+ All Categories
Home > Documents > Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12....

Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12....

Date post: 31-Dec-2015
Category:
Upload: lorena-hood
View: 224 times
Download: 4 times
Share this document with a friend
Popular Tags:
43
Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia
Transcript
Page 1: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Quantum impurity physics and the “NRG Ljubljana” code

Rok Žitko

UIB, Palma de Mallorca, 12. 12. 2007

J. Stefan Institute, Ljubljana, Slovenia

Page 2: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

• Quantum transport theory– prof. Janez Bonča1,2

– prof. Anton Ramšak1,2

– Tomaž Rejec1,2

– Jernej Mravlje1

• Experimental surface science and STM– prof. Albert Prodan1

– prof. Igor Muševič1,2

– Erik Zupanič1

– Herman van Midden1

– Ivan Kvasić1

1 J. Stefan Institute, Ljubljana, Slovenia

2 Faculty of Mathematics and Physics, Uni. of Ljubljana, Ljubljana, Slovenia

Page 3: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Outline

• Impurity physics• Numerical renormalization group• SNEG – Mathematica package for performing

symbolic calculations with second quantization operator expressions

• NRG Ljubljana– project goals– features– some words about the implementation

• Impurity clusters– N parallel quantum dots (N=1...5, one channel)

Page 4: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Classical impurity

Page 5: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Quantum impurity

This is Kondo model!

Page 6: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Nonperturbative behaviour

The perturbation theory fails for arbitrarily small J !

Page 7: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Screening of the magnetic moment

Kondo effect!

Page 8: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

“Asymptotic freedom” ...

T >> TK

Page 9: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

... and “infrared slavery”

T << TK

S=0

Analogy: TK QCD

Page 10: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Nonperturbative scattering

S+ S- S- S+

Page 11: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Why are quantum impurity problems important?

• Quantum systems in interaction with the environment (decoherence)

• Magnetic impurities in metals (Kondo effect)

• Electrons trapped in nanostructures (transport phenomena)

• Effective models in dynamical mean-field theory (DMFT) of strongly-correlated materials

Page 12: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Renormalization group

1 k e V

1 0 0 m e v

1 e V

1 m e V?

Page 13: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Many energy scales are locally coupled (K. G. Wilson, 1975)

Cascade effect

Page 14: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Numerical renormalization group (NRG)

-n/2

Page 15: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Iterative diagonalization

Recursion relation:

1

1/ 2 † †1 1, , , 1,( )

N N

N N N N N N N

H T H

H H f f f f

Page 16: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Tools: SNEG and NRG Ljubljana

Add-on package for the computer algebra system Mathematica for performing calculations involving non-commuting operators

Efficient general purpose numerical renormalization group code

• flexible and adaptable

• highly optimized (partially parallelized)

• easy to use

Both are freely available under the GPL licence:

http://nrgljubljana.ijs.si/

Page 17: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Package SNEG

http://nrgljubljana.ijs.si/sneg

, U , U

t

Page 18: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

SNEG - features

• fermionic (Majorana, Dirac) and bosonic operators, Grassman numbers

• basis construction (well defined number and spin (Q,S), isospin and spin (I,S), etc.)

• symbolic sums over dummy indexes (k, )• Wick’s theorem (with either empty band or

Fermi sea vacuum states)• Dirac’s bra and ket notation• Simplifications using Baker-Campbell-

Hausdorff and Mendaš-Milutinović formula

Page 19: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

SNEG - applications

• exact diagonalization of small clusters• perturbation theory to high order• high-temperature series expansion• evaluation of (anti-)commutators of

complex expressions• NRG

– derivation of coefficients required in the NRG iteration

– problem setup

Page 20: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

“NRG Ljubljana” - goals

• Flexibility (very few hard-coded limits, adaptability)

• Implementation using modern high-level programming paradigms (functional programming in Mathematica, object oriented programming in C++) short and maintainable code

• Efficiency (LAPACK routines for diagonalization)• Free availability

Page 21: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Package “NRG Ljubljana”http://nrgljubljana.ijs.si/

open source,GPL

Page 22: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Definition of a quantum impurity problem in “NRG Ljubljana”

f0,L f0,R

a bt

Himp = eps (number[a[]]+number[b[]])+U/2 (pow[number[a[]]-1,2]+pow[number[b[]]-1,2])

Hab = t hop[a[],b[]]

Hc = Sqrt[Gamma] (hop[a[],f[L]] + hop[b[],f[R]])

+ J spinspin[a[],b[]]+ V chargecharge[a[],b[]]

Page 23: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Definition of a quantum impurity problem in “NRG Ljubljana”

f0,L f0,R

a bt

Himp = epsa number[a[]] + epsb number[b[]] +U/2 (pow[number[a[]]-1,2]+pow[number[b[]]-1,2])

Hab = t hop[a[],b[]]

Hc = Sqrt[Gamma] (hop[a[],f[L]] + hop[b[],f[R]])

Page 24: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Computable quantities

• Finite-site excitation spectra (flow diagrams)• Thermodynamics:

magnetic and charge susceptibility, entropy, heat capacity

• Correlations: spin-spin correlations, charge fluctuations,...spinspin[a[],b[]]number[d[]]pow[number[d[]], 2]

• Dynamics: spectral functions, dynamical magnetic and charge susceptibility, other response functions

Page 25: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Sample input file[param]model=SIAMU=1.0Gamma=0.04

Lambda=3Nmax=40keepenergy=10.0keep=2000

ops=q_d q_d^2 A_d

Model and parameters

NRG iteration parameters

Computed quantities

Occupancy

Charge fluctuations

Spectral function

Page 26: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

W. G. van der Wiel, S. de Franceschi, T. Fujisawa, J. M. Elzerman, S. Tarucha, L. P. Kouwenhoven, Science 289, 2105 (2000)

Conduction as a function of gate voltage for decreasing temperature

Kondo effect in quantum dots

Page 27: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Scattering theory

“Landauer formula”

See, for example, M. Pustilnik, L. I. Glazman, PRL 87, 216601 (2001).

Page 28: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Keldysh approach

One impurity:

Y. Meir, N. S. Wingreen. PRL 68, 2512 (1992).

Page 29: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Conductance of a quantum dot (SIAM)

Computed using NRG.

Page 30: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.
Page 31: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Systems of coupled quantum dots

L. Gaudreau, S. A. Studenikin, A. S. Sachrajda, P. Zawadzki, A. Kam,J. Lapointe, M. Korkusinski, and P. Hawrylak,Phys. Rev. Lett. 97, 036807 (2006).

M. Korkusinski, I. P. Gimenez, P. Hawrylak,L. Gaudreau, S. A. Studenikin, A. S. Sachrajda,Phys. Rev. B 75, 115301 (2007).

triple-dot device

Page 32: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Parallel quantum dots and the N-impurity Anderson model

R. Žitko, J. Bonča: Multi-impurity Anderson model for quantum dots coupled in parallel, Phys. Rev. B 74, 045312 (2006)R. Žitko, J. Bonča: Quantum phase transitions in systems of parallel quantum dots, Phys. Rev. B 76, .. (2007).

Vk = eikL vkVk≡V (L0)

Page 33: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Conduction-band mediated inter-impurity exchange interaction

RKKY exchange Super-exchange

Page 34: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Effective single impurity S=N/2 Kondo model

The RKKY interaction is ferromagnetic, JRKKY>0:

S is the collective S=N/2 spin operator of the coupled impurities,

S=P(Si)P

Effective model (T<JRKKY):

JRKKY0.62 U(0JK)2 4th order perturbation in Vk

Page 35: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Free orbital regime

(FO)

Local moment regime

(LM)

Ferro-magnetically frozen (FF)

Strong-coupling

regime (SC)

o o

Page 36: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

The spin-N/2 Kondo effect

Full line: NRG Symbols: Bethe Ansatz

Page 37: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Conductance as a function of the gate voltage

Page 38: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Kondo model Kondo model + potential scattering

Page 39: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

S=1 Kondo model

S=1 Kondo model + potential scattering

S=1/2 Kondo model + strong potential scattering

Page 40: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Gate-voltage controlled spin filtering

Page 41: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Spectral functions

Page 42: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Kosterlitz-Thouless transition

1=+, 2=-

S=1 KondoS=1/2 Kondo

Page 43: Quantum impurity physics and the “NRG Ljubljana” code Rok Žitko UIB, Palma de Mallorca, 12. 12. 2007 J. Stefan Institute, Ljubljana, Slovenia.

Conclusions

• Impurity clusters can be systematically studied with ease using flexible NRG codes

• Very rich physics: various Kondo regimes, quantum phase transitions, etc. But to what extent can these effects be experimentally observed?

• Towards more realistic models: better description of inter-dot interactions, role of QD shape and distances.

http://nrgljubljana.ijs.si/


Recommended