+ All Categories
Home > Documents > Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy...

Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy...

Date post: 10-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
56
2002 2002 Agilent Agilent Technologies Technologies Europhysics Prize Lecture Europhysics Prize Lecture on Bernard Barbara, L. Néel Lab, Grenoble, France Jonathan R. Friedman, Amherst College, Amherst, MA, USA Dante Gatteschi, University of Florence, Italy Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics of Nanomagnets
Transcript
Page 1: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

2002 2002 AgilentAgilent TechnologiesTechnologiesEurophysics Prize LectureEurophysics Prize Lecture

on

Bernard Barbara, L. Néel Lab, Grenoble, FranceJonathan R. Friedman, Amherst College, Amherst, MA, USADante Gatteschi, University of Florence, ItalyRoberta Sessoli, University of Florence, ItalyWolfgang Wernsdorfer, L. Néel Lab, Grenoble, France

Budapest 26/08/2002

Quantum Dynamics of Nanomagnets

Page 2: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

the miniaturization process

Single Domain Particles

coherent rotation of all the spins

Page 3: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

θ

Ener

gy

θ

∆E

Page 4: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Quantum effects in thedynamics of the magnetizationFirst evidences of Quantum Tunneling innanosized magnetic particles

(difficulties due to size distribution)

0 3 nmQuantum Coherence in ferrihydriteconfined in the ferritin mammalianprotein

(inconclusive due to distribution of ironload)

Page 5: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

= metal ions = oxygen = carbon

Page 6: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics
Page 7: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

The molecules are regularly arranged in the crystal

Page 8: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Mn(IV)S=3/2

Mn(III)S=2

Total Spin=10

Mn12acetateMn12acetate

T. Lis Acta Cryst. 1980, B36, 2042.

Page 9: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

high spin molecules

and low spin molecules

Page 10: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Uniaxial magnetic anisotropy H=-DSz

2

H=0

M

M=+S

M=-S+1M=S-1

0

E

-S+S

If S is large

Page 11: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

H=-DSz2+gµBHzSz

H≠0

M=-S

M=S

Page 12: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

return to the equilibriumthermal activated mechanismthermal activated mechanism

H=0

∆∆∆∆E=DS2

M=-SM=S

τ=τ0exp(∆E/kBT) τ0≈10-7

∆E=63 K

time=0

J. Villain et al. Europhys. Lett.1994, 27, 159

Page 13: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

return to the equilibriumthermal activated mechanismthermal activated mechanism

H=0

∆∆∆∆E=DS2

M=-SM=S

τ=τ0exp(∆E/kBT) τ0≈10-7

∆E=63 K

time=∞

Page 14: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(τ/τ 0

)]-1

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(τ/τ 0

)]-1 τ

Sessoli et al. Nature 1993, 365, 141

τ0=2x10-7 s

∆E/kB=61 K

Temperature dependence of the relaxation time of Mn12acetate

Page 15: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Mn12acetate: Mn12acetate: HysteresisHysteresis loop loop

-3 -2 -1 0 1 2 3

-20

-10

0

10

20T=2.1K

M

AG

NE

TIZA

TIO

N ( µµ µµ

B)

MAGNETIC FIELD (T)

magnetic hysteresiswithout cooperativity

Page 16: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

High Spin Clusters

Single Molecule Magnets

applications?

Page 17: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(τ/τ 0

)]-1

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(τ/τ 0

)]-1 τ

τ0=2x10-7 s

∆E/kB=61 K

Temperature dependence of the relaxation time of Mn12acetate

0

0.1

0.2

0.3

2 6

1 year1 day

1 s

1 ms

TEMPERATURE (K)

[log(τ/τ 0

)]-1

deviations fromthe Arrhenius law

Barbara et al. J. Magn. Magn. Mat. 1995, 140-144, 1825

Page 18: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

return to the equilibriumtunnel tunnel mechanismmechanism

H=0

M=S M=-S

terms in Sx and Sy of the spin Hamiltonian

Page 19: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

return to the equilibriumtunnel tunnel mechanismmechanism

H=0

M=S M=-S

terms in Sx and Sy of the spin Hamiltonian

Page 20: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

What is the difference ?

Four fold axisTetragonal (E=0)

Mn12 Fe8

HH = = µµBB S.g.BS.g.B - D - D SSzz22 + + E (E (SSxx

22--SSyy22)) + B + BSSzz

44 + + C (C (SS++44++SS--

44))

Stot=10

Page 21: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

What is the difference ?

Four fold axisTetragonal (E=0)

Two fold axisRhombic (E≠0)

Mn12 Fe8

HH = = µµBB S.g.BS.g.B - D - D SSzz22 + + E (E (SSxx

22--SSyy22)) + B + BSSzz

44 + + C (C (SS++44++SS--

44))

Page 22: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Hysteresis loops for Mn12

Friedman et al.,PRL, 1996;Hernandez et al,EPL, 1996;Thomas et al.,Nature, 1996

-0.4-0.3

-0.2

-0.1

00.1

0.2

0.3

0.4

-30 -20 -10 0 10 20 30

2.0 K2.2 K2.4 K2.6 K2.8 K3.0 Κ

M (e

mu)

H (kOe)

Page 23: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Hysteresis loops for Mn12

−5

0

5

10

15

20

25

30

0 5 10 15 20

2.0 K2.2 K2.4 K2.6 K2.8 K3.0 K

dM/d

H (1

0-5 e

mu/

Oe)

H (kOe)

Friedman et al.,PRL, 1996;Hernandez et al,EPL, 1996;Thomas et al.,Nature, 1996

Page 24: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Uniform spacing betweensteps

0

5

10

15

20

25

30

0 1 2 3 4 5 6

Hef

f (kO

e)

step number n

Step spacing: ~4.5 kOe

Page 25: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

-0.4-0.3

-0.2

-0.1

00.1

0.2

0.3

0.4

-30 -20 -10 0 10 20 30

2.0 K2.2 K2.4 K2.6 K2.8 K3.0 Κ

M (e

mu)

H (kOe)

Hysteresis loops for Mn12

Page 26: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Enhanced Relaxation at Step Fields

10-3

10-2

0 2000 4000 6000

9.5 kOe9.0 kOe

(Msa

t - M

) (e

mu)

t (s)

Higher energy barrier

Yet faster relaxation!

Page 27: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Enhanced Relaxation at Step Fields

10−5

10−4

10−3

10−2

0 5 10 15 20

2.0 Κ2.6 Κ

Γ (s-1)

H (kOe)

Page 28: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Thermally Assisted ResonantTunneling

m = -10

m = -9

m = 10

m = 9

Thermalactivation

Fast tunneling

Tunneling occurs when levels in opposite wells align.

Page 29: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Hamiltonian for Mn122z BDS gµ= − − ⋅S H

The field at which (in the left well) crosses (in the right well):

m nm+−

Bnmm g

DnHµ−=+−,

Steps occur at regular intervals of field, as observed.

Step occurs every 4.5 kOe ⇒ D/g = 0.31 K

Compare with ESR data:D = 0.56 K, g = 1.93 D/g = 0.29 K(Barra et al., PRB, 1997)

Page 30: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Hamiltonian for Mn122z BDS gµ= − − ⋅S H 4

zBS−Spectroscopic studies revealed a 4th-order longitudinal anisotropy term B ~1.1 mK. (ESR: Barra et al., PRB, 1997 and Hill et al., PRL, 1998; INS:Mirebeau et al., PRL, 1999, Zhong et al., JAP, 2000 and Bao et al., cond-mat, 2000)

⇒Different pairs of levels cross at slightly different fields.

⇒Allows for the Examination of the Crossover from Thermally Assisted toPure Quantum Tunneling.

Page 31: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Crossover to Ground-stateTunneling

Abrupt “first-order” transition betweenthermally assisted and ground statetunneling.

Theory: Chudnovsky and Garanin, PRL,1997; Exp’t: Kent, et al., EPL, 2000, Merteset al., JAP, 2001.

2 2, 1 ( )m m

B

Dn BH m mg Dµ′

′= + +

Level crossing fields:

Page 32: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Fe8 Hamiltonian in Zero Field

2 2 2 4 4( ) ( )z x yDS E S S C S S+ −= − + − + +

Easy Axis Hard Axis

Spin wants to rotate in the y-z plane

Page 33: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Two Paths for MagnetizationReversal

Easy axis

Hard axis

Z

Y

XH

ϕϕϕϕ

A

B

ClockwiseCounterclockwise

Page 34: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Destructive Topological InterferenceEasy axis

Hard axis

Z

Y

XH

ϕϕϕϕ

A

B

Equivalence between paths ismaintained when H is appliedalong the Hard Axis.

Topological (Berry’s) phasedepends on solid angle Ωenscribed by the two paths.

Complete destructiveinterference occurs for certaindiscrete values of Ω.

Theoretical Prediction: A. Garg., 1993.

Solid AngleΩΩΩΩ

Page 35: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Destructive Topological Interference

A. Garg., 1993.

Modulation of Tunnel Splitting:

where Ω depends on the field along the Hard Axis.

When SΩΩΩΩ = ππππ/2, 3ππππ/2, 5ππππ/2…, tunneling is completely suppressed!

Interval between such destructive interference points:

cos( ),S∆ = Ω

2 2 ( )B

H E E Dgµ

∆ = +

Page 36: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Measured Tunnel Splitting

0 0.2 0.4 0.6 0.8 1 1.2

0.1

1

10

Tunn

el s

pitti

ng ²(

10-7

K)

Magnetic tranverse field (T)

ϕϕϕϕ = 90°50°

30°20°

10°

0 0.2 0.4 0.6 0.8 1 1.2 1.40.1

1

10

Tunn

el s

plitt

ing

²(10

-7 K

)

Magnetic transverse field (T

M = -10 -> 10

ϕϕϕϕ - 0°

ϕϕϕϕ - 7°

ϕϕϕϕ - 20°ϕϕϕϕ - 50°ϕϕϕϕ - 90°

experimentalcalculated with

D = -0.29, E = 0.046, C = -2.9x10-5 K

W. Wernsdorfer and R. Sessoli, Science, 1999.

Page 37: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Parity Effect: Odd vs. EvenResonances

-1 -0.5 0 0.5 10.1

1

10

²tu

nn

el(1

0-8

K)

µ 0Htrans (T)

n = 0

n = 1

n = 2

ϕϕϕϕ - 0°

W. Wernsdorfer and R. Sessoli, Science, 1999.

Page 38: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

What Causes Tunneling andWhy the Parity Effect in Fe8

• Tunneling is produced by terms in theHamiltonian that do not commute withSz.

• For Fe8, these terms are

• Selection rule:• Every other tunneling resonance is

forbidden!

2 2 2 2( ) ( )2x yEE S S S S+ −− = +

,...)3,2,1(2 =±=∆ ppm

Page 39: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

What Causes Tunneling andWhy the Parity Effect in Fe8

n = 1

-9 89

10-10

n = 0

-109-910

2m p∆ = ± 2m p∆ ≠ ±Tunneling Allowed Tunneling Forbidden

Page 40: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Parity Effect: Odd vs. EvenResonances

-1 -0.5 0 0.5 10.1

1

10

²tu

nn

el(1

0-8

K)

µ 0Htrans (T)

n = 0

n = 1

n = 2

ϕϕϕϕ - 0°

W. Wernsdorfer and R. Sessoli, Science, 1999.

Page 41: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Crossover From Classical to Quantum Regime

0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,00,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

n=5

n=0

n=1

n=2

n=3n=4

n=6n=7

n=8n=9n=10

Bn

T (K)

ActivatedTunneling

Measured ( ) and Calculated ( ) Resonance Fields

Barbara et al, JMMM 140-144, 1891 (1995) and J. Phys. Jpn. 69, 383 (2000)Paulsen, et al, JMMM 140-144, 379 (1995); NATO, Appl. Sci. 301, Kluwer (1995)

Classical ThermalActivation

Tblocking

Ground-stateTunneling

Tc-o

(Mn12-ac)

Page 42: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

The Tunnel Window:An effect of weak Hyperfine Interactions

• Chiorescu et al, PRL, 83, 947 (1999)• Barbara et al, J. Phys. Jpn. 69, 383

(2000)• Kent et al, EPL, 49, 521 (2000)

3,75 3,80 3,85 3,90 3,95 4,00 4,05 4,10 4,150

1

2

3

4

n=8T=0.95 K

dm /

dB0

B0 (T)

8-1 8-0

Inhomogeneous broadening ofTwo resonances: Dipolar fields

Data points and calculated lines

Level Scheme

0,4 0,6 0,8 1,0 1,2 1,4

3,0

3,5

4,0

4,5

5,0 10-010-1

9-09-1 9-2

8-08-1 8-2

7-07-1 7-2

6-06-1 6-2

Bn (T

)

T(K)3,0 3,5 4,0 4,5 5,0

-30

-20

-10

0

10

20

(n-p) : -S+p S-n-p

9-2 10-1

9-1 10-0

9-0

8-2

8-1

8-0

7-2

7-1

7-0

6-0

6-1

6-2

E (K)

B 0 (T)

-0.04 -0.02 0 0.02 0.04 0.06 0.0810 -7

10 -6

10 -5

ΓΓ ΓΓsq

rt(s

-1)

µ 0H(T)

M in = -0.2 M s

-0.005 0 0.0054 10 -6

6 10 -6

8 10 -610 -5

2 10 -5 t0=0s

t0=10s

t 0=5s

t0=20s

t0=40s

Homogeneousbroadening of nuclearspins: Tunnel window

• Wernsdorfer et al, PRL (1999)

Page 43: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Effects of Strong Hyperfine Interactions:

Tetragonal symmetry(Ho in S4)

J = L+S = 8; gJ=5/4

Dipolar interactions between Ho3+ << mT

Case of Rare-earth ions: Ho3+ in Y0.998Ho0.002LiF4

HCF-Z = -B20 O2

0 - B40 O4

0 - B44 O4

4 - B60O6

0 - B64O6

4 - gJµBJH Bl

m : acurately determined by high resolution optical spectroscopy

Sh. Gifeisman et al, Opt. Spect. (USSR) 44, 68 (1978); N.I. Agladze et al, PRL, 66, 477 (1991)

Page 44: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Hysteresis loop of Ho3+ ions in YLiF4

Mn12-ac

Thomas et al, Nature (1996) Giraud et al, PRL, 87, 057203-1 (2001) Friedman et al, PRL (1996), Hernandez et al, EPL (1996)

Steps at Bn = 450.n (mT) Steps at Bn = 23.n (mT)

Tunneling of Mn12-ac Molecules Tunneling of Ho3+ ion

-80 -40 0 40 80 120-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

µµµµ0Hz (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/µµ µµ 0

dm/d

Hz (1

/T)

Ho3+

-1

-0,5

0

0,5

1

-3 -2 -1 0 1 2 3

1.5K1.6K1.9K2.4K

M/M

S

BL (T)

Comparison with Mn12-ac

Page 45: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Role of Strong Hyperfine Interactions H = HCF-Z + A.I.J

-80 -40 0 40 80 120-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

µµµµ0Hz (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/µµ µµ 0

dm/d

Hz (

1/T)

-200 -150 -100 -50 0 50 100 150 200

-180,0

-179,5

-179,0

-178,5

E (K

)

µµµµ0Hz (mT)

-7/2

7/2

5/2

-7/2

7/2

3/25/2

3/2

-5/2 -3/2-1/21/2

-5/2 -3/2

Induce Tunneling of Electronic Moments

-1/2 1/2

Avoided Level Crossings between |Ψ−, Iz> and |Ψ+, Iz’> if DI= (Iz -Iz’ )/2 integer

Co-Tunneling of Electronic and Nuclear Spins:Electro-nuclear entanglement

Page 46: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Exchange-biased quantum tunnelling in adimer of Mn4 molecule

W. Wernsdorfer et al, Nature 416, 406 (2002)

Page 47: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

V15 : The Archetype of Low spin MoleculesA Mesoscopic Spin S=1/2

Anisotropy of g-factor: ~ 0.6%Ajiro et al, J..Low. Temp.

Phys. to appear (2003)Barra et al,J. Am. Chem.

Soc. 114, 8509 (1992)

Exchange interactions:Antiferromagnetic ~ several 102K

Müller, Döring, Angew. Chem. Intl.Engl., 27, 171 (1988)

Page 48: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Barbara et al, cond-mat / 0205141 v1; submited to PRL.

0,0 0,2 0,4 0,6 0,8 1,00,0

0,2

0,4

0,6

0,8

1,0

M/M

S

B0(T)

αααα = 130

60 mK 0.14 T/s 0.14 mT/s

V15

M(H) : Reversible and out of equilibrium

∆∆∆∆ ∼∼∼∼ 80 mK

ener

gy

magnetic field

²

| S, -m >

| S, m-n >

1 P

1 - P

| S, -m >

| S, m-n >

Adiabatic Landau-Zener Spin Rotation

« Isolated V15 » : A two-level system « without dissipation »

M(H) = dE(H)/dH

Fast sweeping rate / Weak coupling to the cryostat

Nuclear Spin-Bath :Weak Level Broadening

Page 49: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Low sweeping rate / Strong coupling to the cryostat

« Non-Isolated V15 » :A two-level system « with dissipation »

0,0

0,2

0,4

0,6

0,8

1,0

-0,6 -0,3 0,0 0,3 0,60,00

0,05

0,10

0,15

T=0.1 K

B0 (T)

TS=Tph (K)

(c)

M (µ

B)

M (µ

B) T = 100 mK

0.14 T/s 0.07T/s 4.4 mT/s

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,70,0

0,2

0,4

0,6

0,8

1,0(d)

B0 (T)

Measured

Calculated

Chiorescu et al, PRL 84, 3454 (2000)

M(H): Irreversible

0,0 applied field

_hωωωω ∆∆∆∆H= ∆∆∆∆0

2+(2µµµµBB0)2

1P

1-P

|1/2,1/2> |1/2,-1/2>

|1/2,1/2>|1/2,-1/2>

∆∆∆∆0

ener

gy

LZS transition at Finite Temperature (dissipative)

Phonon-bath → bottleneck modelAbragam, Bleaney, 1970; Chiorescu et al, 1999.

Nuclear spin-bath → level broadeningStamp, Prokofiev, 1998.

Page 50: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

V15: a Gapped Spin ½ Molecule

Dzyaloshinsky-Moriya interactions: HDM= -Σ DijSixSj

The Multi-Spin Character of the Molecule(15 spins)

+

Time Reversal Symmetry D = 0 (Kramers Theorem)

Page 51: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Magnetism: From Macroscopic to Single atoms

S = 10 20 10 10 10 8 10 6 10 5 10 4 10 3 10 2 10 1

clusters spinmoleculesNano-particlesNano-wiressubmicron

0 3 nm

Ho

Page 52: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Macroscopic QuantumTunneling of Magnetization

of Single Nanoparticles easy axis

Barium ferriteNanoparticle (10 nm)

Wernsdorfer et al. et al, PRL, 79, 4014, (1997)

Tc=0.31 K

Stoner-Wohlfarth astroid

0.2

0.4

0.6

0.8

1

1.2

0° 15° 30° 45° 60° 75° 90°

Tc( θθ θθ

)/T

c(4

5°)

angle θθθθ

Tc(θ) ∝ µ 0Ha ε1/4 cotθ 1/6 1+ cotθ 2/3( )−1

Miguel and Chudnovsky, PRB (1995)

Page 53: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Dissipation control of LZSMolecule spins 1/2 : Gapped

V15

Ho3+ , Mn4 pairs:Cross-spin transitions, Co-tunneling

Mn4 Fe8

Quantum DysnamicsBerry Phases

Quantum Classical crossoverQuantum Dynamics, Spin Bath

Mn12-ac

Conclusion and Perspectives Quantum Tunneling at the Mesoscopic Scale(Environmental Effects on Quantum Mechanics)

Evidence for Quantum Coherence(τφ, Rabbi oscillations, … )

Manipulations of Quantum Spins, Spins Qbits(Quantum Informations and Computers)

Tunneling of single Ho3+ ionsEntangled I-J states

Ho3+

Page 54: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

AcknowledgementsUniv. Florence & Modena:Andrea CaneschiClaudio SangregorioLorenzo SoraceAngelo RettoriAnna FortAndrea Cornia

L. Neél Lab. CNRS GrenobleE. BonetI. Chiorescu R. Giraud L. Thomas C. Thirion R. Tiron

CCNY:Myriam SarachikYicheng Zhong

U. Barcelona:Javier TejadaJoan Manel HernandezXixiang Zhang (now Hong Kong)Elias Molins

XeroxRon Ziolo

Lehman College ­ CUNYEugene Chudnovsky

Univ. Rio de JaneiroM. Novak

Page 55: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

Italian INFMA. LascialfariF. BorsaR. CaciuffoG. AmorettiM. Affronte

CNRS GrenobleJ. VillainA. L. BarraC. PaulsenV. Villar A. BenoitCNRS BagneuxD. Mailly

Lehman College ­ CUNYEugene Chudnovsky

Univ. Calif. ­ San Diego:David HendricksonSheila AubinEvan RumbergerE. Yang

Los Alamos:Rob Robinson(now ANSTO, Australia)Tim KelleyHeinz NakotteFrans Trouw (Argonne) Wei Bao

Univ. FloridaN. Aliaga, S. Bhaduri, C.Boskovic,C. Canada, C._Sanudo, M.Soler, G. Christou

Univ. P. et M. Curie, ParisV. Marvaud, M. Verdaguer,

Univ. BielefeldH. Bögge, A. Müller

U. St. PetersburgA.M. Tkachuk

Univ. Manchester R.E.P. Winpenny

Univ. KyotoH. Ajiro, T. Goto, S. Maegawa

Univ. OkkaidoY. Furukawa

Page 56: Quantum Dynamics of Nanomagnets · 2002-10-30 · Roberta Sessoli, University of Florence, Italy Wolfgang Wernsdorfer, L. Néel Lab, Grenoble, France Budapest 26/08/2002 Quantum Dynamics

AcknowledgementsJ. F. Fernandez

A. Garg

M. Leuenberger D. Loss,

A. Mukhin

S. Miyashita

N.V. Prokof'ev

A. Zvezdin

L. J. de Jongh

J. Schweizer

P.C.E. Stamp

I. Tupitsyn


Recommended