+ All Categories
Home > Documents > RA151_28pg

RA151_28pg

Date post: 13-Apr-2015
Category:
Upload: pipedown456
View: 21 times
Download: 4 times
Share this document with a friend
Description:
RA151_28pg
31
Corrosion Resistant Alloy Specifications & Operating Data PLATE, SHEET, BAR, PIPE, AND WELDING CONSUMABLES
Transcript
Page 1: RA151_28pg

CorrosionResistant

AlloySpecifications& Operating

Data

PLATE, SHEET, BAR, PIPE, AND WELDING CONSUMABLES

Page 2: RA151_28pg

RA333® alloy is a nickel base superalloy with excellentcarburization, oxidation, and hot corrosion resistance. Ithas high creep-rupture strength with exceptional abilityto withstand repeated thermal shock. Useful to 2200°F(1200°C).RA330® alloy is the workhorse of the austenitic heatresistant alloys. Good strength, carburization andoxidation resistance to 2200˚F (1200°C). RA330HChas high carbon for best hot shear strength and wearresistance for pin shock.RA 253 MA® alloy is an austenitic heat resistant alloywith high strength and outstanding oxidation resistance.Advanced control of micro alloy additions provides hightemperature properties comparable to the nickel basealloys.RA 353 MA® is a strong, microalloyed austenitic withoxidation resistance through 2300˚F (1260°C).Carburization, oxidizing hot corrosion resistance. Theupgrade from RA330 above 1800˚F (980°C).RA800H/AT is a high strength austenitic heat resistantalloy for ASME code applications to 1650°F (900°C).RA601 is a nickel base alloy with outstanding oxidationresistance, good strength and carburization resistance.RA 602 CA™ is one of the most oxidation resistant highnickel alloys available. High strength in the 1800-2200°Frange. Carburization resistant.

RA309 alloy (Ni-Fe-Cr) is austenitic, and oxidationresistant in 1500-1950˚F (800-1070°C) service. Suitablefor use in moderately sulfidizing atmospheres.RA310 alloy is an austenitic heat resistant alloy withhigher chromium and nickel than RA309. Good cyclicoxidation resistance beyond 2000˚F (1100°C), good hotcorrosion resistance.RA446 alloy (Cr-Fe) is ferritic with a low coefficient ofexpansion, and excellent oxidation and sulfidationresistance.RA321 is a titanium stabilized austenitic stainless commonlyused for service in the 1000-1600˚F (540-870°C)temperature range. Titanium stabilization providesresistance to polythionic acid stress corrosion cracking.

ra,RA333 and RA330 are registered trademarks of Rolled Alloys Inc.AL-6XN and E-BRITE are registered trademarks, and 317LXN atrademark of ATI Properties, Inc.20Cb-3 is a registered trademark of Carpenter Technology Corporation.HASTELLOY is a registered trademark of Haynes International.INCOLOY, INCONEL and MONEL are registered trademarks of SpecialMetals, Inc.NITRONIC and 17-4PH are registered trademarks of AK Steel Corporation.Oakite is a registered trademark of Oakite Products Inc.RA 253 MA and RA 353 MA are registered trademarks ofAvestaPolarit.

We are suppliers of high performance wroughtalloys for heat and corrosion resistant service. Thisbrochure describes those alloys specially suited foruse under various severe conditions. They are

summarized in the table below. In addition, wedescribe briefly on this page our heat resistantalloys. We have a separate brochure on thesematerials, and would be happy to supply one to you.

Corrosion Resistant AlloysNOMINAL CHEMICAL COMPOSITION

ALLOY Ni Cr Fe Mo Other

AL-6XN® 24 20.5 48 6.3 C:0.02Alloy N:0.20

CARPENTER® 33 19.5 40 2.2 C:0.0220Cb-3 Stainless Cb + Ta:0.5

Cu:3.3

RA2205 5.6 22.1 67 3.1 C:0.02N:0.16

RA600 76 15.5 8 — C:0.08S:0.008

RA333® 45 25 18 3 Co:3Alloy W:3

C:0.05Si 1.25

RA625 61 21.5 4 9 Mo:9Cb:3.6

DESCRIPTION(See also specification table, page 12)

A high (6.3%) molybdenum super austenitic stainless steel. Highstrength. Superior resistance to chloride pitting and crevicecorrosion. Applications are in high chloride environments:bleaches—sodium hypochlorite, chlorine dioxide-chemicals con-taining high levels of halogens and brackish or seawater.

An austenitic stainless steel for sulfuric acid corrosion environ-ments. Resists intergranular corrosion as welded. Resistant tochloride and polythionic acid stress corrosion cracking.

Duplex austenitic - ferritic stainless with high resistance tochloride stress corrosion cracking, and to general corrosion.High strength.

A nickel-chromium alloy, resistant to corrosive environments atelevated temperatures. Good oxidation resistance to 2000°F.

A high strength nickel-based superalloy for superior heat andcorrosion resistance. Resists hot sulfuric acid corrosion andchloride and polythionic acid stress corrosion cracking.

A high strength 9% molybdenum nickel alloy with excellentresistance to hot seawater, scrubber environments and reduc-ing acids.

Heat Resistant Alloys

Page 3: RA151_28pg

ENVIRONMENT Not Good Better BestSuggested

CHLORIDES 304L 20Cb-3® RA904L™ AL-6XN®

(pitting, crevice RA333® 400(a) RA625corrosion) 316L, RA2205 C-276

200(a), RA600 Titanium

CHLORIDE STRESS 304L 904L AL-6XN 200, 400,CORROSION 316L RA2205 20Cb-3 RA600, RA333®,CRACKING RA330 RA625

HYDROCHLORIC Titanium(b) 200(a) 59 Zirconium(a)

ACID RA600, 20Cb-3, 400(a) C-22 alloy B-2(a)

RA2205 C-276 TantalumTitanium(b)

HYDROFLUORIC 200, RA600, Ta, Copper(a) 400(a) Gold, PlatinumACID RA2205, etc. Silver(a)

SULPHURIC Titanium 316L 904L 20Cb-3ACID RA600 200(a) AL-6XN, RA333 Tantalum

RA2205 400(a), RA625

PHOSPHORIC 200, 400 904L AL-6XN, RA625ACID 316L RA2205 20Cb-3(commercial)

NITRIC 904L, AL-6XN 304L RA333(c) ZirconiumACID 200, 400, RA600 20Cb-3 RA625 Tantalum

RA2205

CAUSTIC 316L 20Cb-3 RA600, RA625 200(a)

Tantalum RA2205 400

(a) presence of oxygen or oxidizing salts may greatly increasecorrosion

(c) Stabilize annealed 1700-1800°F 1 hour

(b) Titanium has excellent resistance to hydrochloric acidcontaining oxidizers such as FeCl3, HNO3, etc. However,titanium has very poor resistance to pure, reducing, HCl.

Alloy Performance Guide

Disclaimer Clause: The data and information in this printed matter are believed to be reliable. However, this material is not intended as a substitute forcompetent professional engineering assistance which is a requisite to any specific application. Rolled Alloys makes no warranty and assumes no legal liability orresponsibility for results to be obtained in any particular situation, and shall not be liable for any direct, indirect, special, or consequential damages therefrom.This material is subject to revision without prior notice.

This chart is intended as guidance for what alloysmight be tested in a given environment. It must NOTbe used as the major basis for alloy selection, or as asubstitute for competent corrosion engineering work.

Alloy selection for corrosive process environments isa complex process. It should include experience withsimilar equipment, extensive testing in the exactcorrosive environment of interest, and detailedknowledge of the various alloys to be considered.Oftentimes, apparently minor contaminants can causemajor changes in corrosion rates. One example iscontamination of organic chlorides with small amountsof water. This can permit the organic compound to

hydrolyze, forming hydrochloric acid. The HCl in turn,may aggressively pit or stress corrode the standard18-8 stainless steels. Other examples are the alloys B-2, 200, and 400, which contain no chromium. Whilethey have excellent corrosion resistance in reducingenvironments, they have little or no resistance tooxidizing environments. Unexpected failures maytherefore arise from contamination by small amountsof oxidizing salts (e.g., FeCl3, CuCl2 or NaClO3), orsometimes even dissolved oxygen. Titanium behavesin the opposite manner, and requires the presence ofoxidizing species for best resistance to HCl.

1

Page 4: RA151_28pg

alloyAL-6XN®

Performance ProfileAL-6XN alloy is a superaustenitic stainless withoutstanding resistance to chloride pitting andcrevice corrosion. The levels of chromium,molybdenum and nitrogen all serve to provideresistance to acidic, oxidizing chloride solutionspreviously achieved only by the nickel basealloys. High nickel (24%) and molybdenum(6.3%) contents make AL-6XN a usefulengineering solution to the problem of chlorideion stress corrosion cracking.Because of its nitrogen content, AL-6XN hasgreater tensile strength than common austeniticstainlesses, while retaining high ductility andimpact strength. The ASME allowable stressesfor AL-6XN are up to 75% higher than for 316Lstainless, and more than twice those for thecopper-nickel alloys.

Features• Excellent resistance to pitting and

crevice corrosion in chloridesolutions

• Practical immunity to stresscorrosion in NaCl environments

• High strength and toughness

Applications• Seawater heat exchangers• Pulp bleaching plant washers,

vats, press rolls and pipelines• Scrubbers• Chemical process tanks and

pipelines• Tall oil distillation columns and

packing• Reverse osmosis desalination

equipment and pumps• Offshore oil and gas production

equipment

Chemical Composition, %Min. Max.

Nickel 23.50 25.50Chromium 20.00 22.00Molybdenum 6.00 7.00Carbon — 0.03Nitrogen 0.18 0.25Manganese — 2.00Silicon — 1.00Phosphorus — 0.040Sulfur — 0.030Copper — 0.75Iron Remainder

SpecificationsUNS N08367ASME Section VIII, Division 1For external pressure use Fig.NFN-12 of Section II, Part D.Section III Division 1 Class 2 and 3construction, Case N-438-2.ASME Section IX, P No. 45NACE MR0175

2

Page 5: RA151_28pg

AL-6XN®

Mechanical PropertiesRepresentative Tensile and Impact Properties, Plate

UltimateTensile 0.2% Yield Elonga- Charpy V-Notch

Temp Strength, Strength, tion in Toughness˚F psi psi 2" % ft-lb

-450 218,000 142,000 36 353 *-320 196,000 107,000 49 85-200 — — — 100

70 108,000 53,000 47 140200 99,900 49,400 47 —400 90,300 40,400 46 —600 86,000 36,300 47 —800 87,000 36,000 48 —

1000 83,600 33,900 50 —

*K1C, ksi √–inch

ASME Boiler and Pressure Vessel CodeSection II DMaximum allowable design stresses, ksi, for weldedconstruction

Maximum Allowable Stress Values, ksiFor Metal Welded pipe Plate forgings,Temp Not & tube under bar, rod

Exceeding, ˚F 3/16" wall100 24.3 27.1200 24.3 27.1300 23.0 25.7400 22.0 24.6500 21.3 23.8600 20.8 23.3650 20.7 23.1700 20.5 22.9750 20.4 22.8800 20.2 22.6

NOTES: G5, G14 G5

* For welded pipe and tube, a joint efficiency factorof 0.85 must be applied.

Physical PropertiesDensity lb/in 3 Melting Range ˚F

0.291 2410-2540

Coefficient of Modulus ofThermal Thermal Elasticity

Temp Expansion*, Conductivity Dynamic,˚F in/in˚F x 10 -6 Btu•ft/ft 2•hr•˚F psi x 10 6

70 — 6.7 28.3 200 7.9 7.5 27.4 300 8.3 8.1 – 400 8.4 8.7 26.1 600 8.6 10.0 24.8 700 8.7 10.6 — 800 8.8 11.2 23.41000 9.0 12.5 22.11200 9.3 13.9 —

* 70˚F to indicated temperature.

alloy (continued)

3

Temperature for Initiation of Crevice Corrosion in10% Ferric Chloride.

Critical CreviceCorrosion Pitting Resistance

Alloy Temp, ˚F Equivalent (PRE) N316L 27 23825 27 30317L 35 29317LXN™ 68 34RA2205 68 37E-BRITE® 75 29G 86 43AL-6XN® 110 48

(PRE) N = % Cr + 3.3% Mo + 30% N

Corrosion Rates in Boiling Organic Acidsmils per year

Alloy 20% Acetic 45% Formic 10% Oxalic304 0.1 48 48316L 0.1 23 48317LM 0.24 11 47904L 0.6 7.7 27AL-6XN 0.1 4.6 11E-BRITE 0.1 2.6 2.8

Bulletin 203 contains detailed fabrication information.

2

1.6

1.2

0.8

0.4

00 0.2 0.4 0.6 0.8 1 1.2

% Copper by Weight

Max

imum

Pen

etra

tion

(mm

)

Effect of Copper content on crevice corrosionattack of 6% Mo alloys in natural seawater afterremoval of the original mill surface.

AL-6XN 254SMO

25-6MO

1925hMo

Page 6: RA151_28pg

4

RA2205alloy

Performance ProfileRA2205 is an austenitic-ferritic stainless steelcontaining about 40-50% ferrite in the annealedcondition. This duplex stainless has been apractical solution to chloride stress corrosioncracking problems experienced with 304L or316L stainless. The high chromium, molybdenumand nitrogen contents provide corrosionresistance superior to 316L or 317L stainless inmost environments. The design strength ofRA2205 is significantly higher, often permittinglighter wall construction. RA2205 has good notchimpact toughness down to -40˚F, and is fabricatedby established duplex welding procedures.

Mechanical PropertiesSpecified tensile properties, ASTM A 240, ASMESA-240

Ultimate tensile strength,psi, min 90,000

0.2% Yield Strength,psi, min 65,000

Elongation, %, min 25

Hardness, Brinell, max 290

ASME Boiler & Pressure Vessel Code, Sect. VIII Div.1, allowable stress values, ksi

-20 to 100˚F 300˚F 400˚F 500˚F 600˚F

22.5 21.7 20.9 20.4 20.2

For external pressure design in ASME Sect VIII, useChart No. HA-5, in Section II D.

Features• High resistance to chloride stress

corrosion cracking• Chloride pitting and crevice

corrosion resistance superior to317L stainless

• Good general corrosionresistance

• High strength• Good sulfide stress corrosion

resistance

Applications• Chemical process vessels, piping

and heat exchangers• Pulp mill digesters, bleach wash-

ers, chip presteaming vessels• Food process equipment• Oil field piping, heat exchangers

Chemical Composition Range, %Chromium 22.0-23.0Nickel 4.50-6.50Molybdenum 3.00-3.50Carbon 0.030 maxNitrogen 0.14-0.20Manganese 2.0 maxSilicon 1.0 maxPhosphorus 0.030 maxSulfur 0.020 maxIron Balance

SpecificationsUNS S31803 / UNS S32205DIN 1.4462ASTM A 182, A 240, A 276, A 479,

A 789, A 790, A 923, A 928ASME SA-182, SA-240, SA-479,

SA-789, SA-790Sect. VIII Div 2 Code Case 2067-2ASME Sect. IX P No. 10H, Group 1ASME B31.1 Code Case 153NACE MR0175 W. Nr. 1.4462

Physical PropertiesDensity: 0.278 lb/in3

Melting Range: 2525-2630˚F

Coefficient of thermal 68˚F 212˚F 392˚F 572˚Fexpansion, 68˚F to temp,inch/inch ˚F x 10-6 -- 7.5 7.8 8.1

Thermal conductivity, 8.1 8.7 9.9 10.5Btu • ft/ft2 • hr ˚FSpecific Heat, Btu/lb • ˚F 0.112 0.119 0.127 0.134

Modulus of Elasticity,psi x 106 27.6 26.1 25.4 24.9

Page 7: RA151_28pg

5

alloy (continued)

Corrosion ResistanceTypical Critical Crevice Corrosion Temperature in10% FeCl

3 • 6H

2O

Alloy ˚F

RA2205 68316L 27825 27317L 35317LXNTM 68904L 75AL-6XN ® 110

Corrosion Rate, mil/yearAlloy Base Metal Weld

RA2205 24 23316L 78 85AL-6XN ® 16 17E-BRITE® 0.1 0.1

Boiling NaOH, 290˚F, average of five 48 hrperiods.

MachiningBecause of its high strength, RA2205 is gener-ally more difficult to machine than conventionalaustenitic stainless. Higher cutting forces andmore tool wear may be expected. It is relativelyeasier to machine duplex stainless with highspeed steel, rather than cemented carbide, tool-ing. With HSS the machinability rating of RA2205is similar to that of 316L stainless, while withcarbide tools the rating is about 65% that of316L. For drilling with HSS, 3/16 to 1/2" diam-eter, suggested cutting speed is 33 to 40 sfpm,feed 0.004 to 0.016 ipr.

WeldingIn welding RA2205 duplex stainless the aim tomaintain the same ferrite-austenite balance in astructure essentially free of intermetallic phases.This is achieved by control of heat input andinterpass temperature, and by limiting total timefor the HAZ to be in the 1300-1800˚F range.RA2205 should be welded with fairly high heatinput, comparable to that used for 316L stain-less. Do NOT treat RA2205 like a nickel alloy —low heat input and tiny stringer beads areUNdesirable in welding a duplex.Welding should be performed only by weldersspecifically qualified for 2205. “Matching” fillermetals for RA2205, AWS E2209 and ER2209,are somewhat overalloyed in nickel to maintainphase balance.Request Bulletin 1071 for more details of RA2205fabrication.

Corrosion Rates from Exposures in a Terephtalic Acid Plant, mills per year

75% acetic acid, 96% acetic acid,Alloy traces of Br, Cu, Mn traces of Br, Cu, Mn

350˚F 300˚F

317L 17 26317L, welded 18 272205 0.47 2.42205, welded 1.1 2.82507, welded 0.24 0.63

RA2205

Page 8: RA151_28pg

CARPENTER 20Cb-3®

stainless steel

Performance ProfileCarpenter 20Cb-3 stainless is the alloy designedspecifically to withstand sulfuric acid. Its nickel,chromium, molybdenum and copper levels allprovide excellent general corrosion resistance.At 33% nickel, 20Cb-3 stainless has practicalimmunity to chloride stress corrosion cracking.This alloy is often chosen to solve SCC problemswhich may occur with 316 stainless. Restrictedcarbon plus columbium stabilization permitswelded fabrications to be used in corrosiveenvironments, normally without post-weld heattreatment. 20Cb-3 stainless finds extensive useprocessing pharmaceuticals, food, plastics,explosives and synthetic fibers.

Features• Excellent resistance to hot

sulfuric acid• Resistant to intergranular corrosion

in the as-welded condition• Chloride stress corrosion

cracking resistance

Applications• Flue gas scrubbing systems• Sulfuric acid pickling tanks,

racks, and heating coils• Phosphate coating drums and

racks• Heat exchangers• Bubble caps• Process piping• Mixing tanks• Chemical and petroleum process

equipment

Chemical Composition, %Min. Max.

Nickel 32.50 35.00Chromium 19.00 21.00Carbon — 0.06Molybdenum 2.00 3.00Copper 3.00 4.00Manganese — 2.00Phosphorus — 0.035Sulfur — 0.035Silicon — 1.00Cb + Ta 8 x C 1.00Iron Remainder

SpecificationsUNS N08020

ASME SB-463, SB-474, SB-468,SB-473

Under ASME Section IX, 20Cb-3(N08020) has been assigned P No. 45.ASTM A 265, B 366, B 462, B 463,

B 464, B 468, B 471, B 472,B 473, B 474, B 475

NACE MR0175

6

Mechanical PropertiesMinimum Room Temperature Properties :

Tensile 0.2% Yield Elongation in Hardness

Strength, psi Strength, psi 2" or 4D, % Brinell

80,000 35,000 30 217 max.

Temperature Coefficient77°F to (20°C) to 10-6/°F (10-6/°C)

212°F (100°C) 8.16 (14.7 )

392°F (200°C) 8.37 (15.1 )

662°F (350°C) 8.71 (15.7 )

842°F (450°C) 8.84 (15.9 )

1652°F (900°C) 9.53 (17.15)

Physical PropertiesDensity 0.292 lb/in3 (8080 kg/m3)

Melting Point 2515°F (1379°C)

Modulus of elasticity (E) 28 x 106 psi

(193 x 103 MPa)

Modulus of rigidity (G) 11 x 106 psi

(75.8 x 103 MPa)

Poisson’s Ratio 0.31

Electrical resistivity 651 ohm - cir mil/ft(1.08 microhm•m)

Specific Heat 0.12 Btu/lb°F(500 J/kg • K)

Typical Room Temperature Properties:

Tensile 0.2% Yield Elong. Reduction Hardness

Strength, psi Strength, psi % of Area, % Brinell

91,000 48,000 45 67 174

Mean Coefficient of Thermal Expansion

Page 9: RA151_28pg

CARPENTER 20Cb-3®

stainless steel (continued)

Thermal Conductivity

Temperature Btu•ft/ft 2•hr°F W/mK°F (°C)

122 (50) 7.05 12.2212 (100) 7.57 13.1392 (200) 8.56 14.8572 (300) 9.53 16.5752 (400) 10.5 18.1

Corrosion ResistanceThe corrosion resistance in reagent gradesulphuric acid, with no intentional aeration ordeaeration, is shown in Figures 1-3. Corrosionrates in reagent grade acid should be used onlyas a guide. Many contaminants in commercialsulphuric acid can affect the degree of corrosiveattack. The iron, copper and chromium ions,usually present in pickling and plating solutions,tend to reduce corrosion rates. Conversely, thepresence of chloride ions increases corrosionattack.

Typical Corrosion Resistance of 20Cb-3 Stainless innonaerated Sulphuric Acid at 176°F (80°C)

Typical Corrosion Resistance of 20Cb-3 Stainless in BoilingSulphuric Acid

Typical Iso-Corrosion Chart for 20Cb-3 Stainless in SulphuricAcid

Non-Aerated Sulfuric Acid at 176 °F (80°).080

.060

.040

.020

0 10 20 30 40 50 60 70 80 90

Acid Concentration—Percent by weight

Co

rro

sio

n R

ate

—In

che

s p

er

yea

r (ipy

)

75

.060

.050

.040

.030

.020

.010

Corrosion Rate vs. ConcentrationBoiling Sulfuric Acid

Co

rro

sio

n R

ate

—In

che

s p

er

yea

r (ipy

)

Acid Concentration—Percent by weight

10 20 30 40 50

300

280

260

240

220

200

180

160

140

120

100

800 10 20 30 40 50 60 70 80 90 100

Iso-corrosion Chart for Carpenter 20Cb-3Stainless in Sulfuric Acid.

140

130

120

110

100

90

80

70

60

50

40

30

Percent H2SO4 (by weight)

Tem

pera

ture

—°F

>50 mpy

25 to 50 mpy

5 to 25 mpy

<5 mpy

Boiling Point Curve

Figure 2

Figure 3

7

Page 10: RA151_28pg

alloyRA333®

Performance ProfileRA333 is a high chromium nickel base superal-loy with extreme temperature corrosion resis-tance and strength. RA333 is one of the fewmaterials that can withstand corrosive condi-tions ranging from aqueous to white heat. Thealloy has been used for dampers and refractoryanchors in 13% SO2/SO3 at 1800°F, and forrefinery flare tips. Upon shut-down, RA333 re-sists attack by sulfuric acid formed below thedew point. It also resists polythionic acid stresscorrosion cracking. RA333 has exceptional re-sistance to molten glass.

Features• Metal dusting resistance• Practical immunity to chloride ion

and to polythionic acid stresscorrosion cracking

• High temperature SOx, hot saltcorrosion resistance

• Good resistance to sulfuric acid• Excellent oxidation and

carburization resistance atelevated temperatures

Applications• Chemical and petrochemical

process equipment• Sulfuric acid plant dampers• Tube hangers in crude oil distilla-

tion• Flare tips• Gas turbine combustion cans• Sour water stripper reboiler lining• Molten glass• Carburizing furnace fixtures

Chemical Composition %Min. Max.

Nickel 44.00 47.00Chromium 24.00 27.00Molybdenum 2.50 4.00Cobalt 2.50 4.00Tungsten 2.50 4.00Carbon — 0.08Silicon 0.75 1.50Manganese — 2.00Phosphorus — 0.030Sulfur — 0.030Iron Remainder

SpecificationsUNS N06333 W. Nr. 2.4608ASTM B 718, B 719, B 722,

B 723, B 726AMS 5593, 5717

8

Mechanical PropertiesMinimum Room Temperature Properties :

Tensile 0.2% Yield Elongation in Hardness

Strength, psi Strength, psi 2" or 4D, % Rockwell B

80,000 35,000 30 95 max.

Physical PropertiesDensity lb/in 3 Melting Range ˚F

0.294 2375-2450

Coefficient of Modulus ofThermal Thermal Elasticity

Temp Expansion*, Conductivity Dynamic,˚F in/in˚F x 10 -6 Btu•ft/ft 2•hr•˚F psi x 10 6

70 — 6.4 29.2 400 — 8.1 28.1 600 — 9.1 27.01000 8.6 11.3 24.61200 9.0 12.4 23.4

* 70˚F to indicated temperature.

Polythionic Acid SCCSpecimens 1/8 x 3/8 x 3 inches (3 x 9.5 x 76mm) madeinto 3/16 inch (4.76mm) radius U-bends. Sensitizationtreatments performed 1200˚F (649˚C) 4 hour air cool.Welds made with RA333-70-16 AC/DC electrodes.

Condition RA333mill annealed passed (160 hours)mill annealed & sensitized passed (160 hours)as welded passed (160 hours)welded & sensitized passed (160 hours)

Metal Dusting ComparisonAlloy Condition ResultsRA333 bright no pits, 27,594 hrRA333 preoxidized light pits, 16,183 hrRA330 bright pitted, 19,472 hrN07214 bright many pits, 19,472 hrN07214 preoxidized many pits, 19,472 hrN08120 bright pitted, 11,264 hratmosphere—endothermic with 0.7-0.8% CH4 metal dusting occurs at about 600C

(1100F)

Page 11: RA151_28pg

9

Performance ProfileRA625 is used both for its high strength andoutstanding aqueous corrosion resistance. Thestrength of RA625 is primarily a solid solutioneffect from molybdenum and columbium. RA625has excellent weldability, and the matching fillermetals are often used for dissimilar metal joining,and to weld the aqueous corrosion alloyAL-6XN®.

Mechanical PropertiesRepresentative Tensile Properties, bar, 1800˚Fanneal

Ultimate 0.2% OffsetTemp Tensile Yield Strength, Elongation

˚F Strength, psi psi in 2" %

70 144,000 84,000 44400 134,000 66,000 45600 132,000 63,000 42.5800 131,500 61,000 45

1000 130,000 60,500 481200 119,000 60,000 341400 78,000 58,500 591600 40,000 39,000 117

ASME Boiler & Pressure Vessel CodeSection II DMaximum allowable design stresses, psi, for weldedconstruction through 4" thick, Grade 1

Temp, ˚F Stress Temp, ˚F Stress100 27,500 800 24,600200 27,500 900 24,050300 27,500 1000 23,700400 26,800 1050 23,600500 26,100 1100 23,400600 25,450 1150 21,000700 25,000 1200 13,200

For external pressure design use Fig NFN-17

Physical PropertiesDensity lb/in 3 Melting Range ˚F

0.305 2350-2460

Coefficient of Modulus ofThermal Thermal Elasticity

Temp Expansion*, Conductivity Dynamic,˚F in/in˚F x 10 -6 Btu•ft/ft 2•hr•˚F psi x 10 6

70 — 5.7 29.8400 7.3 7.2 28.4600 7.4 8.2 27.5800 7.6 9.1 26.6

1000 7.8 10.1 25.61200 8.2 11.0 24.41400 8.5 12.0 23.11600 8.8 13.2 —

* 70˚F to indicated temperature.

Features• Outstanding resistance to chloride

pitting and crevice corrosion• Immune to chloride ion stress

corrosion cracking• Resistant to caustics• Resistant to seawater under both

flowing and stagnant conditions,and under fouling

Applications• Chemical process equipment

handling mixed acids both oxidiz-ing and reducing

• Flue gas desulfurization scrubbers• Evaporators for wet-process

phosphoric acid containing H 2SO4,HF and ferric salts

Chemical Composition Range, %Chromium 20.00-23.00Nickel remainderMolybdenum 8.00-10.00Cobalt 1.00 max*Columbium +Tantalum 3.15-4.15Aluminum 0.40 maxTitanium 0.40 maxCarbon 0.10 maxIron 5.00 maxManganese 0.50 maxSilicon 0.50 maxPhosphorus 0.015 maxSulfur 0.015 max*Determination not required for routine acceptance

SpecificationsUNS N06625 W. Nr. 2.4856ASMESB-443 Gr 1 Plate, Sheet & Strip

AnnealedSB-446 Gr 1 Rod & Bar, AnnealedASME Section IX P No. 43NACE MR0175

alloyRA625

Page 12: RA151_28pg

10

Aqueous CorrosionAverage

Concentration Test Temp Corrosion Rate,Media % ˚F mils per year

Acetic Acid 10 Boiling 0.64 24 hour periods 99 Boiling 0.4Nitric Acid (Huey test) 65 Boiling 20Phosphoric Acid 55 Boiling 6.34 24 hour periods 70 240 12boiling, others 70 300 1196 hr 85 Boiling 67Sodium Hydroxide 10 199 Nil96 hr test 10 Boiling 0.1

30 Boiling Nil50 151 0.150 199 0.450 Boiling 2.4

Sulfuric Acid 1 Boiling 2.25 Boiling 8.910 Boiling 25

Wet Chlorine — Room 0.148 hr test — 122 81

— 158 186

Corrosion by Quiet & Flowing Seawater,Wrightsville Beach, NC

Alloy Quiet Flowing, 2 ft/secWeight Range of Weight Range ofLoss, Pit Depth, Loss, Pit Depth,

g mils g milsCrevice Crevice

Panel Area Panel AreaRA625 Nil Nil Nil 0.25 Nil NilC-276 Nil Nil Nil 0.10 Nil Nil

René 41 0.80 Nil Nil 0.30 Nil NilRA X 0.10 Nil Nil 0.60 Nil Nil825 0.25 0-1 0-9 0.20 3-6 1-26

RA718 2.70 Nil 37-165P 5.15 Nil 40-165P

Test duration two years. P = perforated by local attack.

Temperature for Initiation of Crevice Corrosion in10% Ferric Chloride

Critical Crevice Pitting ResistanceAlloy Corrosion Temp, ˚F Equivalent (PRE) N

316L 27 23825 27 30317L 35 29317LXN™ 68 34904L 75 35AL-6XN® 110 48RA625 113 51C-276 130 66

(PRE)N = %Cr + 3.3% Mo + 30%N

317LXN is a trademark of Allegheny Ludlum Corporation

Stress Corrosion CrackingTime to Crack in Boiling

Alloy 42% magnesium chloride, hours304, 316L <2420Cb-3® <100G No Cracks – 1000RA625 No Cracks – 1000

Crevice Corrosion in Simulated Scrubber Environ-ment (Green Death)

Alloy Weight Loss, mg/cm275˚F(24˚C) 122˚F(50˚C) 158˚F(70˚C)

316L 0.6 34.3 39.0317L 0.7 37.7 50.0317LXN™ 0.0 12.9 46.2904L 0.0 22.1 41.9AL-6XN® 0.0 0.0 26.6RA625 0.0 0.0 14.9C-276 0.0 0.1 0.4

Test solution 7 vol % H2SO43 vol % HCI 1 wt %CuCL2 1 wt %FeCl3.

Test duration 72 hr, procedure ASTM G 48 B

Heat TreatmentFor most applications to 1500˚F, and maximum fatigue strength,RA625 is annealed 1700-1900˚F, air cool or faster.

alloy (continued)RA625

Page 13: RA151_28pg

11

alloyRA600

Corrosion in Dry Chlorine :Approx. Temperature at Which Suggested Upper

Given Corrosion Rate is Exceeded Temperaturein Short Time Tests, °F Limit for Con-

tinuous Service°F

0.03 in. 0.12 in. 1.2 in.Alloy Per Year Per Year Per Year

RA 400 750 900 1000RA 200 950 1100 1250RA 600 950 1050 1250Copper 350 500 550*

Platinum 900 1000 1050

*Ignites at about 600°F

80010001000400500

Performance ProfileRA600 is a nickel-base alloy with excellentcarburization, and good oxidation resistance atelevated temperatures. RA600 has usefulresistance to dry Cl2 and HCl gases at moderatelyelevated temperatures. RA600 is not suggestedfor use at red heat when sulfur is present.RA200/201 nickel is normally preferred forhandling concentrated, high temperature caustic.However, when sulfur compounds are present aswell, or for ammonium hydroxide service, RA600is suggested. RA600 is subject to stress corrosioncracking (SCC) in hot, concentrated causticalkalies. To avoid SCC, the RA600 fabricationshould be fully stress relieved prior to use. Aminimum treatment of 1650˚F 1 hour is suggested,1800-1850˚F 1 hour preferred.

Mechanical PropertiesTypical Room Temperature Property Range

Tensile 0.2% Yield Elongation HardnessStrength, psi Strength, psi % Brinell

80,000-105,000 35,000-50,000 30-55 130-180

Physical PropertiesDensity lb/in 3 Melting Range ˚F

0.306 2470-2575

Coefficient* of Modulus ofThermal Thermal Elasticity

Temp Expansion, Conductivity Dynamic,˚F in/in˚F x 10 -6 Btu•ft/ft 2•hr•˚F psi x 10 6

70 — 8.6 301000 8.4 13.2 25.61200 8.6 14.3 24.5

* 70˚F to indicated temperature.

Features• Oxidation resistance to 2000˚F• Carburization resistance• Resistant to dry Cl 2 to about 1000˚F• Virtually immune to chloride ion stress

corrosion cracking• Good caustic corrosion resistance

Applications• Heat treating muffles and retorts• Bar frame heat treating baskets• Chlorination equipment to 1000˚F• Pulp mill alkaline digesters

Chemical Composition, %ASTM/ASME Min. Max.Nickel 72.0 --Chromium 14.0 17.0Carbon -- 0.15Manganese -- 1.0Copper -- 0.5Silicon -- 0.5Sulphur -- 0.015Iron remainder

AMS 5665* Min. MaxNickel + Cobalt 72.0 --Chromium 14.00 17.00Carbon -- 0.15Manganese -- 1.00Copper -- 0.50Silicon -- 0.50Sulphur -- 0.015Iron 6.00 10.00Cobalt -- 1.00Columbium + -- 1.00TantalumTitanium -- 0.50Aluminum -- 0.35

SpecificationsUNS N06600 W. Nr. 2.4816ASTM B 168, B 166, B 167ASME SB-168, SB-166, SB-167AMS 5665For external pressure design under ASME usefigure NFN-4 of Section II, part D. In SectionIX, RA600 is listed as P No. 43.NACE MR0175*bar only

Static Corrosion in Molten Caustic Soda

Corrosion Rate, Mils Per Year400˚C 500˚C 580˚C 680˚C

Alloy (750˚F) (932˚F) (1076˚F) (1256˚F)

RA 201 0.9 1.3 2.5 37.8RA 400 1.8 5.1 17.6 —RA 600 1.1 2.4 5.1 66.4

Page 14: RA151_28pg

Suggested Weld Fillers for Dissimilar Metal JointsBase Carbon or low Stainless Duplex 400* Nickel alloy

Metals alloy steel 304L, 316L, 2304, 2205, C-276, C-22, Getc. 255

AL-6XN® 82, 182 RA625 C-276 62, C-27620Cb-3® E309LMo RA112 G-3 182 C-22904L, RA625 E309LMo C-22 RA1122205 E309L E316L 62, C-276

E309LMo E309LMo 2209 182 G-32209 2507 C-22

NICKEL 182 82, 82, 60, 82,200 182 182 190 182NICKEL-COPPER 190 62, 62, 60, 62,400* 182 182 190 182RA600 182 82, 2209 62, 82,182

182 82 182 C-276RA333® RA333® RA333® 2209 62, C-276

182 82, 182 182 C-22

*Nickel-copper alloy 400 weld metal will not tolerate above 6-8% chromium without cracking. It may be necessary to “butter” (overlay) the 400with ENi-1 or ERNi-1 before making the weld to Ni-Cr-Fe alloys.

Considerations in selecting a filler metal for dissimilar metal weld joints include the expected corrosive conditions at the joint and freedomfrom weld cracking. This suggested list of weld filler metals is based primarily on welding knowledge and experience rather than laboratorywork. Final selection should be approved by the end user and dissimilar metal weld procedures qualified by the fabricator.

12

WELDING DATASuggested Weld Fillers For Like Metal Joints

BASE METAL WELD FILLERSBare Wire Covered Electrodes

grade specification grade specificationAL-6XN® RA625 ERNiCrMo-3 RA112 ENiCrMo-320Cb-3® RA320LR ER320LR RA320LR E320LRRA625 RA625 ERNiCrMo-3 RA112 ENiCrMo-3RA600 RA82 ERNiCr-3 182 ENiCrFe-3RA333® RA333 UNS N06333 RA333 UNS W86333RA2205 RA2209 ER2209 RA2209 E2209

SPECIFICATIONSAlloy UNS/ W. Nr. Product Form ASME ASTM

AL-6XN® alloy N08367 Plate, sheet, strip SB-688 SA-240 B 688 A 240 — Welded pipe SB-675 SA-312 B 675 A 312

A 312 Welded tube SB-676 SA-249 B 676 A 249Welded pipe, filler added -- B 804Rod, bar, wire SB-691 SA-479 B 691 A 479Forged flanges, fittings and valves SB-462 SA-182 B 462 A 182Nickel alloy forgings SB-564 B 564Wrought welding fittings SB-366 B 366Bar and billet for reforging B 472

CodeCaseN-438-3B-31-1Case 155-1

Carpenter 20Cb-3® N08020 Plate, sheet, strip SB-463 SA-240 B 463 A 240stainless — Welded Pipe SB-464 B 464

Bar, wire SB-473 B 473Wrought welding fittings SB-366 B 366

RA625 alloy N06625 Plate, sheet, strip SB-443 B 4432.4856 Bar, wire Gr 1 Gr 1

SB-446 B 446RA600 N06600 Plate, sheet, strip SB-168 B 168

2.4816 Rod, bar and wire SB-166 B 166RA333® alloy N06333 Plate, sheet, strip AMS-5593 B 718

2.4608 Bar, forgings AMS-5717 B 719Welded pipe B 723Welded tube B 726Seamless pipe and tube B 722

RA2205 S31803 Plate, sheet, strip SA-240 A 240S32205 Bars and shapes SA-479 A 4791.4462 Seamless and welded pipe SA-790 A 790

Seamless and welded tube SA-789 A 789

Page 15: RA151_28pg

These tables of laboratory data are intended as guidance for what alloys might be tested in a given environment. They must NOT be usedas the major basis for alloy selection, or as substitutes for competent corrosion engineering work.

Corrosion Rates in Caustic (NaOH)Alloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

439 (boiling) 50 143 290 5x48hr 7.77 306 1E-Brite® (boiling) 50 143 290 5x48hr 0.00024 0.1 1

17-4PH® condition H 1075 30 80 176 5x48hr 0.18 7 1317-4PH condition H 1075 50 80 176 5x48hr 0.10 4 1317-4PH condition H 1075 30 boiling 5x48hr 0.28 11 1317-4PH condition H 1075 50 boiling 5x48hr 14.2 560 13

2205 nitrogen purge 50 80 176 96hr 0.6 2.4 102205 nitrogen purge 50 85 185 96hr 0.12 4.8 102205 nitrogen purge 50 90 194 96hr 0.15 5.8 102205 (boiling) 50 143 290 5x48hr 0.61 24 1

304 (boiling) 50 143 290 5x48hr 4.65 183 1304L (boiling) 50 143 290 5x48hr 1.8 71 1

316 (boiling) 50 143 290 5x48hr 3.12 123 1316L (boiling) 50 143 290 5x48hr 1.98 78 1

316Ti — 25 75 167 28 days <0.01 0.4 19316Ti — 25 100 212 28 days 0.12 4.7 19316Ti (boiling) 25 104 219 28 days 0.63 25 19316Ti — 50 75 167 28 days 0.08 3 19316Ti — 50 100 212 28 days 0.35 14 19316Ti — 50 125 257 28 days 1.6 63 19316Ti (boiling) 50 146 295 28 days 8.0 315 19

904L (boiling) 50 143 290 5x48hr 0.254 10 1

AL-6XN (boiling) 50 143 290 5x48hr 0.41 16 1

2525LCN (boiling) 50 146 295 28 days 1.35 53 19

33 — 25 75 167 28 days <0.01 <0.4 1933 — 25 100 212 28 days <0.01 <0.4 1933 — 25 104 219 28 days <0.01 <0.4 1933 — 50 75 167 28 days <0.01 <0.4 1933 — 50 100 212 28 days <0.01 <0.4 1933 — 50 125 257 28 days <0.01 <0.4 1933 (boiling) 50 146 295 28 days <0.01 <0.4 19

C-276 (boiling) 50 143 290 5x48hr 0.452 17.8 1

625 (boiling) 50 143 290 5x48hr 0.061 2.4 1

400 quiet immersion 4 20 68 — 0.0041 0.16 15400 plant test, receiving tank 75 135 275 — 0.043 1.7 15

Corrosion Tables

13

Page 16: RA151_28pg

Corrosion Rates in Caustic (NaOH) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

nickel — 50 40 100 — 0.00023 0.009 5nickel — 50 60 135 — 0.0005 0.02 5nickel — 50 55-75 130-165 — 0.0005 0.02 5nickel — 50 150 300 — 0.013 0.5 5nickel — 70-73 110 230 — 0.0025 0.1 5nickel — 70-73 90-115 190-240 — 0.0025 0.01 5nickel — 70-73 120 245 — 0.005 0.2 5nickel — 70-73 130 265 — 0.025 1 5

201 Static conditions. Above (molten) 400 750 — 0.023 0.9 4201 540C (1004F), dynamic (molten) 500 932 — 0.053 1.3 4201 conditions increase (molten) 580 1076 — 0.064 2.5 4201 rates dramatically (molten) 680 1256 — 0.96 37.8 4

Temperature for Initiation of Crevice Corrosion in Ferric Chloride (FeCl 3•6H2O)10% FeCl3•6H2O, per ASTM G 48 Practice B, (PRE) N = Cr + 3.3Mo +30NAlloy Mo, Temperature Pitting Resistance Ref

% C F Equivalent, (PRE) N

316L 2.1 -3 27 23 1825 2.7 -3 27 30 1317L 3.2 2 35 29 12205 3.1 20 68 38 1317 LXN™ 4.4 20 68 34 128 3.5 24 75 38 22904L 4.4 24 75 35 1904L 4.4 25 77 35 19G 6.5 30 86 43 128 3.5 35 95 39 192507 4.0 35 95 47 191925hMo 6.2 40 104 47 1933 1.4 40 104 50 19AL-6XN 6.2 43 110 48 1625 9.0 45 113 51 1625 9.0 55 131 51 2231 6.5 55 131 54 22G-30 5.5 50 122 48 19C-276 15.4 55 130 66 1

Corrosion Rates in Hydrochloric Acid (HCl)Alloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

17-4PH condition H 1075 0.5 35 95 5x48hr 0.08 3 1317-4PH condition H 1075 1 35 95 5x48hr 13.2 518 13

2205 plus 0.3% FeCl3 1 30 86 96hr 0.01 0.2 102205 plus 0.3% FeCl3 1 45 113 96hr 0.20 7.8 102205 plus 0.3% FeCl3 1 55 131 96hr 0.38 15 10

2507 — 1 104 218 — 0.10 4 142507 — 1.3 40 104 28 days 0.02 0.8 212507 welded w 25.10.4.L 1.3 40 104 28 days 2.58 102 212507 — 3 30 86 — 0.10 4 14

317L — 1 boiling — 1.38 54.3 1

Corrosion Tables

14

Page 17: RA151_28pg

Corrosion Rates in Hydrochloric Acid (HCl) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

904L — 1.3 40 104 28 days 0.47 18.5 21904L welded 1.3 40 104 28 days 0.54 21.3 21

1925hMo — 1.3 40 104 28 days <0.01 <0.4 211925hMo welded w 625 1.3 40 104 28 days 0.42 16.5 21

AL-6XN — 1 boiling — 1.49 58.7 1AL-6XN — 2 23 78 — 0.003 0.12 1AL-6XN — 3 23 78 — 0.003 0.12 1AL-6XN — 4 23 78 — 0.003 0.12 1AL-6XN — 5 23 78 — 0.102 4.02 1AL-6XN — 6 23 78 — 0.216 8.82 1AL-6XN — 8 23 78 — 0.270 10.6 1AL-6XN — 3 52 126 — 0.553 21.8 1AL-6XN — 4 52 126 — 0.348 13.7 1AL-6XN — 5 52 126 — 1.698 66.9 1AL-6XN — 6 52 126 — 1.935 76.2 1AL-6XN — pH 1.5 65.5 150 — 0.0009 0.035 1AL-6XN — pH 1.0 65.5 150 — 0.0010 0.039 1AL-6XN — pH 0.5 65.5 150 — 0.9139 36.0 1AL-6XN — pH 1.0 79.4 175 — 0.0009 0.035 1AL-6XN — pH 1.5 93.3 200 — 0.0008 0.031 1AL-6XN — pH 1.0 93.3 200 — 0.0008 0.031 1

31 — 5 50 122 — 0.01 0.4 2331 — 10 20 68 — 0.3 12 2331 — 20 20 68 — 0.2 8 2331 — 30 20 68 — 0.12 4.7 23

33 — 1.3 40 104 28 days <0.01 <0.4 2133 welded w 33 1.3 40 104 28 days <0.01 <0.4 21

825 — 5 20 68 — 0.124 4.9 12825 — 5 220 104 — 0.452 17.8 12825 — 5 66 150 — 2.0 79 12825 — 10 20 68 — 0.183 7.2 12825 — 10 220 104 — 0.472 18.6 12825 — 10 66 150 — 2.59 102 12825 — 15 20 68 — 0.185 7.3 12825 — 20 220 104 — 1.52 60 12825 — concentrated 220 104 — 12.2 480 12825 — concentrated 66 150 — 28.7 1130 12

RA333 — 2 27 80 — 0.17 6.6 3RA333 — 5 27 80 — 0.22 8.5 3RA333 — 15 27 80 — 0.17 6.6 3RA333 — 25 27 80 — 0.16 6.4 3RA333 — 37 27 80 — 0.58 23 3RA333 — 2 66 150 — 1.5 60 3RA333 — 5 66 150 — 5.0 196 3RA333 — 15 66 150 — 4.9 194 3

Corrosion Tables

15

Page 18: RA151_28pg

Corrosion Rates in Hydrochloric Acid (HCl) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

G-30 — 5 50 122 — 0.49 19 23G-30 — 10 20 68 — 0.5 20 23G-30 — 20 20 68 — 0.5 20 23G-30 — 30 20 68 — 0.5 20 23

C-276 — 1 boiling — 0.25 10 7C-276 — 1 boiling — 0.34 13.4 7C-276 — 1.5 boiling — 0.74 29 7C-276 — 2 90 194 — 0.025 1 7C-276 — 2 boiling — 1.55 61 7C-276 — 3 boiling — 1.78 70 7

C-22 — 1 boiling — 0.076 3 7C-22 — 1.5 boiling — 0.28 11 7C-22 — 2 90 194 — nil nil 7C-22 — 2 boiling — 1.55 61 7C-22 — 3 90 194 — <1 <1 7C-22 — 3 boiling — 2.13 84 7

625 — 1.3 40 104 28 days <0.01 <0.4 21625 welded w 625 1.3 40 104 28 days 0.09 3.5 21625 — 5 66 150 — 1.8 71 16625 — 10 66 150 — 2.1 81 16625 — 15 66 150 — 1.7 65 16625 — 20 66 150 — 1.3 50 16625 — 25 66 150 — 1.0 38 16625 — 30 66 150 — 0.9 34 16625 — concentrated 66 150 — 0.4 15 16

400 no aeration 0.5 boiling 10days 0.74 29 15400 no aeration 1 boiling 10days 1.07 42 15400 no aeration 5 boiling 10days 1.12 44 15

B-2 — 1 boiling 120hr 0.02 0.8 11B-2 — 2 boiling 120hr 0.08 3 11B-2 — 5 boiling 120hr 0.13 5 11B-2 — 10 boiling 120hr 0.18 7 11B-2 — 15 boiling 120hr 0.28 11 11B-2 — 20 boiling 120hr 0.38 15 11

Corrosion Rates in Hydrofluoric Acid (HF)Alloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

316 — 3 21 70 — 1.25 49.1 1316 — 5 21 70 — 2.33 91.8 1316 — 5 40 104 — 7.8 306 1316 — 1 50 122 — 1.82 71.8 1316 — 2 50 122 — 5.3 209 1316 — 5 50 122 — 15.9 626 1

Corrosion Tables

16

Page 19: RA151_28pg

Corrosion Rates in Hydrofluoric Acid (HF) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

904L — 3 21 70 — 0.125 4.9 1904L — 5 21 70 — 0.18 7.2 1904L — 5 40 104 — 0.73 28.8 1904L — 1 50 122 — 0.23 9.2 1904L — 2 50 122 — 0.71 28 1904L — 3 50 122 — 0.85 33.5 1904L — 4 50 122 — 1.36 53.5 1904L — 5 50 122 — 1.82 71.6 1904L — 1 70 158 — 0.99 39 1904L — 2 70 158 — 2.0 80.2 1904L — 3 70 158 — 3.31 130 1

AL-6XN — 3 21 70 — 0.08 3.2 1AL-6XN — 5 21 70 — 0.20 8.0 1

AL-6XN — 5 40 104 — 0.82 32.4 1

AL-6XN — 1 50 122 — 0.10 4.1 1AL-6XN — 2 50 122 — 0.43 16.9 1AL-6XN — 3 50 122 — 0.98 38.4 1AL-6XN — 4 50 122 — 1.42 55.9 1AL-6XN — 5 50 122 — 2.0 78.7 1

AL-6XN — 1 70 158 — 0.54 21.1 1AL-6XN — 2 70 158 — 1.98 78 1AL-6XN — 3 70 158 — 3.05 120 1

C-276 — 2 70 158 — 0.23 9 7C-276 — 5 70 158 — 0.25 10 7

C-22 — 2 70 158 — 0.23 9 7C-22 — 5 70 158 — 0.36 14 7

625 — 2 70 158 — 0.51 20 7625 — 5 70 158 — 0.41 16 7

400 saturated with air 25 30 86 24hr 1 37 17400 saturated with air 25 80 176 24hr 0.28 11 17400 saturated with air 50 30 86 24hr 0.2 8 17400 saturated with air 50 80 176 24hr 1 39 17

400 purged with nitrogen 25 30 86 48hr 0.005 0.2 17400 purged with nitrogen 25 80 176 48hr 0.061 2.4 17400 purged with nitrogen 50 30 86 48hr <0.003 <0.1 17400 purged with nitrogen 50 80 176 48hr 0.01 0.5 17

400 vapor purged w. N2 48 108 226 96hr 0.457 18.0 24

C71500 vapor purged w. N2 48 108 226 96hr 0.083 3.25 24C70600 vapor purged w. N2 48 108 226 96hr 0.067 2.64 24

Corrosion Tables

17

Page 20: RA151_28pg

Corrosion Rates in Hydrofluoric Acid (HF) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

400 vapor purged w. N2 50 60 140 35 day 0.462 18.2 24400 vapor purged w. N2 65 60 140 35 day 0.122 4.80 24400 vapor purged w. N2 70 60 140 35 day 0.137 5.4 24

400 anhydrous — 16/27 60/80 6-40 day 0.081 3.2 24400 anhydrous — 27/38 80/100 6-40 day 0.23 0.9 24400 anhydrous — 82/88 100/200 6-40 day 0.12 4.7 24C71500 anhydrous — 27/38 80/100 6-40 day 0.05 2.0 24C71500 anhydrous — 54 130 6-40 day 0.008 0.3 24C71500 anhydrous — 82/88 180/190 6-40 day 0.25 10 24

Corrosion Rates in Nitric Acid (HNO 3)Alloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

17-4PH condition H 1075 25 boiling 5x48hr 0.18 7 1317-4PH condition H 1075 50 boiling 5x48hr 1.2 47 1317-4PH condition H 1075 65 boiling 5x48hr 2.72 107 1317-4PH H 1075 + 1%HF 10 35 95 5x48hr 38 1500 13

2205 — 65 boiling 240hr 0.20 7.9 82205 — 65.3 boiling — 0.13 5.3 9

304 — 65 116 241 — 0.23 9 1304L plus 3%HF 10 70 158 4hr 157 6410 1

304L — 75 25 77 >21 days <0.4 <17 20304L — 75 50 122 >21 days 0.4 17 20304L — 75 75 167 >21 days 4.8 189 20304L — 80 25 77 >21 days <0.4 <17 20304L — 80 50 122 >21 days 0.4 17 20304L — 80 75 167 >21 days 3.5 138 20304L — 85 25 77 >21 days 1.3 52 20304L — 85 50 122 >21 days 1.3 52 20304L — 85 75 167 >21 days 15 590 20

316 plus 3%HF 5 68 155 — 4.18 165 1316 — 10 90 194 — 0.22 9 1316 plus 2%HCl 60 50 122 — 0.28 11 1316 A 262 C 65 boiling 24hr 0.872 34 1316L — 65.3 boiling — 0.25 9.8 9316L plus 3%HF 10 70 158 4hr 64.6 2540 1

316Ti plus 3%HF 20 25 77 3x168hr 3.70 146 19316Ti plus 5%HF 20 25 77 3x168hr 6.90 272 19316Ti plus 7%HF 20 25 77 3x168hr 6.32 249 19316Ti plus 3%HF 20 50 122 168hr 19.2 758 19316Ti plus 5%HF 20 50 122 168hr 27.1 1070 19316Ti plus 7%HF 20 50 122 168hr 37.2 1465 19

317L — 65.3 boiling — 0.21 8.3 9

Corrosion Tables

18

Page 21: RA151_28pg

Corrosion Rates in Nitric Acid (HNO 3) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

310S plus 3%HF 10 70 158 4hr 9.36 369 1

310L — 75 25 77 >21 days <0.4 <17 20310L — 75 50 122 >21 days <0.4 <17 20310L — 75 75 167 >21 days 3.5 138 20310L — 80 25 77 >21 days <0.4 <17 20310L — 80 50 122 >21 days 0.9 34 20310L — 80 75 167 >21 days 2.6 103 20310L — 85 25 77 >21 days 1.3 52 20310L — 85 50 122 >21 days 0.9 34 20310L — 85 75 167 >21 days 6.1 240 20

AL-6XN plus 3%HF 5 68 155 — 1.55 61 1AL-6XN plus 3%HF 10 70 158 4hr 2.56 101 1AL-6XN A 262 C 65 boiling 24hr 0.738 29 1

28 — 12 90 194 504 < <0.4 1928 plus 0.9% HF 12 90 194 504 6.4 251 1928 plus 3.5% HF 12 90 194 504 23 908 1928 plus 3% HF 20 25 77 3x168 0.033 1.3 1928 plus 5% HF 20 25 77 3x168 0.045 1.8 1928 plus 7% HF 20 25 77 3x168 0.067 2.6 1928 plus 3% HF 20 50 122 3x168 0.20 7.9 1928 plus 5% HF 20 50 122 3x168 0.32 13 1928 plus 7% HF 20 50 122 3x168 0.46 18 1928 plus 0.4% HF 32 90 194 504 1.1 42 1928 plus 0.4% HF 44.5 90 194 504 2.0 78 1928 plus 0.4% HF 56 90 194 504 3.8 148 1928 plus 0.4% HF 67.5 90 194 504 6.1 239 19

33 — 75 25 77 >21 days <0.4 <17 2033 — 75 50 122 >21 days <0.4 <17 2033 — 75 75 167 >21 days 1.3 52 2033 — 80 25 77 >21 days <0.4 <17 2033 — 80 50 122 >21 days <0.4 <17 2033 — 80 75 167 >21 days <0.4 <17 2033 — 85 25 77 >21 days <0.4 <17 2033 — 85 50 122 >21 days <0.4 <17 2033 — 85 75 167 >21 days 3.1 121 2033 — 12 90 194 504 < <0.4 1933 plus 0.9%HF 12 90 194 504 0.27 10.5 1933 plus 3.5%HF 12 90 194 504 1.3 52 1933 plus 3%HF 20 25 77 3x168hr 0.01 0.4 1933 plus 5%HF 20 25 77 3x168hr 0.01 0.4 1933 plus 7%HF 20 25 77 3x168hr 0.02 0.9 1933 plus 3%HF 20 50 122 3x168hr 0.089 3.5 1933 plus 5%HF 20 50 122 3x168hr 0.12 4.8 1933 plus 7%HF 20 50 122 3x168hr 0.19 7.4 1933 plus 0.4%HF 32 90 194 504 0.30 12 1933 plus 0.4%HF 44.5 90 194 504 0.75 29 1933 plus 0.4%HF 56 90 194 504 1.8 73 1933 plus 0.4%HF 67.5 90 194 504 3.4 135 19

Corrosion Tables

19

Page 22: RA151_28pg

Corrosion Rates in Nitric Acid (HNO 3) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

800 plus 3%HF 10 70 158 4hr 18.6 732 1

20Cb-3 plus 3%HF 10 70 158 4hr 7.65 301 1825 plus 3%HF 10 70 158 4hr 3.02 119 1825 plus 1%HF 53 80 176 336hr 5.1 200 12

RA333 mill annealed 65 boiling 5x48hr 1.07 42 3RA333 anneal + 1250F 1hr 65 boiling 5x48hr 3.96 156 3RA333 anneal + 1700F 1hr 65 boiling 5x48hr 0.292 11.5 3RA333 anneal + 1700F 1hr 65 boiling 5x48hr 0.292 11.5 3

+ 1250F 1 hr

G-30 plus 1%HF 20 80 176 — 0.85 34 6G-30 plus 6%HF 20 80 176 — 3.6 140 6G-30 plus 1%HF 50 80 176 — 4.9 192 6G-30 plus 3%HF 10 70 158 4hr 1.04 41 1G-30 plus 3%HF 5 68 155 — 0.741 29 1G-30 — 10 boiling — 0.02 0.7 6G-30 — 60 boiling — 0.13 53 6G-30 — 12 90 194 504 < <0.4 19G-30 plus 0.9%HF 12 90 194 504 0.3 12.3 19G-30 plus 3.5%HF 12 90 194 504 1.3 5.3 19G-30 plus 0.4%HF 32 90 194 504 0.55 21.5 19G-30 plus 0.4%HF 44.5 90 194 504 1.61 63.5 19G-30 plus 0.4%HF 56 90 194 504 2.66 105 19G-30 plus 0.4%HF 67.5 90 194 504 5.0 197 19

C-276 — 10 90 194 — <0.01 0.2 2C-276 plus 3%HF 10 70 158 4hr 6.71 264 1C-276 — 65 116 241 — 0.74 29 2C-276 plus 2%HCl 60 50 122 — 0.21 8.2 2

C-22 plus 3%HF 10 70 158 4hr 1.71 67 1

625 plus 3%HF 10 70 158 4hr 3.96 156 1625 — 65 boiling — 0.76 30 16

690 — 12 90 194 504 <0.01 <0.4 19690 plus 0.9%HF 12 90 194 504 0.678 27 19690 plus 3.5%HF 12 90 194 504 7.06 278 19690 plus 0.4%HF 32 90 194 504 1.62 64 19690 plus 0.4%HF 44.5 90 194 504 2.19 86.3 19690 plus 0.4%HF 56 90 194 504 5.22 205 19690 plus 0.4%HF 67.5 90 194 504 8.26 325 19

Corrosion Rates in Phosphoric Acid (H 3PO4)Alloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

17-4PH condition H 1075 2.5 boiling 5x48hr nil nil 1317-4PH condition H 1075 20 boiling 5x48hr 0.025 1 1317-4PH condition H 1075 50 boiling 5x48hr 0.08 3 1317-4PH condition H 1075 70 boiling 5x48hr 1.5 60 13

2205 — 70 110 230 — 0.22 8.7 9

Corrosion Tables

20

Page 23: RA151_28pg

Corrosion Rates in Phosphoric Acid (H 3PO4) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

304 — 50 boiling 5x48hr 0.18 7 13304 — 70 boiling 5x48hr 0.81 32 13

316 — 20 boiling — 0.183 7.2 1316 — 54 boiling — 0.580 2.28 1316 — 60 boiling — 0.305 12 1316L — 70 110 230 — 3.9 154 9

317L — 70 110 230 — 2.4 95 9

310L — 85 100 212 24hr 0.15 5.9 19310L — 85 100 212 168hr 0.25 9.8 19310L — 85 154 309 24hr >200 >7900 19

654 SMO — 85 100 212 24hr 0.39 15 19654 SMO — 85 100 212 168hr 0.17 6.7 19654 SMO — 85 154 307 24hr 4.0 157 19

AL-6XN — 10 120 248 120hr 0.021 0.81 1AL-6XN — 10 135 275 120hr 0.197 7.76 1AL-6XN — 10 150 302 120hr 0.400 15.75 1AL-6XN — 20 boiling 5x48hr 0.006 0.24 1AL-6XN — 54 boiling — 0.015 0.059 1AL-6XN plus 800ppm Cl- 70 100 212 168hr 1.22 48 1AL-6XN plus 1% HF 70 100 212 168hr 0.518 20.4 1

28 — 85 100 212 24hr 0.19 7.5 1928 — 85 100 212 168hr 0.05 2.0 1928 — 85 154 309 24hr 1.4 55 19

31 %P2O5 54 120 250 — 0.05 2 23

33 — 85 100 212 24hr 0.2 7.9 1933 — 85 100 212 168hr 0.08 3.15 1933 — 85 154 309 24hr 0.07 42 19

825 chemically pure 60 boiling 3x20hr 0.17 6.8 12825 chemically pure 70 boiling 4x20hr 0.18 7.1 12825 chemically pure 85 boiling 4x20hr 1.3 50 12825 wet process acid +20%HF 20 21-29 70-85 624hr 0.036 1.4 12

G-30 % P2O5 44 116 241 — 0.18 7.0 6G-30 % P2O5 + 2000ppm Cl- 44 116 241 — 0.19 7.7 6G-30 % P2O5 52 149 300 — 0.70 28 6G-30 % P2O5 + 2000ppm Cl- 54 116 241 — 0.18 7 6

G-30 — 85 100 212 24hr 0.30 12 19G-30 — 85 100 212 168hr 0.04 1.6 19G-30 — 85 154 309 24hr 1.33 52 19

C-22 — 85 100 212 24hr 0.19 7.5 19C-22 — 85 100 212 168hr 0.05 2.0 19C-22 — 85 154 309 24hr 1.08 42.5 19

Corrosion Tables

21

Page 24: RA151_28pg

Corrosion Rates in Phosphoric Acid (H 3PO4)Alloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

625 plus 0.8% HF 55 boiling 48hr 0.42 16.5 16

B-2 chemically pure 10 boiling 120hr 0.05 2 11B-2 chemically pure 30 boiling 120hr 0.08 3 11B-2 chemically pure 50 boiling 120hr 0.15 6 11B-2 chemically pure 85 boiling 120hr 0.63 25 11

Corrosion Rates in Sulphuric Acid (H 2SO4)Alloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

17-4PH condition H 1075 2 35 95 5x48hr nil nil 1317-4PH condition H 1075 5 35 95 5x48hr 0.28 11 1317-4PH condition H 1075 1 80 176 5x48hr 0.025 1 1317-4PH condition H 1075 2 80 176 5x48hr 0.33 13 1317-4PH condition H 1075 98 35 95 5x48hr nil nil 1317-4PH condition H 1075 98 80 176 5x48hr 0.18 7 13

2205 nitrogen purge 10 55 131 96hr 0.06 2.3 102205 nitrogen purge 10 60 140 96hr 0.17 6.7 102205 nitrogen purge 10 70 158 96hr 0.32 13 102205 nitrogen purge 60 15 59 96hr 4.0 157 102205 nitrogen purge 96.4 20 68 96hr 0.11 4.4 102205 nitrogen purge 96.4 25 77 96hr 0.14 5.4 10

2507 plus 2000 ppm Cl- 10 67 153 — 0.10 4 142507 plus 2000 ppm Cl- 20 23 73 — 0.10 4 14

304 — 1 35 95 5x48hr 0.71 28 13304 — 5 35 95 5x48hr 6.1 240 13304 — 1 80 176 5x48hr 8.9 350 13304 — 95 30 86 — 0.28 11 2304 plant test ≥1 m/s 96-98.5 135-140C 14 days 0.18 7.1 21

316 — 10 boiling 5x48hr 9.42 371 1316 reagent grade 10 80 176 5x48hr 2.3 91 18316 “ + 59ppm Cl¯ 10 80 176 5x48hr 5.56 219 18316 “ + 119ppm Cl¯ 10 80 176 5x48hr 5.6 221 18316 “ + 1187ppm Cl¯ 10 80 176 5x48hr 2.0 80 18316 “ + 10600ppm Cl¯ 10 80 176 5x48hr 6.3 250 18316 reagent grade 30 80 176 5x48hr 60.34 2375 18316 “ + 80ppm Cl¯ 30 80 176 48hr dissolved 18316 “ + 135ppm Cl¯ 30 80 176 48hr dissolved 18316 “ + 1277ppm Cl¯ 30 80 176 5x48hr 10.4 407 18316 “+ 10900 ppm Cl¯ 30 80 176 5x48hr 8.84 348 18

316Ti plant test ≥1 m/s 96-98.5 135-140C 14 days 0.24 9.4 21316Ti plant test ≥1.2 m/s 99.1 150 302 134 days 0.81 32 21

Nitronic 50 industrial grade 80 80 176 3x48hr 0.05 2.0 18Nitronic 50 “ 80 100 212 48hr 66.5 2620 18Nitronic 50 “ 93 100 212 3x48hr 9.25 364 18Nitronic 50 “ 93 120 248 3x48hr 9.73 383 18Nitronic 50 “ 98 100 212 3x48hr 0.24 9.4 18Nitronic 50 “ 98 120 248 3x48hr 0.23 9.3 18

Corrosion Tables

22

Page 25: RA151_28pg

Corrosion Rates in Sulphuric Acid (H 2SO4) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

A 611 — 98 100 212 168hr 0.02 0.79 19A 611 — 98 125 257 168hr 0.36 14 19A 611 — 98 150 302 168hr 0.81 32 19A 611 — 98 175 347 168hr 0.70 28 19A 611 — 98 200 392 168hr 0.61 24 19A 611 plant test ≥1m/s 98-98.5 135-140C 14 days 0.03 1.2 21

1018 plus 15 71 160 — 7.44 293 320Cb-3 0.15% 15 71 160 — 0.127 5 3RA330 Oakite® 15 71 160 — 0.461 18.8 3RA333 PC-10 15 71 160 — 0.241 9.85 3600 inhibitor 15 71 160 — 0.205 8.07 3

310L — 98 100 212 168hr 0.38 15 19310L — 98 125 257 168hr 0.43 17 19310L — 98 150 302 168hr 0.98 39 19310L — 98 175 347 168hr 0.38 15 19310L — 98 200 392 168hr 0.07 2.8 19

AL-6XN — pH 1.5 65.6 150 — 0.0007 0.029 1AL-6XN — pH 1.0 65.6 150 — 0.0007 0.029 1AL-6XN — pH 0.5 65.6 150 — 0.0013 0.053 1AL-6XN — pH 0.5 79.4 175 — 0.0013 0.053 1AL-6XN — pH 1.5 93.3 200 — 0.0013 0.053 1AL-6XN — pH 1.0 93.3 200 — 0.0027 0.11 1AL-6XN — pH 0.5 93.3 200 — 0.541 21.3 1AL-6XN — 10 boiling 5x48hr 2.14 84.4 1AL-6XN — 10 boiling 5x48hr 2.34 92.3 1

904L — 10 boiling 5x48hr 2.52 99.4 1904L — 10 boiling 5x48hr 2.56 101 1904L reagent grade 5 80 176 3x48hr 0.005 0.2 18904L “ 10 80 176 3x48hr 0.013 0.5 18904L “ + 10,000ppm Cl¯ 10 80 176 3x48hr 2.87 113 18904L “ + 10,000ppm Cl¯ 30 80 176 3x48hr 4.01 158 18904L “ 45 80 176 3x48hr 1.9 75 18904L “ 90 80 176 3x48hr 3.86 152 18904L “ 96 80 176 3x48hr 3.30 130 18

alloy 31 technical grade 20 60 140 — 0.001 0.04 22alloy 31 technical grade 40 60 140 — 0.002 0.08 22alloy 31 technical grade 60 60 140 — 0.002 0.08 22alloy 31 technical grade 80 60 140 — 0.004 0.16 22alloy 31 technical grade 20 80 176 — 0.002 0.08 22alloy 31 technical grade 40 80 176 — 0.004 0.16 22alloy 31 technical grade 60 80 176 — 0.010 0.39 22alloy 31 technical grade 80 80 176 — 0.019 0.75 22alloy 31 technical grade 20 100 212 — 0.007 0.28 22alloy 31 technical grade 40 100 212 — 0.016 0.63 22alloy 31 technical grade 60 100 212 — 0.025 0.98 22alloy 31 technical grade 80 100 212 — 6.220 245 22

Corrosion Tables

23

Page 26: RA151_28pg

Corrosion Rates in Sulphuric Acid (H 2SO4) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

33 — 98 100 212 168hr 0.04 1.6 1933 — 98 125 257 168hr 0.07 2.8 1933 — 98 150 302 168hr 0.08 3.2 1933 — 98 175 347 168hr 0.16 6.3 1933 — 98 200 392 168hr 0.04 1.6 1933 plant test ≥1m/s 96-98.5 135-140C 14 days <0.01 <0.4 2133 plant test ≥1.2m/sec 99.1 150 302 134 days <0.01 <0.4 21

20Cb-3 reagent grade 5 80 176 3x48hr 0.0038 0.15 1820Cb-3 “ 10 80 176 3x48hr 0.066 2.6 1820Cb-3 “ 10 80 176 5x48hr 0.065 2.5 1820Cb.3 “ + 59ppm Cl¯ 10 80 176 5x48hr 0.098 3.9 1820Cb-3 “ + 119ppm Cl¯ 10 80 176 5x48hr 0.094 3.7 1820Cb-3 “ + 594ppm Cl¯ 10 80 176 5x48hr 0.18 7 1820Cb-3 “ + 859ppm Cl¯ 10 80 176 5x48hr 0.34 14 1820Cb-3 “ + 1187ppm Cl¯ 10 80 176 5x48hr 0.37 15 1820Cb-3 “ + 10600ppm Cl¯ 10 80 176 5x48hr 1.1 43 1820Cb-3 “+ 10,000ppm Cl¯ 10 80 176 3x48hr 0.97 38 1820Cb-3 reagent grade 30 80 176 5x48hr 0.24 9.4 1820Cb-3 “ + 32ppm Cl¯ 30 80 176 5x48hr 0.21 8.2 1820Cb-3 “ + 85ppm Cl¯ 30 80 176 5x48hr 0.22 8.9 1820Cb-3 “ + 1055ppm Cl¯ 30 80 176 5x48hr 0.42 16 1820Cb-3 “ + 10,625ppm Cl¯ 30 80 176 5x48hr 2.0 80 1820Cb-3 “ + 10,000ppm Cl¯ 30 80 176 3x48hr 1.8 70 1820Cb-3 “ 45 80 176 3x48hr 0.16 6.3 1820Cb-3 “ 90 80 176 3x48hr 0.343 13.5 1820Cb-3 “ 96 80 176 3x48hr 0.48 19 18

N08020 (control alloy) 60 50 122 96hr 0.02 0.9 10

825 C.P. acid 40 50 122 168hr 0.013 0.5 12825 C.P. acid 40 100 212 168hr 0.36 14.0 12825 C.P. acid 40 boiling 48hr 0.28 11.0 12825 C.P. acid 50 50 122 168hr 0.025 1.0 12825 C.P. acid 50 100 212 168hr 0.36 14.0 12825 C.P. acid 50 boiling 48hr 0.51 20.0 12825 C.P. acid 60 50 122 168hr 0.10 4.0 12825 C.P. acid 60 100 212 48hr 0.51 20.0 12825 C.P. acid 60 boiling 48hr 3.05 120 12825 C.P. acid 80 50 122 168hr 0.13 5.0 12825 C.P. acid 80 100 212 168hr 0.51 20.0 12825 C.P. acid 80 boiling 48hr 34.5 1360 12825 plant acid 25.3 50 122 168hr 0.013 0.5 12825 plant acid 25.3 boiling 48hr 0.41 16 12825 plant acid 50.3 50 122 168hr 0.13 5.0 12825 plant acid 50.3 100 212 168hr 1.3 50 12825 plant acid 50.3 boiling 48hr 48.8 1920 12825 plus 22% HNO3 50 66 150 288hr 0.013 0.5 12825 plus 22% HNO3 50 83 182 240hr 0.11 4.3 12825 plant test ≥1m/s 99.1 150 302 134 days 1.46 57.5 21

Corrosion Tables

24

Page 27: RA151_28pg

Corrosion Rates in Sulphuric Acid (H 2SO4) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

G-30 — 25 boiling — 0.19 7.5 6G-30 — 50 107 225 — 1.05 42 6G-30 — 80 52 125 — 0.3 12 6G-30 — 99 130 226 — 0.86 34 6G-30 — 99 140 284 — 1.2 46 6G-30 plus 10%HNO3 50 boiling — 0.41 16 6G-30 plus 5%HNO3 60 boiling — 1.1 45 6G-30 plus 0.5%HNO3 70 boiling — 3.4 133 6G-30 plus 0.5%HNO3 70 boiling — 3.4 133 6G-30 plant test ≥1/ms 96-98.5 135-140C 14 days 0.08 3.1 21

C-276 — 10 boiling — 1.1 43 7C-276 — 20 79 174 — 0.076 3 7C-276 — 20 boiling — 1.1 42 7C-276 — 30 79 174 — 0.10 4 7C-276 — 30 boiling — 1.4 55 7C-276 — 70 38 100 — nil nil 7C-276 — 95 30 86 — <0.01 0.12 2C-276 technical grade 20 60 140 — 0.015 0.59 22C-276 technical grade 40 60 140 — 0.036 1.4 22C-276 technical grade 60 60 140 — 0.031 1.2 22C-276 technical grade 80 60 140 — 0.021 0.83 22C-276 technical grade 20 80 176 — 0.102 4.02 22C-276 technical grade 40 80 176 — 0.081 3.19 22C-276 technical grade 60 80 176 — 0.088 3.46 22C-276 technical grade 80 80 176 — 0.372 14.6 22C-276 technical grade 20 100 212 — 0.172 6.77 22C-276 technical grade 40 100 212 — 0.247 9.72 22C-276 technical grade 60 100 212 — 0.287 11.3 22C-276 technical grade 80 100 212 — 6.220 245 22

C-22 industrial grade 10 boiling 3x48hr 0.12 4.5 18C-22 “ +10,000ppm Cl¯ 10 boiling 3x48hr 3.26 128 18C-22 — 10 boiling — 0.28 11 7C-22 — 20 79 174 — 0.025 1 7C-22 — 20 boiling — 0.84 33 7C-22 — 30 79 174 — 0.076 3 7C-22 — 30 boiling — 1.6 64 7C-22 — 70 38 100 — nil nil 7

625 — 15 80 176 — 0.19 7.4 16625 — 50 80 176 — 0.43 17 16625 — 60 80 176 — 0.71 28 16625 — 70 80 176 — 1.6 64 16625 — 80 80 176 — 2.3 90 16625 plus 4.9% HF 28 49-79 120-175 — 1.2 49 16

400 boiling 5 101 214 23hr 0.086 3.4 15400 boiling 10 102 216 23hr 0.061 2.4 15400 boiling 19 104 219 23hr 0.19 7.5 15400 boiling 50 123 253 20hr 16.5 650 15400 boiling 75 182 360 20hr 58.4 2300 15400 boiling 96 293 560 3hr 83.8 3300 15

Corrosion Tables

25

Page 28: RA151_28pg

References

1. AL-6XN® alloy PHYSICAL, MECHANICAL and CORROSIONPROPERTIES, Bulletin No. 210, Rolled Alloys2. H.E. Deverell, C.R. Finn and G.E. Moller, Corrosion Performance of 6percent Molybdenum Austenitic Alloys AL-6X® and AL-6XN®, Corrosion 88,Paper No. 313, NACE, Houston, Texas3. RA333®, Bulletin No. 110, Rolled Alloys4. Corrosion Engineering Bulletin CEB-2, INCO, New York5. Metals Handbook® Ninth Edition Vol. 13, ASM, Ohio6. HASTELLOY® alloy G-30, Bulletin H-2028, Haynes International,Kokomo, Indiana7. HASTELLOY® alloy C-276, Bulletin H-2002B, Haynes International,Kokomo, Indiana8. Rolled Alloys Investigation 97-299. Steve Bukovinsky, Henrik Gripenberg, Ulf Lundell, Mats Tynell, SANDVIKSAF 2205 – a high-performance ferritic-austenitic stainless steel, bulletin S-51-26-ENG, Steel Research Centre, Sandvik AB, Sandviken, Sweden10. MTI-111. HASTELLOY® Alloy B-2, Bulletin H2006C, Haynes International,Kokomo, Indiana12. INCOLOY alloy 825, Bulletin T-37, Huntington Alloys Inc., HuntingtonWest Virginia13. Armco 17PH Precipitation-Hardening Stainless Steel, Product DataBulletin No. FS-11, Armco Advanced Materials Co., Butler, Pennsylvania,1994

14. Sandvik SAF 2507, Bulletin S-1875-ENG, Sandvik AB, Sandviken,Sweden 199715. MONEL alloys, Bulletin T-5, Huntington Alloys Inc., Huntington, WestVirginia16. INCONEL alloy 625, Bulletin T-42, Huntington Alloys Inc.,Huntington, West Virginia17. Corrosion Engineering Bulletin CEB-5, INCO, New York18. Private correspondence, Carpenter Technology Corporation, 199119. Paper No. 338, Corrosion 95, NACE International, Houston, Texas199520. Paper No. 115, Corrosion 97, NACE International, Houston, Texas,199721. Paper No. 42822. R. Kirchheiner, H. Portisch, R. Solomon, M. Jahudka and J. Ettere,Designing Components for Water Treatment Units for Radioactive WasteLiquids in a Modern NiCrMo-Alloy, Corrosion 98, Paper 166, NACEInternational, Houston, Texas 199823. Nicrofer® 3127 hMo - alloy 31 Material Data Sheet No. 4031 Editionof August 199724. T. F. Degnan, "Materials for Handling Hydrofluoric, Nitric and SulfuricAcids", in Process Industries Corrosion, National Association of CorrosionEngineers, Houston, Texas 1975

Corrosion Rates in Sulphuric Acid (H 2SO4) continuedAlloy Notes Concentration, % Temperature Time Corrosion Rate Ref

C F mm/yr mils/yr

B-2 — 2 boiling 120hr <0.02 0.5 11B-2 — 5 boiling 120hr 0.08 3 11B-2 — 10 boiling 120hr 0.05 2 11B-2 — 20 boiling 120hr <0.02 0.7 11B-2 — 30 boiling 120hr <0.02 0.7 11B-2 — 40 boiling 120hr <0.03 0.9 11B-2 — 50 boiling 120hr 0.03 1 11B-2 — 60 boiling 120hr 0.05 2 11B-2 — 70 boiling 120hr 0.23 9 11

Corrosion Tables

26

Trademarks

RA333 and RA330 are registered trademarks of Rolled Alloys Inc.AL-6XN, AL 29-4C and E-BRITE are registered trademarks, and 317LXNa trademark, of ATI Properties, Inc.20Cb-3 is a registered trademark of Carpenter Technology CorporationNicrofer is a registered trademark of Krupp VDM GmbHHASTELLOY is a registered trademark of Haynes InternationalINCOLOY, INCONEL and MONEL are registered trademarks of SpecialMetals, Inc.NITRONIC and 17-4PH are registered trademarks of AK SteelCorporationOakite is a registered trademark of Oakite Products Inc.

Page 29: RA151_28pg

General Corrosion

This is the most common form of corrosion,accounting for the greatest tonnage loss of metal.It is characterized by relatively uniform attack of theentire area exposed to the corrosive environment.Rusting steel exposed to the weather is a commonexample. Since the attack is linear with time, thelife of equipment subject to general corrosion isreasonably predictable. Localized corrosion modes,such as pitting, crevice and stress corrosion, aremore difficult to predict and tend to cause prematureequipment failures.

Uniform corrosion rates may be stated as anaverage metal thickness loss with time, mils per yearor mm per year. A convenient rating for metalssubject to uniform attack based on corrosion ratesis as follows:

Excellent rate less than 5 mils/year(0.13mm/year). Metals suitable formaking critical parts.

Satisfactory rate 5 to 50 mils/year (0.13—1.3mm/year). Metals generallysuitable for non-critical partswhere a higher rate of attack canbe tolerated.

Unsatisfactory rates over 50 mils/year (1.3mm/year). Metals usually not accept-able in the environment.

A very, very rough ranking of alloys by increasingresistance to general corrosion would be 304L,316L, RA2205, 20Cb-3® stainless, RA333, AL-6XN®

alloy, RA625 and C-276. Alloy selection doesdepend upon the exact corrosive environment inquestion!! See the Corrosion Tables for generalguidance. Some specific examples include hotconcentrated caustic, where commercially pure

Forms of Corrosion

nickel or the high nickel alloy RA600 are used. Forsulphuric acid additions of both molybdenum andcopper are beneficial. 20Cb-3 is often chosen.However, if chlorides are present in the acid, a highermolybdenum grade such as AL-6XN would bepreferred. AL-6XN is used for organic acids, suchas napthenic acid in refinery service. For nitric acidservice chromium is beneficial, molybdenum not, soalloys selected include 304L or a low carbon versionof 310. RA333 is used when the same piece ofequipment must see very high temperatures, in thered heat range, in one zone and aqueous corrosionin another.

Stress Corrosion Cracking

95% of chemical plant equipment corrosion failuresare from chloride stress corrosion cracking (SCC)of 316L stainless. The source of stress to causecracking is usually a combination of residual formingand welding stresses. Chlorides concentrate fromtrace amounts present in the cooling water, as wellas from the product itself. If chlorides cannot beeliminated, or prevented from concentrating, an alloychange may be considered. The most cost-effectivechoice is a duplex stainless such as RA2205. Thisgrade may handle many of the environments whichcrack 316L over a few years time. More severe, orlow pH, environments require higher nickel gradessuch as AL-6XN® alloy, 20Cb-3® stainless, RA333®

alloy, or alloys 625, 600 or C-276. Alloys with 45%or more nickel are considered practically immune tochloride SCC.

Another form of stress corrosion cracking ispolythionic acid stress corrosion cracking (PASCC),caused by sulphur compounds in the environment.Any sensitized stainless, or nickel alloy, can besubject to PASCC. To resist this form of SCC thealloy must contain a strong carbide forming element,or “stabilizing” element, such as columbium(niobium) or titanium. Examples include 321, 347,

27

Page 30: RA151_28pg

20Cb-3, and 625. In addition the alloy must be givena stabilizing anneal so that the carbon is effectivelycombined with the Cb or Ti. RA333, because of itsW and Mo content, resists PASCC when stabilizeannealed.

Pitting and Crevice Corrosion

Most often caused by chlorides. Molybdenum isthe alloying element that confers resistance.Nitrogen enhances the effect of molybdenum. Ameasure of resistance to pitting corrosion is theCritical Pitting Temperature, or CPT, which is thehighest temperature at which an alloy resists pittingin a given environment. Likewise crevice corrosionresistance may be quantified as the Critical CreviceCorrosion Temperature, CCCT. It is crevicecorrosion which is the limiting factor in service. Alloyranking would be 304L (0%Mo, poor), followed by316L (2%Mo), 20Cb-3 (2.2%Mo) and RA333 (3%),RA2205 (3%Mo, 0.16%N), AL-6XN (6.3%Mo0.22%N) and RA625 (9%Mo and Alloy C-276(15.5%Mo). AL-6XN has sufficient resistance to bea practical choice for hot seawater. The lowermolybdenum grades, even RA2205, are usuallyunsuitable for use in seawater.

Intergranular Corrosion

Intergranular corrosion consists of localized attackalong the grain boundaries of the metal.Sensitization to this attack in stainless or nickel alloysis caused by precipitation of chromium rich carbidesin the grain boundaries, at a temperature low enoughthat a chromium-depleted zone forms. Thisprecipitation most commonly occurs from the heatof welding. It may also result from a slow cool afterannealing, or from prolonged exposure to about the1000—1600F (538—871C) temperature range.

The most effective means of combating intergranularcorrosion is to restrict the carbon content of the alloy.In the stainless “L” grades 0.03% maximum isconsidered sufficient. High chromium andmolybdenum additions, as in AL-6XN, also reducethe chance of intergranular attack.

Another approach is to add columbium or titaniumto tie up the carbon, the same as is done to resistpolythionic acid stress corrosion cracking. 20Cb-3stainless takes both approaches, being melted tovery low carbon, as well as having a columbiumaddition.

Galvanic Corrosion

Caused when two very dissimilar metals are incontact in a corrosive environment. The more noble,or cathodic, alloy is protected at the expense of theanodic, or least noble, alloy which corrodes. Notusually a problem among the stainless and nickelalloys. Two examples which can occur includecopper alloys, which may corrode in contact withhigh alloy stainlesses. A Muntz Metal tubesheet,60%Cu 40%Zn, may corrode if the heat exchangeris retubed with AL-6XN tubes. Also, be aware thatgraphite is at the noble end of the galvanic series. Ifgraphite is in contact with stainless or nickel alloysin a corrosive environment, those alloys may corrodepreferentially. Galvanic effects may also be used toprotect equipment, a common example being a zinccoating on steel. The zinc corrodes preferentially,and protects the steel. Zinc or magnesium anodesare often connected to equipment to protect it fromcorrosion.

28

Forms of Corrosion, Cont'd.

Page 31: RA151_28pg

Material Speed Speed as aSurface ft/min % of B1112

AISI B1112 165 100AISI 12L14 325 197AISI 1215 225 136Nickel 200/201 170-200 103-121416 annealed 170 103416 hardened 80 48AISI 1137 135 82AISI 1018 120 73303 100-105 61-64304L 90 5517-4PH® H1150 80 4817-4PH “A” 75 4517-4PH H1025 60 36AISI 1045 75 45H11 75 45316L 75 45321 75 45RA446 75 45RA309 70-75 42-45RA310 70-75 42-45AL-6XN® 65-75 39-45RA400 60-70 36-42440C 65 394340 65 3920Cb-3® 65 39RA2205 50-65 30-39

Material Speed Speed as aSurface ft/min % of B1112

K500 ann’led 60 36K500 aged 25 15RA330® 35-45 21-27RA85H® 32-40 20-24Ti 6Al 4Vannealed 30-40 18-24aged 15-45 9-27718 20-40 12-24A-286 30-35 18-21RA825 25-35 15-21RA800AT 25-35 15-21RA601 25-35 15-21RA600 25-35 15-21RA333® 20-25 12-15X 20 12625 20 12617 20 12X-750 20 12WASPALOY™ 20 12C-276 20 12C-22 20 12B2 15-20 9-12G-30 15-20 9-12N155 15-20 9-12188 15 9L605 (25) 15 9René 41® 12 7

Nickel alloys work harden rapidly during machiningand require more power to cut than does plaincarbon steel. The metal is “gummy”, with chips thattend to be stringy and tough. Machine tools shouldbe rigid and used to no more than 75% of their ratedcapacity. Both work piece and tool should be heldrigidly; tool overhang should be minimized. Rigidityis particularly important when machining titanium,as titanium has a much lower modulus of elasticitythan either steel or nickel alloys. Slender workpieces of titanium may deflect under tool pressurescausing chatter, tool rubbing and tolerance problems.

Make sure that tools are always sharp. Change tosharpened tools at regular intervals rather than outof necessity. Titanium chips in particular tend to galland weld to the tool cutting edges, speeding up toolwear and failure. Remember— cutting edges,

particularly throw-away inserts, are expendable.Don’t trade dollars in machine time for pennies intool cost.

Feed rate should be high enough to ensure that thetool cutting edge is getting under the previous cutthus avoiding work-hardened zones. Slow speedsare generally required with heavy cuts. The toolshould not ride on the work piece as this will workharden the material and result in early tool dulling orbreakage. Use an air jet directed on the tool whendry cutting, to significantly increase tool life.

The following speeds are for single point turningoperations using high speed steel tools. Thisinformation is provided as a guide to relativemachinability, higher speeds are used with carbidetooling.

Machining

29