+ All Categories
Home > Documents > Quantum criticality: from antiferromagnets and...

Quantum criticality: from antiferromagnets and...

Date post: 28-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
109
Quantum criticality: from antiferromagnets and superconductors to black holes HARVARD arXiv:0907.0008 arXiv:0810.3005 (with Markus Mueller) Reviews: Talk online: sachdev.physics.harvard.edu
Transcript
Page 1: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Quantum criticality:from antiferromagnets and superconductors

to black holes

HARVARD

arXiv:0907.0008arXiv:0810.3005 (with Markus Mueller)

Reviews:

Talk online: sachdev.physics.harvard.edu

Page 2: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Frederik Denef, HarvardSean Hartnoll, Harvard

Christopher Herzog, PrincetonPavel Kovtun, VictoriaDam Son, Washington

Lars Fritz, HarvardVictor Galitski, MarylandEun Gook Moon, Harvard

Markus Mueller, TriesteJoerg Schmalian, Iowa

HARVARD

Page 3: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

1. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological’ Fermi surface transitions

3. Quantum criticality and black holes AdS4 theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin

density wave transition in metals

Outline

Page 4: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

1. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological’ Fermi surface transitions

3. Quantum criticality and black holes AdS4 theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin

density wave transition in metals

Outline

Page 5: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

TlCuCl3

Page 6: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

TlCuCl3

An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to zero.

Page 7: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Ground state has long-range Néel order

Square lattice antiferromagnet

H =!

!ij"

Jij!Si · !Sj

Order parameter is a single vector field !" = #i!Si

#i = ±1 on two sublattices!!"" #= 0 in Neel state.

Page 8: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Square lattice antiferromagnet

H =!

!ij"

Jij!Si · !Sj

J

J/!

Weaken some bonds to induce spin entanglement in a new quantum phase

Page 9: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Square lattice antiferromagnet

H =!

!ij"

Jij!Si · !Sj

J

J/!

Ground state is a “quantum paramagnet”with spins locked in valence bond singlets

=1!2

!""""##$

""" #"#$

Page 10: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Pressure in TlCuCl3

!!c

Page 11: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Quantum critical point with non-local entanglement in spin wavefunction

Page 12: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the paramagnetic phase

Page 13: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the paramagnetic phase

Page 14: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the paramagnetic phase

Page 15: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the paramagnetic phase

Page 16: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the paramagnetic phase

Page 17: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001).

TlCuCl3 at ambient pressure

Page 18: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H.-U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001).

Sharp spin 1 particle excitation above an energy gap (spin gap)

TlCuCl3 at ambient pressure

Page 19: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the Neel phase

Page 20: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the Neel phase

Spin waves

Page 21: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the Neel phase

Spin waves

Page 22: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!cCFT3

O(3) order parameter !"

S =!

d2rd!"("!#)2 + c2(!r $#)2 + (%" %c)$#2 + u

#$#2

$2%

Description using Landau-Ginzburg field theory

Page 23: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!1.0

!0.5

0.0

0.5

1.0

!1.0

!0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

!!c

Excitation spectrum in the paramagnetic phase

!"

Spin S = 1“triplon”

V (!")V (!") = (#! #c)!"2 + u

!!"2

"2

! >! c

Page 24: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!1.0

!0.5

0.0

0.5

1.0

!1.0

!0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

!!c

Excitation spectrum in the paramagnetic phase

!"

Spin S = 1“triplon”

V (!")V (!") = (#! #c)!"2 + u

!!"2

"2

! >! c

Page 25: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!1.0

!0.5

0.0

0.5

1.0

!1.0

!0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

!!c

Excitation spectrum in the paramagnetic phase

!"

Spin S = 1“triplon”

V (!")V (!") = (#! #c)!"2 + u

!!"2

"2

! >! c

Page 26: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!1.0

!0.5

0.0

0.5

1.0

!1.0

!0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

!!c

Excitation spectrum in the paramagnetic phase

!"

Spin S = 1“triplon”

V (!")V (!") = (#! #c)!"2 + u

!!"2

"2

! >! c

Page 27: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!1.0

!0.5

0.0

0.5

1.0

!1.0

!0.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

!!c

Excitation spectrum in the paramagnetic phase

!"

Spin S = 1“triplon”

V (!")V (!") = (#! #c)!"2 + u

!!"2

"2

! >! c

Page 28: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the Neel phase

Page 29: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the Neel phase

Spin waves

Page 30: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!c

Excitation spectrum in the Neel phase

Spin waves

Page 31: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!1.0

!0.5

0.0

0.5

1.0!1.0

!0.5

0.0

0.5

1.0

!0.3

!0.2

!0.1

0.0

!!c

!"

V (!")

Excitation spectrum in the Neel phase

V (!") = (#! #c)!"2 + u!!"2

"2

! <! c

Page 32: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!1.0

!0.5

0.0

0.5

1.0!1.0

!0.5

0.0

0.5

1.0

!0.3

!0.2

!0.1

0.0

!!c

!"

V (!")

Excitation spectrum in the Neel phase

V (!") = (#! #c)!"2 + u!!"2

"2

! <! c

Field theory yields spin waves (“Goldstone” modes)but also an additional longitudinal “Higgs” particle

Page 33: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Observation of 3! 2 low energy modes,emergence of new Higgs particle in the Neel phase,and vanishing of Neel temperature at the quantum critical point

Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

TlCuCl3 with varying pressure

Page 34: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Prediction of quantum field theoryPotential for !" fluctuations: V (!") = (#! #c)!"2 + u

!!"2

"2

Neel phase, ! <! c

Expand "# =!0, 0,

"(!c ! !)/(2u)

#+ "#1:

V ("#) " 2(!c ! !)#21z

Yields 2 gapless spin waves and one Higgs particlewith energy gap #

"2(!c ! !)

Paramagnetic phase, ! >! c

Expand about "# = 0:

V ("#) ! (!" !c)"#2

Yields 3 particles with energy gap #!

(!" !c)

Page 35: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

1.4

L (p < pc)L (p > pc)

Q=(0 4 0)

L,T1 (p < pc)L (p > pc)

Q=(0 0 1)

E(p < pc)unscaledEn

ergy

√2*

E(p

< p c),

E(p

> p c) [

meV

]

Pressure |(p − pc)| [kbar]

TlCuCl3pc = 1.07 kbarT = 1.85 K

Prediction of quantum field theoryEnergy of “Higgs” particle

Energy of triplon=!

2

Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya,

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

V (!") = (#! #c)!"2 + u!!"2

"2

Page 36: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

!!cCFT3O(3) order parameter !"

S =!

d2rd!"("!#)2 + c2(!r $#)2 + s$#2 + u

#$#2

$2%

Page 37: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Classicalspin

waves

Dilutetriplon

gas

Quantumcritical

Neel order

Page 38: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Classicalspin

waves

Dilutetriplon

gas

Quantumcritical

Neel order

Classical dynamics of spin waves

Page 39: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Classicalspin

waves

Dilutetriplon

gas

Quantumcritical

Neel order

Classical Boltzmann equation for S=1

particles

Page 40: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Classicalspin

waves

Dilutetriplon

gas

Quantumcritical

Neel order

CFT3 at T>0

Page 41: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

1. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological’ Fermi surface transitions

3. Quantum criticality and black holes AdS4 theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin

density wave transition in metals

Outline

Page 42: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

1. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological’ Fermi surface transitions

3. Quantum criticality and black holes AdS4 theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin

density wave transition in metals

Outline

Page 43: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

t

Graphene

Page 44: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

t

Graphene

Conical Dirac dispersion

Page 45: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Quantum phase transition in graphene tuned by a bias voltage

Electron Fermi surface

Page 46: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Hole Fermi surface

Electron Fermi surface

Quantum phase transition in graphene tuned by a bias voltage

Page 47: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Electron Fermi surface

Hole Fermi surface

There must be an intermediate

quantum critical point where the Fermi

surfaces reduce to a Dirac point

Quantum phase transition in graphene tuned by a bias voltage

Page 48: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Quantum critical graphene

Low energy theory has 4 two-component Dirac fermions, !!," = 1 . . . 4, interacting with a 1/r Coulomb interaction

S =!

d2rd#!†!

"$" ! ivF%" · %"

#!!

+e2

2

!d2rd2r!d#!†

!!!(r)1

|r ! r!|!†!!!!!(r!)

Page 49: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Quantum critical graphene

Low energy theory has 4 two-component Dirac fermions, !!," = 1 . . . 4, interacting with a 1/r Coulomb interaction

S =!

d2rd#!†!

"$" ! ivF%" · %"

#!!

+e2

2

!d2rd2r!d#!†

!!!(r)1

|r ! r!|!†!!!!!(r!)

Dimensionless “fine-structure” constant ! = e2/(!vF ).RG flow of !:

d!

d"= !!2 + . . .

Behavior is similar to a conformal field theory (CFT)in 2+1 dimensions with ! " 1/ ln(scale)

Page 50: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

-1 -0.5 0 0.5 1

100

200

300

400

500

600

-1 -0.5 0 0.5 1

100

200

300

400

500

600

! 1!n(1 + ! ln !!

n)

n1012/m2

T (K)

Dirac liquid

ElectronFermi liquid

HoleFermi liquid

Quantum critical

Quantum phase transition in graphene

Page 51: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Quantum critical transport

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “perfect fluid”with shortest possiblerelaxation time, !R

!R ! !kBT

Page 52: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Quantum critical transport Transport co-oe!cients not determined

by collision rate, but byuniversal constants of nature

Electrical conductivity

! =e2

h! [Universal constant O(1) ]

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

Page 53: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Quantum critical transport

P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett. 94, 11601 (2005)

, 8714 (1997).

Transport co-oe!cients not determinedby collision rate, but by

universal constants of nature

Momentum transport!

s! viscosity

entropy density

=!

kB" [Universal constant O(1) ]

Page 54: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Quantum critical transport in graphene

!(") =

!""""#

""""$

e2

h

%#

2+ O

&1

ln(!/")

'(, !" ! kBT

e2

h$2(T )

%0.760 + O

&1

| ln($(T ))|

'(, !" " kBT$2(T )

%

s=

!kB$2(T )

# 0.130

where the “fine structure constant” is

$(T ) =$

1 + ($/4) ln(!/T )T!0$ 4

ln(!/T )

L. Fritz, J. Schmalian, M. Müller and S. Sachdev, Physical Review B 78, 085416 (2008) M. Müller, J. Schmalian, and L. Fritz, Physical Review Letters 103, 025301 (2009)

Page 55: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

1. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological’ Fermi surface transitions

3. Quantum criticality and black holes AdS4 theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin

density wave transition in metals

Outline

Page 56: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

1. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological’ Fermi surface transitions

3. Quantum criticality and black holes AdS4 theory of quantum compressible liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin

density wave transition in metals

Outline

Page 57: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

AdS/CFT correspondenceThe quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is

holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

Maldacena, Gubser, Klebanov, Polyakov, Witten

3+1 dimensional AdS space

Page 58: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

AdS/CFT correspondenceThe quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is

holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

Maldacena, Gubser, Klebanov, Polyakov, Witten

3+1 dimensional AdS space A 2+1

dimensional system at its

quantum critical point

Page 59: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

AdS/CFT correspondenceThe quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is

holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

Maldacena, Gubser, Klebanov, Polyakov, Witten

3+1 dimensional AdS space Quantum

criticality in 2+1

dimensionsBlack hole temperature

= temperature of quantum criticality

Page 60: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

AdS/CFT correspondenceThe quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is

holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

Strominger, Vafa

3+1 dimensional AdS space Quantum

criticality in 2+1

dimensionsBlack hole entropy = entropy of quantum criticality

Page 61: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

AdS/CFT correspondenceThe quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is

holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space Quantum

criticality in 2+1

dimensionsQuantum critical

dynamics = waves in curved space

Maldacena, Gubser, Klebanov, Polyakov, Witten

Page 62: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

AdS/CFT correspondenceThe quantum theory of a black hole in a 3+1-dimensional negatively curved AdS universe is

holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions

3+1 dimensional AdS space Quantum

criticality in 2+1

dimensionsFriction of quantum

criticality = waves

falling into black hole

Kovtun, Policastro, Son

Page 63: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Conformal field theoryin 2+1 dimensions at T = 0

Einstein gravityon AdS4

Page 64: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Conformal field theoryin 2+1 dimensions at T > 0

Einstein gravity on AdS4

with a Schwarzschildblack hole

Page 65: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Conformal field theoryin 2+1 dimensions at T > 0,

with a non-zero chemical potential, µand applied magnetic field, B

Einstein gravity on AdS4

with a Reissner-Nordstromblack hole carrying electric

and magnetic charges

Page 66: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,
Page 67: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Examine free energy and Green’s function of a probe particle

Page 68: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Short time behavior depends uponconformal AdS4 geometry near boundary

Page 69: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Long time behavior depends uponnear-horizon geometry of black hole

Page 70: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Radial direction of gravity theory ismeasure of energy scale in CFT

Page 71: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

Infrared physics of Fermi surface is linked tothe near horizon AdS2 geometry of

Reissner-Nordstrom black hole

Page 72: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

AdS4

Geometric interpretation of RG flow

Page 73: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

AdS2 x R2

Geometric interpretation of RG flow

Page 74: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Magnetohydrodynamics of quantum criticalityWe used the AdS/CFT connection to derive many new re-lations between thermoelectric transport co-e!cients in thequantum critical regime.

As a simple example, in zero magnetic field, we can writethe electrical conductivity as

! = !Q +e!2"2v2

# + P$%(&)

where !Q is the universal conductivity of the CFT, " is thecharge density, # is the energy density and P is the pressure.

The same quantities also determine the thermal conductiv-ity, ':

' = !Q

!k2

BT

e!2

" !# + P

kBT"

"2

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 75: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Magnetohydrodynamics of quantum criticalityWe used the AdS/CFT connection to derive many new re-lations between thermoelectric transport co-e!cients in thequantum critical regime.

As a simple example, in zero magnetic field, we can writethe electrical conductivity as

! = !Q +e!2"2v2

# + P$%(&)

where !Q is the universal conductivity of the CFT, " is thecharge density, # is the energy density and P is the pressure.

The same quantities also determine the thermal conductiv-ity, ':

' = !Q

!k2

BT

e!2

" !# + P

kBT"

"2

The same results were later obtained from the equations ofgeneralized relativistic magnetohydrodynamics.

So the results apply to experiments on graphene, andto the dynamics of black holes.

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 76: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Magnetohydrodynamics of quantum criticalityWe used the AdS/CFT connection to derive many new re-lations between thermoelectric transport co-e!cients in thequantum critical regime.

As a simple example, in zero magnetic field, we can writethe electrical conductivity as

! = !Q +e!2"2v2

# + P$%(&)

where !Q is the universal conductivity of the CFT, " is thecharge density, # is the energy density and P is the pressure.

The same quantities also determine the thermal conductiv-ity, ':

' = !Q

!k2

BT

e!2

" !# + P

kBT"

"2

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 77: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

We used the AdS/CFT connection to derive many new re-lations between thermoelectric transport co-e!cients in thequantum critical regime.

As a simple example, in zero magnetic field, we can writethe electrical conductivity as

! = !Q +e!2"2v2

# + P$%(&)

where !Q is the universal conductivity of the CFT, " is thecharge density, # is the energy density and P is the pressure.

The same quantities also determine the thermal conductiv-ity, ':

' = !Q

!k2

BT

e!2

" !# + P

kBT"

"2

Magnetohydrodynamics of quantum criticality

A second example: In an applied magnetic field B, the dy-namic transport co-e!cients exhibit a hydrodynamic cy-clotron resonance at a frequency !c

!c =e!B"v2

c(# + P )

and damping constant $

$ = %QB2v2

c2(# + P ).

The same constants determine the quasinormal frequencyof the Reissner-Nordstrom black hole.

S.A. Hartnoll, P.K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)

Page 78: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Green’s function of a fermion

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

G(k,!) ! 1! " vF (k " kF )" i!!(k)

Sung-Sik Lee, arXiv:0809.3402;

M. Cubrovic, J. Zaanen, and K. Schalm,

arXiv:0904.1993

Page 79: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Green’s function of a fermion

T. Faulkner, H. Liu, J. McGreevy, and

D. Vegh, arXiv:0907.2694

G(k,!) ! 1! " vF (k " kF )" i!!(k)

Similar to non-Fermi liquid theories of Fermi surfaces coupled to gauge fields, and at quantum critical points

Page 80: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Free energy from gravity theoryThe free energy is expressed as a sum over the “quasinor-mal frequencies”, z!, of the black hole. Here ! representsany set of quantum numbers:

Fboson = !T!

!

ln

"|z!|2"T

####!$

iz!

2"T

%####2&

Ffermion = T!

!

ln

"####!$

iz!

2"T+

12

%####2&

Application of this formula shows that the fermions ex-hibit the dHvA quantum oscillations with expected pe-riod (2"/(Fermi surface ares)) in 1/B, but with an ampli-tude corrected from the Fermi liquid formula of Lifshitz-Kosevich.

F. Denef, S. Hartnoll, and S. Sachdev, arXiv:0908.1788

Page 81: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

1. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological’ Fermi surface transitions

3. Quantum criticality and black holes AdS4 theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin

density wave transition in metals

Outline

Page 82: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

1. Coupled dimer antiferromagnets Order parameters and Landau-Ginzburg criticality

2. Graphene `Topological’ Fermi surface transitions

3. Quantum criticality and black holes AdS4 theory of compressible quantum liquids

4. Quantum criticality in the cuprates Global phase diagram and the spin

density wave transition in metals

Outline

Page 83: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

The cuprate superconductors

Page 84: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

! !

Page 85: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Multiple quantum phase transitions involving at least two order parameters

(antiferromagnetism and superconductivity) and a

topological change in the Fermi surface

The cuprate superconductors

Page 86: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

N. E. Hussey, J. Phys: Condens. Matter 20, 123201 (2008)

Crossovers in transport properties of hole-doped cuprates

0 0.05 0.1 0.15 0.2 0.25 0.3

(K)

Hole doping

2

+ 2

or

FL?

coh?

( )S-shaped

*

-wave SC

(1 < < 2)AFM

upturnsin ( )

Page 87: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Classicalspin

waves

Dilutetriplon

gas

Quantumcritical

Neel order

Page 88: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

0 0.05 0.1 0.15 0.2 0.25 0.3

T(K)

Hole doping x

d-wave SC

AFM

Strange metal

xm

Crossovers in transport properties of hole-doped cuprates

Strange metal: quantum criticality ofoptimal doping critical point at x = xm ?

Page 89: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

0 0.05 0.1 0.15 0.2 0.25 0.3

T(K)

Hole doping x

d-wave SC

AFM

xs

Strange metal

Only candidate quantum critical point observed at low T

Spin density wave order presentbelow a quantum critical point at x = xs

with xs ! 0.12 in the La series of cuprates

Page 90: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

! !

Page 91: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

SmallFermi

pocketsLargeFermi

surface

StrangeMetal

Spin density wave (SDW)

Theory of quantum criticality in the cuprates

Underlying SDW ordering quantum critical pointin metal at x = xm

R. Daou et al., Nature Physics 5, 31 - 34 (2009)

Page 92: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Spin density wave theory in hole-doped cuprates

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Increasing SDW order

!!! !

Hole pockets

Quantum phase transition involves botha SDW order parameter !",

and a topological change in the Fermi surface

Page 93: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

SmallFermi

pocketsLargeFermi

surface

StrangeMetal

Spin density wave (SDW)

Theory of quantum criticality in the cuprates

Underlying SDW ordering quantum critical pointin metal at x = xm

R. Daou et al., Nature Physics 5, 31 - 34 (2009)

Page 94: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

LargeFermi

surface

StrangeMetal

Spin density wave (SDW)

d-wavesuperconductor

Small Fermipockets with

pairing fluctuations

Theory of quantum criticality in the cuprates

Onset of d-wave superconductivityhides the critical point x = xm

Page 95: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

LargeFermi

surface

StrangeMetal

Spin density wave (SDW)

d-wavesuperconductor

Small Fermipockets with

pairing fluctuations

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Page 96: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

LargeFermi

surface

StrangeMetal

Spin density wave (SDW)

d-wavesuperconductor

Small Fermipockets with

pairing fluctuations

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Page 97: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin density wave (SDW)

Spin gap

Thermallyfluctuating

SDW

d-wavesuperconductor

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Page 98: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin density wave (SDW)

Spin gap

Thermallyfluctuating

SDW

d-wavesuperconductor

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Classicalspin

waves

Dilutetriplongas

Quantumcritical

Neel order

Criticality of the coupled dimer antiferromagnet at x=xs

Page 99: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin density wave (SDW)

Spin gap

Thermallyfluctuating

SDW

d-wavesuperconductor

Theory of quantum criticality in the cuprates

Competition between SDW order and superconductivitymoves the actual quantum critical point to x = xs < xm.

Criticality of the topological change in Fermi surface at x=xm

Increasing SDW orderIncreasing SDW order

Page 100: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

Page 101: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Page 102: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Change in frequency of quantum oscillations in electron-doped materials identifies xm = 0.165

Page 103: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Nd2!xCexCuO4

T. Helm, M. V. Kartsovni, M. Bartkowiak, N. Bittner,

M. Lambacher, A. Erb, J. Wosnitza, R. Gross, arXiv:0906.1431

Increasing SDW orderIncreasing SDW order

Page 104: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Neutron scattering at

H=0 in same material

identifies xs = 0.14 < xm

Page 105: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

0 100 200 300 4005

10

20

50

100

200

500

Temperature (K)

Spin

cor

rela

tion

leng

th !

/a

x=0.154x=0.150x=0.145x=0.134x=0.129x=0.106x=0.075x=0.038

E. M. Motoyama, G. Yu, I. M. Vishik, O. P. Vajk, P. K. Mang, and M. Greven,Nature 445, 186 (2007).

Nd2!xCexCuO4

Page 106: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Small Fermipockets with

pairing fluctuationsLargeFermi

surface

StrangeMetal

Magneticquantumcriticality

Spin gapThermallyfluctuating

SDW

d-waveSC

T

H

SC

M"Normal"

(Large Fermisurface)

SDW(Small Fermi

pockets)

SC+SDW

Experiments onNd2!xCexCuO4

show that at lowfields xs = 0.14,while at high fieldsxm = 0.165.

Page 107: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

General theory of finite temperature dynamics and transport near quantum critical points, with

applications to antiferromagnets, graphene, and superconductors

Conclusions

Page 108: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

The AdS/CFT offers promise in providing a new understanding of

strongly interacting quantum matter at non-zero density

Conclusions

Page 109: Quantum criticality: from antiferromagnets and ...qpt.physics.harvard.edu/talks/cornell_colloquium.pdf · Pavel Kovtun, Victoria Dam Son, Washington Lars Fritz, Harvard Victor Galitski,

Identified quantum criticality in cuprate superconductors with a critical point at optimal

doping associated with onset of spin density wave order in a metal

Conclusions

Elusive optimal doping quantum critical point has been “hiding in plain sight”.

It is shifted to lower doping by the onset of superconductivity


Recommended