+ All Categories
Home > Documents > Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I....

Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I....

Date post: 04-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
58
Quantum Information Geometry: quantum metrics for finite dimensional systems Patrizia Vitale a with V.I. Man’ko, G. Marmo and F. Ventriglia a Dipartimento di Fisica Universit` a di Napoli “Federico II” and INFN Policeta 13 july 2016 On the occasion of the 70th birthday of Beppe Marmo Patrizia Vitale a with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dime
Transcript
Page 1: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Quantum Information Geometry: quantum metrics

for finite dimensional systems

Patrizia Vitalea

with V.I. Man’ko, G. Marmo and F. Ventriglia

a Dipartimento di Fisica Universita di Napoli “Federico II” and INFN

Policeta 13 july 2016

On the occasion of the 70th birthday of Beppe Marmo

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 2: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Outline

Statistical manifold,

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 3: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Outline

Statistical manifold, statistical model,

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 4: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Outline

Statistical manifold, statistical model, classical metrics fromdivergence function

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 5: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Outline

Statistical manifold, statistical model, classical metrics fromdivergence function

Quantum metrics from divergence functions

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 6: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Outline

Statistical manifold, statistical model, classical metrics fromdivergence function

Quantum metrics from divergence functions

Finite-dimensional quantum systems

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 7: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Outline

Statistical manifold, statistical model, classical metrics fromdivergence function

Quantum metrics from divergence functions

Finite-dimensional quantum systems

The cases N=2 and N=3

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 8: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Outline

Statistical manifold, statistical model, classical metrics fromdivergence function

Quantum metrics from divergence functions

Finite-dimensional quantum systems

The cases N=2 and N=3

The tomographic picture

Outlook

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 9: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Invariant divergence function

Notation

P(X )= statistical manifold of probability distributions p(x),x ∈ X

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 10: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Invariant divergence function

Notation

P(X )= statistical manifold of probability distributions p(x),x ∈ X

M = {p(x , ξ)} ⊂ P(X ) statistical model parametrized by ξ

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 11: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Invariant divergence function

Notation

P(X )= statistical manifold of probability distributions p(x),x ∈ X

M = {p(x , ξ)} ⊂ P(X ) statistical model parametrized by ξ

M is finite dimensional. ξ coordinates on MDivergence D(ξ, ξ′) between p(x , ξ) and p(x , ξ′)

D(ξ, ξ′) ≥ 0

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 12: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Invariant divergence function

Notation

P(X )= statistical manifold of probability distributions p(x),x ∈ X

M = {p(x , ξ)} ⊂ P(X ) statistical model parametrized by ξ

M is finite dimensional. ξ coordinates on MDivergence D(ξ, ξ′) between p(x , ξ) and p(x , ξ′)

D(ξ, ξ′) ≥ 0

D(ξ, ξ + dξ) = 12gjk(ξ)dξjdξk + O(dξ3)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 13: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Invariant divergence function

Notation

P(X )= statistical manifold of probability distributions p(x),x ∈ X

M = {p(x , ξ)} ⊂ P(X ) statistical model parametrized by ξ

M is finite dimensional. ξ coordinates on MDivergence D(ξ, ξ′) between p(x , ξ) and p(x , ξ′)

D(ξ, ξ′) ≥ 0

D(ξ, ξ + dξ) = 12gjk(ξ)dξjdξk + O(dξ3)

g = (gjk) positive-definite

D not symmetric, no triangular inequality .

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 14: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Invariant divergence function

Notation

P(X )= statistical manifold of probability distributions p(x),x ∈ X

M = {p(x , ξ)} ⊂ P(X ) statistical model parametrized by ξ

M is finite dimensional. ξ coordinates on MDivergence D(ξ, ξ′) between p(x , ξ) and p(x , ξ′)

D(ξ, ξ′) ≥ 0

D(ξ, ξ + dξ) = 12gjk(ξ)dξjdξk + O(dξ3)

g = (gjk) positive-definite

D not symmetric, no triangular inequality .Invariance : No information loss (information monotonicity) undercoarse graining x → y(x)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 15: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The classical case: Chentsov theorem

Classically: Given any invariant divergence, the invariant metric isunique → the Fisher Rao metric

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 16: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The classical case: Chentsov theorem

Classically: Given any invariant divergence, the invariant metric isunique → the Fisher Rao metric

g(ξ) = k p d ln p ⊗ d ln p

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 17: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The classical case: Chentsov theorem

Classically: Given any invariant divergence, the invariant metric isunique → the Fisher Rao metric

g(ξ) = k p d ln p ⊗ d ln p

α-divergence function or Tsallis relative entropy

ST (p, p) = (1− q)−1{1−∑

pqp1−q}

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 18: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The classical case: Chentsov theorem

Classically: Given any invariant divergence, the invariant metric isunique → the Fisher Rao metric

g(ξ) = k p d ln p ⊗ d ln p

α-divergence function or Tsallis relative entropy

ST (p, p) = (1− q)−1{1−∑

pqp1−q}with α = 2q − 1.

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 19: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The classical case: Chentsov theorem

Classically: Given any invariant divergence, the invariant metric isunique → the Fisher Rao metric

g(ξ) = k p d ln p ⊗ d ln p

α-divergence function or Tsallis relative entropy

ST (p, p) = (1− q)−1{1−∑

pqp1−q}with α = 2q − 1.

in the limit q → 1 the relative Shannon entropy

limq→1

ST (p, p) =∑

p(ln p − ln p)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 20: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The classical case: Chentsov theorem

Classically: Given any invariant divergence, the invariant metric isunique → the Fisher Rao metric

g(ξ) = k p d ln p ⊗ d ln p

α-divergence function or Tsallis relative entropy

ST (p, p) = (1− q)−1{1−∑

pqp1−q}with α = 2q − 1.

in the limit q → 1 the relative Shannon entropy

limq→1

ST (p, p) =∑

p(ln p − ln p)

the metric

gjk(ξ) := − ∂2S

∂ξ∂ξ′|ξ=ξ′

is the Fisher Rao metric for any qPatrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 21: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum case: quantum Fisher-Rao metric

The statistical model is replaced by the manifold of (N-dim)quantum states

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 22: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum case: quantum Fisher-Rao metric

The statistical model is replaced by the manifold of (N-dim)quantum states

the potential function is now the quantum Tsallis relativeentropy

ST (ρ, ρ) = (1− q)−1{1− Tr ρqρ1−q}

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 23: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum case: quantum Fisher-Rao metric

The statistical model is replaced by the manifold of (N-dim)quantum states

the potential function is now the quantum Tsallis relativeentropy

ST (ρ, ρ) = (1− q)−1{1− Tr ρqρ1−q}

in the limitq → 1 we get the relative von Neumann entropy

limq→1

ST (ρ, ρ) = Tr ρ(ln ρ− ln ρ)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 24: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum case: quantum Fisher-Rao metric

The statistical model is replaced by the manifold of (N-dim)quantum states

the potential function is now the quantum Tsallis relativeentropy

ST (ρ, ρ) = (1− q)−1{1− Tr ρqρ1−q}

in the limitq → 1 we get the relative von Neumann entropy

limq→1

ST (ρ, ρ) = Tr ρ(ln ρ− ln ρ)

the metric

gjk(ξ) = − ∂2S

∂ξ∂ξ′|ξ=ξ′

is the quantum Fisher Rao metric only for q = 1Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 25: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum metric for generic q

ρ, ρ parametrized in terms of diagonal matrices and unitarytransformations

ρ = Uρ0U−1, ρ = V ρ0V

−1

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 26: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum metric for generic q

ρ, ρ parametrized in terms of diagonal matrices and unitarytransformations

ρ = Uρ0U−1, ρ = V ρ0V

−1

U,V ∈ SU(N)

given the diagonal immersion i : M → M ×M the metrictensor is :

g(X ,Y ) := −i∗(LXLYS)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 27: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum metric for generic q

ρ, ρ parametrized in terms of diagonal matrices and unitarytransformations

ρ = Uρ0U−1, ρ = V ρ0V

−1

U,V ∈ SU(N)

given the diagonal immersion i : M → M ×M the metrictensor is :

g(X ,Y ) := −i∗(LXLYS)

=⇒

g = −i∗d dST (ρ, ρ) = (1− q)−1Tr dρq ⊗ dρ1−q

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 28: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum metric for generic q

ρ, ρ parametrized in terms of diagonal matrices and unitarytransformations

ρ = Uρ0U−1, ρ = V ρ0V

−1

U,V ∈ SU(N)

given the diagonal immersion i : M → M ×M the metrictensor is :

g(X ,Y ) := −i∗(LXLYS)

=⇒

g = −i∗d dST (ρ, ρ) = (1− q)−1Tr dρq ⊗ dρ1−q

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 29: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum metric for generic q

givinggq = g tan

q + g transq

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 30: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum metric for generic q

givinggq = g tan

q + g transq

with

g tanq = (1− q)−1

Tr

(

[U−1dU, ρq0]⊗ [U−1dU, ρ1−q0 ]

)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 31: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum metric for generic q

givinggq = g tan

q + g transq

with

g tanq = (1− q)−1

Tr

(

[U−1dU, ρq0]⊗ [U−1dU, ρ1−q0 ]

)

andg transq = qρ−1

0 dρ0 ⊗ dρ0

In the limit q → 1

g1 = Tr ρ−10 dρ0 ⊗ dρ0 + Tr [U−1dU, ln ρ0]⊗ [U−1dU, ρ0]

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 32: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The quantum metric for generic q

givinggq = g tan

q + g transq

with

g tanq = (1− q)−1

Tr

(

[U−1dU, ρq0]⊗ [U−1dU, ρ1−q0 ]

)

andg transq = qρ−1

0 dρ0 ⊗ dρ0

In the limit q → 1

g1 = Tr ρ−10 dρ0 ⊗ dρ0 + Tr [U−1dU, ln ρ0]⊗ [U−1dU, ρ0]

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 33: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 2

U,V ∈ SU(2).

U−1dU = σjθj

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 34: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 2

U,V ∈ SU(2).

U−1dU = σjθj

ρq0 =

(

(1+r2 )q 00 (1−r

2 )q

)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 35: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 2

U,V ∈ SU(2).

U−1dU = σjθj

ρq0 =

(

(1+r2 )q 00 (1−r

2 )q

)

=aq + bq

2σ0 +

aq − bq

2σ3

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 36: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 2

U,V ∈ SU(2).

U−1dU = σjθj

ρq0 =

(

(1+r2 )q 00 (1−r

2 )q

)

=aq + bq

2σ0 +

aq − bq

2σ3

and similarly for ρ1−q0 .

The metric:

gq = q1

1− r2dr ⊗ dr

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 37: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 2

U,V ∈ SU(2).

U−1dU = σjθj

ρq0 =

(

(1+r2 )q 00 (1−r

2 )q

)

=aq + bq

2σ0 +

aq − bq

2σ3

and similarly for ρ1−q0 .

The metric:

gq = q1

1− r2dr ⊗ dr

− 2

1− q(aq − bq)(a1−q − b1−q)(θ

1 ⊗ θ1 + θ2 ⊗ θ2)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 38: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 2

U,V ∈ SU(2).

U−1dU = σjθj

ρq0 =

(

(1+r2 )q 00 (1−r

2 )q

)

=aq + bq

2σ0 +

aq − bq

2σ3

and similarly for ρ1−q0 .

The metric:

gq = q1

1− r2dr ⊗ dr

− 2

1− q(aq − bq)(a1−q − b1−q)(θ

1 ⊗ θ1 + θ2 ⊗ θ2)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 39: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 3

U,V ∈ SU(3)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 40: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 3

U,V ∈ SU(3)

U−1dU = λjθj

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 41: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 3

U,V ∈ SU(3)

U−1dU = λjθj

ρq0 =

rq1 0 00 r

q2 0

0 0 rq3

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 42: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 3

U,V ∈ SU(3)

U−1dU = λjθj

ρq0 =

rq1 0 00 r

q2 0

0 0 rq3

= (αqλ0 + βqλ3 + γqλ8)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 43: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 3

U,V ∈ SU(3)

U−1dU = λjθj

ρq0 =

rq1 0 00 r

q2 0

0 0 rq3

= (αqλ0 + βqλ3 + γqλ8) (1)

with r3 = 1− r1 − r2, and a similar expression for ρ1−q0 .

The metric:

g tranq = q

1

rjdrj ⊗ drj

g tanq = −8

{

βqβ1−q

j 6=3,8

θj ⊗ θj

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 44: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 3

U,V ∈ SU(3)

U−1dU = λjθj

ρq0 =

rq1 0 00 r

q2 0

0 0 rq3

= (αqλ0 + βqλ3 + γqλ8) (1)

with r3 = 1− r1 − r2, and a similar expression for ρ1−q0 .

The metric:

g tranq = q

1

rjdrj ⊗ drj

g tanq = −8

{

βqβ1−q

j 6=3,8

θj ⊗ θj

+√3(√

3γqγ1−q + βqγ1−q + β1−qγq

)

j 6=1,2,3,8

θj ⊗ θj}

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 45: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The case N = 3

U,V ∈ SU(3)

U−1dU = λjθj

ρq0 =

rq1 0 00 r

q2 0

0 0 rq3

= (αqλ0 + βqλ3 + γqλ8) (1)

with r3 = 1− r1 − r2, and a similar expression for ρ1−q0 .

The metric:

g tranq = q

1

rjdrj ⊗ drj

g tanq = −8

{

βqβ1−q

j 6=3,8

θj ⊗ θj

+√3(√

3γqγ1−q + βqγ1−q + β1−qγq

)

j 6=1,2,3,8

θj ⊗ θj}

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 46: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The tomographic metric for N=2Spin tomography

ρ = 12(σ0 + ~x · ~σ)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 47: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The tomographic metric for N=2Spin tomography

ρ = 12(σ0 + ~x · ~σ)

Wρ(m; u) = 〈m|uρu−1|m〉

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 48: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The tomographic metric for N=2Spin tomography

ρ = 12(σ0 + ~x · ~σ)

Wρ(m; u) = 〈m|uρu−1|m〉 with u ∈ SU(2) labeling thetomographic reference frame

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 49: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The tomographic metric for N=2Spin tomography

ρ = 12(σ0 + ~x · ~σ)

Wρ(m; u) = 〈m|uρu−1|m〉 with u ∈ SU(2) labeling thetomographic reference frame

it is a probability distribution −→S(Wρ,Wρ) = (1− q)−1

(

1−∑

m Wqρ (m; u)W1−q

ρ (m; u))

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 50: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The tomographic metric for N=2Spin tomography

ρ = 12(σ0 + ~x · ~σ)

Wρ(m; u) = 〈m|uρu−1|m〉 with u ∈ SU(2) labeling thetomographic reference frame

it is a probability distribution −→S(Wρ,Wρ) = (1− q)−1

(

1−∑

m Wqρ (m; u)W1−q

ρ (m; u))

Gq = q( 1Wρ(+;u) + ( 1

Wρ(−;u))(

dWρ(+; u)⊗ dWρ(+; u))

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 51: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The tomographic metric for N=2Spin tomography

ρ = 12(σ0 + ~x · ~σ)

Wρ(m; u) = 〈m|uρu−1|m〉 with u ∈ SU(2) labeling thetomographic reference frame

it is a probability distribution −→S(Wρ,Wρ) = (1− q)−1

(

1−∑

m Wqρ (m; u)W1−q

ρ (m; u))

Gq = q( 1Wρ(+;u) + ( 1

Wρ(−;u))(

dWρ(+; u)⊗ dWρ(+; u))

varying u we reconstruct the state ρ ≡ (x1, x2, x3) (inverseformula), but for this we only need a sufficiency set

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 52: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The tomographic metric for N=2Spin tomography

ρ = 12(σ0 + ~x · ~σ)

Wρ(m; u) = 〈m|uρu−1|m〉 with u ∈ SU(2) labeling thetomographic reference frame

it is a probability distribution −→S(Wρ,Wρ) = (1− q)−1

(

1−∑

m Wqρ (m; u)W1−q

ρ (m; u))

Gq = q( 1Wρ(+;u) + ( 1

Wρ(−;u))(

dWρ(+; u)⊗ dWρ(+; u))

varying u we reconstruct the state ρ ≡ (x1, x2, x3) (inverseformula), but for this we only need a sufficiency set(

u13 = exp(iπ/4σ1, u23 = exp(−iπ/4σ2), Id)

yield

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 53: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

The tomographic metric for N=2Spin tomography

ρ = 12(σ0 + ~x · ~σ)

Wρ(m; u) = 〈m|uρu−1|m〉 with u ∈ SU(2) labeling thetomographic reference frame

it is a probability distribution −→S(Wρ,Wρ) = (1− q)−1

(

1−∑

m Wqρ (m; u)W1−q

ρ (m; u))

Gq = q( 1Wρ(+;u) + ( 1

Wρ(−;u))(

dWρ(+; u)⊗ dWρ(+; u))

varying u we reconstruct the state ρ ≡ (x1, x2, x3) (inverseformula), but for this we only need a sufficiency set(

u13 = exp(iπ/4σ1, u23 = exp(−iπ/4σ2), Id)

yield

W(+, u13) =1 + x1

2W(+, u23) =

1 + x2

2W(+, Id) =

1 + x3

2

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 54: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Once the sufficiency set chosen, we can replace

dxk = 2dWk(+; u)

and get the quantum metric in terms of tomograms

gq = gjk(q, x)dxj ⊗ dxk −→ gq(W)

Page 55: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Summary

We have computed the quantum metric for finite dimensionalsystems

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 56: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Summary

We have computed the quantum metric for finite dimensionalsystems

We have computed the tomographic metric

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 57: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Summary

We have computed the quantum metric for finite dimensionalsystems

We have computed the tomographic metric

We are looking for a reconstruction formula g(G)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional

Page 58: Quantum Information Geometry: quantum metrics for finite ... · Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite

Summary

We have computed the quantum metric for finite dimensionalsystems

We have computed the tomographic metric

We are looking for a reconstruction formula g(G)

Patrizia Vitalea with V.I. Man’ko, G. Marmo and F. Ventriglia Quantum Information Geometry: quantum metrics for finite dimensional


Recommended