+ All Categories
Home > Documents > Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and...

Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and...

Date post: 16-Mar-2018
Category:
Upload: vuongtruc
View: 215 times
Download: 0 times
Share this document with a friend
49
E k= a k= b Quantum Spin Hall Effect and Topological Insulators Laurens W. Molenkamp Physikalisches Institut (EP3), Universität Würzburg
Transcript
Page 1: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

E

k=a k=b

Quantum Spin Hall Effectand Topological Insulators

Laurens W. MolenkampPhysikalisches Institut (EP3), Universität Würzburg

Page 2: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Quantum Spin Hall Effect and Topological Insulators

I. Introduction- Topological Classification of Insulators - Edge States with and w/o Time Reversal Symmetry

II. Two Dimensional TI : Quantum Spin Hall Effect

- Transport in HgTe quantum wellsIII. Three Dimensional TI :

- Topological Insulator & Surface States- Photoemission on BixSb1-x and Bi2Se3- Transport in strained bulk HgTe

Page 3: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

C.L.Kane and E.J. Mele, Science 314, 1692 (2006)

C.L.Kane and E.J.Mele, PRL 95, 146802 (2005)C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)A.Bernevig and S.-C. Zhang, PRL 96, 106802 (2006)

The Insulating State – Topologically Generalized

Page 4: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

The Usual Boring Insulating State

Covalent Insulator

Characterized by energy gap: absence of low energy electronic excitations

The vacuumAtomic Insulatore.g. solid Ar

Dirac Vacuum

Egap ~ 10 eV

e.g. intrinsic semiconductor

Egap ~ 1 eV3p

4s

Silicon

Egap = 2 mec2

~ 106 eV

electron

positron ~ hole

Page 5: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

C.L.Kane and E.J. Mele, Science 314, 1692 (2006)

C.L.Kane and E.J.Mele, PRL 95, 146802 (2005)C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)A.Bernevig and S.-C. Zhang, PRL 96, 106802 (2006)

The Insulating State – Topologically Generalized

Page 6: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

The Integer Quantum Hall State

2D Cyclotron Motion, Landau Levels

gap cE E

Energy gap, but NOT an insulator

Page 7: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

bulkinsulating

Edge States (as experimentalists see them)

Quantized Hall conductivity :

y xy xJ E2

xy hn e

Integer accurate to 10-9

Page 8: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Topological Band Theory

g=0 g=1

21 ( ) ( )2 BZ

n d u ui

k kk k k

The distinction between a conventional insulator and the quantum Hall state is a topological property of the manifold of occupied states

Analogy: Genus of a surface : g = # holes

Insulator : n = 0IQHE state : xy = n e2/h

The TKNN invariant can only change at a phase transition where the energy gap goes to zero

Classified by Chern (or TKNN) integer topological invariant (Thouless et al, 1982)

( ) :H k Bloch Hamiltonians Brilloui wn zone (torus) ith energy gap

u(k) = Bloch wavefunction

Page 9: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Edge StatesGapless states must exist at the interface between different topological phases

IQHE staten=1

Vacuumn=0

Edge states ~ skipping orbits

Bulk – Boundary Correspondence : n = # Chiral Edge Modes

This approach can actually be generalized to a spinfull QHE at zero magnetic field:the Quantum Spin Hall Effect

Page 10: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

C.L.Kane and E.J. Mele, Science 314, 1692 (2006)

C.L.Kane and E.J.Mele, PRL 95, 146802 (2005)C.L.Kane and E.J.Mele, PRL 95, 226801 (2005)A.Bernevig and S.-C. Zhang, PRL 96, 106802 (2006)

The Insulating State – Topologically Generalized

Page 11: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Topological Insulator : A New B=0 Phase There are 2 classes of 2D time reversal invariant band structures

Z2 topological invariant: = 0,1 is a property of bulk bandstructure, but can be understood by

from the bulk - boundary correspondence

=0 : Conventional Insulator =1 : Topological Insulator

Kramers degenerate attime reversal

invariant momenta k* = k* + G

k*=0 k*=/a k*=0 k*=/a

Edge States for 0<k</a

Even number of bandscrossing Fermi energy

Odd number of bandscrossing Fermi energy

Page 12: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.76.6

1.0

1.5

0.5

0.0

-0.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

6.0

5.5

Bandgap vs. lattice constant(at room temperature in zinc blende structure)

Ban

dgap

ene

rgy

(eV

)

lattice constant a [Å]0 © CT-CREW 1999

(Hg,Cd)Te compound semiconductors

Page 13: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

band structure

D.J. Chadi et al. PRB, 3058 (1972)

fundamental energy gap

meV 30086 EE meV 30086 EE

semi-metal or semiconductor

HgTe bulk band structure

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV) 8

6

7

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV) 8

6

7

Eg

Page 14: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Layer Structure

gate

insulator

cap layer

doping layer

barrier

barrierquantum well

doping layer

buffer

substrate

Au

100 nm Si N /SiO

3 4 2

25 nm CdTe

CdZnTe(001)

25 nm CdTe10 nm HgCdTe x = 0.79 nm HgCdTe with I10 nm HgCdTe x = 0.74 - 12 nm HgTe10 nm HgCdTe x = 0.7 9 nm HgCdTe with I10 nm HgCdTe x = 0.7

symmetric or asymmetricdoping

Carrier densities: ns = 1x1011 ... 2x1012 cm-2

Carrier mobilities: = 1x105 ... 1.5x106 cm2/Vs

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 80

100

200

300

400

500

µ=1.06*106cm2(Vs)-1

nHall=4.01*1011cm-2

Q2134a_Gate

B[T]

Rxx

[]

-15000

-10000

-5000

0

5000

10000

15000

Graph2

Rxy

[]

Page 15: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Type-III QW

VBO = 570 meV

HgCdTeHgCdTeHgTe

HgCdTe

HH1E1

QW < 63 Å

HgTe

inverted normal

band structure

conduction band

valence band

HgTe-Quantum Wells

Page 16: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

123456

k (0.01 -1)

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

Ener

gyE(

k)(e

V)

k || (1,1)k || (1,0)k = (kx,ky)

k || (1,1)k || (1,0)k = (kx,ky)

4 nm QW 15 nm QW

normal

semiconductor

inverted

semiconductor

1 2 3 4 5 6

k (0.01 -1)

-0.20

-0.15

-0.10

-0.05

0.00

0.50

0.10

0.15

0.20

E2

H1H2

E1L1

0.6 0.8 1.0 1.2 1.4

dHgTe (100 )

E2E2

E1E1H1H1

H2H2H3H3

H4H4 H5H5

H6H6L1L1

QW Band Structure from k.p Model

Page 17: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Dirac Bandstructure near dc

E

k

E1

H1

invertedgap

4.0nm 6.2 nm 7.0 nm

normalgap

H1

E1

B.A Bernevig, T.L. Hughes, S.C. Zhang, Science 314, 1757 (2006)

Page 18: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Edge StatesGapless states must exist at the interface between different topological phases

Egap

Domain wall bound state 0

n=1 n=0

Band inversion – Dirac Equation

x

y

M<0

M>0

Smooth transition : gap must pass through zero

Jackiw, Rebbi (1976)Su, Schrieffer, Heeger (1980)

This is the zero B-field generalization of the Quantum Hall effect:the Quantum Spin Hall Effect

Page 19: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

QSHE, Simplified Picture

normalinsulator

bulk

bulkinsulating

entire sampleinsulating

m > 0 m < 0

QSHE

Page 20: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Experimental Signature

normal insulator state

QSHI

Page 21: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Need small Samples

L

W

(L x W) m

2.0 x 1.0 m1.0 x 1.0 m1.0 x 0.5 m

Page 22: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

First Observation of QSHI state

M. König et al., Science 318, 766 (2007).

Page 23: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Multi-Terminal Probe

210001121000012100001210000121100012

T

heIG

heIG

t

t

2

23

144

2

14

142

232

generally

22 2)1(

ehnR t

3exp4

2 t

t

RR

heG t

2

exp,4 2

Landauer-Büttiker Formalism normal conducting contacts no QSHE

Page 24: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

0.0 0.5 1.0 1.5 2.00

5

10

15

20

25

R (k

)

V* (V)

I: 1-4V: 2-3

1

3

2

4

R14,23=1/4 h/e2

R14,14=3/4 h/e2

Non-Local data on H-bar

A. Roth et al., Science 325, 294 (2009).

Page 25: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Configurations would be equivalent in quantum adiabatic regime

-1 0 1 2 30

5

10

15

20

25

30

35

40

R (k

)

V* (V)

I: 1-4V: 2-3

R14,23=1/2 h/e2

R14,14=3/2 h/e2

I: 1-3V: 5-6

R13,13=4/3 h/e2

R13,54=1/3 h/e2

-1 0 1 2 3 4

V* (V)

Multi-Terminal Measurements

A. Roth et al., Science 325, 294 (2009).

Page 26: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Metallic Spin-Hall Effect

Intrinsic SHE

Rashba effect

J.Sinova et al.,Phys. Rev. Lett. 92, 126603 (2004)

Page 27: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

H-bar for detection of Spin-Hall-Effect

(electrical detection through inverse SHE)

E.M. Hankiewicz et al ., PRB 70, R241301 (2004)

Page 28: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

200 nm 200 nm

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.00

100

200

300

400

500

0

2

4

6

8

10

12

R12

,36

()

Vg (V)

I (n

A)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T = 2 K

Rno

nloc

al /

k

VGate / V

I / n

A

n-conductingp-conducting

insu

latin

g

– Suppress non-local QSHE using long leads or narrow wires

– Intrinsic metallic SHE only shows up for holes: larger spin-orbit

– Amplitude in agreement with modeling (E. Hankiewicz, J. Sinova)

H-bar experiments

C. Brüne et al., Nature Physics 6, 448 (2010).

Page 29: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

QSHE and iSHE as spin injector and detector

Split-gated H-bar

Page 30: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Detect iSHE through QSHI edge channels

I

U

Gate in 3-8 leg is scanned, 2-9 leg is n-type metallic,

current passed between contacts 2 and 9.

C. Brüne et al., Nature Physics 8, 486–491 (2012)

Page 31: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Detect QSHI through inverse iSHE

I

U

Gate in 3-8 leg is scanned, 2-9 leg is n-type metallic,

current passed between contacts 3 and 8 C. Brüne et al., Nature Physics 8, 486–491 (2012)

Page 32: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

From traffic jam to info-superhighwayon chip

Traffic jam inside chips today Info highways for the chips in the future

Page 33: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

3D Topological InsulatorsThere are 4 surface Dirac Points due to Kramers degeneracy

Surface Brillouin Zone

2D Dirac Point

E

k=a k=b

E

k=a k=b

0 = 1 : Strong Topological Insulator

Fermi circle encloses odd number of Dirac pointsTopological Metal :

1/4 grapheneBerry’s phase Robust to disorder: impossible to localize

0 = 0 : Weak Topological Insulator

Related to layered 2D QSHI ; (123) ~ Miller indicesFermi surface encloses even number of Dirac points

OR4

1 2

3

EF

How do the Dirac points connect? Determined by 4 bulk Z2 topological invariants 0 ; (123)

kx

ky

kx

ky

kx

ky

Page 34: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Bi1-xSbxTheory: Predict Bi1-xSbx is a topological insulator by exploiting

inversion symmetry of pure Bi, Sb (Fu,Kane PRL’07)

Experiment: ARPES (Hsieh et al. Nature ’08)

• Bi1-x Sbx is a Strong Topological Insulator 0;(1,2,3) = 1;(111)

• 5 surface state bands cross EF between and M

ARPES Experiment : Y. Xia et al., Nature Phys. (2009).Band Theory : H. Zhang et. al, Nature Phys. (2009).Bi2 Se3

• 0;(1,2,3) = 1;(000) : Band inversion at

• Energy gap: ~ .3 eV : A room temperaturetopological insulator

• Simple surface state structure :Similar to graphene, except only a single Dirac point

EF

Page 35: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Bulk HgTe as a 3-D Topological ‚Insulator‘

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV) 8

6

7

-1.0 -0.5 0.0 0.5 1.0k (0.01 )

-1500

-1000

-500

0

500

1000

E(m

eV) 8

6

7

Bulk HgTe is semimetal,

topological surface state overlaps w/ valenceband.

k(1/a)

E-E

F(eV

)

ARPES: Yulin Chen, ZX Shen, Stanford

C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011).

Page 36: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

70 nm layer on CdTe substrate:coherent strain opens gap

Page 37: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

0 2 4 6 8 10 12 14 160

2000

4000

6000

8000

10000

12000

14000

16000

0

2000

4000

6000

8000

10000

12000

14000

Rxx (SdH)

R

xx in

Ohm

B in Tesla

Rxy (Hall)

Rxy

in O

hm

Bulk HgTe as a 3-D Topological ‚Insulator‘

@ 20 mK: bulk conductivity almost frozen out - Surface state mobility ca. 35000 cm2/Vs

C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011).

Page 38: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

2 4 6 8 10 12 14 160

2

4

6

8

10

12

14

xy [e

2 /h]

B [T]

Bulk HgTe as a 3-D Topological ‚Insulator‘

@ 20 mK: same data, plotted as conductivity

Page 39: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

3D HgTe-calculations

2 4 6 8 10 12 14 160

2000

4000

6000

8000

10000

2.73.54.45.67.69.711 33.94.96.78.510.112

experiment

Rxx

in O

hm

B in Tesla

n=3.7*1011 cm-2

n=4.85*1011 cm-2

n=(4.85+3.7)*1011 cm-2

DO

S

Red and blue lines : DOS for each of the Dirac-cones with the corresponding fixed 2D-density,Green line: the sum of the blue and red lines

C. Brüne et al., Phys. Rev. Lett. 106, 126803 (2011).

Page 40: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Experiments on a gated Hallbar

Page 41: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

0 2 4 6 8 10 12 14 16

-10

12

34

5 0

5

10

15

20

25

Vgate [V]

B [T]

Rxy

[k

]

Rxy from -1.5V to 5V

Page 42: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,
Page 43: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

FM FMchiral interconnect

3D topological insulator

Applications of TI in IT

Topological chiral interconnects

Page 44: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Majorana Fermions

• Quasiparticles in fractional Quantum Hall effect at =5/2Moore, Read ’91

• s-wave superconductor / Topological Insulator structureFu, Kane ‘08

• semiconductor - magnet - superconductor structuresSau, Lutchyn, Tewari, Das Sarma ‘09

• .... among others

• 2 Majorana bound states = 1 fermion- 2 degenerate states (full/empty) = 1 qubit

• 2N separated Majoranas = N qubits• Quantum Information is stored non locally

- Immune from local decoherence• Adiabatic Braiding performs unitary operations

- Non Abelian Statistics

1 2i

Potential Condensed Matter Hosts :

Topological Quantum Computing Kitaev, 2003

Create

Braid

Measure 12 34 12 340 0 1 1 / 2

t

12 340 0

Page 45: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Superconducting contacts on strained HgTe

Page 46: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

dV/dI (Vbias, B) at 20 mK

dV/dI (Ibias, B) at 20 mK

Page 47: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,
Page 48: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Outlook

•A new electronic phase of matter has been predicted and observed- 2D : Quantum spin Hall insulator in (Hg,Cd)Te QW’s- 3D : Strong topological insulator in Bi2Se3, Bi2Te3 and strained HgTe

•Dissipationless transport in spin-polarized 1D channels•Strong Magnetoelectric Effect; Possibilities for domain wall transport?•Superconductor/Topological Insulator structures host Majorana Fermions

- A Platform for Topological Quantum Computation•Some Challenges in the near future:

- Transport Measurements on topological insulators- Superconducting structures :

- Create, Detect Majorana bound states- Magnetic structures :

- Create chiral edge states, chiral Majorana edge states

Page 49: Quantum Spin Hall Effect and Topological Insulators · PDF fileQuantum Spin Hall Effect and Topological Insulators ... gap = 2 m ec2 ~ 106 eV electron ... (Thouless et al,

Würzburg:Bastian Büttner, Christoph Brüne, Markus König, Andreas Roth, VolkmarHock, Alina Novik, Chaoxing Liu, Ewelina Hankiewicz , Grigory Tkachov, Björn TrauzettelStanford:Xiaoliang Qi, Shoucheng Zhang

Funding: DFG (Schwerpunkt Spintronik, DFG-JST), Humboldt Stiftung, GIF, EU, ERC,DARPA

Acknowledgements


Recommended