+ All Categories
Home > Documents > Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too...

Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too...

Date post: 28-Sep-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
24
Quarkonia Production in Heavy Ion Collisions: Coupled Boltzmann Transport Equations Xiaojun Yao Collaborators: Berndt Mueller, Steen Bass, Weiyao Ke, Yingru Xu Duke University May 16 2018, Quark Matter 2018
Transcript
Page 1: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Quarkonia Production in Heavy Ion Collisions: Coupled Boltzmann Transport Equations

Xiaojun Yao

Collaborators: Berndt Mueller, Steffen Bass, Weiyao Ke, Yingru Xu

Duke UniversityMay 16 2018, Quark Matter 2018

Page 2: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Introduction• Debye (static) screening on heavy quark bound state, not enough explain

quarkonia production suppression

• Production complicated by many factors:

• Cold nuclear matter (CNM) initial production

• Static screening (real part potential suppressed) v.s. dynamical screening (imaginary part potential, related to dissociation)

• In-medium evolution (dissociation and recombination)

• Feed-down, etc.

• Include all factors consistently!2 Xiaojun Yao (Duke)

Page 3: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

b

b

Dynamical Evolution: Dissociation

1S

b

b

1) not exist due to static screening

2) dissociate due to dynamical screening

propagateb

diffuse

b

b

b

1S

B

hadronization

hadronization

initial production QGP medium expands and cools

time

hadron gas

B

!3 Xiaojun Yao (Duke)

Page 4: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

b

b

Dynamical Evolution: Recombination

1S

b

b

propagate

b

b

nLdiffuse

recombine T < melting T

b

1Sb

1S,2S,1P…

nL

melting temperature: above which a specific bound state 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state)

dissociate

RL. Thews, M. Schroedter, J. Rafelski Phys.Rev.C 63, 054905 (2001)

in-medium formation

Xiaojun Yao (Duke)!4

initial production QGP medium expands and cools

time

hadron gas

1) not exist due to static screening

2) dissociate due to dynamical screening

Page 5: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Coupled Boltzmann Equations

(@

@t+ x ·r

x

)fQ(x,p, t) = �C+Q + C�

Q + CQ

(@

@t+ x ·r

x

)fQ(x,p, t) = �C+Q+ C�

Q+ CQ

(@

@t+ x ·r

x

)fnl(x,p, t) = +C+nl � C�

nl

heavy quark

anti-heavy quark

each quarkonium statenl = 1S, 2S,1P etc.

!5Xiaojun Yao (Duke)

Page 6: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Coupled Boltzmann Equations

(@

@t+ x ·r

x

)fQ(x,p, t) = �C+Q + C�

Q + CQ

(@

@t+ x ·r

x

)fQ(x,p, t) = �C+Q+ C�

Q+ CQ

(@

@t+ x ·r

x

)fnl(x,p, t) = +C+nl � C�

nl

heavy quark

anti-heavy quark

each quarkonium statenl = 1S, 2S,1P etc.

!6Xiaojun Yao (Duke)

phase space evolution of distribution function

recombination quarkonium gain heavy quark loss

dissociation quarkonium loss heavy quark gain

f

heavy Q energy loss

Page 7: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Heavy Quark Energy Loss: Linearized Boltzmann

• Specific implementation: Duke LBT describe open heavy and developed by Weiyao Ke, Yingru Xu, Steffen Bass

• See posters for details ID: 288 (W. Ke) 300 (Y. Xu)

(@

@t+ x ·r

x

)fQ(x,p, t) = �C+Q + C�

Q + CQ

0.0

0.5

1.0

1.5

R AA

3E+3E 0-10%

DAL,CE, D

0.0

0.5

1.0

1.53E+3E 30-50%

100 101 102

pT [GeV]

0.0

0.5

1.0

1.5

R AA

3E+3E 60-80%

100 101 102

pT [GeV]

0.0

0.5

1.0

1.53E+3E 0-100%

%C06, B±

• Collision terms: gQ—>gQ, qQ—>qQ, gQ—>gQg, qQ—>qQg, gQg—>gQ, qQg—>qQ (LPM effect) Gossiaux, Aichelin Phys.Rev.C78,014904(2008)

Gossiaux, Bierkandt, Aichelin Phys.Rev.C79,044906(2009)Uphoff, Fochler, Xu, Greiner J.Phys.G42,no.11,115106(2015)

!7

RAA v2

Page 8: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Dissociation, Recombination, pNRQCD(@

@t+ x ·r

x

)fnl(x,p, t) = +C+nl � C�

nl

LpNRQCD =

Zd3rTr

⇣S†(i@0 �H

s

)S + O†(iD0 �Ho

)O + VA

(O†r · gES + h.c.) +VB

2O†{r · gE,O}+ · · ·

Hs,o

=P 2c.m.

4M+

p2relM

+ V (0)s,o

+V

(1)s,o

M+

V(2)s,o

M2+ · · ·

no imaginary potential

Brambilla, Ghiglieri, Vairo, Petreczky, Phys. Rev. D 78, 014017 (2008) Brambilla, Escobedo, Ghiglieri, Vairo, JHEP1112,116(2011)JHEP1305,130(2013)

ϵ∗λ,q, a

k1, nl k2,prel, a

q

k1, nl k2,prel, c

q1, ϵ∗1, a q2, ϵ2, b

k1, nl k2,prel, a

p1, s1, i p2, s2, j

q

gluon absorption/emission inelastic scattering w/ light quark inelastic scattering w/ gluon

light quark

quarkoniumquarkonium quarkonium

unbound pairunbound pair

unbound pair

M � Mv � Mv2, T,mD• Separation of scales (bound state exists)1

M, r ⇠ 1

Mv• Systematic expansion in

V (0)s

= �CF

↵s

rV (0)o

=1

2NC

↵s

r

virial theorem

!8

Page 9: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

10−3

10−2

10−1

NΥ/N

b,tot

thermal w/o HQ energy loss

non-relativistic equilibrium

relativistic equilibrium

0 10 20 30 40 50 60

t (fm/c)

0.000

0.002N

Υ/N

b,tot

uniform w/ HQ energy loss

uniform w/o HQ energy loss

Approach Equilibrium XY, B.Mueller, Phys. Rev. C 97, no. 1, 014908 (2018)

!9

Setup: QGP box, 1S state, b quarkTotal b flavor = 50 (fixed) Initial momenta thermal or uniform

Recombination from QCD effective field theory

Dissociation-recombination interplay drives to detailed balance

Heavy quark energy loss necessary to drive kinetic equilibrium of quarkonium

Xiaojun Yao (Duke)

Page 10: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Collision Event Simulation

• Initial production:

PYTHIA 8.2

Nuclear PDF (cold nuclear matter effect)

Trento, sample position, hydro. initial condition

• Medium background: 2+1D viscous hydrodynamics

• Include 1S 2S, 2S feed-down 1S ~ 26% (from PDG)

Bernhard, Moreland, Bass, Liu, Heinz, Phys.Rev.C94,no.2,024907(2016)

Eskola, Paukkunen, Salgado,JHEP 0904 (2009) 065

Song, Heinz, Phys.Rev.C77,064901(2008)Shen, Qiu, Song, Bernhard, Bass, Heinz,Comput. Phys. Commun.199,61 (2016)

!10

Sjostrand, et al, Comput. Phys.Commun.191 (2015) 159

Xiaojun Yao (Duke)

Page 11: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

0 100 200 300 400Npart

0.0

0.5

1.0

1.5

RA

A

1S

2S

5 10 15pT (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

RA

A

1S

2S

CMS Phys.Lett. B 770 (2017) 357-379

!11 Xiaojun Yao (Duke)

↵s = 0.3

Tmelt(2S) = 210 MeV

Vs = �CF0.42

r

0.5 1.0 1.5 2.0y

0.0

0.2

0.4

0.6

0.8

1.0

RA

A

1S

2S

Upsilon in 2760 GeV PbPb Collision

Page 12: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Upsilon in 200 GeV AuAu Collision

0 100 200 300Npart

0.0

0.2

0.4

0.6

0.8

1.0

RA

A

1S

2S

2 4 6pT (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

RA

A

0-60%

1S

2S

STAR Talks at QM 17&18

!12

Page 13: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Upsilon(1S) Azimuthal Anisotropy in 2760 GeV PbPb

Better understand recombination from

measurementsv2

Develop azimuthal momentum anisotropy from heavy quark

recombination

Xiaojun Yao (Duke)

0.0 2.5 5.0 7.5 10.0 12.5 15.0pT (GeV)

0.00

0.01

0.02

0.03

v 2

30-50%

!13

Page 14: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Doubly Charmed Baryon• LHCb observed a new baryon (ccu): u bound around cc core

• Pair of heavy Q in anti-triplet forms bound state (diquark)

• Heavy diquark in QGP: dissociation, recombination (similar to quarkonium), carry color, energy loss different from quarkonium

• Hadronize into doubly charmed baryon

LHCb, Phys. Rev. Lett. 119, no.11,112001 (2017) ⌅++cc

!14 Xiaojun Yao (Duke)

cc

J/

cc

cc diquark (1S)

singletcolor neutralexist in vacuum

QQ anti-tripletcolorednot exist in vacuumexist in QGP

QQ

Page 15: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

0 1 2 3 4 5pT (GeV)

0.0

0.1

0.2

0.3

0.4

0.5

dN

⌅+

+cc

dp2 T

Doubly Charmed Baryon Production in Heavy Ion Collisions

XY, B.Mueller, Phys.Rev.D97 (2018) no.7, 074003 

Study recombination from measurements

!15

Predicted production rate in 2760 GeV PbPb, -1<y<1, 0<pT<5 GeV,

0.02 per collision with melting temperature = 250 MeV:

0.0125 per collision

⌅++cc

⌅++cc

Xiaojun Yao (Duke)

Setup: coupled Boltzmann for charm quark and diquark (add energy loss of diquark)assume only charm quark produced initially, diquark comes from (re)combination

Page 16: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Summary

• Describe both open and hidden heavy flavors: coupled Boltzmann equation

• Consistent dissociation and recombination from pNRQCD

• Extract potential and melting temperature from data

• Future: include 1P 2P 3S states, temperature-dependent potential, systematic extraction procedure (e.g. Bayesian)

• Heavy diquarks and doubly heavy baryons / tetraquarks

!16 Xiaojun Yao (Duke)

Page 17: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Acknowledgements

• I would like to thank my collaborators and colleagues: Berndt Mueller, Steffen Bass, Weiyao Ke, Yingru Xu, Jean-Francois Paquet, Jonah Bernhard, J. Scott Moreland

• Research funded by U.S. Department of Energy

Xiaojun Yao (Duke)

Page 18: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Backup: Thermal Equilibrium

N eqi = giVol

Zd3p

(2⇡)3�ie

�Ei(p)/T

Ei(p) =q

M2i + p2, Mi +

p2

2Mi

gb = gb = 3⇥ 2 = 6

g⌥(1S) = 3 + 1 = 4

�b = �b

�2b = �⌥(1S)

N eq

b +N eq

⌥(1S)

= Nb,tot

hyperfine splitting not considered

Page 19: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

0 10 20 30 40 50 60

t (fm/c)

10�5

10�4

10�3

Nb,

hid

den/N

b,to

t

simulation w/ uniform initial momenta

relativistic equilibrium

non-relativistic equilibrium

0 10 20 30 40 50 60

t (fm/c)

10�5

10�4

10�3

Nb,

hid

den/N

b,to

t

simulation w/ uniform initial momenta

relativistic equilibrium

non-relativistic equilibrium

Backup: Thermal Equilibrium

gluon

0 10 20 30 40 50 60

t (fm/c)

10�5

10�4

10�3

Nb,

hid

den/N

b,to

t

simulation w/ uniform initial momenta

relativistic equilibrium

non-relativistic equilibrium

inelastic quarkinelastic gluon

0 10 20 30 40 50 60

t (fm/c)

10�5

10�4

10�3

Nb,

hid

den/N

b,to

t

simulation w/ uniform initial momenta

relativistic equilibrium

non-relativistic equilibrium

all

initial p uniform in 10 GeV

Page 20: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

c

c

J/ψ

• Quarkonium production in pp collisions NRQCD factorization

• short-distance production of heavy quarks ~ 1/M

• long-distance coalescence into quarkonium ~ 1/E

Bodwin, Braaten, Lepage Phys. Rev. D 51, 1125 (1995)

p p

Backup: Initial Production

Page 21: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Backup: Initial Production

c

c

c

c

J/ψQGP

Initially no quarkonium enters QGP quarkonium is formed (recombined)

inside QGP or later (re)combination dominates

Initially quarkonium is generated and enters QGP

suppressed due to screening dissociation dominates

QGP

Page 22: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Backup: Numerical Implementation• Test particle Monte Carlo

• Each time step: consider diffusion, dissociation, recombination

• If specific process occurs, sample incoming medium particles and outgoing particles conserving energy momentum

• Recombination term contains

Two delta at same x ill-defined, almost never at same point

Enhance sampling for recombination

fQ(x,p1, t)fQ(x,p2, t)

fQ(x,p1, t)fQ(x,p2, t) !X

i,j

e�(yi�yj)2/2a2

B

(2⇡a2B)3/2

�3✓x�

yi + yj

2

◆�3(p1 � ki)�

3(p2 � kj)

f(x,p, t) =X

i

�3(x� yi(t))�3(p� ki(t))

Page 23: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Backup: Imaginary Part More Important

C. Miao, A. Mocsy, P. Petreczky arXiv:1012.4433

Page 24: Quarkonia Production in Heavy Ion Collisions: Coupled ... · 1) ill defined (thermal width too large) 2) not exists (potential not supports bound state) dissociate RL. Thews, M.

Backup: Diquark pNRQCD, Rates


Recommended