

3 1 0 0.932521 0.000000 -0.178570

4 7 0 3.267293 0.000000 -0.788731

5 7 0 4.283668 0.000000 -1.185222

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960557 0.000000

3 H 0.961565 1.527284 0.000000

4 N 3.372798 3.786153 2.413184 0.000000

5 N 4.455952 4.872419 3.499076 1.090973 0.000000

Stoichiometry H2N2O

Framework group CS[SG(H2N2O)]

Deg. of freedom 7

Full point group CS NOp 2

Largest Abelian subgroup CS NOp 2

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 0.011274 -2.310054 0.000000

2 1 0 0.924158 -2.608906 0.000000

3 1 0 0.059846 -1.349716 0.000000

4 7 0 0.000000 1.062726 0.000000

5 7 0 -0.153457 2.142853 0.000000

---------------------------------------------------------------------

Rotational constants (GHZ): 591.3318685 2.9020360

2.8878634

**********************************************************************

Population analysis using the SCF density.

**********************************************************************

Orbital symmetries:

Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A')

(A') (A")

Virtual (A') (A") (A') (A') (A') (A') (A") (A') (A') (A")

(A') (A') (A') (A") (A') (A') (A') (A') (A') (A')

(A') (A") (A') (A") (A') (A') (A") (A') (A") (A')

(A") (A') (A') (A') (A') (A') (A") (A") (A') (A')

(A") (A') (A') (A') (A') (A") (A') (A") (A") (A')

(A') (A') (A') (A') (A') (A') (A") (A') (A") (A")

(A') (A") (A') (A') (A') (A') (A') (A") (A') (A')

(A") (A') (A') (A") (A') (A") (A") (A') (A') (A')

(A') (A") (A") (A') (A') (A') (A') (A') (A')

Page 110: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 95

The electronic state is 1-A'.

Alpha occ. eigenvalues -- -19.12657 -14.43698 -14.43511 -1.15522 -

1.01533

Alpha occ. eigenvalues -- -0.57785 -0.53549 -0.49123 -0.49118 -

0.45837

Alpha occ. eigenvalues -- -0.39212 -0.31737

Alpha virt. eigenvalues -- -0.04987 -0.04955 -0.01189 0.03469

0.06864

Alpha virt. eigenvalues -- 0.08039 0.08081 0.12037 0.12554

0.14376

Alpha virt. eigenvalues -- 0.15260 0.16036 0.19115 0.20558

0.23297

Alpha virt. eigenvalues -- 0.26546 0.29598 0.36869 0.51709

0.53574

Alpha virt. eigenvalues -- 0.58545 0.67268 0.68196 0.68523

0.69299

Alpha virt. eigenvalues -- 0.72228 0.74170 0.78990 0.79408

0.79430

Alpha virt. eigenvalues -- 0.79947 0.84950 0.88728 0.91446

0.97629

Alpha virt. eigenvalues -- 1.00177 1.02743 1.08290 1.09770

1.22176

Alpha virt. eigenvalues -- 1.22317 1.22361 1.30896 1.40177

1.54535

Alpha virt. eigenvalues -- 1.72826 1.73961 1.77264 1.80527

1.86004

Alpha virt. eigenvalues -- 1.90833 2.00552 2.21318 2.33939

2.56648

Alpha virt. eigenvalues -- 2.96886 3.63500 3.64001 3.72344

3.72867

Alpha virt. eigenvalues -- 3.75296 3.92113 3.92696 3.94799

3.96637

Alpha virt. eigenvalues -- 4.12526 4.31737 4.33044 4.37284

4.40018

Alpha virt. eigenvalues -- 4.57031 4.57050 4.70615 4.73660

4.73689

Alpha virt. eigenvalues -- 5.00525 5.22188 5.22335 5.57243

6.19110

Alpha virt. eigenvalues -- 6.22305 6.85340 6.87529 7.00330

7.27649

Alpha virt. eigenvalues -- 7.48657 35.09097 36.00191 49.89854

Condensed to atoms (all electrons):

1 2 3 4 5

1 O 7.955460 0.265472 0.285494 -0.002994 0.008700

2 H 0.265472 0.512877 -0.012133 -0.000939 0.001435

3 H 0.285494 -0.012133 0.408335 0.010861 0.018039

4 N -0.002994 -0.000939 0.010861 6.442898 0.669754

5 N 0.008700 0.001435 0.018039 0.669754 6.193052

Mulliken atomic charges:

1

1 O -0.512132

2 H 0.233289

3 H 0.289404

4 N -0.119581

5 N 0.109019

Sum of Mulliken charges= 0.00000

Atomic charges with hydrogens summed into heavy atoms:

Page 111: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 96

1

1 O 0.010561

2 H 0.000000

3 H 0.000000

4 N -0.119581

5 N 0.109019

Sum of Mulliken charges= 0.00000

Electronic spatial extent (au): <R**2>= 371.2559

Charge= 0.0000 electrons

Dipole moment (field-independent basis, Debye):

X= 1.5736 Y= 1.3762 Z= 0.0000 Tot= 2.0905

Quadrupole moment (field-independent basis, Debye-Ang):

XX= -15.8185 YY= -21.6507 ZZ= -18.1104

XY= -4.2967 XZ= 0.0000 YZ= 0.0000

Traceless Quadrupole moment (field-independent basis, Debye-Ang):

XX= 2.7080 YY= -3.1242 ZZ= 0.4162

XY= -4.2967 XZ= 0.0000 YZ= 0.0000

Octapole moment (field-independent basis, Debye-Ang**2):

XXX= 2.2333 YYY= -1.5976 ZZZ= 0.0000 XYY= 13.1300

XXY= -4.6505 XXZ= 0.0000 XZZ= 0.2194 YZZ= 1.3069

YYZ= 0.0000 XYZ= 0.0000

Hexadecapole moment (field-independent basis, Debye-Ang**3):

XXXX= -16.6506 YYYY= -438.7757 ZZZZ= -16.6674 XXXY= 4.7769

XXXZ= 0.0000 YYYX= -22.2090 YYYZ= 0.0000 ZZZX= 0.0000

ZZZY= 0.0000 XXYY= -60.9919 XXZZ= -5.8484 YYZZ= -75.5722

XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 3.0021

N-N= 5.269265502847D+01 E-N=-5.426264367178D+02 KE=

1.854540289815D+02

Symmetry A' KE= 1.774671661185D+02

Symmetry A" KE= 7.986862863025D+00

Final structure in terms of initial Z-matrix:

O

H,1,B1

H,1,B2,2,A1

N,1,B3,2,A2,3,D1,0

N,2,B4,1,A3,4,D2,0

Variables:

B1=0.96055696

B2=0.96156531

B3=3.37279849

B4=4.87241935

A1=105.23160434

A2=108.31853574

A3=59.0954431

D1=0.

D2=0.

1|1|UNPC-UNK|FOpt|RB3LYP|6-311++G(2d,2p)|H2N2O1|PCUSER|02-Jul-2012|0||

# OPT RB3LYP/6-311++G(2D,2P) GEOM=CONNECTIVITY||Title Card Required||0

,1|O,-2.2462112177,0.,0.5394535861|H,-2.328295103,0.,1.496496902|H,-1.

3002299759,0.,0.3670374007|N,1.0345422529,0.,-0.243123149|N,2.05091700

72,0.,-0.6396144212||Version=IA32W-G03RevC.02|State=1-A'|HF=-186.02684

56|RMSD=8.592e-009|RMSF=7.991e-005|Dipole=0.6686975,0.,0.4788218|PG=CS

[SG(H2N2O1)]||@

WE'RE IN THE POSITION OF A VISITOR FROM ANOTHER

DIMENSION WHO COMES TO EARTH AND SEES A CHESS MATCH.

Page 112: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 97

ASSUMING HE KNOWS IT'S A GAME, HE'S GOT TWO PROBLEMS:

FIRST, FIGURE OUT THE RULES, AND SECOND, FIGURE OUT HOW TO WIN.

NINETY PERCENT OF SCIENCE (INCLUDING VIRTUALLY ALL OF CHEMISRY)

IS IN THAT SECOND CATEGORY. THEY'RE TRYING TO APPLY

THE LAWS THAT ARE ALREADY KNOWN.

-- SHELDON GLASHOW, 1979

Job cpu time: 0 days 0 hours 4 minutes 13.0 seconds.

File lengths (MBytes): RWF= 20 Int= 0 D2E= 0 Chk=

8 Scr= 1

Normal termination of Gaussian 03 at Mon Jul 02 05:10:58 2012.

Page 113: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 98

Appendix B

Gaussian Output file for Water-Carbon dioxide

Entering Link 1 = C:\G03W\l1.exe PID= 2456.

Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004, Gaussian, Inc.

All Rights Reserved.

This is the Gaussian(R) 03 program. It is based on the

the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),

the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),

the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),

the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),

the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),

the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon

University), and the Gaussian 82(TM) system (copyright 1983,

Carnegie Mellon University). Gaussian is a federally registered

trademark of Gaussian, Inc.

This software contains proprietary and confidential information,

including trade secrets, belonging to Gaussian, Inc.

This software is provided under written license and may be

used, copied, transmitted, or stored only in accord with that

written license.

The following legend is applicable only to US Government

contracts under FAR:

RESTRICTED RIGHTS LEGEND

Use, reproduction and disclosure by the US Government is

subject to restrictions as set forth in subparagraphs (a)

and (c) of the Commercial Computer Software - Restricted

Rights clause in FAR 52.227-19.

Gaussian, Inc.

340 Quinnipiac St., Bldg. 40, Wallingford CT 06492

---------------------------------------------------------------

Warning -- This program may not be used in any manner that

competes with the business of Gaussian, Inc. or will provide

assistance to any competitor of Gaussian, Inc. The licensee

of this program is prohibited from giving any competitor of

Gaussian, Inc. access to this program. By using this program,

the user acknowledges that Gaussian, Inc. is engaged in the

business of creating and licensing software in the field of

computational chemistry and represents and warrants to the

licensee that it is not a competitor of Gaussian, Inc. and that

it will not use this program in any manner prohibited above.

Page 114: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 99

---------------------------------------------------------------

Cite this work as:

Gaussian 03, Revision C.02,

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,

M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,

K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,

V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,

G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,

H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,

C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,

A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,

K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,

V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,

O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,

J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,

J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,

I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,

C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,

B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,

Gaussian, Inc., Wallingford CT, 2004.

******************************************

Gaussian 03: IA32W-G03RevC.02 12-Jun-2004

31-Jul-2012

******************************************

%chk=en1.chk

%mem=6MW

%nproc=1

Will use up to 1 processors via shared memory.

-----------------------------------------------

# freq rb3lyp/6-311++g(2d,2p) geom=connectivity

-----------------------------------------------

1/10=4,30=1,38=1,57=2/1,3;

2/17=6,18=5,40=1/2;

3/5=4,6=6,7=1212,11=2,16=1,25=1,30=1,74=-5/1,2,3;

4/7=1/1;

5/5=2,38=5/2;

8/6=4,10=90,11=11/1;

11/6=1,8=1,9=11,15=111,16=1/1,2,10;

10/6=1/2;

6/7=2,8=2,9=2,10=2,18=1,28=1/1;

7/8=1,10=1,25=1/1,2,3,16;

1/10=4,30=1/3;

99//99;

-------------------

Title Card Required

-------------------

Symbolic Z-matrix:

Charge = 0 Multiplicity = 1

O

H 1 B1

H 1 B2 2 A1

C 1 B3 2 A2 3 D1 0

O 4 B4 1 A3 2 D2 0

Page 115: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 100

O 4 B5 1 A4 5 D3 0

Variables:

B1 0.96078

B2 0.96086

B3 2.86451

B4 1.16011

B5 1.16055

A1 105.70885

A2 130.34805

A3 92.23431

A4 89.65638

D1 160.61877

D2 12.21601

D3 -179.95899

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Initialization pass.

----------------------------

! Initial Parameters !

! (Angstroms and Degrees) !

---------------------- --------------------

--

! Name Value Derivative information (Atomic Units)

!

----------------------------------------------------------------------

--

! B1 0.9608 calculate D2E/DX2 analytically

!

! B2 0.9609 calculate D2E/DX2 analytically

!

! B3 2.8645 calculate D2E/DX2 analytically

!

! B4 1.1601 calculate D2E/DX2 analytically

!

! B5 1.1605 calculate D2E/DX2 analytically

!

! A1 105.7089 calculate D2E/DX2 analytically

!

! A2 130.3481 calculate D2E/DX2 analytically

!

! A3 92.2343 calculate D2E/DX2 analytically

!

! A4 89.6564 calculate D2E/DX2 analytically

!

! D1 160.6188 calculate D2E/DX2 analytically

!

! D2 12.216 calculate D2E/DX2 analytically

!

! D3 -179.959 calculate D2E/DX2 analytically

!

----------------------------------------------------------------------

--

Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07

Page 116: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 101

Number of steps in this run= 2 maximum allowed number of steps= 2.

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Input orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 0.000000 0.000000 0.000000

2 1 0 0.000000 0.000000 0.960775

3 1 0 0.924969 0.000000 -0.260151

4 6 0 -2.059404 -0.724472 -1.854569

5 8 0 -2.865280 -0.747943 -1.020375

6 8 0 -1.280016 -0.711471 -2.714368

---------------------------------------------------------------------

Distance matrix (angstroms):

1 2 3 4 5

1 O 0.000000

2 H 0.960775 0.000000

3 H 0.960857 1.531740 0.000000

4 C 2.864512 3.562607 3.460276 0.000000

5 O 3.132158 3.562892 3.937429 1.160114 0.000000

6 O 3.084222 3.956174 3.375104 1.160547 2.320346

6

6 O 0.000000

Stoichiometry CH2O3

Framework group C1[X(CH2O3)]

Deg. of freedom 12

Full point group C1 NOp 1

Largest Abelian subgroup C1 NOp 1

Largest concise Abelian subgroup C1 NOp 1

Standard orientation:

---------------------------------------------------------------------

Center Atomic Atomic Coordinates (Angstroms)

Number Number Type X Y Z

---------------------------------------------------------------------

1 8 0 -1.943427 -0.033803 -0.032263

2 1 0 -2.555934 -0.759150 0.115370

3 1 0 -2.454252 0.769138 0.100364

4 6 0 0.920534 0.011149 0.001460

5 8 0 0.983946 -1.147231 0.002038

6 8 0 0.895353 1.171423 0.002163

---------------------------------------------------------------------

Rotational constants (GHZ): 11.4251532 4.5454575

3.2533012

Standard basis: 6-311++G(2d,2p) (5D, 7F)

There are 128 symmetry adapted basis functions of A symmetry.

Integral buffers will be 262144 words long.

Raffenetti 2 integral format.

Two-electron integral symmetry is turned on.

128 basis functions, 192 primitive gaussians, 136 cartesian

basis functions

16 alpha electrons 16 beta electrons

nuclear repulsion energy 104.5923821262 Hartrees.

Page 117: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 102

NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60

Big=F

One-electron integrals computed using PRISM.

NBasis= 128 RedAO= T NBF= 128

NBsUse= 128 1.00D-06 NBFU= 128

Harris functional with IExCor= 402 diagonalized for initial guess.

ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn=

5 AccDes= 0.00D+00

HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1

ScaDFX= 1.000000 1.000000 1.000000 1.000000

Initial guess orbital symmetries:

Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A)

Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A)

The electronic state of the initial guess is 1-A.

Requested convergence on RMS density matrix=1.00D-08 within 128

cycles.

Requested convergence on MAX density matrix=1.00D-06.

Requested convergence on energy=1.00D-06.

No special actions if energy rises.

SCF Done: E(RB+HF-LYP) = -265.115708970 A.U. after 10 cycles

Convg = 0.6803D-08 -V/T = 2.0031

S**2 = 0.0000

Range of M.O.s used for correlation: 1 128

NBasis= 128 NAE= 16 NBE= 16 NFC= 0 NFV= 0

NROrb= 128 NOA= 16 NOB= 16 NVA= 112 NVB= 112

**** Warning!!: The largest alpha MO coefficient is 0.16004292D+02

Symmetrizing basis deriv contribution to polar:

IMax=3 JMax=2 DiffMx= 0.00D+00

G2DrvN: will do 7 centers at a time, making 1 passes doing

MaxLOS=2.

FoFDir/FoFCou used for L=0 through L=2.

DoAtom=TTTTTT

Differentiating once with respect to electric field.

with respect to dipole field.

Differentiating once with respect to nuclear coordinates.

Integrals replicated using symmetry in FoFDir.

MinBra= 0 MaxBra= 2 Meth= 1.

IRaf= 0 NMat= 21 IRICut= 21 DoRegI=T DoRafI=T ISym2E= 2

JSym2E=2.

There are 21 degrees of freedom in the 1st order CPHF.

18 vectors were produced by pass 0.

AX will form 18 AO Fock derivatives at one time.

18 vectors were produced by pass 1.

18 vectors were produced by pass 2.

18 vectors were produced by pass 3.

Page 118: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 103

18 vectors were produced by pass 4.

16 vectors were produced by pass 5.

7 vectors were produced by pass 6.

2 vectors were produced by pass 7.

Inv2: IOpt= 1 Iter= 1 AM= 1.80D-15 Conv= 1.00D-12.

Inverted reduced A of dimension 115 with in-core refinement.

Isotropic polarizability for W= 0.000000 24.55 Bohr**3.

End of Minotr Frequency-dependent properties file 721 does not

exist.

**********************************************************************

Population analysis using the SCF density.

**********************************************************************

Orbital symmetries:

Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A)

Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)

(A) (A) (A) (A)

The electronic state is 1-A.

Alpha occ. eigenvalues -- -19.19439 -19.19433 -19.14316 -10.34971 -

1.15570

Alpha occ. eigenvalues -- -1.11632 -1.03173 -0.55752 -0.55309 -

0.51603

Alpha occ. eigenvalues -- -0.50992 -0.50937 -0.40912 -0.36632 -

0.36548

Alpha occ. eigenvalues -- -0.33395

Alpha virt. eigenvalues -- -0.02813 0.00981 0.02688 0.03767

0.04107

Alpha virt. eigenvalues -- 0.06403 0.06770 0.08280 0.13415

0.14873

Alpha virt. eigenvalues -- 0.15913 0.16500 0.17982 0.19642

0.20647

Alpha virt. eigenvalues -- 0.21163 0.24362 0.25646 0.26677

0.28245

Alpha virt. eigenvalues -- 0.28589 0.32156 0.35228 0.51703

0.53366

Alpha virt. eigenvalues -- 0.54431 0.55185 0.59191 0.59993

0.65137

Alpha virt. eigenvalues -- 0.67573 0.71184 0.74043 0.82211

0.85529

Alpha virt. eigenvalues -- 0.89629 0.94209 0.95009 0.96149

0.97290

Alpha virt. eigenvalues -- 0.98634 1.01587 1.05137 1.09973

1.11731

Alpha virt. eigenvalues -- 1.13439 1.14829 1.27397 1.35216

1.36916

Page 119: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 104

Alpha virt. eigenvalues -- 1.41818 1.43600 1.45745 1.66903

1.69154

Alpha virt. eigenvalues -- 1.75570 1.76754 1.88049 1.89277

1.91081

Alpha virt. eigenvalues -- 1.94515 2.04302 2.20472 2.26465

2.37242

Alpha virt. eigenvalues -- 2.40351 2.46054 2.55426 2.66227

2.74788

Alpha virt. eigenvalues -- 2.78582 2.85660 3.14400 3.22646

3.37294

Alpha virt. eigenvalues -- 3.37359 3.40382 3.70892 3.74053

3.77606

Alpha virt. eigenvalues -- 3.89299 4.00780 4.07259 4.20128

4.95294

Alpha virt. eigenvalues -- 4.99289 5.00149 5.04369 5.06861

5.56077

Alpha virt. eigenvalues -- 5.76925 5.94651 6.16356 6.64049

6.65570

Alpha virt. eigenvalues -- 6.75037 6.75628 6.83758 6.85864

6.91409

Alpha virt. eigenvalues -- 6.92051 6.99892 7.17309 7.24645

7.25193

Alpha virt. eigenvalues -- 7.25979 7.42153 7.45139 24.23667

49.87078

Alpha virt. eigenvalues -- 49.95083 49.95998

Condensed to atoms (all electrons):

1 2 3 4 5 6

1 O 7.949071 0.278167 0.278991 -0.005248 -0.005460 -

0.002166

2 H 0.278167 0.486689 -0.015646 0.000458 0.000533 -

0.000042

3 H 0.278991 -0.015646 0.486745 0.000459 0.000064

0.000898

4 C -0.005248 0.000458 0.000459 4.625655 0.466189

0.461541

5 O -0.005460 0.000533 0.000064 0.466189 7.919013 -

0.155434

6 O -0.002166 -0.000042 0.000898 0.461541 -0.155434

7.926220

Mulliken atomic charges:

1

1 O -0.493354

2 H 0.249841

3 H 0.248490

4 C 0.450947

5 O -0.224905

6 O -0.231017

Sum of Mulliken charges= 0.00000

Atomic charges with hydrogens summed into heavy atoms:

1

1 O 0.004976

2 H 0.000000

3 H 0.000000

4 C 0.450947

5 O -0.224905

6 O -0.231017

Sum of Mulliken charges= 0.00000

Page 120: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 105

APT atomic charges:

1

1 O -0.516521

2 H 0.261173

3 H 0.262120

4 C 1.187541

5 O -0.595233

6 O -0.599081

Sum of APT charges= 0.00000

APT Atomic charges with hydrogens summed into heavy atoms:

1

1 O 0.006773

2 H 0.000000

3 H 0.000000

4 C 1.187541

5 O -0.595233

6 O -0.599081

Sum of APT charges= 0.00000

Electronic spatial extent (au): <R**2>= 347.5029

Charge= 0.0000 electrons

Dipole moment (field-independent basis, Debye):

X= -2.2014 Y= 0.1050 Z= 0.4558 Tot= 2.2506

Quadrupole moment (field-independent basis, Debye-Ang):

XX= -13.8334 YY= -23.9233 ZZ= -22.6678

XY= 0.0705 XZ= -1.2801 YZ= -0.0258

Traceless Quadrupole moment (field-independent basis, Debye-Ang):

XX= 6.3081 YY= -3.7818 ZZ= -2.5263

XY= 0.0705 XZ= -1.2801 YZ= -0.0258

Octapole moment (field-independent basis, Debye-Ang**2):

XXX= -28.1823 YYY= -0.1518 ZZZ= 0.2087 XYY= -10.7099

XXY= -0.0223 XXZ= 3.3596 XZZ= 1.4980 YZZ= 0.0318

YYZ= 0.2859 XYZ= 0.0809

Hexadecapole moment (field-independent basis, Debye-Ang**3):

XXXX= -188.1772 YYYY= -110.9033 ZZZZ= -19.8759 XXXY= 2.6028

XXXZ= -9.0381 YYYX= -0.0898 YYYZ= -0.0195 ZZZX= -0.6727

ZZZY= -0.0160 XXYY= -51.6080 XXZZ= -51.0935 YYZZ= -21.8497

XXYZ= -0.2541 YYXZ= -0.8724 ZZXY= -0.0422

N-N= 1.045923821262D+02 E-N=-8.345501909694D+02 KE=

2.642850605033D+02

Exact polarizability: 21.503 -0.455 33.432 -0.018 -0.019 18.708

Approx polarizability: 25.223 -1.131 58.108 -0.272 -0.018 23.449

Full mass-weighted force constant matrix:

Low frequencies --- -4.5410 -0.0007 -0.0005 0.0012 5.7402

7.4606

Low frequencies --- 39.1162 53.2356 92.7809

Diagonal vibrational polarizability:

186.6728726 483.7959940 2413.4188106

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman

scattering

activities (A**4/AMU), depolarization ratios for plane and unpolarized

incident light, reduced masses (AMU), force constants (mDyne/A),

and normal coordinates:

1 2 3

A A A

Frequencies -- 38.9175 53.1228

92.7790

Page 121: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 106

Red. masses -- 1.9359 1.2595

7.2181

Frc consts -- 0.0017 0.0021

0.0366

IR Inten -- 54.0291 216.9319

0.4885

Atom AN X Y Z X Y Z X Y

Z

1 8 -0.02 0.06 -0.05 0.01 0.02 0.10 0.53 0.00

0.01

2 1 -0.35 0.43 0.43 -0.30 0.12 -0.73 0.49 0.03

-0.02

3 1 0.53 0.37 0.16 -0.03 0.10 -0.58 0.57 0.04

-0.04

4 6 0.00 -0.04 0.00 0.00 -0.01 0.00 -0.23 0.00

0.00

5 8 0.16 -0.03 0.00 0.05 -0.01 -0.01 -0.22 0.00

0.00

6 8 -0.16 -0.04 0.01 -0.05 -0.01 -0.01 -0.21 0.00

0.00

4 5 6

A A A

Frequencies -- 132.7092 178.4179

663.6544

Red. masses -- 1.1514 1.5540

12.8966

Frc consts -- 0.0119 0.0291

3.3466

IR Inten -- 15.7500 24.9010

46.8722

Atom AN X Y Z X Y Z X Y

Z

1 8 0.00 -0.06 0.01 0.01 0.13 0.00 0.01 0.00

0.00

2 1 -0.10 0.14 0.58 0.55 -0.28 0.28 0.01 0.00

0.01

3 1 0.07 0.12 -0.78 -0.60 -0.20 -0.32 -0.01 -0.01

0.01

4 6 0.00 0.01 0.00 0.00 -0.03 0.00 0.88 0.03

0.00

5 8 -0.04 0.01 -0.03 0.09 -0.03 -0.01 -0.33 -0.03

0.00

6 8 0.04 0.02 0.03 -0.09 -0.04 0.01 -0.34 0.00

0.00

7 8 9

A A A

Frequencies -- 678.5520 1364.2517

1636.8052

Red. masses -- 12.8594 15.9903

1.0850

Frc consts -- 3.4885 17.5346

1.7127

IR Inten -- 29.2841 0.2081

76.2890

Atom AN X Y Z X Y Z X Y

Z

Page 122: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 107

1 8 0.00 0.00 -0.01 0.00 0.00 0.00 -0.07 0.00

0.02

2 1 0.00 0.00 0.01 -0.01 0.01 0.00 0.52 -0.46

-0.13

3 1 0.00 0.00 0.02 -0.01 0.00 0.00 0.58 0.38

-0.14

4 6 0.00 0.00 0.88 0.03 0.00 0.00 0.00 0.00

0.00

5 8 0.00 0.00 -0.33 -0.04 0.71 0.00 0.00 0.00

0.00

6 8 0.00 0.00 -0.33 0.02 -0.71 0.00 0.00 0.00

0.00

10 11 12

A A A

Frequencies -- 2400.7740 3822.5388

3925.7697

Red. masses -- 12.8595 1.0441

1.0829

Frc consts -- 43.6695 8.9890

9.8334

IR Inten -- 656.1705 10.7278

72.3248

Atom AN X Y Z X Y Z X Y

Z

1 8 0.00 0.00 0.00 -0.05 0.00 0.01 0.00 -0.07

0.00

2 1 -0.02 0.01 0.00 0.42 0.56 -0.10 0.45 0.53

-0.11

3 1 0.02 0.01 0.00 0.34 -0.62 -0.09 -0.37 0.59

0.10

4 6 -0.03 0.88 0.00 0.00 0.00 0.00 0.00 0.00

0.00

5 8 0.02 -0.33 0.00 0.00 0.00 0.00 0.00 0.00

0.00

6 8 0.01 -0.33 0.00 0.00 0.00 0.00 0.00 0.00

0.00

-------------------

- Thermochemistry -

-------------------

Temperature 298.150 Kelvin. Pressure 1.00000 Atm.

Atom 1 has atomic number 8 and mass 15.99491

Atom 2 has atomic number 1 and mass 1.00783

Atom 3 has atomic number 1 and mass 1.00783

Atom 4 has atomic number 6 and mass 12.00000

Atom 5 has atomic number 8 and mass 15.99491

Atom 6 has atomic number 8 and mass 15.99491

Molecular mass: 62.00039 amu.

Principal axes and moments of inertia in atomic units:

1 2 3

EIGENVALUES -- 157.96210 397.04281 554.74150

X 0.99999 0.00077 -0.00498

Y -0.00077 1.00000 -0.00024

Z 0.00498 0.00024 0.99999

This molecule is an asymmetric top.

Rotational symmetry number 1.

Rotational temperatures (Kelvin) 0.54832 0.21815 0.15613

Page 123: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 108

Rotational constants (GHZ): 11.42515 4.54546 3.25330

Zero-point vibrational energy 89649.9 (Joules/Mol)

21.42684 (Kcal/Mol)

Warning -- explicit consideration of 5 degrees of freedom as

vibrations may cause significant error

Vibrational temperatures: 55.99 76.43 133.49 190.94

256.70

(Kelvin) 954.85 976.28 1962.85 2354.99

3454.17

5499.77 5648.30

Zero-point correction= 0.034146

(Hartree/Particle)

Thermal correction to Energy= 0.040944

Thermal correction to Enthalpy= 0.041888

Thermal correction to Gibbs Free Energy= 0.002488

Sum of electronic and zero-point Energies= -265.081563

Sum of electronic and thermal Energies= -265.074765

Sum of electronic and thermal Enthalpies= -265.073821

Sum of electronic and thermal Free Energies= -265.113221

E (Thermal) CV S

KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin

Total 25.693 17.602 82.925

Electronic 0.000 0.000 0.000

Translational 0.889 2.981 38.293

Rotational 0.889 2.981 25.057

Vibrational 23.915 11.641 19.575

Vibration 1 0.594 1.981 5.313

Vibration 2 0.596 1.976 4.698

Vibration 3 0.602 1.954 3.601

Vibration 4 0.613 1.921 2.906

Vibration 5 0.629 1.869 2.345

Q Log10(Q) Ln(Q)

Total Bot 0.717341D-01 -1.144274 -2.634789

Total V=0 0.364493D+15 14.561689 33.529529

Vib (Bot) 0.559876D-13 -13.251908 -30.513646

Vib (Bot) 1 0.531691D+01 0.725659 1.670892

Vib (Bot) 2 0.389021D+01 0.589973 1.358462

Vib (Bot) 3 0.221499D+01 0.345371 0.795246

Vib (Bot) 4 0.153513D+01 0.186145 0.428614

Vib (Bot) 5 0.112634D+01 0.051671 0.118977

Vib (V=0) 0.284483D+03 2.454056 5.650672

Vib (V=0) 1 0.584037D+01 0.766440 1.764794

Vib (V=0) 2 0.442221D+01 0.645639 1.486639

Vib (V=0) 3 0.277072D+01 0.442592 1.019107

Vib (V=0) 4 0.211450D+01 0.325208 0.748820

Vib (V=0) 5 0.173234D+01 0.238632 0.549471

Electronic 0.100000D+01 0.000000 0.000000

Translational 0.191888D+08 7.283047 16.769835

Rotational 0.667708D+05 4.824587 11.109022

***** Axes restored to original set *****

-------------------------------------------------------------------

Center Atomic Forces (Hartrees/Bohr)

Number Number X Y Z

-------------------------------------------------------------------

1 8 -0.000042598 0.000000431 -0.000081803

Page 124: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 109

2 1 -0.000001782 -0.000013224 0.000041199

3 1 0.000052030 0.000014191 0.000036957

4 6 0.000017845 -0.000000690 -0.000001905

5 8 0.000012347 0.000003917 -0.000006825

6 8 -0.000037842 -0.000004624 0.000012377

-------------------------------------------------------------------

Cartesian Forces: Max 0.000081803 RMS 0.000030550

----------------------------------------------------------------------

--

Internal Coordinate Forces (Hartree/Bohr or radian)

Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z

J

----------------------------------------------------------------------

--

1 O

2 H 1 0.000041( 1)

3 H 1 0.000040( 2) 2 -0.000090( 6)

4 C 1 0.000003( 3) 2 -0.000096( 7) 3 0.000016( 10)

0

5 O 4 -0.000014( 4) 1 -0.000011( 8) 2 0.000003( 11)

0

6 O 4 -0.000035( 5) 1 0.000044( 9) 5 -0.000002( 12)

0

----------------------------------------------------------------------

--

Internal Forces: Max 0.000095664 RMS 0.000045033

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

Berny optimization.

Search for a local minimum.

Step number 1 out of a maximum of 2

All quantities printed in internal units (Hartrees-Bohrs-Radians)

Second derivative matrix not updated -- analytic derivatives used.

The second derivative matrix:

B1 B2 B3 B4 B5

B1 0.53953

B2 -0.00487 0.53933

B3 0.00033 0.00034 0.00422

B4 0.00018 -0.00037 -0.00008 1.03818

B5 -0.00041 0.00018 0.00033 0.08928 1.03545

A1 0.02999 0.02906 0.00098 0.00324 -0.00387

A2 0.00069 -0.00075 -0.00007 0.00628 -0.00614

A3 -0.00050 0.00015 0.00566 -0.00927 -0.00242

A4 0.00032 -0.00064 0.00625 -0.00262 -0.00934

D1 0.00003 0.00021 0.00009 -0.00069 0.00084

D2 0.00005 -0.00003 -0.00001 0.00046 -0.00045

D3 0.00012 0.00008 -0.00005 0.00019 -0.00026

A1 A2 A3 A4 D1

A1 0.16026

A2 0.00186 0.00439

A3 -0.00410 -0.00464 0.19105

A4 0.00184 0.00558 0.17146 0.19306

D1 -0.00058 -0.00098 0.00107 -0.00066 0.00172

D2 0.00016 -0.00049 0.00005 -0.00007 0.00225

D3 -0.00006 -0.00014 0.00008 0.00003 0.00173

Page 125: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 110

D2 D3

D2 0.00340

D3 0.00201 0.18181

Eigenvalues --- 0.00009 0.00148 0.00402 0.00499 0.02321

Eigenvalues --- 0.15577 0.18185 0.36354 0.53917 0.54431

Eigenvalues --- 0.94770 1.12629

Angle between quadratic step and forces= 49.61 degrees.

Linear search not attempted -- first point.

Variable Old X -DE/DX Delta X Delta X Delta X New X

(Linear) (Quad) (Total)

B1 1.81560 0.00004 0.00000 0.00016 0.00016 1.81576

B2 1.81576 0.00004 0.00000 0.00004 0.00004 1.81579

B3 5.41314 0.00000 0.00000 -0.00317 -0.00317 5.40998

B4 2.19230 -0.00001 0.00000 0.00029 0.00029 2.19259

B5 2.19312 -0.00003 0.00000 -0.00032 -0.00032 2.19279

A1 1.84497 -0.00009 0.00000 -0.00045 -0.00045 1.84452

A2 2.27500 -0.00010 0.00000 -0.06083 -0.06083 2.21417

A3 1.60979 -0.00001 0.00000 -0.01685 -0.01685 1.59295

A4 1.56480 0.00004 0.00000 0.01709 0.01709 1.58188

D1 2.80333 0.00002 0.00000 0.01395 0.01395 2.81728

D2 0.21321 0.00000 0.00000 -0.01654 -0.01654 0.19667

D3 -3.14088 0.00000 0.00000 0.00000 0.00000 -3.14088

Item Value Threshold Converged?

Maximum Force 0.000096 0.000450 YES

RMS Force 0.000045 0.000300 YES

Maximum Displacement 0.060830 0.001800 NO

RMS Displacement 0.019905 0.001200 NO

Predicted change in Energy=-3.485368D-06

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra

d

1|1|UNPC-UNK|Freq|RB3LYP|6-311++G(2d,2p)|C1H2O3|PCUSER|31-Jul-2012|1||

# FREQ RB3LYP/6-311++G(2D,2P) GEOM=CONNECTIVITY||Title Card Required||

0,1|O|H,1,B1|H,1,B2,2,A1|C,1,B3,2,A2,3,D1,0|O,4,B4,1,A3,2,D2,0|O,4,B5,

1,A4,5,D3,0||B1=0.960775|B2=0.96085709|B3=2.86451227|B4=1.16011449|B5=

1.16054743|A1=105.70885225|A2=130.34805142|A3=92.23431135|A4=89.656384

52|D1=160.61877297|D2=12.21601263|D3=-179.95899355||Version=IA32W-G03R

evC.02|State=1-A|HF=-265.115709|RMSD=6.803e-009|RMSF=3.055e-005|Dipole

=0.694156,0.0355653,0.5485371|DipoleDeriv=-0.4294866,-0.0076121,0.0145

238,-0.0198998,-0.666111,-0.0187802,0.0063417,-0.0094766,-0.453964,0.2

559271,-0.0051547,-0.0422114,-0.0024038,0.3425949,0.0068029,-0.051128,

-0.0015929,0.1849972,0.1717131,-0.0015891,-0.0243533,0.0080357,0.34091

22,-0.0023963,-0.0054283,-0.0026879,0.2737361,1.4776914,0.0514963,-0.8

677425,0.050437,0.5028307,0.0053113,-0.8722508,0.004671,1.5821014,-0.7

642891,-0.0234477,0.4655623,-0.0243973,-0.2596891,0.0113597,0.4597998,

0.0096754,-0.7617222,-0.7115558,-0.0136928,0.4542212,-0.0117718,-0.260

5379,-0.0022974,0.4626655,-0.0005891,-0.8251485|Polar=26.9717294,0.631

3977,18.8649727,-6.0415601,0.2520757,27.8061691|PG=C01 [X(C1H2O3)]|NIm

ag=0||0.54150064,0.00136435,0.00050041,-0.11542643,0.00102788,0.607348

31,-0.04639235,-0.00047550,-0.03426451,0.04848323,-0.00040629,-0.00003

469,0.00012561,0.00024530,0.00035960,0.02540132,-0.00002686,-0.5245287

2,-0.01618869,0.00006413,0.53953485,-0.49169571,-0.00023028,0.15044452

,-0.00286284,0.00003328,-0.00915570,0.49502915,-0.00003483,-0.00017886

,-0.00034644,0.00004808,-0.00033829,0.00001701,0.00021043,0.00051558,0

.09095980,-0.00037965,-0.07921357,0.05061824,0.00005285,-0.01458272,-0

.14154140,0.00014042,0.09288793,-0.00477502,0.00035494,0.00588431,0.00

Page 126: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Reza 111

344868,0.00076394,0.00027165,-0.00162622,-0.00081987,-0.00210315,0.967

89589,-0.00027111,-0.00152299,0.00010815,0.00054856,0.00022940,0.00002

175,0.00004011,0.00031841,0.00032777,0.01757858,0.15263441,0.00469279,

0.00031195,-0.00621273,-0.00182735,-0.00067479,-0.00092783,0.00136847,

0.00084309,0.00396727,-0.87871078,-0.02142546,1.08382076,-0.00036460,-

0.00041600,-0.00179023,-0.00105716,-0.00015861,0.00003824,0.00035454,0

.00005470,0.00045921,-0.49369756,-0.01136248,0.43786510,0.51742558,-0.

00070127,0.00059792,0.00006814,-0.00002758,-0.00027244,0.00001978,-0.0

0012808,0.00003097,-0.00025158,-0.01097469,-0.07590163,0.01238332,0.01

353040,0.03825565,-0.00385298,-0.00051853,0.00270129,0.00131431,0.0004

3067,0.00029013,-0.00082861,-0.00048136,-0.00181516,0.43937453,0.01283

233,-0.53033381,-0.49865995,-0.01341405,0.56002302,0.00172704,-0.00059

750,-0.00484766,-0.00161957,-0.00047762,-0.00036682,0.00080109,0.00054

149,0.00160729,-0.47124577,-0.00653366,0.43661176,-0.02266079,-0.00169

878,0.06265270,0.49299799,0.00004916,0.00063821,-0.00098334,-0.0003388

6,0.00005642,-0.00009580,0.00007454,-0.00034782,0.00011019,-0.00690290

,-0.07575760,0.00856189,-0.00164801,0.03728953,0.00115093,0.00876607,0

.03812125,-0.00177450,-0.00041478,-0.00009458,0.00034798,0.00000153,0.

00021428,-0.00028728,-0.00017273,-0.00124375,0.43528345,0.00813545,-0.

55031366,0.06208762,0.00119440,-0.03086547,-0.49565728,-0.00874387,0.5

8230318||0.00004260,-0.00000043,0.00008180,0.00000178,0.00001322,-0.00

004120,-0.00005203,-0.00001419,-0.00003696,-0.00001785,0.00000069,0.00

000190,-0.00001235,-0.00000392,0.00000683,0.00003784,0.00000462,-0.000

01238|||@

IT IS THE GODS' CUSTOM TO BRING LOW ALL THINGS OF SURPASSING

GREATNESS.

-- HERODOTUS

IT IS THE LOFTY PINE THAT BY THE STORM IS OFTENER TOSSED;

TOWERS FALL WITH HEAVIER CRASH WHICH HIGHER SOAR.

-- HORACE

THE BIGGER THEY COME, THE HARDER THEY FALL.

-- BOB FITZSIMONS HEAVYWEIGHT CHAMPION, 1897-1899

Job cpu time: 0 days 0 hours 15 minutes 29.0 seconds.

File lengths (MBytes): RWF= 20 Int= 0 D2E= 0 Chk=

17 Scr= 1

Normal termination of Gaussian 03 at Tue Jul 31 14:02:29 2012.

Page 127: QUANTUM CHEMICAL STUDY ON ATMOSPHERICALLY IMPORTANT WATER COMPLEXES: A GAUSSIAN APPROACH

Recommended