+ All Categories
Home > Documents > Quarkonium dissociation and regeneration · 2020. 1. 10. · Quark-gluon plasma (QGP) •Early...

Quarkonium dissociation and regeneration · 2020. 1. 10. · Quark-gluon plasma (QGP) •Early...

Date post: 05-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
46
1/10/2020 Quarkonium dissociation and regeneration Juhee Hong Yonsei University Phys. Rev. C 99, 034905 (2019) JH, Su Houng Lee Phys. Lett. B 801, 135147 (2020) JH, Su Houng Lee 1 PNU Simulation for Heavy IoN Collision with Heavy-quark and ONia (SHINCHON)
Transcript
  • 1/10/2020

    Quarkonium dissociation and regeneration

    Juhee HongYonsei University

    Phys. Rev. C 99, 034905 (2019) JH, Su Houng LeePhys. Lett. B 801, 135147 (2020) JH, Su Houng Lee

    1PNU

    Simulation for Heavy IoN Collision with Heavy-quark and ONia(SHINCHON)

  • 1/10/2020 PNU 2

    Quark-gluon plasma (QGP)• Early universe before 10-6 s after the Big Bang• Relativistic heavy ion collisions

    • Heavy quarks created in hard processes at the beginning, remain frozen

    dissociation, regeneration hadronic effects

    T0 ⁓ 550 MeV TC ⁓ 192 MeV TF ⁓ 115 MeV

    quark-gluon

    plasma

    hadron gas

    pre-equilibrium hadronization freeze-out

    t0 ⁓ 0.3fm/c tC⁓ 7fm/c tF⁓ 17fm/c

    hadronsg, q, ϒ

    the expansion rate > the scattering rate

  • 1/10/2020 PNU 3

    Quarkonium

    • Bound states of a heavy quark (b, c) and its antiquark

    • Quark-gluon plasma formation, thermal properties

    • Color screening

    • Interaction length ↔ bound state radius

    • Melting at Tdiss

    H. Satz (2006)

    T. Matsui, H. Satz (1986)

  • 1/10/2020 4

    Quarkonium suppression

    • Nuclear modification factor (RAA)

    RAA ⁓ 𝑁𝐴𝐴

    ϒ

    𝑁𝑐𝑜𝑙𝑙

    𝑁𝑝𝑝

    ϒ

    • Quarkonium dissociation by in-medium interaction

    • Quarkonium regeneration

    • Feed-down

    • Cold nuclear matter effects

    CMS Collaboration (2019)

    PNU

  • 1/10/2020

    Finite temperature QCD

    • Heavy quark-antiquark static potential: screened Coulomb

    • The imaginary part of the singlet potential: thermal width

    • Quarkonium dissociation by scattering processes

    - Gluo-dissociation (LO) - Inelastic parton scattering (NLO)

    M. Laine, O. Philipsen, M. Tassler, P. Romatschke (2007)N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky (2008)

    hard thermal loop (HTL) resummation

    5PNU

    g≪ 1 for high Thard ⁓ Tsoft ⁓ gT

    perturbative

  • 1/10/2020 6

    Outline

    • Quarkonium dissociation in a partonic picture:

    Gluo-dissociation, inelastic parton scattering

    - Numerical analysis for ϒ(1S)

    • Quarkonium regeneration

    Inverse gluo-dissociation, inelastic parton scattering

    • Boltzmann equation for quarkonium transverse momentum spectra:

    Nuclear modification factor RAA, elliptic flow v2

    PNU

  • 1/10/2020

    Quarkonium dissociation

    7PNU

  • 1/10/2020

    Gluo-dissociation

    • g+ϒ →

    • Interactions between partons and HQ bound state:dipole interaction of color charge with gluon

    • Bethe-Salpeter amplitude in ϒ rest frame:

    q, p1,p2»k

    G. Bhanot, M. E. Peskin (1979)

    Y. Oh, S. Kim, S. H. Lee (2002)

    8PNU

  • 1/10/2020 PNU 9

    • Coulombic bound state:

    the relative momentum p=(p1-p2)/2

    • Bohr radius:

    • Dissociation cross section:

    • Thermal width:

    k≥E

    n(k)=1

    𝑒𝑘/𝑇−1

  • 1/10/2020

    • LO: k,k0 »mD

    • NLO transverse dispersion for k«T: k02 - k2 - ReПT =0

    HTL self-energy in Coulomb gauge:

    • NLO cross section:

    agrees with potential nonrelativistic QCD (pNRQCD) for mv » T » E » mDpNRQCD: m » mv » E (nonrelativistic)

    T » mD (thermal)

    N. Brambilla, M. A. Escobedo, J. Ghiglieri, A. Vairo (2013)

    10PNU

    the imaginary part using the octet propagator

  • 1/10/2020

    Inelastic parton scattering• p + ϒ → p + (p=g, )

    • Effective vertex:

    • ϒ dissociation at NLO:

    T. Song, S. H. Lee (2005)

    →+

    gluo-dissociation at LO

    11PNU

    k0≈0 for small energy transfer ⁓ the singlet-octet chromoelectric

    dipole vertex in pNRQCD

  • 1/10/2020

    • Small energy transfer for weakly coupled quarkonia: k10 ≈ k20

    • Hard thermal loop (HTL) propagator:

    • Dissociation cross section:

    • Collinear breakup:

    • Thermal width:

    N. Brambilla, M. A. Escobedo, J. Ghiglieri, A. Vairo (2013)

    agrees with pNRQCD for mv » T » mD » E

    T ⁓

    ⁓mD

    12PNU

    nF(k1)=1

    𝑒𝑘1/𝑇+1, nB(k1) =

    1

    𝑒𝑘1/𝑇−1

    small anglescattering

    Landau damping

  • 1/10/2020

    Higher order corrections

    13PNU

  • 1/10/2020

    O(g) corrections

    • Higher order expansion with the effective vertex

    • Same order for soft(⁓gT) gluons:

    • Bose enhancement in the presence of soft gluons: αsn(k) ⁓ g2 T/k ⁓ g

    14

    gT ⁓ gT ⁓

    PNU

    ⁓ g2

    ⁓ 1

    𝑔2

    1

    𝑒𝑘/𝑇 − 1

    T ⁓hard

  • 1/10/2020

    Heavy quark diffusion

    • Momentum diffusion coefficient of a HQ:the mean-squared momentum transfer per unit time

    • Thermal width:

    15

    bath particles

    G. D. Moore, D. Teaney (2005)

    PNU

  • 1/10/2020 PNU 16

    • κNLO with soft gluons

    • κNLO is useful to obtain O(g) corrections to ΓNLO: ΓO(g) ⁓ κNLO

    •Other O(g) corrections induced by heavy quark-antiquark interactions

    S. Caron-Huot, G. D. Moore (2008)

    ΓNLO with hard partons

  • 1/10/2020

    Numerical analysis for ϒ(1S)

    17PNU

  • 1/10/2020 18

    • ϒ(1S) survives up to Tdiss⁓ 600MeV

    • Transitional behavior in QGP at Tc ≤ T ≤ Tdiss

    • Binding energy from lattice QCD

    • Debye screening mass: 𝑚𝐷2 =

    𝑔2𝑇2

    3𝑁𝑐 +

    𝑁𝑓

    2

    A. Mocsy, P. Petreczky (2007)

    PNU

    ϒ(1S)

    Tc

  • 1/10/2020

    Numerical calculations

    • Gluo-dissociation:

    - NLO slightly smaller

    • Inelastic parton scattering by numerical integral over the phase space:

    - depends on binding energy

    - approach the asymptotic formula

    19

    E

    log

    PNU

  • 1/10/2020

    Dissociation cross section

    • Numerical integration over the phase space:

    • Gluo-dissociation peak depending on EInelastic parton scattering decreases with large mD at high T

    • Low k1: gluo-dissociation is efficientHigh k1: inelastic parton scattering is dominant

    20PNU

  • 1/10/2020

    Thermal width

    • Phase space: larger at high T, peak at higher k

    • Gluo-dissociation/inelastic parton scattering is dominant at low/high T• Total thermal width increases with T: dissociation when Γtot ≥ E• Larger width at weaker αs (smaller mD, larger a0)

    E»T tunnellingD. Khareev et al. (1995)

    21⁓ 1/g2⁓ gT

  • 1/10/2020

    Quarkonium moving through QGP

    22PNU

  • 1/10/2020 PNU 23

    Kinetic approach

    • Rate equation with absorption and production:

    𝑑𝑁

    𝑑𝑡= −Γ𝑁 + (production)

    • Boltzmann equation:

    𝜕

    𝜕𝑡+ 𝑣 ∙

    𝜕

    𝜕𝑥𝑓 𝑝

    = −∫𝑝2,𝑝3,𝑝4𝑀 2 𝑓𝑓2 1 ± 𝑓3 1 ± 𝑓4 − 𝑓3𝑓4 1 ± 𝑓 1 ± 𝑓2

    × (2π)4δ4(𝑝 +𝑝2 −𝑝3−𝑝4)

    p

    p2

    p3

    p4

  • 1/10/2020 PNU 24

    Hadronic models

    P. Braun-Munzinger, J. Stachel (2000)V. Greco, C. M. Ko, R. Rapp (2004)

    • Recombination by hadronic processes near the phase transition

    • Statistical hadronization: 𝑁𝑒𝑞 = 𝑔γ𝑉 ∫𝑑3𝑝

    2𝜋 3𝑓(𝑝)

    • Coalescence: 𝑑2𝑁

    𝑑2𝑝𝑇⁓ ∫𝑑2𝑝1𝑇𝑑

    2𝑝2𝑇𝑑2𝑁𝑏

    𝑑2𝑝1𝑇

    𝑑2𝑁ഥ𝑏𝑑2𝑝2𝑇

    δ2( Ԧ𝑝𝑇 − Ԧ𝑝1𝑇 − Ԧ𝑝2𝑇)

    • Continuous regeneration by the Boltzmann equation

    (dof)(fugacity)(volume)

  • 1/10/2020 PNU 25

    thermal widththermal widththermal width regenerationregeneration

    Quarkonium transport

    b

    b−ϒ b

    b−ϒ

    • Boltzmann equation with dissociation and regeneration

    • Dissociation:

    • Regeneration by b+b → ϒ+g , b+b+p → ϒ+p

    • Quarkonium regeneration depends on HQ density, Nϒ/NQ

    Nϒ/Nb « NJ/ψ/Nc

    − −

    ⁓ 10-2σpp→ϒ/σpp→b ⁓ 10-3 ⁓ 10-2

    ϒ velocity = q/q0

  • 1/10/2020 26

    Thermal width for ϒ(1S) moving in QGP

    • Calculate the scattering amplitudes in the ϒ rest frame

    • Partons move w.r.t. ϒ(1S): f k =1

    𝑒𝑝·𝑢/𝑇±1, 𝑢μ = γ 1, 𝑣 , γ =

    1

    𝑣2−1

    • Thermal width by convoluting the parton distributions with the cross section

    • Thermal width at the plasma rest frame, dividing by the Lorentz factor

    PNU

    thermal bath velocity

  • 1/10/2020 27

    • Higher q: smaller thermal width by gluo-dissociationlarger width by inelastic parton scattering

    • The total thermal width increases with ϒ(1S) momentum

    PNU

  • 1/10/2020

    Quarkonium regeneration

    28PNU

  • 1/10/2020 29

    Quarkonium regeneration

    • Inverse gluo-dissociation, inelastic parton scattering

    • Regeneration depends on HQ distribution function

    PNU

    b

    b− b

    b−

  • 1/10/2020 30

    Heavy quark distribution

    • Boltzmann equation with elastic scattering (p+b → p+b)

    • Small energy transfer: Fokker-Planck equation

    • Langevin equation: 𝑑𝑥

    𝑑𝑡=

    𝑝

    𝑚

    • Random walk suffering many collisions

    • HQ approach to the equilibrium slowly by ⁓ m/T

    ⁓mD

    drag momentum diffusion

    B. Svetitsky (1988)H. van Hees, R. Rapp (2005)

    G. D. Moore, D. Teaney (2005)

    PNU

    ⁓ 𝑇

    𝑚suppressed

    random momentum kicks

  • 1/10/2020 PNU 31

    • Heavy quark distribution

    • At leading-log order (vHQ=0):

    • Einstein relation: spatial diffusion

    • Green function:

    • Solution:

    initial: differential cross section in pp collisions

    H. van Hees, R. Rapp (2005) G. D. Moore, D. Teaney (2005)

  • 1/10/2020 PNU 32

    Thermal medium evolution

    • Viscous hydrodynamics:

    • A longitudinal motion by a Bjorken expansion

    - ideal gas equation of state: e=3P ⁓ T4

    - local equilibrium at t0=0.3 fm/c with T0=550 MeV

    T ≤ 7fm for QGP

    R ⁓ 7fm

    ideal

    shear viscosityenergy density, pressureequation of state

    J. D. Bjorken (1983)

    ⁓ T2

  • 1/10/2020 33

    • Conservation of bottom: fugacity by a statistical model (Nϒ«Nb)

    • Evolution of b quarks:

    ⁓ 1

    PNU

    Heavy quark distribution

  • 1/10/2020 34

    Regeneration term

    • Inverse gluo-dissociation is efficient at low TInelastic parton scattering is dominant at high T

    • Higher q: smaller regeneration by inverse gluo-dissociationlarger regeneration by inelastic parton scattering

    PNU

  • 1/10/2020 35

    • Regeneration is stronger for smaller diffusion

    • Inverse gluo-dissociation is sensitive to D at low T

    PNU

  • 1/10/2020

    ϒ(1S) transverse momentum spectra

    36PNU

  • 1/10/2020 37

    Dynamic evolution of ϒ(1S)• In the central rapidity region with the Lorentz boost invariance

    • Initial distribution: differential cross section in pp collisions

    • Dominant dissociation: Nϒ reduces to 40%• Small fϒ at high qT: regeneration effects

    PNU

  • 1/10/2020 38

    Nuclear modification factor

    • Tf ≈ Tc at tf ≈ 7fm/c:

    • Low qT: suppression by dissociationHigh qT: suppression, enhancement by regeneration

    • Less suppression for smaller D

    PNU

  • 1/10/2020 PNU 39

    • Significant uncertainties in the initial stage of heavy ion collisions

    • RAA curves depend on b,ϒ initial distributions:

    • Softer spectrum with larger α, smaller Λ: stronger regeneration at high qT

    • Higher T0: longer QGP lifetime, smaller RAA

    Dependence on initial conditions

    , Λb=6.07GeV

    , Λϒ=6.05GeV, α=2.44

    softer bsofter ϒ

    harder bharder ϒ

    ⁓ smaller diffusion

  • 1/10/2020 40

    •Higher energy collisions with larger T0: smaller RAA

    • Significant regeneration effects on RAA at high qT

    • Sum of gluo-dissociation and inelastic parton scattering: RAA⁓ 0.4

    • RAA data appear to be independent of qT: suppression by dissociation and enhancement by regeneration

    CMS Collaboration (2017, 2019)

    PNU

    Comparison to experiment

  • 1/10/2020 PNU 41

    Feed-down

    State Tdiss (MeV)

    ϒ(1S) 593

    ϒ(2S) 228

    ϒ(3S) < 192

    Χb1 265

    Χb2 < 192

    A. Mocsy, P. Petreczky, M. Strickland (2013)

    feed-down fractions

    ϒ(1S) → ϒ(1S) 0.668

    ϒ(2S) → ϒ(1S) 0.086

    ϒ(3S) → ϒ(1S) 0.010

    χb(1P) → ϒ(1S) 0.170

    χb(2P) → ϒ(1S) 0.051

    χb(3P) → ϒ(1S) 0.015

    B. Krouppa, A. Rothkopf, M. Strickland (2018)

    • Inclusive RAA = σ𝑠 𝑓𝑠𝑅𝐴𝐴

    𝑠 Dissociation temperatures

    • Gluo-dissociation is important for excited states

    • If 𝑅𝐴𝐴2𝑆 ⁓ 𝑅𝐴𝐴

    1𝑃, 𝑅𝐴𝐴3𝑆 , 𝑅𝐴𝐴

    2𝑃, 𝑅𝐴𝐴3𝑃 ∶

    feed-down effects ⁓ 10% of 𝑅𝐴𝐴1𝑆

    CMS Collaboration (2019)

  • 1/10/2020 42

    Elliptic flow

    • 𝑣2 =𝑝𝑥2−𝑝𝑦

    2

    𝑝𝑥2+𝑝𝑦

    2

    • Azimuthal angular anisotropy: b quark v2

    • Elliptic flow induced by regeneration:

    •With the same initial conditions, RAA and v2 are comparable to experiment

    M. He, R. J. Fries, R. Rapp (2017)

    ALICE Collaboration (2019)PNU

    x

    y

  • 1/10/2020

    Other approaches

    43PNU

  • 1/10/2020 PNU 44

    Langevin simulationJ. P. Blaizot, D. De Boni, F. Faccioli, G. Garberoglio (2016)

    • Dynamics of heavy quarks including bound state formation and dissociation

    • Generalized Langevin equation with the force and noise determined from correlation functions of the equilibrium plasma

    • Dissociation by a screened potential and collisions with partons, regeneration when enough heavy quarks are present

  • 1/10/2020 PNU 45

    Open quantum system

    S. Kajimoto, Y. Akamatsu, M. Asakawa, A. Rothkopf (2018)

    • Quarkonium dynamics by a Schrodinger equation with an in-medium potential and noise terms describing HQ-medium interactions

    • Noise correlation: wave decoherence

    • For short lcorr , the initial ground state is easily excited and mixed with excited states

    noise

    inelastic parton scattering

  • 1/10/2020

    Summary

    • Quarkonium dissociation and regeneration by scattering processes:

    For collinear breakup with small energy transfer, NLO dissociation cross sections agree with pNRQCD

    • Thermal width increases with T, qRegeneration depends on HQ diffusion: stronger regeneration for smaller D

    • ϒ(1S) transverse momentum spectra by the Boltzmann equation

    • Nuclear modification factor: suppression by dissociation at low qTsuppression and enhancement by regeneration at high qT

    • Elliptic flow induced by regeneration

    • With the same initial conditions, both RAA and v2 are comparable with the CMS, ALICE data

    46

    Thank you for your attention!

    PNU


Recommended