+ All Categories
Home > Documents > Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB)...

Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB)...

Date post: 03-Jan-2016
Category:
Upload: ashlee-sanders
View: 216 times
Download: 2 times
Share this document with a friend
Popular Tags:
17
Quantum limits on estimating a waveform I. What’s the problem? II. Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves Center for Quantum Information and Control, University of New Mexico http://info.phys.unm.edu/~ caves M. Tsang and C. M. Caves, “Coherent quantum-noise cancellation for optomechanical sensors,” PRL 105,123601 (2010). M. Tsang, H. M. Wiseman, and C. M. Caves, “Fundamental quantum limit to waveform estimation,” arXiv:1006.5407 [quant-ph]. Collaborators: M. Tsang, UNM postdoc H. M. Wiseman, Griffith University
Transcript
Page 1: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

Quantum limits on estimating a waveform

I. What’s the problem? II. Quantum Cramér-Rao bound (QCRB) for classical force on a

linear system

Carlton M. CavesCenter for Quantum Information and Control, University of New Mexico

http://info.phys.unm.edu/~caves

M. Tsang and C. M. Caves, “Coherent quantum-noise cancellation for optomechanical sensors,” PRL 105,123601 (2010).

M. Tsang, H. M. Wiseman, and C. M. Caves, “Fundamental quantum limit to waveform estimation,” arXiv:1006.5407 [quant-ph].

Collaborators: M. Tsang, UNM postdoc

H. M. Wiseman, Griffith University

Page 2: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

measurement noise

Back-action force

SQL

Page 3: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

Langevin force

When can the Langevin force be neglected?

Narrowband, on-resonance detection

Wideband detection

Page 4: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

The right story. But it’s still wrong.

SQL for force detection

Use the tools of quantum information theory to formulate

a general framework for addressing quantum limits on

waveform estimation.

Page 5: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

Noise-power spectral densitiesZero-mean, time-stationary random process u(t)

Noise-power spectral density of u

Page 6: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

QCRB: spectral uncertainty principle

Prior-information term

At frequencies where there is little prior information,

Quantum-limited noise

No hint of SQL, but can the bound be achieved?

1. Back-action evasion. Monitor a quantum nondemolition (QND) observable.

2. Quantum noise cancellation (QNC). Add an auxiliary negative-mass oscillator on which the back-action force pulls instead of pushes.

Page 7: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

Achieving the force-estimation QCRB Oscillator and negative-mass oscillator paired sidebands

paired collective spins

Collective and relative coördinates

Quantum noise cancellation (QNC)

W. Wasilewski , K. Jensen, H. Krauter, J. J. Renema, M. V. Balbas, and E. S. Polzik, PRL 104, 133601 (2010).

Page 8: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

Cable BeachWestern Australia

Page 9: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

QCRB for waveform estimation Classical waveform Prior information

Measurements

Estimator

Bias

Page 10: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

Handling the measurements

Hamiltonian evolution of pure states, but all ancillae subject to measurements

Page 11: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

QCRB for waveform estimation

Gives a classical Fisher information for the prior information.

Apply the Schwarz inequality!

Gives a quantum Fisher information involving the generators.

Page 12: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

QCRB for waveform estimation

Two-point correlation function of generator h(t)

Page 13: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

QCRB for force on linear system

Force f(t) coupled h=qto position

Gaussian prior Classical prior Fisher information is the inverse of the two-time correlation matrix of f(t).

Time-stationary Two-time correlation matrices are processes diagonal in the frequency domain.

Diagonal elements are spectral densities.

QCRB becomes a spectral uncertainty principle.

Page 14: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

Optomechanical force detector

Optomechanical force detector

(a) Flowchart of signal and noise.

(b) Simplified flowchart.

Page 15: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

QNC I

(a) QNC and frequency-dependent input squeezing.

(b) QNC by output optics (variational measurement) and squeezing. W. G. Unruh, in Quantum Optics, Experimental Gravitation,

and Measurement Theory, edited by P. Meystre and M. O. Scully (Plenum, New York, 1983), p. 647.

M. T. Jaekel and S. Reynaud, Europhys. Lett. 13, 301 (1990).

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, S. P. Vyatchanin, PRD 65, 022002 (2002).

S. P. Vyatchanin and A. B. Matsko, JETP 77, 218 (1993).

Page 16: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

QNC II

(a) QNC by introduction of anti-noise path.

(b) Simplified flowchart.(c) Detailed flowchart of

ponderomotive coupling and intra-cavity matched squeezing.

(d) Implementation of matched squeezing scheme.

Page 17: Quantum limits on estimating a waveform I.What’s the problem? II.Quantum Cramér-Rao bound (QCRB) for classical force on a linear system Carlton M. Caves.

QNC III

Input (a) and output (b) matched squeezing schemes and associated flowcharts (c) and (d).


Recommended