+ All Categories
Home > Documents > Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 ·...

Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 ·...

Date post: 07-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
39
ORNL is managed by UT-Battelle for the US Department of Energy Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee, USA https://web.ornl.gov/~kentpr [email protected] This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials.
Transcript
Page 1: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

ORNL is managed by UT-Battelle for the US Department of Energy

Quantum Monte Carlofor Real Materials

Paul Kent,Oak Ridge National Laboratory,

Tennessee, USA

https://web.ornl.gov/[email protected]

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials.

Page 2: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

2 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Outline

• Motivation• Introduction to QMC methods• Examples of today’s capabilities• Future directions. Speculative!

Questions are welcome

Page 3: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

3 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Acknowledgements

UC BerkeleyE. Neuscamman

L. Zhao

LLNLM. MoralesS. Zhang

SNLL. Shulenburger

J. TownsendR. Clay

ANLA. Benali

A. BhattacharyaO. Heinonen

H. ShinF. Wrobel

ORNLP. Ganesh

P. KentJ. Krogel

H. LeeG. Hu

I. KylanpaaQ. Lu

NCSUL. Mitas

M. C. BennettC. Melton

All the members of the Center for Predictive Simulation of Functional Materials.DOE INCITE for supercomputer time.

Page 4: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

4 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Further readingQuantum Monte Carlo simulations of solids

W. M. C. FoulkesCMTH Group, Department of Physics, Imperial College of Science, Technologyand Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom

L. MitasNational Center for Supercomputing Applications, University of Illinoisat Urbana-Champaign, Urbana-Champaign, Illinois 61801 and Department of Physics,North Carolina State University, Raleigh, North Carolina 27695-8202

R. J. Needs and G. RajagopalTCM Group, Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE,United Kingdom

(Published 5 January 2001)

This article describes the variational and fixed-node diffusion quantum Monte Carlo methods and howthey may be used to calculate the properties of many-electron systems. These stochasticwave-function-based approaches provide a very direct treatment of quantum many-body effects andserve as benchmarks against which other techniques may be compared. They complement the lessdemanding density-functional approach by providing more accurate results and a deeperunderstanding of the physics of electronic correlation in real materials. The algorithms are intrinsicallyparallel, and currently available high-performance computers allow applications to systems containinga thousand or more electrons. With these tools one can study complicated problems such as theproperties of surfaces and defects, while including electron correlation effects with high precision. Theauthors provide a pedagogical overview of the techniques and describe a selection of applications toground and excited states of solids and clusters.

CONTENTS

I. Introduction 34II. Interacting Electrons in Solids 35

A. The many-electron Schrodinger equation 35B. Hartree-Fock theory 36C. Post-Hartree-Fock methods 36D. Density-functional theory 37E. Quantum Monte Carlo methods 38

III. Monte Carlo Methods 39A. Statistical foundations 39B. The Metropolis algorithm 40C. Variational Monte Carlo 40D. Diffusion Monte Carlo 41

1. The imaginary-time Schrodinger equation 412. The fixed-node approximation 43

a. One-electron example 43b. Many-electron version 44c. The fixed-node variational principle 45d. The tiling theorem 46

3. Importance sampling 46IV. Trial Wave Functions 49

A. Introduction 49B. Slater-Jastrow wave functions 49C. The Slater determinant 51D. The Jastrow factor 51E. Spin 53F. The cusp conditions 54

V. Selected Applications of Quantum Monte Carlo toGround States 55A. Cohesive energies of solids 55B. Phases of the electron gas 55C. Static response of the electron gas 57D. The relativistic electron gas 57E. Exchange and correlation energies 57

F. Compton scattering in Si and Li 59G. Solid hydrogen 60H. Clusters 61I. Formation energies of silicon self-interstitials 62J. Jellium surfaces 62

VI. Excited States 64A. Introduction 64B. VMC and DMC calculations of excitations in

solids 64C. Other QMC methods for excited states 65

VII. Wave-Function Optimization 65A. Introduction 65B. The cost function 66C. Numerical stability of variance minimization 67D. Minimization procedures 67

VIII. Pseudopotentials 67A. The need for pseudopotentials 67B. Nonlocal pseudopotentials 68C. Core-polarization potentials 68D. Pseudopotentials in variational Monte Carlo 68E. Pseudopotentials in diffusion Monte Carlo 69F. Alternatives to nonlocal pseudopotentials 70

IX. Periodic Boundary Conditions and Finite-SizeErrors 71A. Introduction 71B. Bloch’s theorem for many-body systems 71C. Periodic boundary conditions and Coulomb

interactions 72D. Coping with finite-size errors 73

1. Introduction 732. Finite-size correction and extrapolation

formulas 733. Choosing the simulation-cell wave vector 744. Interaction energy finite-size effects 74

X. Computational Issues 75A. Representation of the single-particle orbitals 75B. Evaluation of the trial wave function 75C. Evaluation of the local energy 76

33Reviews of Modern Physics, Vol. 73, No. 1, January 2001 0034-6861/2001/73(1)/33(51)/$25.20 ©2001 The American Physical Society

1 © 2018 IOP Publishing Ltd Printed in the UK

Journal of Physics: Condensed Matter

QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids

Jeongnim Kim1 , Andrew T Baczewski2, Todd D Beaudet3, Anouar Benali4,5, M Chandler Bennett6, Mark A Berrill7, Nick S Blunt8, Edgar Josué Landinez Borda9, Michele Casula10, David M Ceperley11, Simone Chiesa11, Bryan K Clark11, Raymond C Clay III2, Kris T Delaney12, Mark Dewing5, Kenneth P Esler13, Hongxia Hao14, Olle Heinonen15,16, Paul R C Kent17,18 , Jaron T Krogel19, Ilkka Kylänpää19, Ying Wai Li20, M Graham Lopez7, Ye Luo4,5 , Fionn D Malone9 , Richard M Martin11, Amrita Mathuriya1, Jeremy McMinis9, Cody A Melton6, Lubos Mitas6, Miguel A Morales9, Eric Neuscamman21,22 , William D Parker23 , Sergio D Pineda Flores21, Nichols A Romero4,5, Brenda M Rubenstein14, Jacqueline A R Shea21, Hyeondeok Shin5, Luke Shulenburger2, Andreas F Tillack20, Joshua P Townsend2 , Norm M Tubman21, Brett Van Der Goetz21, Jordan E Vincent11, D ChangMo Yang24 , Yubo Yang11, Shuai Zhang9 and Luning Zhao21

1 Intel Corporation, Hillsboro, OR 987124, United States of America2 Sandia National Laboratories, Albuquerque, NM 87185, United States of America3 Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, United States of America4 Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439, United States of America5 Computational Science Division, Argonne National Laboratory, Argonne, IL 60439, United States of America6 Department of Physics, North Carolina State University, Raleigh, NC 27695, United States of America7 Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America8 University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, United Kingdom9 Lawrence Livermore National Laboratory, Livermore, CA 94550, United States of America10 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, IRD UMR 206, MNHN, 4 Place Jussieu, 75252 Paris, France11 Department of Physics, University of Illinois, Urbana, IL 61801, United States of America12 Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, United States of America13 Stone Ridge Technology, Bel Air, MD 21015, United States of America14 Department of Chemistry, Brown University, Providence, RI 02912, United States of America15 Material Science Division, Argonne National Laboratory, Argonne, IL 60439, United States of America16 Northwestern-Argonne Institute for Science and Engineering, Northwestern University, Evanston, IL 60208, United States of America17 Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America18 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America19 Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America20 National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America21 Department of Chemistry, University of California, Berkeley, CA 94720, United States of America22 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America

J Kim et al

QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules, and solids

Printed in the UK

195901

JCOMEL

© 2018 IOP Publishing Ltd

30

J. Phys.: Condens. Matter

CM

10.1088/1361-648X/aab9c3

Paper

19

Journal of Physics: Condensed Matter

IOP

2018

1361-648X

1361-648X/18/195901+29$33.00

https://doi.org/10.1088/1361-648X/aab9c3J. Phys.: Condens. Matter 30 (2018) 195901 (29pp)

Book: “Interacting Electrons”, Martin, Reining, CeperleyReview: W. Foulkes et al, Rev. Mod. Phys. 73 33 (2001) [real space only, older]Code citation: J. Kim et al, JPCM 30 195901 (2018) [has newer references, methods]

Page 5: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

5 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Dirac’s Challenge

“The underlying physical laws necessary for the mathematic theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed…”

Paul DiracProceedings of the Royal Society (1929)

Page 6: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

6 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Our challenge

Solve the many-body Schrodinger equation with only readily controllable approximations

Develop an accurate and tractable convergent method for real materials and chemistryUnderstand many-body physics, chemistry, materialsProvide useful benchmarks of other methods, particularly for periodic systems, and eventual upscaling

Our Goal

Page 7: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

7 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Exact QMC results for the Homogeneous Electron Gas

Ceperley & Alder PRL 45 566 (1980)See N. Tubman et al. JCP 135 184109 (2011) for discussion of modern prospects

Exact released-node DMC calculationExponential scaling

Parameterized in LDA-DFT by Perdew & Zunger (1982)

Page 8: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

8 ISS18, University of Tokyo, Kashiwa, 11th

July 2018

Experiment is not perfect…

Juno@Jupiter

Wahl et al. GRL (2017)

“…interior models based

on ab initio computer

simulations of hydrogen-

helium mixtures…”

Sometimes unique and expensiveSometimes unclear Sometimes unavailable

Multiple TiO2

metastable

phases, importance of

growth conditions

complicates ground state

analysis. Common

problem!

Predicted new materials

Difficult:

Defect energies

Novel pressures,

Novel temperature,

Page 9: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

9 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Theory is not perfect…

Word cloud of “popular” DFTsmarcelswart.eu

Many DFT approximationsto choose from

Medvedev et al. Science 355 49 (2017)+ comment & reply.

~ Energies & densities should be simultaneously improving.Modern empirical fitting has reversed this trend

We need methods to rationally choose and improve DFT approximations in physics, chemistry, materials

Page 10: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

10 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Outline

• Motivation• Introduction to QMC methods• Examples of today’s capabilities• Future directions. Speculative!

Page 11: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

11 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Monte Carlo MethodsTackle the numerical complexity of the Schrodinger equation via statistical methods, e.g. Monte Carlo integration. MC is more efficient than numerical integration in high dimensions.

Trade-off: all measurements have a statistical error.

Estimate pi via random sampling and ratio of points inside circle to square.

Wikipedia

100x increase in cost to reduce error 10x ! High-quality importance sampling needed

Plan calculations carefully!

Standard error of mean / 1pN

<latexit sha1_base64="eVmgMGPfwTUyfm3ZAjM4GFveUkI=">AAACJ3icbVBNSxxBEO3RaHQTzUaPXposgZyWGREUAkHixVNQzK7CzrLU9NRoY39MumsCyzD/xot/xYsQRcwx/8Tej0OiKeiux3tVdL+XlUp6iuPf0cLiq6Xl1yurrTdv19bftd9v9L2tnMCesMq6sww8KmmwR5IUnpUOQWcKT7PLg4l++hOdl9Z8p3GJQw3nRhZSAAVq1P6SaqALp+sTApODy9PPHJ2zLnRbhEsjmCYtnS3J8rRwIOqkqVP/wxH/1ozanbgbT4u/BMkcdNi8jkbtX2luRaXRkFDg/SCJSxrW4EgKhU0rrTyWIC7hHAcBGtDoh/XUZ8M/BibnhXXhGOJT9u+NGrT3Y52FyYkr/1ybkP/TBhUVe8NamrIiNGL2UFEpHixPQuO5dChIjQMA4WT4KxcXELKgEG0rhJA8t/wS9Le7SdxNjnc6+1/ncaywLfaBfWIJ22X77JAdsR4T7IrdsDt2H11Ht9FD9DgbXYjmO5vsn4r+PAEpZ6a3</latexit><latexit sha1_base64="eVmgMGPfwTUyfm3ZAjM4GFveUkI=">AAACJ3icbVBNSxxBEO3RaHQTzUaPXposgZyWGREUAkHixVNQzK7CzrLU9NRoY39MumsCyzD/xot/xYsQRcwx/8Tej0OiKeiux3tVdL+XlUp6iuPf0cLiq6Xl1yurrTdv19bftd9v9L2tnMCesMq6sww8KmmwR5IUnpUOQWcKT7PLg4l++hOdl9Z8p3GJQw3nRhZSAAVq1P6SaqALp+sTApODy9PPHJ2zLnRbhEsjmCYtnS3J8rRwIOqkqVP/wxH/1ozanbgbT4u/BMkcdNi8jkbtX2luRaXRkFDg/SCJSxrW4EgKhU0rrTyWIC7hHAcBGtDoh/XUZ8M/BibnhXXhGOJT9u+NGrT3Y52FyYkr/1ybkP/TBhUVe8NamrIiNGL2UFEpHixPQuO5dChIjQMA4WT4KxcXELKgEG0rhJA8t/wS9Le7SdxNjnc6+1/ncaywLfaBfWIJ22X77JAdsR4T7IrdsDt2H11Ht9FD9DgbXYjmO5vsn4r+PAEpZ6a3</latexit><latexit sha1_base64="eVmgMGPfwTUyfm3ZAjM4GFveUkI=">AAACJ3icbVBNSxxBEO3RaHQTzUaPXposgZyWGREUAkHixVNQzK7CzrLU9NRoY39MumsCyzD/xot/xYsQRcwx/8Tej0OiKeiux3tVdL+XlUp6iuPf0cLiq6Xl1yurrTdv19bftd9v9L2tnMCesMq6sww8KmmwR5IUnpUOQWcKT7PLg4l++hOdl9Z8p3GJQw3nRhZSAAVq1P6SaqALp+sTApODy9PPHJ2zLnRbhEsjmCYtnS3J8rRwIOqkqVP/wxH/1ozanbgbT4u/BMkcdNi8jkbtX2luRaXRkFDg/SCJSxrW4EgKhU0rrTyWIC7hHAcBGtDoh/XUZ8M/BibnhXXhGOJT9u+NGrT3Y52FyYkr/1ybkP/TBhUVe8NamrIiNGL2UFEpHixPQuO5dChIjQMA4WT4KxcXELKgEG0rhJA8t/wS9Le7SdxNjnc6+1/ncaywLfaBfWIJ22X77JAdsR4T7IrdsDt2H11Ht9FD9DgbXYjmO5vsn4r+PAEpZ6a3</latexit><latexit sha1_base64="eVmgMGPfwTUyfm3ZAjM4GFveUkI=">AAACJ3icbVBNSxxBEO3RaHQTzUaPXposgZyWGREUAkHixVNQzK7CzrLU9NRoY39MumsCyzD/xot/xYsQRcwx/8Tej0OiKeiux3tVdL+XlUp6iuPf0cLiq6Xl1yurrTdv19bftd9v9L2tnMCesMq6sww8KmmwR5IUnpUOQWcKT7PLg4l++hOdl9Z8p3GJQw3nRhZSAAVq1P6SaqALp+sTApODy9PPHJ2zLnRbhEsjmCYtnS3J8rRwIOqkqVP/wxH/1ozanbgbT4u/BMkcdNi8jkbtX2luRaXRkFDg/SCJSxrW4EgKhU0rrTyWIC7hHAcBGtDoh/XUZ8M/BibnhXXhGOJT9u+NGrT3Y52FyYkr/1ybkP/TBhUVe8NamrIiNGL2UFEpHixPQuO5dChIjQMA4WT4KxcXELKgEG0rhJA8t/wS9Le7SdxNjnc6+1/ncaywLfaBfWIJ22X77JAdsR4T7IrdsDt2H11Ht9FD9DgbXYjmO5vsn4r+PAEpZ6a3</latexit>

Page 12: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

12 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Flavors of Quantum Monte Carlo• Real space QMC

– Sample electron positions in real space

– Variational, diffusion, reptation…

– Longest established, most results

• Auxiliary Field QMC

– Works in a basis. Strong basis set effects.

– Easier access to observables than DMC

– Appears more accurate by default than DMC, but larger

cost prefactor. Fewer results.

• Full Configuration Interaction QMC

– Works in determinants

– Near exact, expensive. Booth et al. Nature 493 365 (2013)

Motta & Zhang http://arxiv.org/abs/1711.02242

Page 13: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

13 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Use Monte Carlo integration to obtain a variational energy bound from a trial wavefunction. Optimize parameters in trial to reduce variational energy and improve trial wavefunction.

Variational Monte Carlo

First part is a probability density: positive definite & normalizedWe can do textbook Metropolis Monte Carlo

For 1000 electrons = 3000 dimensional integralAvoid recomputing entire trial wavefunction to make efficient

ET =

R ⇤

T H TR| T |2

� E0<latexit sha1_base64="kiy2f8VXRryntLaoG3bl20n6lMM=">AAACKXicbVDLSsNAFJ34rPUVdelmsAjioiRF0I1QlEKXFfqCJg2T6aQdOnk4MxFKmt9x46+4UVDUrT/itMlCWw8MnHvOvcy9x40YFdIwPrWV1bX1jc3CVnF7Z3dvXz84bIsw5pi0cMhC3nWRIIwGpCWpZKQbcYJ8l5GOO76d+Z0HwgUNg6acRMT20TCgHsVIKsnRqzWneW15HOHEooGEVkNQp9k/h9YISVjPa5hm7jQrp/1Kag3JPaw5hqOXjLIxB1wmZk5KIEfD0V+tQYhjnwQSMyREzzQiaSeIS4oZSYtWLEiE8BgNSU/RAPlE2Mn80hSeKmUAvZCrp/aZq78nEuQLMfFd1ekjORKL3kz8z+vF0ruyExpEsSQBzj7yYgZlCGexwQHlBEs2UQRhTtWuEI+Qik2qcIsqBHPx5GXSrpRNo2zeXZSqN3kcBXAMTsAZMMElqII6aIAWwOARPIM38K49aS/ah/aVta5o+cwR+APt+wd2r6WF</latexit><latexit sha1_base64="kiy2f8VXRryntLaoG3bl20n6lMM=">AAACKXicbVDLSsNAFJ34rPUVdelmsAjioiRF0I1QlEKXFfqCJg2T6aQdOnk4MxFKmt9x46+4UVDUrT/itMlCWw8MnHvOvcy9x40YFdIwPrWV1bX1jc3CVnF7Z3dvXz84bIsw5pi0cMhC3nWRIIwGpCWpZKQbcYJ8l5GOO76d+Z0HwgUNg6acRMT20TCgHsVIKsnRqzWneW15HOHEooGEVkNQp9k/h9YISVjPa5hm7jQrp/1Kag3JPaw5hqOXjLIxB1wmZk5KIEfD0V+tQYhjnwQSMyREzzQiaSeIS4oZSYtWLEiE8BgNSU/RAPlE2Mn80hSeKmUAvZCrp/aZq78nEuQLMfFd1ekjORKL3kz8z+vF0ruyExpEsSQBzj7yYgZlCGexwQHlBEs2UQRhTtWuEI+Qik2qcIsqBHPx5GXSrpRNo2zeXZSqN3kcBXAMTsAZMMElqII6aIAWwOARPIM38K49aS/ah/aVta5o+cwR+APt+wd2r6WF</latexit><latexit sha1_base64="kiy2f8VXRryntLaoG3bl20n6lMM=">AAACKXicbVDLSsNAFJ34rPUVdelmsAjioiRF0I1QlEKXFfqCJg2T6aQdOnk4MxFKmt9x46+4UVDUrT/itMlCWw8MnHvOvcy9x40YFdIwPrWV1bX1jc3CVnF7Z3dvXz84bIsw5pi0cMhC3nWRIIwGpCWpZKQbcYJ8l5GOO76d+Z0HwgUNg6acRMT20TCgHsVIKsnRqzWneW15HOHEooGEVkNQp9k/h9YISVjPa5hm7jQrp/1Kag3JPaw5hqOXjLIxB1wmZk5KIEfD0V+tQYhjnwQSMyREzzQiaSeIS4oZSYtWLEiE8BgNSU/RAPlE2Mn80hSeKmUAvZCrp/aZq78nEuQLMfFd1ekjORKL3kz8z+vF0ruyExpEsSQBzj7yYgZlCGexwQHlBEs2UQRhTtWuEI+Qik2qcIsqBHPx5GXSrpRNo2zeXZSqN3kcBXAMTsAZMMElqII6aIAWwOARPIM38K49aS/ah/aVta5o+cwR+APt+wd2r6WF</latexit><latexit sha1_base64="kiy2f8VXRryntLaoG3bl20n6lMM=">AAACKXicbVDLSsNAFJ34rPUVdelmsAjioiRF0I1QlEKXFfqCJg2T6aQdOnk4MxFKmt9x46+4UVDUrT/itMlCWw8MnHvOvcy9x40YFdIwPrWV1bX1jc3CVnF7Z3dvXz84bIsw5pi0cMhC3nWRIIwGpCWpZKQbcYJ8l5GOO76d+Z0HwgUNg6acRMT20TCgHsVIKsnRqzWneW15HOHEooGEVkNQp9k/h9YISVjPa5hm7jQrp/1Kag3JPaw5hqOXjLIxB1wmZk5KIEfD0V+tQYhjnwQSMyREzzQiaSeIS4oZSYtWLEiE8BgNSU/RAPlE2Mn80hSeKmUAvZCrp/aZq78nEuQLMfFd1ekjORKL3kz8z+vF0ruyExpEsSQBzj7yYgZlCGexwQHlBEs2UQRhTtWuEI+Qik2qcIsqBHPx5GXSrpRNo2zeXZSqN3kcBXAMTsAZMMElqII6aIAWwOARPIM38K49aS/ah/aVta5o+cwR+APt+wd2r6WF</latexit>

ET =

R| T |2 H T

TR| T |2

<latexit sha1_base64="IbxGNAgP3HpxK8DLF6cE+8QxzJw=">AAACMnicbVDLSsNAFJ3UV62vqEs3g0VwVZIi6EYoilB3FfqCJobJdNIOnUzCzEQoab7JjV8iuNCFIm79CKdtFtp6YZjDOedy7z1+zKhUlvVqFFZW19Y3ipulre2d3T1z/6Ato0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX90PdU7D0RIGvGmGsfEDdGA04BipDTlmbc3XvPSCQTCqUO5ghOnIanXnNxXYc4OkYJ1OKezNP9htmjPPLNsVaxZwWVg56AM8mp45rPTj3ASEq4wQ1L2bCtWboqEopiRrOQkksQIj9CA9DTkKCTSTWcnZ/BEM30YREI/vceM/d2RolDKcehrZ4jUUC5qU/I/rZeo4MJNKY8TRTieDwoSBlUEp/nBPhUEKzbWAGFB9a4QD5FOSumUSzoEe/HkZdCuVmyrYt+dlWtXeRxFcASOwSmwwTmogTpogBbA4BG8gHfwYTwZb8an8TW3Foy85xD8KeP7B7nqqnU=</latexit><latexit sha1_base64="IbxGNAgP3HpxK8DLF6cE+8QxzJw=">AAACMnicbVDLSsNAFJ3UV62vqEs3g0VwVZIi6EYoilB3FfqCJobJdNIOnUzCzEQoab7JjV8iuNCFIm79CKdtFtp6YZjDOedy7z1+zKhUlvVqFFZW19Y3ipulre2d3T1z/6Ato0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX90PdU7D0RIGvGmGsfEDdGA04BipDTlmbc3XvPSCQTCqUO5ghOnIanXnNxXYc4OkYJ1OKezNP9htmjPPLNsVaxZwWVg56AM8mp45rPTj3ASEq4wQ1L2bCtWboqEopiRrOQkksQIj9CA9DTkKCTSTWcnZ/BEM30YREI/vceM/d2RolDKcehrZ4jUUC5qU/I/rZeo4MJNKY8TRTieDwoSBlUEp/nBPhUEKzbWAGFB9a4QD5FOSumUSzoEe/HkZdCuVmyrYt+dlWtXeRxFcASOwSmwwTmogTpogBbA4BG8gHfwYTwZb8an8TW3Foy85xD8KeP7B7nqqnU=</latexit><latexit sha1_base64="IbxGNAgP3HpxK8DLF6cE+8QxzJw=">AAACMnicbVDLSsNAFJ3UV62vqEs3g0VwVZIi6EYoilB3FfqCJobJdNIOnUzCzEQoab7JjV8iuNCFIm79CKdtFtp6YZjDOedy7z1+zKhUlvVqFFZW19Y3ipulre2d3T1z/6Ato0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX90PdU7D0RIGvGmGsfEDdGA04BipDTlmbc3XvPSCQTCqUO5ghOnIanXnNxXYc4OkYJ1OKezNP9htmjPPLNsVaxZwWVg56AM8mp45rPTj3ASEq4wQ1L2bCtWboqEopiRrOQkksQIj9CA9DTkKCTSTWcnZ/BEM30YREI/vceM/d2RolDKcehrZ4jUUC5qU/I/rZeo4MJNKY8TRTieDwoSBlUEp/nBPhUEKzbWAGFB9a4QD5FOSumUSzoEe/HkZdCuVmyrYt+dlWtXeRxFcASOwSmwwTmogTpogBbA4BG8gHfwYTwZb8an8TW3Foy85xD8KeP7B7nqqnU=</latexit><latexit sha1_base64="IbxGNAgP3HpxK8DLF6cE+8QxzJw=">AAACMnicbVDLSsNAFJ3UV62vqEs3g0VwVZIi6EYoilB3FfqCJobJdNIOnUzCzEQoab7JjV8iuNCFIm79CKdtFtp6YZjDOedy7z1+zKhUlvVqFFZW19Y3ipulre2d3T1z/6Ato0Rg0sIRi0TXR5IwyklLUcVINxYEhT4jHX90PdU7D0RIGvGmGsfEDdGA04BipDTlmbc3XvPSCQTCqUO5ghOnIanXnNxXYc4OkYJ1OKezNP9htmjPPLNsVaxZwWVg56AM8mp45rPTj3ASEq4wQ1L2bCtWboqEopiRrOQkksQIj9CA9DTkKCTSTWcnZ/BEM30YREI/vceM/d2RolDKcehrZ4jUUC5qU/I/rZeo4MJNKY8TRTieDwoSBlUEp/nBPhUEKzbWAGFB9a4QD5FOSumUSzoEe/HkZdCuVmyrYt+dlWtXeRxFcASOwSmwwTmogTpogBbA4BG8gHfwYTwZb8an8TW3Foy85xD8KeP7B7nqqnU=</latexit>

T =X

i

DieJ

<latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit><latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit><latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit><latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit>

Use best available physics-motivated trial e.g. Sum of determinants. Great flexibility: only need

to evaluate value & derivatives in real spaceci

Page 14: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

14 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Modern trial wavefunctions!" = (%&+(

)*+)*%)* + (

)*,-+)*,-%)*,- + ⋯) exp (3(456, 458, 4568, … ))

Use the best affordable density functional or quantum chemistry wavefunction.Reoptimize some or all coefficients.

Parameterized real-space Jastrowcorrelation factor. Build in physics,

e.g. e-e and e-n cusps.Greatly improves trial wavefunction.

Does not change nodes

e.g. Drummond et al. PRB 70 235119 (2004)

Other options: Backflow, Geminals…

SolidsToday mostly single determinant

from DFT + Jastrow due to numerical & statistical limitations

Page 15: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

15 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Key features of VMC

Explicit form of trial wavefunction

• Can use any trial wavefunction we can imagine

• Easy to compute any observable

• Simple Monte Carlo – no timesteperror or other discretization introduced

Advantages

Explicit form of trial wavefunction

• Limited to forms of trial wavefunction we can imagine - high accuracy difficult for solids, correlated physics.

• Potentially many parameters to optimize reliably. Not yet automated.

Disadvantages

Page 16: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

16 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Diffusion Quantum Monte Carlo• A many-body wavefunction projection method; minimizes trial

wavefunction dependence by projecting out ground state

• Write the time dependent Schrodinger equation in imaginary time

• Maps to a branching importance sampled Monte Carlo evolving in time

• Enforce a fermionic solution via the “fixed-node approximation”. Fix nodes of projected wavefunction to be the same as a trial wavefunction. Variational error in energy. Most significant approximation in DMC.

• Leads to a robust method with good properties: variational, accurate -yields high-fraction of correlation energy, formally N2-N4 scaling, readily parallelized...

Page 17: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

17 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Cartoon Example

After initial projection to ground state, branching random walk has greatest density where wavefunction probability largest

Page 18: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

18 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Real Example: Bulk VO2Production run from Kylanpaa PRM 1 065408 (2017).

200 electrons, 0.01 a.u. timesteps

-831.5

-831.0

-830.5

-830.0

-829.5

-829.0

0 200 400 600 800 1000

Ener

gy (a

.u.)

Time step

~8000 steps of 3000 walkers for statistics

Page 19: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

19 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Key features of DMC

Potentially all controllable

“Fixed node”: Variational error in energy.

Large supercells/finite size scaling needed for periodic systems.

Errors, Limitations, Approximations

Cost in solid-state! Have to take statistics in large enough cells.

Small timestep needed for high Z.

Unlike VMC, no explicit wavefunction. Mixed estimator problem for non-commuting observables.

Advantages Disadvantages

Gives very accurate and robust results, even with simple nodal surfaces/trial wavefunctions.

Easily take advantages of supercomputers.

Becomes faster, cheaper with improved trial wavefunctions.

Page 20: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

20 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Outline

• Motivation• Introduction to QMC methods• Examples of today’s capabilities• Future directions. Speculative!

Page 21: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

21 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Molecules / isolated systemsChemical accuracy of <1kcal/mol achieved using the “linear method” for VMC optimization of Umrigar et al. PRL (2007).

Trial wavefunctions use large multideterminant expansions (not widely possible in solids yet). DMC better than VMC.

G1 test set. Morales et al. JCTC 8 2181 (2012) VdW Review: M. Dubecky Chem. Rev. 116 5188 (2016)

1kcal/molChemicalAccuracy

Page 22: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

22 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Solids: Graphite & Van de Waals• Graphite (A-B stacked graphene sheets) is bound via weak

Van de Waals forces. Long a challenge for DFT.

• Accurate treatment of Van de Waals critical for the increasing number of 2D materials, 2D heterostructures.

L. Spanu, S. Sorella, G. Galli PRL 103 196401 (2009)

DMC calculations with up to 64 atoms, 256 electrons.

Simple, single determinant trial wavefunctions from DFT.

Predicted binding energy (56 meV/atom) close to experiment (62 meV/atom), lattice parameter within 2%.

Now well predicted by various Van de Waals DFT methods.

Page 23: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

23 ISS18, University of Tokyo, Kashiwa, 11th July 2018

QMC for A-A Graphite Helps Identify Preferred VdW DFTs

• DMC is within 0.1A of experiment. A-A stacked graphite sensibly higher in energy than A-B stacked ground state.

• Self-consistent VdW functionals perform best in this case.

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

Bin

ding

Ene

rgy

(eV

per

ato

m)

Lattice Spacing (Å)

3.63(2)Å, 0.036(1) eV

AA Graphite Experiment 3.55Å

AA Graphite DMCPBE

DFT−D2TS−vdw

vdw−DF2Spanu et al., AB Graphite LRDMC

Ganesh et al.JCTC 10 5318 (2014)

Page 24: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

24 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Solids: Metal oxides

Single determinant DMC results are the most accurate in cohesive energy and lattice constant.

Error increases for heavier elements.

Recall: These are not exact calculations. Relative size of nodal and pseudopotential errors is not known.

J. Santana et al. JCP (2016,2017)

Page 25: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

25 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Copper oxidesThe best variational DMC results give the best agreement with experiment. Note: DFT+U is simply not predictive.

K. Foyevtsova et al. PRX 4 031003 (2014)

Other studies inc. La2CuO4:L. Wagner et al. PRB 90 125129 (2014), PRB 92 161116 (2015)

Expt.

Page 26: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

26 ISS18, University of Tokyo, Kashiwa, 11th July 2018

The Titania (TiO2) Conundrum• Rutile generally considered to be stable phase at ambient.

• Most DFTs at 0K find anatase most stable, famously claimed to be an error.

• Two QMC results (different codes, choices) also find anatase most stable at 0K. Finite T vibrational contributions to stability are important (via DFT).

• A few million CPU hours cost

J. Trail et al. PRB 95 121108 (2017), Y. Luo et al. NJP 18 113049 (2016)

Cross validation with other methods or systematic error reduction is needed

to completely solve this problem

Page 27: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

27 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Nitrogen defects in Zinc Oxide

Includes thorough discussion & assessment of errors:

supercell size, nodal error, geometries, pseudopotentials, …

Yu et al. PRB 95 07209 (2017)

Use supercell methods and charged defect corrections similar

to DFT. Cost scales as N4 for isolated defect.

Page 28: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

28 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Outline

• Motivation• Introduction to QMC methods• Examples of today’s capabilities• Future directions.

– Combining/comparing multiple methods– HPC– Informing DFT

Page 29: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

29 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Determinantal & Orbital–based QMCThe previous DMC calculations are still not exact. Improvements and cross-validation with other methods is needed.

Both methods allow for frozen core or multiple projector pp approaches, & easier computation

of some observables than DMC.

We have added an open source AFQMC to QMCPACK to enable cross-validation.

G. Booth et al. Nature 493 365 (2013)

FCIQMC for solids (& CCSD(T))i-FCIQMC ~exact

LiH

Auxiliary Field QMCBased on Hubbard-Stratonovich transform of H

M. Motta & S. Zhang arXiv:1707.02684 andMany prior results on solids, atoms, models…

Page 30: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

30 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Cross-validationUse of multiple, distinct methods will give stronger predictions and help drive methods improvement for strongly correlated materials. Possible for some model Hamiltonians and small molecules today, but not yet general materials.

H10 chainMany methods :

DMC, AFQMC, DMRG,…Motta PRX 2017

0

20

40

60

80

100

DZ TZ QZ DZ TZ QZ extrap

% c

orre

latio

n en

ergy

DMC AFQMC

Exactresult

Carbon diamond primitive cellMultideterminants, large basis sets in DMC

Strong basis set dependence in AFQMCUnpublished, M. Morales & A. Benali.

Page 31: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

31 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Advances in computation• QMC algorithms use little communication: they scale from

the desktop to the largest supercomputer.

• Smaller error bars, larger supercells, more electrons

accessible with increased supercomputer power.

• Improved methods & algorithms always preferred!

QMCPACK runs well on Summit at

Oak Ridge and should run well on

upcoming A21, Frontier, Post-K…

Scaling to ~entirety of Titan

machine at Oak Ridge

128 atom NiO, 1536 electrons

Page 32: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

32 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Improving DFT functionals?We are regularly asked “Can we use QMC to improve DFT functionals?”Two components:1. QMC data from real materials, models:

– Choosing best functional for given application– Validating or training new functionals– Improved understanding from analyzing many-body

wavefunctions

2. Choosing/constraining functional form of DFT approximation

Page 33: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

33 ISS18, University of Tokyo, Kashiwa, 11th July 2018

QMC can already inform DFT choice

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

0.04

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4

Bin

ding

Ene

rgy

(eV

per

ato

m)

Lattice Spacing (Å)

3.63(2)Å, 0.036(1) eV

AA Graphite Experiment 3.55Å

AA Graphite DMCPBE

DFT−D2TS−vdw

vdw−DF2Spanu et al., AB Graphite LRDMC

Ganesh et al.JCTC 10 5318 (2014)

Mattsson et al.PRB 90 184105 (2014)

Graphite, Lithium-GraphitePick best vdw method for more

extensive DFT studies

Kr liquid at high pressureAM05 has best agreement with QMC.Use AM05 for large scale dynamics.

Page 34: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

34 ISS18, University of Tokyo, Kashiwa, 11th July 2018

VO2 metal-insulator transition and phase diagram

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

r (A)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

4⇡r2

h⇢M

ethod

spin

i ⌦,V

(Ne/A

)

LDA

(a)

M1 phase

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

r (A)

(b)

R phaseDMCHSEPBE0TPSSPBE

PBEsolLDALDA+U(1.0)LDA+U(3.5)LDA+U(6.0)

Phase stability Spin-density analysis

Long a challenge for ”band theories” to obtain the correct phase ordering and physics.M1 transitions to rutile phase at ~340K, becoming metallic. Analysis of the QMC charge density -- with good statistics -- finds that functionals have difficulty with the vanadium d electrons (presumably self-interaction error.)

Structure

I. Kylanpaa et al. PRM 1 065408 (2017)H. Zheng & L. K. Wagner PRL 114 176401 (2015)

With access to energies and densities for many materials, we could empirically fit a functional or help design one. Similar to efforts in quantum chemistry.

Important to include many physical constraints e.g. As per SCAN.

BLUE = Gives correct ordering

Page 35: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

35 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Analyzing the wavefunctionA better route to understanding successes & failures of DFT in both real materials and model systems could be analyzing the QMC wavefunction in more depth.

Accessible quantities: Density n(r), pair correlation function g(r,r’), density matrix n(r,r’), exchange correlation energy density exc(r),…Little explored: bulk Si, some model and atomic systems.

R. Q. Hood et al. PRL 78 3350 (1997)

Monte Carlo integral over N-2 particle positions + Coupling constant integration.

g(r,r’) spin parallel, one electron on bond center, Si (110) plane

Page 36: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

36 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Bulk silicon wavefunction analysis

R. Q. Hood et al. PRL 78 3350 (1997)R. Q. Hood et al. PRB 57 8972 (1998)

ADA (averaged density approximation) performs better than LDA in this case.Some evidence of real space cancelation of errors in LDA

Datasets are very rich!

This analysis has not been repeated in other materials or modern functionals.

Page 37: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

37 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Summary: Informing DFT

• QMC can be used to help select the most accurate existing functional today. Similar to use of quantum chemistry for molecular systems.

• With access to energies and densities, improved functionals can potentially be created. Important to heed the lessons of Medvedev et al. Science (2017).

• Difficult in general – a focused approach is most likely to be successful.

• Analysis of wavefunctions may yield better understanding.

Page 38: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

38 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Towards Accurate Excited States

0

2

4

6

8

10

12

14

0 5 10Experimental gap (eV)

VMC

gap

(eV)

Si

ZnOLiH

C

LiF

MAD = 3.5%

• Current QMC methods do not produce spectra: Excited states have to be computed one at a time

• Generally only the first state of each symmetry can be obtained in DMC

• Usually excited state wavefunctions are worse than for ground state.

• New VMC technique for optimization of excited states improves accuracy.

J. Shea and E. NeuscammanJCTC 13 6078 (2017)

L. Zhao and E. Neuscamman Submitted to PRL

T =X

i

DieJ

<latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit><latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit><latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit><latexit sha1_base64="udyOuQy+R2OZ/YEP9/P52OFd8DY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIrkoigm6Eoi7EVYW+oIlhMp20Q2eSMDMRSij4K25cKOLW73Dn3zh9LLT1wIXDOfdy7z1hypnSjvNtFZaWV1bXiuuljc2t7R17d6+pkkwS2iAJT2Q7xIpyFtOGZprTdiopFiGnrXBwPfZbj1QqlsR1PUypL3AvZhEjWBspsA+8mmJB/dJTmQgYujFFH+4Cu+xUnAnQInFnpAwz1AL7y+smJBM01oRjpTquk2o/x1Izwumo5GWKppgMcI92DI2xoMrPJ+eP0LFRuihKpKlYo4n6eyLHQqmhCE2nwLqv5r2x+J/XyXR04ecsTjNNYzJdFGUc6QSNs0BdJinRfGgIJpKZWxHpY4mJNomVTAju/MuLpHlacZ2Ke39Wrl7N4ijCIRzBCbhwDlW4hRo0gEAOz/AKb9aT9WK9Wx/T1oI1m9mHP7A+fwDk5pTH</latexit>

ciDieJ

Use O(100) determinants

Page 39: Quantum Monte Carlo for Real Materialskentpr/talks/KENT_ISS18_Tokyo_QMC... · 2018-07-17 · Quantum Monte Carlo for Real Materials Paul Kent, Oak Ridge National Laboratory, Tennessee

39 ISS18, University of Tokyo, Kashiwa, 11th July 2018

Conclusions

• Stochastic methods are a promising route to meeting

the challenge of the full quantum many-body

problem.

• Today, QMC can to be applied to important materials

where DFT approximations are questioned.

• Accurate wavefunctions from QMC in solids can

potentially inform DFT approximations and other

theories.

www.qmcpack.org

[email protected]


Recommended