+ All Categories
Home > Documents > Quantum Dot Solar Cells.ppt

Quantum Dot Solar Cells.ppt

Date post: 08-Nov-2014
Category:
Upload: mustaque-ali-khan
View: 210 times
Download: 5 times
Share this document with a friend
Description:
Quantum Dot Solar Cells
Popular Tags:
19
Quantum Dot Solar Quantum Dot Solar Cells. Cells. Tuning Photoresponse Tuning Photoresponse through through Size and Shape Size and Shape Control of CdSe Control of CdSe - - TiO2 TiO2 Architecture Architecture Kiarash Kiantaj Kiarash Kiantaj EEC235/Spring 2008 EEC235/Spring 2008
Transcript
Page 1: Quantum Dot Solar Cells.ppt

Quantum Dot Solar Quantum Dot Solar Cells. Cells.

Tuning Photoresponse Tuning Photoresponse through through

Size and Shape Control Size and Shape Control of CdSeof CdSe--TiO2 TiO2 ArchitectureArchitectureKiarash KiantajKiarash Kiantaj

EEC235/Spring 2008EEC235/Spring 2008

Page 2: Quantum Dot Solar Cells.ppt

IntroductionIntroduction

Sensitization of mesoscopic Tio2 Sensitization of mesoscopic Tio2 with dyes (11% efficiency)with dyes (11% efficiency)

Short band gap semi-conductors to Short band gap semi-conductors to transfer electrons to large band gap transfer electrons to large band gap semi-conductorssemi-conductors

Sensitizers: CdS, PbS, Bi2S3 CdSe, InP (short gap)

TiO2 , SnO2 ( large gap)

Page 3: Quantum Dot Solar Cells.ppt

Short band gap semi-Short band gap semi-conductorsconductors

Harvesting visible light energy.Harvesting visible light energy. Electron injection under visible lightElectron injection under visible light Fast charge recombination Fast charge recombination low low

efficiency efficiency

Page 4: Quantum Dot Solar Cells.ppt

Semiconductor Quantum Semiconductor Quantum dots dots

Visible light harvesting assemblies Visible light harvesting assemblies Size quantization Size quantization

Tune visible responseTune visible response Vary band energiesVary band energies

Open up ways utilize hot electrons Open up ways utilize hot electrons and multiple carriers with single and multiple carriers with single photon. photon.

Page 5: Quantum Dot Solar Cells.ppt

Quantized CdSe Particles and Their Deposition on TiO2

Particulate Films and Nanotubes

Random versus Directed Electron Transport throughSupport Architectures, (a) TiO2 Particle and (b) TiO2 NanotubeFilms Modified with CdSe Quantum Dots

Page 6: Quantum Dot Solar Cells.ppt

- Absorption spectra of 3.7, 3.0, 2.6, and 2.3 nm diameter CdSequantum dots in toluene.- Shift due to quantization

Page 7: Quantum Dot Solar Cells.ppt

Scanning electron micrographs of (A) TiO2 particulate film caston OTE and (B, C, and D) TiO2 nanotubes prepared by electrochemicaletching of titanium foil. The side view (B), top view(C), and magnifiedview (D) illustrate the tubular morphology of the film

Deposition of QD on Tio2 films

Page 8: Quantum Dot Solar Cells.ppt

40-50 nm particles ( diameter) 40-50 nm particles ( diameter) Electro chemical etching of Ti in fluorideElectro chemical etching of Ti in fluoride Tio2 Tio2

nanotubesnanotubes 80-90 nm ( diameter) , 8 um long 80-90 nm ( diameter) , 8 um long

Photograph of 2.3, 2.6, 3.0, and 3.7 nm diameter CdSe quantum dots

(A)in toluene,(B)anchored on TiO2

particulate films (OTE/TiO2(P)/CdSe,

(C) attached to TiO2 nanotube array (Ti/TiO2(NT)/CdSe).

Page 9: Quantum Dot Solar Cells.ppt

Growth detailsGrowth details

Constant absorption monolayer CdSe

Linear increase in absorption with TiO2 thickness

CdSe quantum dots and TiO2 binding : bifunctional linker molecules (HOOC-

CH2-CH2-SH)

carboxylate and thiol functional groups

Page 10: Quantum Dot Solar Cells.ppt

Absorption spectra Absorption spectra

Absorption spectra of (a) 3.7, (b) 3.0, (c) 2.6, and (d) 2.3 nmdiameter CdSe quantum dots anchored on nanostructured TiO2 films (A)OTE/TiO2(NP)/CdSe (solid lines) and (B) (Ti/TiO2(NT)/CdSe (dashed lines).

•Peaks due to the 1S exciton transitions•Binding of CdSe to TiO2

Page 11: Quantum Dot Solar Cells.ppt

Selectively harvest light Selectively harvest light CdSe maintains quantization CdSe maintains quantization

properties after bindingproperties after binding Absorbance = 0.7Absorbance = 0.7 more than 80% more than 80%

absorption of light below the onset.absorption of light below the onset. Uniform coverage of CdSe is similar Uniform coverage of CdSe is similar

to modified mesoscopic TiO2 with to modified mesoscopic TiO2 with sensitizing dyes. sensitizing dyes.

Page 12: Quantum Dot Solar Cells.ppt

Photoelectrochemistry of TiO2 Films Modified with

CdSeQuantum Dots

Open circuit voltageOpen circuit voltage Short current circuit Short current circuit Open circuit voltage is Open circuit voltage is same for all. (650+-20 mV)same for all. (650+-20 mV) Injected electrons relax to Injected electrons relax to lowest conduction bandlowest conduction band conduction bandconduction band level of TiO2+ redox = 600 mVlevel of TiO2+ redox = 600 mV

Page 13: Quantum Dot Solar Cells.ppt

Photocurrent response depends on Photocurrent response depends on particle size particle size

Photocurrent response of (A) OTE/TiO2(NP)/CdSe and (B) (Ti/TiO2(NT)/CdSe electrodes. Individual traces correspond to (a) 3.7, (b) 3.0, (c) 2.6,and (d) 2.3 nm diameter CdSe quantum dots anchored on nanostructured TiO2 films (excitation >420 nm, 100 mW/cm2; electrolyte, 0.1 M Na2S solution).

Page 14: Quantum Dot Solar Cells.ppt

Maximum photocurrentMaximum photocurrent 3.0 nm 3.0 nm CdSeCdSe

Two opposing effects:Two opposing effects:

1- decreasing size1- decreasing size shift of the shift of the conduction bad to more negative conduction bad to more negative potentialpotential driving force for charge driving force for charge injection injection

2- decreasing size2- decreasing size smaller response in smaller response in visible regionvisible region less photocurrent less photocurrent

Page 15: Quantum Dot Solar Cells.ppt

I-V characteristics of (A) OTE/TiO2(NP)/CdSe and (B) (Ti/TiO2(NT)/CdSe electrodes (excitation >420 nm; intensity 100 mW/cm2;electrolyte, 0.1 M Na2S solution.)Under the applied potential charge recombination is minimized.

Page 16: Quantum Dot Solar Cells.ppt

Tuning the Photoelectrochemical Response through Size

Quantization.- incident photon to charge carrier efficiency(IPCE)

Photocurrent action spectraA) OTE/TiO2(NP)/CdSe and(B) (Ti/TiO2(NT)/CdSe electrodes

Page 17: Quantum Dot Solar Cells.ppt

nanotube TiO2 films generally absorb more light than nanoparticle TiO2

films, this difference accounts for a no more than a 5% increase

in overall photons absorbed. Comparing this with a 10%

improvement in IPCE of the nanotube film over the nanoparticle film demonstrates the measurable advantage of a nanotube

architecture for facilitating electron transport in nanostructure-

based semiconductor films.

Page 18: Quantum Dot Solar Cells.ppt

Design of Rainbow Solar Cells

Artistic Impression of a Rainbow Solar CellAssembled with Different-Sized CdSe Quantum Dots on a TiO2Nanotube Array

Page 19: Quantum Dot Solar Cells.ppt

ConclusionConclusion

Size dependent charge injection ( Tio2-Size dependent charge injection ( Tio2-CdSe)CdSe)

Morphology dependence Morphology dependence Overall power efficiency of about 1% Overall power efficiency of about 1%

with 3nm with 3nm

CdSe QDCdSe QD Maximum IPCE value (45%) obtained

with CdSe/TiO2(NT) is greater than that of CdSe/TiO2(NP) (35%).


Recommended