+ All Categories
Home > Documents > RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution...

RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution...

Date post: 17-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
92
RADAR SCATTERING FROM BODIES OF REVOLUTION USING AN EFFICIENT PARTIAL DIFFERNTIAL EQUATION ALGORITHM MUHAMMAD AAMIR LATIF FINAL DEGREE THESIS 30 ECTS, THESIS NO.: 3/ 2008 MSc. Electrical Engineering - Communication & Signal Processing
Transcript
Page 1: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

  

 

RADAR SCATTERING FROM BODIES OF REVOLUTION USING AN EFFICIENT PARTIAL

DIFFERNTIAL EQUATION ALGORITHM

 

 

 

 

 

MUHAMMAD AAMIR LATIF 

FINAL DEGREE THESIS 30 ECTS, THESIS NO.: 3/ 2008 MSc. Electrical Engineering - Communication & Signal Processing

 

Page 2: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Radar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post: [email protected] Final Master’s Degree Thesis Subject Category: Electrical Engineering Series Number: 3/ 2008 University College of Boras School of Engineering SE-501 90 Boras Telephone: +46 33 435 46 40 Examiner: Dr. Samir Al-Mulla Supervisor: Dr. Samir Al-Mulla E-Post: [email protected] Client: Högskolan i Borås Date: 9th October, 2008

Page 3: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | iii  

 

    

ABSTRACT 

A technique is presented for solving the problem of scattering by a three-dimensional body of revolution using a partial differential equation (PDE) technique, employed in conjunction with radiation boundary condition applied in the Fresnel region of the scatterer. The radiation boundary condition, which is used to truncate the PDE mesh, is based upon an asymptotic expansion derived by Wilcox. Numerical results illustrating the procedure and verifying the accuracy of the results are included. These results are compared with other theoretical calculations for perfectly conducting bodies of revolution of arbitrary shape.

Page 4: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | iv  

 

 

 

 

ACKNOWLEDGEMENTS 

I would like to express sincere gratitude to Dr. Samir Al-Mulla, for his guidance and support. I thank him also for providing me an opportunity to grow as a student and engineer in the unique research environment he creates.

I also thank Dr. Yousef Khazmi for his unlimited help and moral support in Mathematica program. Without his beneficial encouragement, help and advices this work would never have been what is now.

Special thanks and appreciation to Miss Sandra Kadic. Without her ingenuity, this thesis would not have been possible.

I would also like to express sincere thanks to my group mate Muath Gouda for hard work and many late hours of coordination.

Page 5: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | v  

 

 

 

 

DEDICATION 

This work is dedicated to my Parents.

They began my education. They motivated me to continue it. They will always contribute to it.

 

Page 6: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

INDEX ABSTRACT ............................................................................................................................................III 

ACKNOWLEDGEMENTS........................................................................................................................ IV 

DEDICATION......................................................................................................................................... V 

INDEX.................................................................................................................................................. VI 

CHAPTER 1: INTRODUCTION..................................................................................................................1 

1.1  INTRODUCTION.........................................................................................................................2 

1.2.1   RADAR CROSS SECTION (RCS): ............................................................................................................ 7 1.2.2   RADAR RANGE EQUATION (RRE) ......................................................................................................... 9 1.2.3   SCATTERING REGIMES ...................................................................................................................... 10 

1.3  LITERATURE SURVEY ...............................................................................................................11 

1.3.1  SCATTERING AND RADIATION FROM PERFECTLY CONDUCTING BODIES ......................................................... 11 1.3.2  SCATTERING AND RADIATION FROM IMPERFECTLY CONDUCTING BODIES ...................................................... 14 1.3.3  RADAR CROSS SECTION RCS MEASUREMENTS ....................................................................................... 16 

CHAPTER 2: SCATERING FROM CONDUCTING BODIES OF REVOLUTION................................................18 

2.1  INTRODUCTION.......................................................................................................................19 

2.2  FORMULATION OF SCATTERING PROBLEM ..............................................................................19 

2.3  MOMENT SOLUTION ...............................................................................................................21 

2.4  EVALUATION OF DRIVING VECTOR AND FAR FIELD COMPONENTS ...........................................28 

2.5  RADAR CROSS SECTION (RCS) ..................................................................................................31 

2.6  EFFICIENT PARTIAL DIFFERENTIAL EQUATION ALGORITHM (EPDEA):........................................33 

2.6.1  FORMULATION OF BODY OF REVOLUTION PROBLEM ............................................................................... 33 

CHAPTER 3: RESULTS & DISCUSSIONS ..................................................................................................39 

3.  RESULTS AND DISCUSSION ..........................................................................................................40 

TABLE 3.1: THE GENERALIZED ADMITTANCE MATRIX [Y] ......................................................................42 

TABLE 3.2: REAL AND IMAGINARY PARTS AND MAGNITUDE OF THE Ρ AND Ф DIRECTED CURRENT. Ρ IS THE ARC LENGTH.................................................................................................................................54 

TABLE 3.3: THE RADAR CROSS SECTION ( ) WITH RESPECT TO Ѳ .................................................61 2/ λσ

TABLE 3.4: REAL AND IMAGINARY PARTS AND MAGNITUDE OF THE Ρ AND Ф DIRECTED CURRENTS. Ρ IS THE ARC LENGTH.................................................................................................................................66 

TABLE 3.5: THE RADAR CROSS SECTION ( ) WITH RESPECT TO Ѳ .................................................67 2/ λσ

TABEL 3.6: EXCITED CURRENT COMPONENTS.......................................................................................68 

TABLE 3.7: THE NORMALIZED POWER GAIN PATTERN..........................................................................73 

Page | vi  

 

Page 7: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

REFERENCES...................................................................................................................................74 

APPENDIX .......................................................................................................................................81 

A.1  THE MATHEMATICA WORK TO SOLVE THE EQUATIONS ...........................................................82 

Page | vii  

 

)A.2  SPHERICAL COORDINATES  ( :,, φθr ......................................................................................84 

A.3  MAXWELL’S EQUATIONS .........................................................................................................85 

Page 8: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

CHAPTER 1 INTRODUCTION 

Page 9: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

1.1  Introduction 

These days Electromagnetic field became the big area of research for researchers. Since the electromagnetic is the scientific discipline that deals with electric and magnetic sources and the field of these sources produce in specified environment, the periodic behaviour of the electromagnetic fields around this type of structure is known, and it is possible to extract this behaviour analytically by starting from the start point in these types of problems which is the Maxwell’s equations with some addition of certain principles and theorems. Figure (1) shows the general electromagnetic transfer function.

Page | 2  

 

Transfer Function which is derived from Maxwell’s 

equations 

Problem Description (Electrical, Geometrical)

Output 

(Sources, Near Fields, Far Fields) 

Input 

(Excitation) 

Figure 1: Electromagnetic Transfer Function [1]

A general electromagnetic can be defined as: when electromagnetic waves are incident on a scattered, it produces currents in the surface. These currents radiate and produce the scattered field. Now, the problems can be either solved in frequency domain or time domain by constructing integral equations for the current that is on the surface of the body. These currents are determined and from these surface current, the scattering field can be computed directly.

When we come to the term associated with the scattering problems, the Radar Cross Section (RCS) comes up. To calculate the RCS, we can consider three basic lines to calculate it; they are prediction, reduction and measurement. For the prediction part, there are two methods that are used to predicate the RCS and they are analytical method and numerical method.

The analytical methods are available in the time domain or frequency domain when the target is coincides with the coordinate systems (rectangular, spherical and cylindrical). This method is separation of variables [2-3].

Page 10: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

The other methods, numerical methods, are developed to solve RCS for the complex targets. This method depends also in the usage of the time domain or frequency domain, scattering regimes and target geometry.

In the coming part, some theories for RCS prediction techniques are presented. From these theories, we can find the advantage and disadvantage of these techniques.

• Geometrical Optics (GO)

This theory is based on three concepts:

- Rays are reflected in mirror fashion from the surface.

- Rays that pass through the surface from one medium into another are reflected.

- Energy flows in a direction perpendicular to surface of constant phase.

The Geometrical Optics theory has several features, such as:

1. The target radiate of curvature must be larger than the wavelengthλ . 2. The theory yields an infinite result for flat and singly curved surface. 3. The theory fails if the specula point is near an edge. 4. The theory does not take into the account the polarization effect of

excited field also the diffracted fields such as the fields in shadow areas.

• Physical Optics (PO)

This theory is based on two approximation, they are “tangent plane approximation” and “far field approximation”. In the tangent plane approximation the integration element is assumed to be a tangent plane to the incident field. For far field approximation, the gradient of the Green’s function is replaced by the Green’s function itself multiplied by a constant factor.

The PO technique is more efficient than GO, due to:

1. The simplified integral equation can be evaluated exactly for a few special structures.

Page | 3  

 

Page 11: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

2. It has no polarization dependency, since the polarization of the scattered wave is precisely that of the incident wave.

3. The PO technique has a disadvantage; it fails for wide non-specula angles.

1. Geometrical Theory of Diffraction (GTD)

The theory state that “the incident ray excites a fictitious cone of diffracted rays; all subtend the same angle with respect to the edge as that subtended by the incident ray”. This method comes as an extension of GO method to account the non-zero fields in the shadow region, as shown in figure (2).

Fig (2): Diffracted ray cone from a line of discontinuity

The GTD have some drawbacks

1. The observation point must be laid within the fictitious Keller cone, otherwise yields precisely zero.

2. The theory predicts infinite fields when the observation point is pierced by infinity of rays, such as point’s lies on the axis of body of revolution (BOR).

3. It takes into the account the diffracted fields, such as the fields in the shadow region.

Page | 4  

 

Page 12: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 5  

 

4. The GTD is used to compute the scattered fields well away from the specular direction as well as the polarization effects are inherently built-in.

2. Method of Moments (MoM)

Method of Moment (MoM) technique is one of the well known methods that are used in electromagnetic scattering problems. This technique is based on reducing the operator equations to a system of linier equations that is written in matrix form.

The features of this method can be summarized in the following

1. It has a frequency domain RCS prediction technique. 2. It takes to the account the entire electromagnetic phenomenon and also

the polarization effects for excite field. 3. It is an integral equation based technique.

One of the advantages of using this method is that the results are very accurate because the equations that his method use is essentially exact and MoM provides a direct numerical solution of these equations. Another advantage is that in practice, it is applicable to geometrically complex scatter [7].

3. Finite Difference – Time Domain (FD - TD)

This method is a popular computational electrodynamics modelling technique. It is considered easy to understand and easy to implement in software. Since it is a time-domain method, solutions can cover a wide frequency range with a single simulation run.

The FDTD method belongs in the general class of grid-based differential time-domain numerical modelling methods. The time-dependent Maxwell’s equations (in partial differential form) are discredited using central-difference approximations to the space and time partial derivatives. The resulting finite-difference equations are solved in either software or hardware in a leapfrog manner: the electric field vector components in a volume of space are solved at a given instant in time; then the magnetic field vector components in the same spatial volume are solved at the next instant in time; and the process is repeated

Page 13: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 6  

 

over and over again until the desired transient or steady-state electromagnetic field behaviour is fully evolved.

This method take accounts the polarization effects and the diffracted fields. In addition, the method is a differential equation technique (as mention above).

4. Effective Partial Differential Equation Algorithm (EPDEA)

This method is used to solve the scattering problems by three dimensional body of revolution using Partial Differential Equation (PDE) technique. This technique is employed in conjunction with a radiation boundary condition applied in the Fresnel region of the scatterer. Based on an asymptotic expansion derived by Wilcox, the radiation boundary condition is used to truncate the PDE mesh [4]. More about this method will be discussed later in this thesis.

5. Characteristics Basis Function Method (CBFM)

This method have been developed in conjunction with the Fast Fourier Transform (FFT) for matrix generation to improve the efficiency of the Method of Moment when analysing electromagnetic scattering from large Perfect Electrically Conducting (PEC) bodies of revolution. The CBFs are high-level basis functions comprising conventional sub domain bases, and their use leads to a reduced matrix which can be solved by using a direct method. By using this technique, one can get a good advantage that the computational time and memory requirement can be significantly reduced for large BOR problems [5].

The second part, reduction of RCS (RRCS), the information in this technique is limited and it is difficult to obtain as well but due to the development in the semiconductors, the RRCS is taken place in the radar systems [6]. There are four basic techniques for reducing the RCS; they are shaping, radar absorbing materials, passive cancellation and finally the active cancellation. Of course each technique of these has its advantage and disadvantage.

With purpose shaping, the shape of the target’s reflecting surfaces is designed such that they reflect energy away from the source. The aim is usually to create a “cone-of-silence” about the target’s direction of motion. Due to the energy reflection, this method is defeated by using passive radars. With radar absorbed material (RAM), it can be used in the original construction, or as an addition to

Page 14: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

highly reflective surfaces. For the passive cancellation, its concept is to generate an echo source whose amplitude and phase can be adjusted to cancel any other echo sources, it calls impedance loading some times. The fourth technique; active cancellation; the target generates a radar signal equal in intensity but opposite in phase to the predicted reflection of an incident radar signal (similarly to noise cancelling ear phones). This creates destructive interference between the reflected and generated signals, resulting in reduced RCS. To incorporate active cancellation techniques, the precise characteristics of the waveform and angle of arrival of the illuminating radar signal must be known, since they define the nature of generated energy required for cancellation. Except against simple or low frequency radar systems, the implementation of active cancellation techniques is extremely difficult due to the complex processing requirements and the difficulty of predicting the exact nature of the reflected radar signal over a broad aspect of an aircraft, missile or other target. This technique is also called active loading.

As we know, bodies of revolutions objects are used in these problems to simplify the calculations, due to the symmetrical property so the surface current can be explained in some small terms that helps in reducing the memory usage and the computation time. In the same way, complex bodies can be treated like bodies of revolution in their calculations.

This body of revolution (BOR) approach has been applied to several numerical methods such as MoM, EPDEA and CBFM. In our work, we are going to use the Efficient Partial Differential Equation Algorithm EPDEA to calculate the surface current density . θJ

1.2.1    Radar Cross Section (RCS): 

Radar Cross Section (RCS);σ is the unit of measure of how detectable an object is with radar. For example a stealth aircraft (which is designed to be undetectable) will have design features that give it a low RCS, as opposed to a passenger airliner that will have a high RCS. An object's RCS depends on its size, reflectivity of its surface, and the directivity of the radar reflection caused by the object's geometric shape. So in other expression, RCS can be written as:

Radar Cross Section (RCS) = Geometric Cross Section × Reflectivity × Directivity

Page | 7  

 

Page 15: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Because that RCS is an effective surface area that intercepts the incident wave and that scatters the energy iso-tropically in space, the mathematically expression can be written as:

i

s

PP

R 24πσ =

Whereσ is the RCS, is the scattered power density measured at the target, and

is the incident power density seen at a distancesP

iP R away from the target. Also it is common in electromagnetic analysis to write it as:

2

2

24i

s

E

ERπσ =

Where and are the scattered and incidents fields respectively. The scattered field from the body is due to presence of the target, so the total field is the incident field added with the scattered field . From this, the returned

power is given by:

2sE 2

iE

iE sE

rP

( )RTT

R ARR

GPP ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛= 22 4

14 π

σπ

Where ⎟⎟⎠

⎞⎜⎜⎝

⎛24 R

GP TT

πis the power density at the target coming from the transmitters’

radiation. Its unit is measured by . The term2/ mwatt ⎟⎟⎠

⎞⎜⎜⎝

⎛24

1Rπ

σ is the amount of

the incident power reflected to the receiver. Represents the receiving area of the antenna. (Fig.3)

RA

Page | 8  

 

Page 16: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

gtt

r ARR

GPP ⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛= 22 44 π

σπ

Fig (3): The RCSσ and the returned power RP

The RCS is affected by

1. Target geometry, its material properties and the orientation relative to the radar.

2. The frequency and waveform of the incident wave. 3. Polarization of incident and scattered wave. 4. Polarization of transmitter and receiver of radar.

These factors must be specified carefully to keep the information from the calculation useful.

In addition, there are other RCS measurements, mono static and bi-static radar cross section terms are commonly used. Mono static RCS measurement is used when the transmitter and receiver are the same type, otherwise bi-static RCS measurement is used when the transmitter and the receiver are isolated and the angle that makes there is called bi-static angle [8].

1.2.2    Radar Range Equation (RRE) 

The radar range equation is developed to establish the radar sensitivity requirements. The far-field conditions are implicit in the radar cross section definition, so that the isolation between the receiver and the transmitter can be determined by the radar range equation to satisfy the above conditions.

xR xT

The radar range equation (RRE) relates to the power, as show in the equation:

Page | 9  

 

Page 17: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

( )( ) ( ) L

R

GGP

LGRR

GPP

rtt

rtt

r

43

2

2

22

4

444

λπλ

σπλ

πσ

π

=

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

Where: is the power available to the radar receiver, is the back power output

of the radar transmitter, and are the gain of the receiving and the transmitting antenna respectively,

rP tP

rG tGσ is the target radar cross section related to the

incident and scattered polarization and radar orientation,λ is the operation wavelength, R is the range separation between target and radar and L is the system losses which include ohmic losses in radar components, propagation losses here is free-space and processing losses [6].

1.2.3    Scattering Regimes 

From the general definition for scattering problem which is defined as: when an electromagnetic waves incident on an obstacle, it induces surface currents. These currents which can be electric in case of perfect electric conduction and both electric and magnetic in case of dielectrically coated material, radiates and produces a so called “scattered field” and generally it propagate in all directions with various amplitude and phase.

When this scattered field backs toward the radar transmitter the field is called “mono static” signature and the field is called “bi-static” signature when the scattered field in some other direction is desired.

According to the body electrical size the radar cross section (RCS) regimes can be classified into three regions which are [9]:

1. Rayleigh region 2. Resonance (Mie) region 3. Optics region

Page | 10  

 

Page 18: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 11  

 

1.3  Literature Survey 

To demonstrate there are three sub-sections, which are given below

1.3.1 Scattering and radiation from perfectly conducting bodies

1.3.2 Scattering and radiation from imperfectly conducting bodies

1.3.3 Radar Cross Section RCS measurements

1.3.1  Scattering and radiation from perfectly conducting bodies 

Researchers are having great interest in scattering problem of EM waves by perfectly conducting from irregular geometrical shape. The scattering problem is very complicated boundary-value problem. But in spherical case of scattier with surface coordinate and orthogonal coordinate system the method of separation variables [8] is helpful to solve the vector wave equation.

J.S. YEH et. Al. In 1956, experimentally measured scattering of EM waves by perfectly conducting sphere and dices to figure the echo area and compared with the theoretical formula. Latest computation of scattering functions for conducting sphere [9].

In earlier studies from 1861 to 1941 regarding scattering problems by sphere involved greatest name of mathematical physics. There are some techniques for only bodies (which are smaller in comparison with the wavelength) like variation and quasi-static which are providing good solution for scatter of various shapes. If the diameter or width of scatter is large in comparison with wavelength then there following optical solutions [10]

1 Physical Optics PO 2 Geometric Optics GO 3 Geometrical Theory of Diffraction

Mogeus G. Andreasen in 1965 solved the general scattering problem by an Integral Equation (IE) method. By this method the electric and magnetic fields interior and exteriors to the cylinders with arbitrary cross-sectional shape and

Page 19: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

arbitrarily varying anisotropic surface impedance. This IE was programmed to a computer [11].

A. Baghdasarian and D.J. Angelakos in 1965 solved an integral equation numerically, in purpose to determine the current distribution and after that the back-scattered pattern for loops as a function of rotation angle [14].

J.R. Mautz and R.F. Harrigton in 1968 and 1969 found the current distribution on the scatterer and on aperture antennas, by using the IE formulation for surface current on conducting bodies of revolution (BOR) with MoM as a numerical solution [12], [14].

Nan N. Wang et. al. In 1975 suggested to use a sinusoidal reaction concept to formulate scattering and radiation problems for conducting surface of arbitrary shape. For example, there are rectangular plates and corner reflector antennas [17].

J.R Mautz and R.F. Harrington in 1979 developed a combination of two currents electric and magnetic, also called combined source and it is placed on the surface of the conducting body as in the figure 1.7. It is for EM scattering and radiation from perfectly conducting body [18].

Figure 1.7: Scattering geometry

J.F. Shaeffer and L.N. Medgyesi in 1981 and J.F. Shaeffer in 1982 formulated the scattering and radiation of EM waves from BOR with attached wires even called

Page | 12  

 

Page 20: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 13  

 

junction problems. To determine the scattered pattern for multiple wires they had to use the MoM. Currents are represented in three different functions [13], [20].

(1) Mode –dependent and piecewise – continuous expansion function on BOR,

(2) Piecewise –continuous function on the wire, and (3) A continuity preserving basis functions for the junction region.

To solve the EM scattering problems for perfectly conducting BOR, hybrid solutions combinations are used between MoM and PO, (physical optics). Even for scatterer in the resonant range the formulation is accurate [21], [22].

Yehuda, et. al. in 1988 studied the convergence of the numerical solution,MoM, with the exact solution by changing the N for perfectly conducting bodies , for example, spheres and rounded cylinder. The number of the basis function N is the main limitation of MoM [23].

Stephen D. Gedney and Rajj Mittra in 1990 tried to find the current distribution on scatterer by using fast fourior transformation FFT combined with the MoM. FFT in Greens function, while source and field points are coinciding, was used to overcome the singularity [24].

L.N. Medgyesi – Mitschang and J.M. Putnam in 1990 compared with their experimental data, the back- scattered cross-section. The aim was to describe the EM scattering from finite planar and curved perfect electrically conducting surface truncated by an irregular edge by using an EFIE formulation. [27].

Lale Alatan et al. in 1996 demonstrated the amount of improvement in computation, where analytical evaluation of the moment matrix elements is found by using the closed-form Greens function in co work with MoM has been improved the computational efficiency of technique singularity.

Via Maxwell’s equations and equivalent principle, radiation problem via slot from perfectly conducting bodies of two or three dimensions is formulated. The process is constructed and transformed it to a matrix equation, which is solved by the matrix algorithm with hybrid MoM solution to reduce the computation time and storage media. [15-18].

Page 21: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 14  

 

IE formulation can solve many problems of scattering and radiation from BOR, aperture antennas, large BOR, and doubly periodic surface are treated by it. [19-21].

1.3.2  Scattering and radiation from imperfectly conducting bodies 

Most of the researchers of EM discipline are interested in scattering problems of EM waves by irregular shape of imperfectly conducting objects. It is possible to get the analytical solution for spherical and spheroid symmetry [22], as well as for uniform shapes, as for example, spheres or complete cylinders. By the method of separation of variables, a big wave of equations inside and outside the body can be solved. The sum of the given incident fields and the scattered fields are creating the complete field in the exterior region. The equivalent currents are radiated on the scatterer.

Te-Kao-Wu and L. Tasi in 1977 have created the arbitrary-shaped lossy-dielectric BOR. They treated it by incorporation the equivalent magnetic current contributions. Two-coupled vector IE may be defined via Maxwell’s equation, Green’s theorem, and the boundary conditions. By expanding the unknown surface currents in the Fourior decomposition and MoM of Galerkin’s approach, the unknown surface can be discovered. [23].

Ronald J. Pogoraelski in 1978 has created a formula for propagation matrix, where scattering from penetrable objects is a combination between the concept of invariant imbedding and surface equivalent current with the MoM. [24].

Allen W. G. Glisson and Ronald R. Wilton in 1980 have created a method to formulate the EM problem of scattering and radiation from dielectric surface,in a very simple and efficient way. To solve this problem they involved conducting strips ( both TE and TM ), a bent rectangular plate and conducting and dielectric BOR. [25].

L. N. Medgyesi et al. In 1986 formulated a combined field integral equation CFIE for EM scattering from perfectly conducting BOR layered dielectric coatings. Thanks to this type of formulation it is very easy to get unique solutions at all frequencies. The resulting system of IE can be solved by using the MoM. [26].

Page 22: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 15  

 

Allen W. G. Glisson in 1984 by using the equivalence principle developed a single surface integral equation, for frequency domain problems involving EM scattering from homogenous material bodies. At the body surface , an equivalent current is defined and this is the IE equation. [27].

Medgyesi et al in 1985 has shown different cases used with formulation of imperfectly conducting BOR. There are impedance boundary condition IBC, resistive sheet boundary condition RBC and magnetically conducting sheet boundary condition MBC. He compared the results with each other and eventually with Mie’s solution for impedance coated spheres and MoM for EFIE, MFIE, and CFIE formulations of impedance coated bodies. [28].

J. R. Mautz and R. F. Harrigton in 1972 formulated lossy dielectric BOR, by using the characteristic modes and MoM. Because this method doesn’t need a matrix inverse, it reduced the computation time and storage media. [29].

L. Shafai and A. A. Kishk in 1986, 1989 and 1989 studied the effect of several parameters on the radiation pattern or mode excitation such as micro-strip antennas, by applying BOR and MoM. With that they treated multilayered bodies of complex geometries. Eventually, they came to conclusion that this method is very useful. [30-31-32].

L. Shafai and A. A. Kishk in 1986 came up with the suggestion to formulate the different formulation into seven different ways. The purpose was to find the surface current by studying the different formulations for scattering from dielectric coated BOR. [33].

Korada V. et al. in 1986 purpose was to formulate the three-dimensional homogenous lossy dielectric objects by using the surface triangle patch model. He presented a CFIE with MoM. [34].

Gilles Y. Delisle et al. In 1989 and K. L. Wu in 1990 acquired a terrific agreement between CFBM solution and exact solution for coated cylinders. The solution for multiple dielectric conducting cylinders is in coupled finite boundary element method CFBM, which is developed to formulate EM scattering fields. [35-36].

When the MoM combines with finite element method, a hybrid formulation is made. That is to solve the EM scattering and/or absorption problems, where the

Page 23: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 16  

 

inhomogenous media is involved. By applying the equivalence principle and transform the original problem into interior and exterior problems and that is the basic technique. The exterior problem is solved by the MoM and the interior problem involving inhomogenous medium is solved by FEM [37]

H. A. Rageb et al. in 1991 found that the solution with theoretical treatment based on the boundary value solution is much more general than the other solutions given before. He came to this conclusion through investigating the scattering properties of dielectric coated non-confocal conducting elliptic cylinders. This solution can handle a variety of scattering geometries. [38].

Schmitz J. L. in 1996 reasoned out the various methods for treating scattering of EM problem from dielectric BOR. With that he got the equivalent surface currents and then the scattering pattern. [39].

Recent work by P. Jacobsson and T. Rylander [40] have used the optical theorem to obtain the total scattering cross section from the forward scattering.

Mcheney and B. Borden [41] develop a theory based on the classical theory of monostatic backscattering radar for radar imagining that combines temporal, spectral and spatical Diversity.

Shaeffer, J. F. And Medgyesi, L. N. In 1981 used the MoM to determined the radiation pattern for multiple wires attached to the bodies of revolution [42].

1.3.3 Radar Cross Section RCS measurements 

R. F. Harrigton and J. R. Mautz in 1972 gave suggestion for the concept of characteristic modes, which is used to obtain the RCS for loaded bodies. By using exact solution for simple spheres or complex object [17] has developed radar cross-section estimation of objects rather than ‘’simple’’ or ‘’complex’’. [43].

Rajj Mittra and Richard K in 1989 estimate RCS for bodies of revolution BOR they used the partial differential equation PDE. [44].

Tasy, Win-Jiuun in 1995 suggested numerical solutions for conducting and dielectric structures of arbitrary cross section the RCS, estimad by MoM [42-44] and for complex target the PO and PTD [48].

Page 24: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 17  

 

Many investigators have been used the conjugate gradient method with fast Fourior transformation FFT for two or three-dimension arbitrary and uniform objects. [46-50].

In newer times, the researches in RCS field are constructed into two-part predication and reduction of RCS for objects. By using different numerical solutions, many new formulations have been performed. As for example, the finite element time domain FE-TD, partially differential equation PDE, finite volume time domain FV-TD, method of moments MoM and hybrid solutions for perfectly conducting, dielectric, coated material and composite bodies [51-62].

The IE formulation with MoM is used in this thesis to relate the RCS for BOR of perfectly conducting, dielectric, dielectrically coated material.

Page 25: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 18  

 

CHAPTER 2 SCATERING FROM  

CONDUCTING BODIES  OF REVOLUTION 

Page 26: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

2.1  Introduction 

There are some solutions available for the problem of electromagnetic (EM) wave scattered by perfectly conducting objects. These solutions are complicated in calculations and for limited general shapes like elliptic, cylindrical and spherical objects.

In the chapter we will use Electric field integral equation EFIE to formulate the scattering problems by conduction bodies of revolution BOR. We will use method of moment (MOM) to solve IE. In this method we will first expand the unknown surface current distribution in series of suitable basis function, by this IE could be reduced to the set of simultaneous liner equations. By solving these liner equations we will get surface current distribution.

2.2  Formulation of Scattering Problem 

On perfectly conduction body of revolution, the EFIE of electric current J induced on surface S as shown in Figure 2.1. the boundary condition that is tangential electric field must be vanish at surface is satisfied by an incident electric field E as

( ) incs EnrEn tantan ˆˆ ×=×− 2.1

Where is the unit vector normal to the surface S n

sE is the scattered field due to J on S

tan is tangential component on S

the scattered filed produced by equivalent current can be expressed in terms of vector and scalar potentials as

( ) ( ) ( )rrAjrE s ′Φ∇−′−= ω 2.2

The magnetic vector potential is as

Page | 19  

 

Page 27: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

( ) ( ) ( )∫ ′′=′s

dsrrGrJrA vr,4πμ 2.3

Where the Green’s function for BOR is as

( ) ( )rr

rrjkrrG

′−

′−−=′ rr

rvrr exp

, 2.4

The distance from source point by positional vector ( )r ′r to the field point ( )rr is as

( ) ( ) (( ))φφρρρρ ′−−′+′−+′−=′−= cos1222 zzrrR vr 2.5

The scalar potential in term of equivalent electric charge distribution is as

( ) ( )∫ ′′=Φ dsrrGr rrr ,4

1 σπε

2.6

Where electric charge related to electric current by continuity equation is as

( ) ( )rJj

r s ′•∇−

=′rr

ωσ 1 2.7

So equation 2.1 becomes

( ) ( ) ( ) ( )tan

tan ,4

,4

ˆˆ ⎥⎦

⎤⎢⎣

⎡′′⋅∇′

∇+′′×=× ∫∫

ss

inc dsrrGrJjdsrrGrJjnEn rrrrrv

πωεπωμ 2.8

And equation 2.8 as operator equation is as

( )tan

incEJL = 2.9

Where L is integro differential operator as

( ) ( ) ( )∫∫−−

′⋅∇′∇

+′=s

jkR

s

jkR

dsR

erXj

dsR

erXjXLπωεπ

ωμ44

2.10

Page | 20  

 

Page 28: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Figure 2.1: Geometry & coordinate system of a BOR

2.3  Moment Solution 

According to Galerkin’s approach [12], the numerical method is MOM. This numerical method starts by reducing equation 2.8. The steps involves in MOM are as below

1. The first step and main task in MOM solution is to replace perfectly conduction body by equivalent electric surface currents by using the equivalence principle [4].

Page | 21  

 

Page 29: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

2. The second step is to obtain a set of coupled IE of equivalent current components as in equation 2.8.

3. Third step is the final step; this step involves expanding of equivalent surface current in term of finite set of N basis function. Due to rotational symmetry of body we can use Fourier series to represent this function as in equation 2.11

( ) ( ) ( )∑ ′′+′′=′jn

njnjtInj

Inj urJIurJIrJ

,

ˆˆ ϕϕϕ rrr 2.11

Where

( ) ( ) ( ) ϕϕ ρ jnnj etfrJrJ ′′=′=′′ rr 2.12

InjI and are to be determined unknown coefficients where n is summation of

Fourier mode and j is summation of basis function. By subdividing BOR in to annular rings and by enforcing N weighted (testing) average of IE the unknown coefficient will be obtained.

ϕnjI

( ) ( ) ( )∑ += ϕϕϕ urWIurWIrW mjmjt

tmj

tmj ˆˆ rrr 2.13

where

( ) ( ) ( ) ϕϕ ρ jmmj

tmj etfrWrW ==

rr 2.14

According to Galerkin’s approach . *JW =

The orthogonal vector to S are W and J . For (n ≠ m) miW is orthogonal to njJ

over 0 to 2π on ϕ and all inner products are zero except those for which (n = m). This fact allowed each mode to be treated completely independently of the other mode [17]. The inner product is as

∫ ⋅=s

dsQPQP , 2.15

Where P and Q are tangential vectors to S.

Page | 22  

 

Page 30: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

The inner Product for BOR is as

∫∫∫∫∫∫ ′′=′ππ

ϕρϕρ2

00

2

00

dtdddtsddsNN

ss

2.16

The generalized “network type” matrix equation after testing equation 2.8 is as

Page | 23  

 

]

]

[ ][ ] [ nnn VIZ = 2.17

Where impedance is , Excitation is [ nZ [ ]nV and an unknown coefficient is [ ]nI . Which are as

[ ] ( )[ nnin JLWZ ,= ] 2.18

[ ] [ ] [ ][ ]incni

incnin EWEWV ,,, ϕ′= 2.18a

[ ] [ ] [ ][ ]ϕninin III ,′= 2.18b

[ nZ ] is impedance matrix of the body as

[ ] ⎥⎦

⎤⎢⎣

⎡= ϕϕϕ

ϕ

nn

nnn ZZ

ZZZ /

///

2.19

Z sub-matrices given by explicit form [13].

( ) ( ) ( )( ) ( rrGJWj

JWjdtdddtZ nininjni

NN

n ′⎭⎬⎫

⎩⎨⎧

⋅∇′⋅∇+⋅′′′= ∫∫∫∫vr,12

00

2

00

βαβαππ

αβ

σεωμϕρϕρ ) 2.20

Where α and β are combination of t and φ directed, n is mode number and moreover

( ) ( )ϕϕ

ϕρρ

ρuJuJ

tJ njtnj ˆ1ˆ1

⋅′∂

∂′

+⋅′′′∂

∂′

=⋅∇′ 2.21

( ) ( ϕϕ

ϕρρ

ρuWuWJ

tW nitni ˆ1ˆ1

⋅∂∂

+⋅′∂∂

=⋅∇ ) 2.22

Page 31: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

For evaluation of Z elements, the tangential unit vectors of BOR as in figure 2.1 are as

zvyvxvut ˆcosˆsinsinˆcossinˆ ++= ϕϕ 2.23

yxu ˆcosˆsinˆ ϕϕϕ +−= 2.23a

And for field and source point vectors are as

zvyvxvut ˆcosˆsinsinˆcossinˆ ′+′′+′′=′ ϕϕ 2.24

yxu ˆcosˆsinˆ ϕϕϕ ′+′−=′ 2.24a

ϕu′ˆ is always normal to z-axis but is at angle v with z-axis. And it’s positive

when point away from z-axis and negative if toward z-axis. tu

tu tu

The Green’s function as below may be eliminate φ integral in equation 2.20

∫ ′′=π

ϕϕπ0 0

0

cos4 dR

engjkR

n 2.25

0R is given with φ = 0. And reaming integral in equation 2.20 for t and t’ is approximated by triangle function for both current expansion function and testing function as

( ) ( )ii ttTtf −=ρ 2.26

( )⎩⎨⎧

><−

=1011

tfortfort

tT 2.27

The triangle function as in figure 2.2 is used to represent the current expansion and testing functions.

By using equation 2.21, 2.26 and 2.20 we obtain the explicit form of Z sub-matrices for equation 2.19.

Page | 24  

 

Page 32: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

( ) ∑∑=

−+

= ⎭⎬⎫

⎩⎨⎧

+⎥⎦⎤

⎢⎣⎡ +

−=

4

1

114

1

1coscos2

sinsinq

nqpnqpnn

qpqpp

ijttn gTT

jgvvggvvTTZ

ωεωμ 2.28

( ) ∑∑=

−+

= ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+⎥⎦⎤

⎢⎣⎡ −

−=4

1

114

1

12

sinq

nqpq

nnpqp

pij

tqn gTT

jggvTTZ

ωερωμ 2.28a

( ) ∑∑=

−+

= ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

−⎥⎦⎤

⎢⎣⎡ −

=4

1

114

1

12

sinq

nqpp

nnqqp

pij

tn gTT

jggvTTZ

ωερωμϕ 2.28b

( ) ∑∑=

−+

= ⎥⎥⎦

⎢⎢⎣

⎡+

−=

4

1

114

1

12q

nqp

nnqp

pijn g

jggjTTZ

ρωερωμϕϕ 2.28c

Page | 25  

 

Page 33: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Figure 2.2:

a. Triangle function (solid), four pulses approximation (dashed), and four impulse approximation (arrows).

b. Derivation of Triangle function (solid), four pulses approximation (dashed), and four impulse approximation (arrows).

Page | 26  

 

Page 34: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Calculation used by Mautz and Harrington [11] to reduce equation 2.25 and with some mathematical manipulation we can get equation 2.29

( )∑−

=M

mmmn fn

MG

1cos φφπ 2.29

Where M

mmπφ ⎟

⎠⎞

⎜⎝⎛ −=

21

M = 2N interval in φ directed

And ( ) ( ) ( ) ( )( ) ⎥

⎥⎦

⎢⎢⎣

++

+++−=

2122

11

2122

22ln12expdtt

dttjKRjKRf pqpqmφ 2.30

Where ( ) ( ) ( )[ ] 212 cos12 qpmqpqppq zzR −+−+−= φρρρρ 2.31

And

( ) ( )20

22

0

02

01

sincoscos4141

tRd

vvzzt

tt

tt

pq

qqmpqqp

−=

−+−=

+=

−=

ρφρ

2.32

Then equation 2.28 becomes

( ) ∑∑=

−+

= ⎭⎬⎫

⎩⎨⎧ ′′+⎥⎦

⎤⎢⎣⎡ +

−=

4

1

114

1

1coscos2

sinsinq

nqpnqpnn

qpqpp

ijttn GTT

jGvvGGvvTTZ

ωεωμ 2.33

( ) ∑∑=

−+

= ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

′+⎥⎦⎤

⎢⎣⎡ −

−=4

1

114

1

12

sinq

nqpq

nnpqp

pij

tqn GTT

jgGvTTZ

ωερωμ 2.33a

( ) ∑∑=

−+

= ⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

′−⎥⎦⎤

⎢⎣⎡ −

=4

1

114

1

12

sinq

nqpp

nnqqp

pij

tn GTT

jGGvTTZ

ωερωμϕ 2.33b

Page | 27  

 

Page 35: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

( ) ∑∑=

−+

= ⎥⎥⎦

⎢⎢⎣

⎡+

−=

4

1

114

1

12q

nqp

nnqp

pijn G

jGGjTTZ

ρωερωμϕϕ 2.33c

2.4  Evaluation of Driving Vector and Far Field components 

The procedure of measurement matrix or linear measurement by J. R. Mautz and R. F. Harrigton is utilized to evaluate the driving vector and the far scattered fields for conduction BOR.

Furthermore; components of the field at a point, voltage along given conductor and current crossing a given surface [63] are linear measurements.

Note: excitation matrix is result from induced current on body surface and measurement matrix is result from far scattered fields produced by induced currents. Examples of linear measurements [49]

1. Component of current at some point on S 2. Component of field (E or H) at some point in space

So Linear measurement as

( ) incjn EJV ,=

According to Reciprocity theorem we can find radiation field rE at distance r from origin due to current J on S.

( ) ( )∫ ′⋅−−

=⋅s

rr

r dsrJErjkr

juE 0exp4

ˆπωμ 2.34

Where

ru = unit vector specifying the polarization of the incident wave

( )irr rkjuE r

⋅−= ˆexpˆ 2.35

Equation 2.35 is arbitry plane wave of superposition of two orthogonal components and its unit vectors are as

Page | 28  

 

Page 36: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

zyxu rrrrrr ˆsinˆcoscosˆcoscosˆ θφθφθθ −+= 2.36

yxu rrr ˆcosˆcossinˆ φφφ += 2.36a

Where wave number unit vector is in the direction of propagation and

vector pointing from origin as in figure 2.3 is 0.ˆ kkk =

irr

By using equation 2.35, 2.34, 2.11 and 2.24 we get equation 2.37

( )[ ][ ]nnri IRrjk

rjuE 0exp

4ˆ −

−=⋅

πωμ 2.37

Figure 2.3: Wire Scatterer and distance dipole

Where [ is coefficient of expansion function and ]nI [ ] [ ] [ ][ ]φn

tnn RRR ,=

With

[ ] [ ][ ] [ φφ

njr

n

tnj

rtn

JER

JER

,

,

=

=

] 2.38

For Ѳ polarized plane wave ( ) θrr uu ˆˆ =

Page | 29  

 

Page 37: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

[ ] [ ][ ] [ φ

θφθ

θθ

njr

n

tnj

rtn

JER

JER

,

,

=

=

] 2.39

For φ polarized plane wave ( ) φrr uu ˆˆ =

[ ] [ ][ ] [ φ

φφφ

φφ

njr

n

tnj

rtn

JER

JER

,

,

=

=

] 2.40

By using equation 2.23 and 2.36 we can evaluate the inner product of equation 2.39 and 2.40 and according to appendix A the final form is as

( ) ∫=π

ααρ απ

ρ2

0

cos

2deejJ jnj

n

n 2.41

And we can also get equation 2.42 [5]

( ) ( ) ( )( )( )∑

=

−+−+

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

+

−==

4

1 cos

11cos1

sin2sincos

,p npr

nnprjkzjnntnj

rj

tn xJvj

xJxJveejJER rpr

θ

θπ θφ

θθ 2.42

Where ( ) ( )rpnn kJxJ θρ sin=

Normally we are taking and even in n. And and odd in n. By comparing equations 2.12 and 2.14 the excitation matrix is differ from measurement matrix in sign of n.

θtnR φφ

nR φtnR φθ

nR

( ) ( )αβαβnjn RV = 2.43

Where α β are replaced as

( ) ( )( ) (( ) (( ) ( )φφφφ

φφ

φθφθ

θθ

nin

tni

tn

nin

tni

tn

RR

RR

RR

RR

=

−=

−=

=

)) 2.44

Page | 30  

 

Page 38: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

So

[ ] [ ][ ]nnn VYI = 2.45

Where [ is admittance matrix and it is obtained by inverting the Z matrix as ]nY

[ ] ⎥⎦

⎤⎢⎣

⎡= φφφ

φ

nt

n

tn

ttn

n YYYY

Y 2.46

And unknown coefficients are as

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡φφφφ

φ

φn

tn

nt

n

tn

ttn

n

tn

VV

YYYY

II

2.47

So finally far scattered field components and are as θE φE

⎥⎥⎦

⎢⎢⎣

⎥⎥⎦

⎢⎢⎣

⎡−=

⎥⎥⎦

⎢⎢⎣

⎡φφφφ

φθ

θφ

θ θθ

πωμ

nj

tnj

njtnj

tnj

tnjrjk

s

s

II

RRRR

er

jEE

4 2.48

2.5  Radar Cross Section (RCS) 

Radar cross section is the measure of a target's ability to reflect radar signals in the direction of the radar receiver. It’s a property of target having effective area (Ac). The available power at the terminal of receiving antenna is the product of incident power density and effective area. Also we can say power scattered by the target is the product of an effective area and incident power density.

Parameters which are effecting to the RCS are as

1. The frequency of operation 2. The polarization of the transmitting antenna 3. The polarization of receiving antenna 4. The orientation of object relative to the antenna 5. Object or target shape 6. The material of object or target

So RCS is as Page | 31  

 

Page 39: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

224 i

s

EERπσ = 2.49

Where sE is scattered field of two components [14]

⎥⎥⎦

⎢⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡=

⎥⎥⎦

⎢⎢⎣

⎡t

ijkr

s

s

EE

SSSS

re

EE

φ

θφφφθ

θφθθ

φ

θ 2.50

By using equation 2.50 in 2.49 then we get

24 pqpq Sπσ = 2.51

[ ][ ][ ] [ ] [ ][ ] [ ] ⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−= q

n

tqn

nt

n

tn

ttnp

ntpn

pq

VV

YYYY

RRjφφφφ

φφ

πωμσ

4 2.52

Where p and q are ѲѲ, φ Ѳ, Ѳφ and φ φ .

RCS measured in Ѳ polarized recover with φ =0 plane as

rS φπσ θθθθ 22

1 cos16= 2.53

RCS measured in φ polarized recover with φ = π/2 plane as

rS φπσ φθφθ 22

1 cos16= 2.54

For axially incident plane where n= +1 are excited, so RCS components in horizontal polarization and the vertical polarization are [14]

By using equation 2.52, the scattered field components are as

( )r

s Sr

jkrE φθθθ sinexp2 1

0

0⎟⎟⎠

⎞⎜⎜⎝

⎛ −= 2.55

( )r

s Sr

jkrjE φφθθ sinexp2 1

0

0⎟⎟⎠

⎞⎜⎜⎝

⎛ −= 2.56

Page | 32  

 

Page 40: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

  

2.6  Efficient Partial Differential Equation Algorithm (EPDEA): 

The problem of electromagnetic scattering by a perfect electric conductor (PEC) body of revolution can be solved by the partial differential equations (PDE). This problem is possible to formulate in terms of the components of the electric and magnetic fields in the region surrounding the perfect electric conductor. In this method, two scalar potentials are employed and express all of the six field components in terms of the potentials. As mention in literature survey part, Morgan and Mei have introduced such potential, the coupled azimuthally potentials (CAPs). In the coming part, the formulation of body of revolution is given in more detail [4].

2.6.1  Formulation of Body of Revolution Problem 

The Wilcox representation and the two scalar potentials that are used are ),( θrum and ),( θrvm which are defined as:

∑∞

−∞=

−∞=

=

=

m

jmm

m

jmm

ervrrH

erurrE

φφ

φφ

θψφθη

θψφθ

),()(),,(

),()(),,(

0

3.1

Where:

rer

jkr−

=)(ψ 3.2

The other field components which are ),(, θrE mr , ),(, θθ rE m , ),(, θrH mr and

),(, θθ rH m can be expressed in terms of the potential and as following: mu mv

⎟⎠⎞

⎜⎝⎛

∂∂

−∂

∂=

θθψ

θμψ

θ))sin((

)sin()(

)sin( 0,m

rm

mmrv

rkrur

mjfE 3.3

Page | 33  

 

Page 41: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

⎟⎠⎞

⎜⎝⎛

∂∂

+∂

∂=

rvr

rku

jfE mr

mmm

)()(sin

))sin(( 20,

ψθμ

θθψ

θ 3.4

⎟⎠⎞

⎜⎝⎛

∂∂

+∂

∂=

θθψ

θεψ

θη

))sin(()sin(

)()sin( 0

0,

mr

mmmr

urk

rvr

mjf

H 3.5

⎟⎠⎞

⎜⎝⎛

∂∂

−∂

∂=

rur

rkvjf

H mr

mmm

)()(sin

))sin(( 20

0,

ψθε

θθψ

ηθ 3.6

Where

122220 ))(sin),(),((),( −−= mrkrrrf rrm θθεθμθ 3.7

The advantage of using these potentials in place of E and H is the reducing of the number of unknowns to be dealt with infinite difference or finite element formulations. By substituting these components into Maxwell’s equations, we get the following:

⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+

⎟⎟⎠

⎞⎜⎜⎝

⎛⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛

∂∂

+∂

∂∂∂

+

⎟⎟⎠

⎞⎜⎜⎝

⎛⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛

∂∂

−∂

∂∂∂

=

∂∂

+∂∂

+∂∂

=⋅∇

∑∞

−∞=

m

jmm

jkr

mr

m

m

mr

mm

r

erur

er

rvr

rku

jfr

vrk

rur

mjfrrr

Er

Er

Errr

E

φ

φθ

θφθ

ψθμ

θθψ

θθθ

θθψ

θμψ

θ

φθθ

θθ

),()sin(

1

)()(sin

))sin(()sin(

)sin(1

))sin(()sin(

)()sin(1

)sin(1))(sin(

)sin(1)(1

20

02

2

22

3.8

( )

( ) ( )^^

^

2

1)sin(sin1

)()sin()sin(

1

φθ

θθφθ

φθ

θθ

θφ

θφ

⎟⎠⎞

⎜⎝⎛

∂∂

−∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

−∂∂

+

⎥⎦

⎤⎢⎣

⎡∂∂

−⎟⎠⎞

⎜⎝⎛∂∂

=×∇

rr ErErr

Err

Er

rrEErr

H 3.9

By solving these equations the following pair of coupled partial differential equations in and can be derived: mu mv

Page | 34  

 

Page 42: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

0

0

2222

2

22

2

2222

1112

2

12

2

1111

=∂∂

+∂∂

++∂∂

+∂∂

+∂∂

+∂∂

+

=∂∂

+∂∂

++∂∂

+∂∂

+∂∂

+∂∂

+

θθθ

θθθ

mmm

mmmmm

mmm

mmmmm

uH

ru

GuFv

Erv

Dv

Cr

vBvA

vH

rv

GvFu

Eru

Du

Cr

uBuA

3.10

where:

2

2

1111 rd

rbaA

∂∂

+∂∂

+=ψψψ

rdbB

∂∂

+=ψψ 111 2

ψ11 cC =

ψ11 dD =

ψ11 eE =

rgfF

∂∂

+=ψψ 111

ψ11 gG =

ψ11 hH =

2

2

2222 rd

rbaA

∂∂

+∂∂

+=ψψψ

rdbB

∂∂

+=ψψ 222 2

ψ22 cC =

ψ22 dD =

ψ22 eE =

Page | 35  

 

Page 43: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

rgfF

∂∂

+=ψψ 222

ψ22 gG =

ψ22 hH =

⎟⎠⎞

⎜⎝⎛ +

∂∂

−∂∂

−−= )(sin)()(sin))sin(()cos(1 20

2200021 θεεθθε

θθε mrmrmrr

m

rfjkfrr

jkfrjkrjkf

a

⎟⎠⎞

⎜⎝⎛ −

∂∂

−= )(sin2)()(sin1 220

22021 θεεθ mrmr

m

frjkfrr

rjkf

b

⎟⎠⎞

⎜⎝⎛ −

∂∂

−= )cos()sin(2))sin(()sin(10021 θθεθε

θθ mrmr

m

rfjkfrjkf

c

( ))(sin1 23021 θε mr

m

frjkf

d −=

( ))(sin1 2021 θε mr

m

rfjkf

e −=

⎟⎠⎞

⎜⎝⎛

∂∂

−∂∂

= ))sin(()()cos(121 θ

θθ mm

m

fjmrfr

jmf

f

⎟⎠⎞

⎜⎝⎛

∂∂

−=θ

θ m

m

fjmr

fg )sin(1

21

⎟⎠⎞

⎜⎝⎛

∂∂

θ m

m

fjmr

fh )sin(1

21

⎟⎠⎞

⎜⎝⎛ −

∂∂

+∂∂

+= )(sin)()(sin))sin(()cos(1 20

2200022 θμμθθμ

θθμ mrmrmrr

m

rfjkfrr

jkfrjkrjkf

a

⎟⎠⎞

⎜⎝⎛ +

∂∂

= )(sin2)()(sin1 220

22022 θμμθ mrmr

m

frjkfrr

rjkf

b

⎟⎠⎞

⎜⎝⎛ +

∂∂

= )cos()sin(2))sin(()sin(10022 θθμθμ

θθ mrmr

m

rfjkfrjkf

c

Page | 36  

 

Page 44: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

( ))(sin1 23022 θμ mr

m

frjkf

d =

( ))(sin1 2022 θμ mr

m

rfjkf

e =

⎟⎠⎞

⎜⎝⎛

∂∂

−∂∂

= ))sin(()()cos(122 θ

θθ mm

m

fjmrfr

jmf

f

⎟⎠⎞

⎜⎝⎛

∂∂

−=θ

θ m

m

fjmr

fg )sin(1

22

⎟⎠⎞

⎜⎝⎛

∂∂

θ m

m

fjmr

fh )sin(1

22

By following Wilcox representation, an asymptotic representation can be written for and as following: mu mv

⎟⎠⎞

⎜⎝⎛ +++=

⎟⎠⎞

⎜⎝⎛ +++=

L

L

221

0

221

0

)()()(),(

)()()(),(

rB

rB

Brv

rA

rA

Aru

mmmm

mmmm

θθθθ

θθθθ

3.11

If we consider that the behaviour of the fields is near to the outer boundary and

this boundary is sufficiently far from the scattier, the terms of order 2

1r

and

higher can be negligible contribution to the above and and can be written in a good approximation as following

mu mv[4]:

⎟⎠⎞

⎜⎝⎛ +=

⎟⎠⎞

⎜⎝⎛ +=

rB

Brv

rA

Aru

mmm

mmm

)()(),(

)()(),(

10

10

θθθ

θθθ

3.12

By using the mesh truncation scheme to solve this problem, we can conclude several important advantages [4]:

Page | 37  

 

Page 45: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

1. The truncation scheme does not increase the bandwidth of the finite difference matrix.

2. No complicated three-dimensional vector absorbing boundary condition for the electric and magnetic fields is needed.

3. It is unnecessary to derive Bayliss-Turkel type of boundary conditions for the potentials and . mu mv

4. The solutions generated via this truncation scheme appear to exhibit the same order of numerical accuracy as predicted for a second-order Bayliss-Turkel type.

5. This method of truncation is extremely simple to implement numerically.

Page | 38  

 

Page 46: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 39  

 

CHAPTER 3 RESULTS & DISCUSSIONS 

Page 47: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

3. Results and Discussion

The prediction of radar cross section RCS plays an important role as a starting point for engineering radar systems and they are considered as an important characteristic of radar targets.

The method of moment MoM is considered as very powerful numerical methods technique used to compute the RCS of uniform and complex bodies of revolution.

In this work the method of moments is applied for a cone-sphere of figure 3.1

Figure 3.1: Conducting cone-sphere and points of loading

Equations [2.33-2.33c] for the impedance have been solved numerically for the first mode (n=1). Table (1) shows the results of the generalized admittance matrix [Y]=[Z]-1.

This matrix will be used in another program to calculate the coefficients of the current expansion [equation 2.11]. the two components of the current distributions Jρ and JФ are listed in Table 2. These results are compared with the results of Mautz and Harrington [14], and Yehuda et al [14], in figures [3.2-3.7]. the accuracy of the solution is strongly depend upon the finiteness degree of the representative series in Equation [2.11]. these results show a very good agreement with the available results.

Page | 40  

 

Page 48: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

The radar cross section RCS have been described in equations [2.49-2.54]. these results are shown in Table 3.3. SѲ is in the E plane and SФ is in the H plane.

2/λσ 2/λσ

The magnitude (MAG) and the phase (ANG) of SѲ and SФ are also tabulated. These results are compared to the results of Mautz and Harrington [14] in figures [3.8-3.11] with very good agreement. These results are also in good agreement with the results of Yehuda [43].

All these calculations have been done for an incident magnetic intensity . Similar calculations have been presented in Tables 3.4 and 3.5 but

for an incident magnetic intensity .

jKZY

i eUH −=jKZ

Yi eUH =

Table 3.6 presented the results of the current components Jρ and JФ on a conducting body of revolution excited by one or more vocationally symmetric apertures. These results are also compared in figures [3.12-3.15] with the results of Mautz and Harrington [14]. The power gain pattern GѲ and GФ together with the radiation fields EѲ and EФ are shown in Table 3.7.

In a summary we have used the methods of moment MoM to calculate the radar cross sections for a body of revolution. These calculations are in a good agreement with previous results. The formulation of the scattering problems of the conducting bodies of revolution is the basis to study the scattering problems of dielectric and dielectrically coated bodies. These calculations can be used to study radar cross sections from complex shaped bodies of revolution.

Page | 41  

 

Page 49: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 42  

 

TABLE 3.1: The generalized admittance matrix [Y] (Ω­1)

Y1

0.2514E-05 -0.2549E-02 0.4182E-05 -0.2132E-02 0.4449E-05 0.1725E-02 0.3172E-05

0.1626E-02 0.1390E-05 -0.2234E-02 -0.5890E-06 0.1189E-03 -0.3282E-05 0.1629E-02

-0.5367E-05 -0.1831E-02 -0.6500E-05 0.1060E-02 -0.6327E-05 -0.1979E-03 -0.4976E-05

-0.3354E-03 -0.2669E-05 0.5443E-03 0.2661E-06 -0.5063E-03 0.2788E-05 0.4092E-03

0.4820E-05 -0.2705E-03 0.5064E-05 0.1669E-03 0.3459E-05 -0.1049E-03 0.1094E-05

0.9675E-04 -0.3251E-07 -0.1372E-03

0.4130E-05 -0.2131E-02 0.7978E-05 -0.1425E-02 0.1061E-04 0.5145E-03 0.1116E-04

0.5611E-03 0.9712E-05 -0.8061E-03 0.6517E-05 0.3065E-04 0.1684E-05 0.5671E-03

-0.3687E-05 -0.6645E-03 -0.8451E-05 0.3675E-03 -0.1178E-04 -0.7613E-04 -0.1300E-04

-0.1196E-03 -0.1187E-04 0.1991E-03 -0.8645E-05 -0.1704E-03 -0.4127E-05 0.1581E-03

0.8474E-06 -0.8404E-04 0.5064E-05 0.6804E-04 0.6122E-05 -0.3476E-04 0.3998E-05

0.3272E-04 0.1558E-05 -0.5120E-04

0.4253E-05 0.1724E-02 0.1043E-04 0.5132E-03 0.1791E-04 -0.2490E-02 0.2320E-04

-0.1746E-02 0.2393E-04 0.2206E-02 0.2185E-04 -0.1479E-03 0.1643E-04 -0.1665E-02

0.6618E-05 0.1805E-02 -0.3289E-05 -0.1091E-02 -0.1393E-04 0.1796E-03 -0.2214E-04

0.3298E-03 -0.2638E-04 -0.5393E-03 -0.2675E-04 0.5265E-03 -0.2182E-04 -0.3840E-03

-0.1386E-04 0.2999E-03 -0.2207E-05 -0.1453E-03 0.6552E-05 0.1140E-03 0.8388E-05

-0.9909E-04 0.5015E-05 0.1331E-03

0.3035E-05 0.1630E-02 0.1102E-04 0.5619E-03 0.2315E-04 -0.1751E-02 0.3185E-04

-0.1046E-02 0.3425E-04 0.2805E-03 0.3673E-04 -0.5814E-04 0.3322E-04 -0.3200E-03

0.2014E-04 0.2887E-03 0.8222E-05 -0.2247E-03 -0.8726E-05 0.1041E-05 -0.2391E-04

0.3378E-04 -0.3440E-04 -0.1096E-03 -0.4077E-04 0.9039E-04 -0.3831E-04 -0.5883E-04

-0.3024E-04 0.7041E-04 -0.1351E-04 -0.5411E-05 0.3086E-05 0.3444E-04 0.1077E-04

-0.1245E-04 0.8155E-05 0.2331E-04

0.1372E-05 -0.2249E-02 0.9751E-05 -0.8114E-03 0.2405E-04 0.2222E-02 0.3426E-04

0.2830E-03 0.3959E-04 -0.2894E-02 0.4742E-04 0.3266E-05 0.4785E-04 0.1537E-02

0.3630E-04 -0.1800E-02 0.2513E-04 0.9853E-03 0.5757E-05 -0.2355E-03 -0.1407E-04

-0.3691E-03 -0.3052E-04 0.4859E-03 -0.4367E-04 -0.5175E-03 -0.4699E-04 0.3815E-03

-0.4268E-04 -0.2593E-03 -0.2603E-04 0.1767E-03 -0.4654E-05 -0.8212E-04 0.8924E-05

0.1064E-03 0.9101E-05 -0.1274E-03

-0.4269E-06 0.1221E-03 0.6561E-05 0.3169E-04 0.2165E-04 -0.1514E-03 0.3665E-04

-0.5885E-04 0.4764E-04 0.5942E-05 0.5976E-04 -0.7628E-03 0.6557E-04 -0.9349E-03

0.5911E-04 0.8562E-03 0.4815E-04 -0.5747E-03 0.2715E-04 0.4501E-04 0.2337E-05

0.1100E-03 -0.2170E-04 -0.3240E-03 -0.4304E-04 0.2082E-03 -0.5425E-04 -0.2312E-03

-0.5557E-04 0.1252E-03 -0.4052E-04 -0.7327E-04 -0.1502E-04 0.7132E-04 0.4951E-05

-0.3199E-04 0.8837E-05 0.7617E-04

-0.3133E-05 0.1650E-02 0.1683E-05 0.5745E-03 0.1615E-04 -0.1687E-02 0.3314E-04

-0.3237E-03 0.4808E-04 0.1547E-02 0.6574E-04 -0.9357E-03 0.7842E-04 -0.1165E-02

0.7799E-04 0.4697E-03 0.7277E-04 -0.4091E-03 0.5399E-04 0.2929E-05 0.2826E-04

Page 50: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 43  

 

0.3841E-04 0.1010E-06 -0.2534E-03 -0.2850E-04 0.9187E-04 -0.4819E-04 -0.1928E-03

-0.5831E-04 0.5008E-04 -0.5028E-04 -0.6288E-04 -0.2622E-04 0.4925E-04 -0.2328E-05

-0.1030E-04 0.6003E-05 0.5838E-04

-0.5649E-05 -0.1863E-02 -0.3742E-05 -0.6756E-03 0.7007E-05 0.1837E-02 0.2017E-04

0.2940E-03 0.3596E-04 -0.1819E-02 0.5910E-04 0.8613E-03 0.7810E-04 0.4735E-03

0.8720E-04 -0.1854E-02 0.9269E-04 0.6387E-03 0.8378E-04 -0.2157E-03 0.6507E-04

-0.3205E-03 0.3944E-04 0.2940E-03 0.8467E-05 -0.4671E-03 -0.1906E-04 0.1940E-03

-0.4075E-04 -0.2721E-03 -0.4820E-04 0.8020E-04 -0.3575E-04 -0.7267E-04 -0.1415E-04

0.9255E-04 -0.1190E-05 -0.7875E-04

-0.6318E-05 0.1082E-02 -0.8439E-05 0.3752E-03 -0.3575E-05 -0.1113E-02 0.8170E-05

-0.2284E-03 0.2535E-04 0.9998E-03 0.4817E-04 -0.5796E-03 0.7281E-04 -0.4121E-03

0.9283E-04 0.6420E-03 0.1065E-03 -0.1137E-02 0.1094E-03 0.3517E-05 0.1004E-03

0.1270E-03 0.8010E-04 -0.4436E-03 0.5109E-04 0.2181E-03 0.1858E-04 -0.3721E-03

-0.1259E-04 0.7718E-04 -0.3631E-04 -0.1682E-03 -0.3955E-04 0.5234E-04 -0.2508E-04

-0.4716E-04 -0.9556E-05 0.1058E-03

-0.6443E-05 -0.2032E-03 -0.1184E-04 -0.7801E-04 -0.1385E-04 0.1849E-03 -0.8712E-05

0.1911E-05 0.5623E-05 -0.2394E-03 0.2715E-04 0.4635E-04 0.5407E-04 0.3856E-05

0.8380E-04 -0.2169E-03 0.1095E-03 0.4571E-05 0.1277E-03 -0.4332E-03 0.1343E-03

-0.2489E-03 0.1266E-03 0.9783E-04 0.1054E-03 -0.3050E-03 0.7257E-04 0.2663E-04

0.3328E-04 -0.2216E-03 -0.9665E-05 -0.2641E-04 -0.3564E-04 -0.7535E-04 -0.3485E-04

0.4089E-04 -0.1924E-04 -0.3580E-04

-0.5135E-05 -0.3439E-03 -0.1309E-04 -0.1226E-03 -0.2203E-04 0.3383E-03 -0.2389E-04

0.3520E-04 -0.1426E-04 -0.3752E-03 0.2320E-05 0.1122E-03 0.2833E-04 0.3979E-04

0.6503E-04 -0.3224E-03 0.1005E-03 0.1281E-03 0.1343E-03 -0.2489E-03 0.1585E-03

-0.2102E-03 0.1668E-03 -0.1892E-03 0.1589E-03 -0.3128E-04 0.1309E-03 -0.1729E-03

0.8832E-04 -0.8188E-04 0.2848E-04 -0.1281E-03 -0.2224E-04 -0.4551E-04 -0.4003E-04

-0.2970E-04 -0.2796E-04 0.2413E-04

-0.2626E-05 0.5594E-03 -0.1192E-04 0.2044E-03 -0.2654E-04 -0.5547E-03 -0.3441E-04

-0.1123E-03 -0.3047E-04 0.4970E-03 -0.2174E-04 -0.3285E-03 0.1324E-06 -0.2563E-03

0.3944E-04 0.2981E-03 0.8019E-04 -0.4463E-03 0.1267E-03 0.9875E-04 0.1668E-03

-0.1893E-03 0.1920E-03 -0.1332E-03 0.2001E-03 -0.1048E-03 0.1822E-03 -0.8075E-04

0.1424E-03 -0.1144E-03 0.7245E-04 -0.1049E-03 0.6058E-06 -0.8559E-04 -0.3704E-04

-0.3805E-04 -0.3245E-04 -0.1521E-04

0.3264E-07 -0.5220E-03 -0.8762E-05 -0.1759E-03 -0.2657E-04 0.5424E-03 -0.4074E-04

0.9306E-04 -0.4395E-04 -0.5294E-03 -0.4307E-04 0.2129E-03 -0.2844E-04 0.9490E-04

0.8316E-05 -0.4721E-03 0.5120E-04 0.2213E-03 0.1054E-03 -0.3063E-03 0.1590E-03

-0.3092E-04 0.2002E-03 -0.1049E-03 0.2256E-03 -0.4999E-05 0.2215E-03 -0.7176E-04

0.1899E-03 -0.6568E-04 0.1175E-03 -0.1117E-03 0.3052E-04 -0.9974E-04 -0.2591E-04

-0.7563E-04 -0.3192E-04 -0.2753E-04

0.2838E-05 0.4226E-03 -0.4163E-05 0.1628E-03 -0.2198E-04 -0.3975E-03 -0.3833E-04

-0.6117E-04 -0.4694E-04 0.3918E-03 -0.5430E-04 -0.2355E-03 -0.4819E-04 -0.1957E-03

-0.1910E-04 0.1986E-03 0.1859E-04 -0.3755E-03 0.7259E-04 0.2798E-04 0.1309E-03

Page 51: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 44  

 

-0.1733E-03 0.1823E-03 -0.8069E-04 0.2214E-03 -0.7191E-04 0.2329E-03 0.1630E-03

0.2155E-03 -0.7185E-04 0.1530E-03 -0.6094E-04 0.6423E-04 -0.1364E-03 -0.4137E-05

-0.8971E-04 -0.2306E-04 -0.8011E-04

0.4689E-05 -0.2801E-03 0.7812E-06 -0.8737E-04 -0.1377E-04 0.3096E-03 -0.3024E-04

0.7203E-04 -0.4284E-04 -0.2668E-03 -0.5560E-04 0.1283E-03 -0.5830E-04 0.5206E-04

-0.4088E-04 -0.2756E-03 -0.1258E-04 0.7963E-04 0.3326E-04 -0.2228E-03 0.8833E-04

-0.8157E-04 0.1424E-03 -0.1145E-03 0.1900E-03 -0.6558E-04 0.2156E-03 -0.7218E-04

0.2159E-03 0.3035E-03 0.1733E-03 -0.1173E-03 0.9679E-04 -0.9021E-04 0.2580E-04

-0.1774E-03 -0.6256E-05 -0.3571E-04

0.5103E-05 0.1731E-03 0.5061E-05 0.7024E-04 -0.2289E-05 -0.1515E-03 -0.1354E-04

-0.6506E-05 -0.2599E-04 0.1816E-03 -0.4054E-04 -0.7533E-04 -0.5031E-04 -0.6428E-04

-0.4822E-04 0.8258E-04 -0.3635E-04 -0.1700E-03 -0.9706E-05 -0.2563E-04 0.2844E-04

-0.1284E-03 0.7246E-04 -0.1049E-03 0.1176E-03 -0.1118E-03 0.1530E-03 -0.6079E-04

0.1733E-03 -0.1176E-03 0.1659E-03 0.3194E-03 0.1243E-03 -0.1982E-03 0.6786E-04

-0.8180E-04 0.2356E-04 -0.2232E-03

0.3433E-05 -0.1080E-03 0.6124E-05 -0.3583E-04 0.6578E-05 0.1173E-03 0.3035E-05

0.3501E-04 -0.4756E-05 -0.8449E-04 -0.1508E-04 0.7229E-04 -0.2632E-04 0.4982E-04

-0.3584E-04 -0.7372E-04 -0.3960E-04 0.5287E-04 -0.3565E-04 -0.7576E-04 -0.2215E-04

-0.4559E-04 0.7639E-06 -0.8572E-04 0.3077E-04 -0.9973E-04 0.6450E-04 -0.1363E-03

0.9705E-04 -0.9010E-04 0.1244E-03 -0.1972E-03 0.1299E-03 0.1294E-03 0.1038E-03

-0.3182E-03 0.5580E-04 0.6315E-04

0.1112E-05 0.9946E-04 0.4029E-05 0.3368E-04 0.8412E-05 -0.1018E-03 0.1077E-04

-0.1286E-04 0.8921E-05 0.1084E-03 0.4930E-05 -0.3268E-04 -0.2420E-05 -0.1074E-04

-0.1426E-04 0.9329E-04 -0.2520E-04 -0.4762E-04 -0.3499E-04 0.4092E-04 -0.4011E-04

-0.2987E-04 -0.3709E-04 -0.3826E-04 -0.2585E-04 -0.7587E-04 -0.4031E-05 -0.9001E-04

0.2602E-04 -0.1774E-03 0.6806E-04 -0.8276E-04 0.1042E-03 -0.3172E-03 0.1076E-03

-0.2332E-03 0.6838E-04 -0.4149E-03

-0.5855E-07 -0.1390E-03 0.1581E-05 -0.5184E-04 0.5122E-05 0.1349E-03 0.8236E-05

0.2363E-04 0.9142E-05 -0.1282E-03 0.8913E-05 0.7637E-04 0.6027E-05 0.5860E-04

-0.1249E-05 -0.7821E-04 -0.9680E-05 0.1054E-03 -0.1947E-04 -0.3517E-04 -0.2823E-04

0.2387E-04 -0.3278E-04 -0.1532E-04 -0.3222E-04 -0.2798E-04 -0.2330E-04 -0.8036E-04

-0.6325E-05 -0.3765E-04 0.2374E-04 -0.2218E-03 0.5640E-04 0.5786E-04 0.6896E-04

-0.4146E-03 0.4771E-04 -0.1066E-02

Page 52: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 45  

 

 

Y2             

 0.4192E‐03   0.4429E‐06  ‐0.8374E‐03   0.6902E‐06  ‐0.2123E‐02   0.5764E‐06   0.2577E‐02 

 0.5259E‐06   0.2346E‐02   0.1356E‐05  ‐0.6414E‐02   0.8906E‐06   0.4153E‐02  ‐0.3669E‐07 

 0.2861E‐02   0.5696E‐06  ‐0.9862E‐02  ‐0.1764E‐06   0.1375E‐01   0.1683E‐06  ‐0.1416E‐01 

‐0.8400E‐06   0.1224E‐01   0.6233E‐06  ‐0.9412E‐02  ‐0.1267E‐05   0.6634E‐02   0.7936E‐06 

‐0.4390E‐02  ‐0.1032E‐05   0.2745E‐02   0.3374E‐07  ‐0.1609E‐02  ‐0.1146E‐05   0.7614E‐03 

‐0.2807E‐06  ‐0.1134E‐03   0.1511E‐06         

 0.3325E‐03   0.6934E‐06  ‐0.6959E‐03   0.1408E‐05  ‐0.8744E‐03   0.1889E‐05   0.8948E‐03 

 0.2261E‐05   0.8287E‐03   0.2879E‐05  ‐0.2287E‐02   0.2986E‐05   0.1478E‐02   0.2469E‐05 

 0.1019E‐02   0.2470E‐05  ‐0.3511E‐02   0.2030E‐05   0.4899E‐02   0.1369E‐05  ‐0.5041E‐02 

 0.8787E‐06   0.4361E‐02   0.5545E‐06  ‐0.3352E‐02  ‐0.3557E‐06   0.2363E‐02  ‐0.2646E‐06 

‐0.1565E‐02  ‐0.1452E‐05   0.9766E‐03  ‐0.2217E‐05  ‐0.5760E‐03  ‐0.3884E‐05   0.2682E‐03 

‐0.3421E‐05  ‐0.4293E‐04  ‐0.1442E‐05         

‐0.2639E‐03   0.6554E‐06   0.9734E‐03   0.2078E‐05   0.1417E‐02   0.4131E‐05  ‐0.2763E‐02 

 0.4324E‐05  ‐0.2392E‐02   0.4543E‐05   0.6419E‐02   0.7795E‐05  ‐0.4172E‐02   0.6487E‐05 

‐0.2873E‐02   0.5708E‐05   0.9893E‐02   0.8772E‐05  ‐0.1379E‐01   0.1630E‐05   0.1420E‐01 

 0.7635E‐05  ‐0.1228E‐01  ‐0.1423E‐05   0.9441E‐02   0.3502E‐05  ‐0.6654E‐02  ‐0.3466E‐05 

 0.4401E‐02  ‐0.1814E‐05  ‐0.2755E‐02  ‐0.6890E‐05   0.1609E‐02  ‐0.8670E‐05  ‐0.7688E‐03 

‐0.9418E‐05   0.1086E‐03  ‐0.5095E‐05         

‐0.2501E‐03   0.4056E‐06   0.8689E‐03   0.2700E‐05   0.8432E‐03   0.5644E‐05  ‐0.1432E‐02 

 0.4118E‐05  ‐0.6402E‐03   0.5603E‐05   0.1081E‐02   0.1451E‐04  ‐0.7574E‐03   0.7261E‐05 

‐0.5178E‐03   0.8067E‐05   0.1740E‐02   0.1855E‐04  ‐0.2436E‐02  ‐0.2293E‐05   0.2506E‐02 

 0.1841E‐04  ‐0.2165E‐02  ‐0.5290E‐05   0.1667E‐02   0.8634E‐05  ‐0.1171E‐02  ‐0.6193E‐05 

 0.7779E‐03  ‐0.2704E‐05  ‐0.4822E‐03  ‐0.1031E‐04   0.2868E‐03  ‐0.1296E‐04  ‐0.1331E‐03 

‐0.1384E‐04   0.1851E‐04  ‐0.8557E‐05         

 0.3458E‐03   0.9719E‐07  ‐0.1170E‐02   0.2776E‐05  ‐0.9895E‐03   0.5445E‐05   0.3362E‐02 

 0.2802E‐05   0.1026E‐02   0.6557E‐05  ‐0.6468E‐02   0.1740E‐04   0.3934E‐02   0.7865E‐05 

 0.2729E‐02   0.1032E‐04  ‐0.9542E‐02   0.2369E‐04   0.1327E‐01  ‐0.1351E‐05  ‐0.1368E‐01 

 0.2400E‐04   0.1182E‐01  ‐0.3535E‐05  ‐0.9086E‐02   0.1138E‐04   0.6412E‐02  ‐0.4416E‐05 

‐0.4233E‐02  ‐0.2932E‐05   0.2662E‐02  ‐0.9249E‐05  ‐0.1541E‐02  ‐0.1360E‐04   0.7469E‐03 

‐0.1374E‐04  ‐0.1047E‐03  ‐0.9833E‐05         

‐0.1855E‐04  ‐0.2645E‐06   0.7199E‐04   0.1763E‐05   0.6963E‐04   0.5062E‐05  ‐0.1479E‐03 

 0.3891E‐05   0.2089E‐03   0.6261E‐05   0.1709E‐02   0.1673E‐04  ‐0.2386E‐02   0.1258E‐04 

‐0.1523E‐02   0.1418E‐04   0.4856E‐02   0.2482E‐04  ‐0.6859E‐02   0.7655E‐05   0.7025E‐02 

 0.2497E‐04  ‐0.6089E‐02   0.4237E‐05   0.4680E‐02   0.1390E‐04  ‐0.3292E‐02   0.1597E‐06 

 0.2193E‐02  ‐0.4024E‐06  ‐0.1349E‐02  ‐0.5725E‐05   0.8185E‐03  ‐0.1095E‐04  ‐0.3623E‐03 

‐0.1167E‐04   0.6417E‐04  ‐0.9898E‐05         

‐0.2534E‐03  ‐0.7389E‐06   0.8726E‐03   0.7605E‐06   0.7571E‐03   0.3891E‐05  ‐0.2355E‐02 

 0.2853E‐05   0.1691E‐03   0.4756E‐05   0.4026E‐02   0.1627E‐04  ‐0.3030E‐02   0.1237E‐04 

‐0.1293E‐02   0.1512E‐04   0.3081E‐02   0.2925E‐04  ‐0.4537E‐02   0.8368E‐05   0.4579E‐02 

Page 53: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 46  

 

 0.3207E‐04  ‐0.4000E‐02   0.6849E‐05   0.3062E‐02   0.2090E‐04  ‐0.2155E‐02   0.4381E‐05 

 0.1445E‐02   0.5977E‐05  ‐0.8728E‐03   0.8537E‐06   0.5524E‐03  ‐0.3478E‐05  ‐0.2234E‐03 

‐0.5416E‐05   0.5097E‐04  ‐0.7276E‐05         

 0.2862E‐03  ‐0.1115E‐05  ‐0.9698E‐03  ‐0.1138E‐06  ‐0.8293E‐03   0.1124E‐05   0.2672E‐02 

‐0.1277E‐05  ‐0.9983E‐04   0.2932E‐05  ‐0.4147E‐02   0.1288E‐04   0.5483E‐02   0.6640E‐05 

 0.2070E‐03   0.1333E‐04  ‐0.7456E‐02   0.2749E‐04   0.9692E‐02   0.9368E‐05  ‐0.1021E‐01 

 0.3353E‐04   0.8731E‐02   0.1206E‐04  ‐0.6752E‐02   0.2617E‐04   0.4750E‐02   0.1290E‐04 

‐0.3126E‐02   0.1569E‐04   0.1990E‐02   0.1393E‐04  ‐0.1115E‐02   0.1095E‐04   0.5765E‐03 

 0.7843E‐05  ‐0.6055E‐04   0.3869E‐07         

‐0.1664E‐03  ‐0.1202E‐05   0.5715E‐03  ‐0.1842E‐05   0.4974E‐03  ‐0.1519E‐05  ‐0.1543E‐02 

‐0.1666E‐05   0.9152E‐04  ‐0.7306E‐06   0.2519E‐02   0.4478E‐05  ‐0.2927E‐02   0.7093E‐05 

 0.1222E‐02   0.9924E‐05   0.4351E‐02   0.1771E‐04  ‐0.9241E‐02   0.1911E‐04   0.8909E‐02 

 0.2517E‐04  ‐0.7948E‐02   0.2384E‐04   0.6002E‐02   0.2775E‐04  ‐0.4276E‐02   0.2464E‐04 

 0.2828E‐02   0.2724E‐04  ‐0.1746E‐02   0.2953E‐04   0.1064E‐02   0.2773E‐04  ‐0.4628E‐03 

 0.2212E‐04   0.9216E‐04   0.8833E‐05         

 0.3105E‐04  ‐0.1139E‐05  ‐0.1050E‐03  ‐0.2794E‐05  ‐0.8576E‐04  ‐0.4563E‐05   0.2994E‐03 

‐0.4720E‐05  ‐0.6027E‐06  ‐0.3997E‐05  ‐0.4311E‐03  ‐0.4002E‐05   0.6269E‐03   0.1390E‐06 

‐0.3699E‐04   0.5258E‐05  ‐0.1095E‐03   0.7616E‐05   0.3032E‐02   0.1680E‐04  ‐0.5704E‐02 

 0.2152E‐04   0.4363E‐02   0.2695E‐04  ‐0.3606E‐02   0.3169E‐04   0.2423E‐02   0.3372E‐04 

‐0.1646E‐02   0.4066E‐04   0.1026E‐02   0.4574E‐04  ‐0.5774E‐03   0.4634E‐04   0.3026E‐03 

 0.3763E‐04  ‐0.2475E‐04   0.1929E‐04         

 0.5262E‐04  ‐0.8333E‐06  ‐0.1820E‐03  ‐0.3467E‐05  ‐0.1534E‐03  ‐0.7014E‐05   0.5029E‐03 

‐0.6678E‐05  ‐0.1374E‐04  ‐0.7288E‐05  ‐0.7669E‐03  ‐0.1323E‐04   0.1012E‐02  ‐0.6360E‐05 

‐0.2184E‐03  ‐0.1313E‐05  ‐0.6073E‐03  ‐0.5209E‐05   0.2077E‐02   0.1637E‐04  ‐0.1745E‐03 

 0.9119E‐05  ‐0.2185E‐02   0.3277E‐04   0.1127E‐02   0.3067E‐04  ‐0.1065E‐02   0.4301E‐04 

 0.5760E‐03   0.5277E‐04  ‐0.4200E‐03   0.6072E‐04   0.2258E‐03   0.6301E‐04  ‐0.1112E‐03 

 0.5048E‐04   0.2295E‐04   0.2907E‐04         

‐0.8619E‐04  ‐0.3409E‐06   0.2885E‐03  ‐0.3748E‐05   0.2499E‐03  ‐0.8400E‐05  ‐0.7896E‐03 

‐0.7109E‐05   0.4431E‐04  ‐0.9967E‐05   0.1278E‐02  ‐0.2149E‐04  ‐0.1518E‐02  ‐0.1117E‐04 

 0.5140E‐03  ‐0.8722E‐05   0.1342E‐02  ‐0.1840E‐04  ‐0.2554E‐02   0.1453E‐04   0.4068E‐02 

‐0.3817E‐05  ‐0.1938E‐02   0.3196E‐04  ‐0.7088E‐03   0.2853E‐04  ‐0.5196E‐04   0.4679E‐04 

‐0.2525E‐03   0.6068E‐04   0.3357E‐05   0.6896E‐04  ‐0.9073E‐04   0.7208E‐04  ‐0.9508E‐05 

 0.5567E‐04  ‐0.1271E‐04   0.3469E‐04         

 0.8000E‐04   0.1745E‐06  ‐0.2804E‐03  ‐0.3145E‐05  ‐0.2418E‐03  ‐0.8685E‐05   0.7580E‐03 

‐0.7978E‐05  ‐0.3291E‐04  ‐0.1112E‐04  ‐0.1197E‐02  ‐0.2603E‐04   0.1505E‐02  ‐0.1775E‐04 

‐0.4061E‐03  ‐0.1495E‐04  ‐0.1124E‐02  ‐0.2894E‐04   0.2747E‐02   0.6429E‐05  ‐0.3321E‐02 

‐0.1271E‐04   0.4387E‐02   0.2475E‐04  ‐0.2000E‐02   0.2280E‐04  ‐0.7094E‐03   0.4562E‐04 

‐0.8427E‐04   0.6248E‐04  ‐0.2599E‐03   0.6921E‐04  ‐0.3873E‐04   0.7191E‐04  ‐0.1015E‐03 

 0.5226E‐04  ‐0.2766E‐04   0.3520E‐04         

‐0.6508E‐04   0.6638E‐06   0.2139E‐03  ‐0.2294E‐05   0.1821E‐03  ‐0.7384E‐05  ‐0.5969E‐03 

‐0.6501E‐05   0.2825E‐04  ‐0.1101E‐04   0.9477E‐03  ‐0.2714E‐04  ‐0.1145E‐02  ‐0.1933E‐04 

 0.3769E‐03  ‐0.1973E‐04   0.9755E‐03  ‐0.3533E‐04  ‐0.1975E‐02  ‐0.5613E‐06   0.2899E‐02 

Page 54: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 47  

 

‐0.2278E‐04  ‐0.2892E‐02   0.1692E‐04   0.3773E‐02   0.1247E‐04  ‐0.1419E‐02   0.3620E‐04 

‐0.1126E‐02   0.5510E‐04   0.1558E‐03   0.5668E‐04  ‐0.4307E‐03   0.5694E‐04  ‐0.6747E‐06 

 0.3553E‐04  ‐0.7722E‐04   0.2694E‐04         

 0.4298E‐04   0.9661E‐06  ‐0.1536E‐03  ‐0.9316E‐06  ‐0.1356E‐03  ‐0.5057E‐05   0.4054E‐03 

‐0.5048E‐05  ‐0.2218E‐04  ‐0.8998E‐05  ‐0.6569E‐03  ‐0.2322E‐04   0.8088E‐03  ‐0.1992E‐04 

‐0.2210E‐03  ‐0.2114E‐04  ‐0.6177E‐03  ‐0.3565E‐04   0.1483E‐02  ‐0.1037E‐04  ‐0.1830E‐02 

‐0.2681E‐04   0.2316E‐02   0.2351E‐05  ‐0.2085E‐02   0.2621E‐05   0.3042E‐02   0.1919E‐04 

‐0.8275E‐03   0.3660E‐04  ‐0.1468E‐02   0.3244E‐04   0.3212E‐03   0.2712E‐04  ‐0.4706E‐03 

 0.6953E‐05  ‐0.4798E‐04   0.1013E‐04         

‐0.2655E‐04   0.9673E‐06   0.8655E‐04   0.4692E‐06   0.7102E‐04  ‐0.1407E‐05  ‐0.2482E‐03 

‐0.1909E‐05   0.7333E‐05  ‐0.5134E‐05   0.3782E‐03  ‐0.1383E‐04  ‐0.4768E‐03  ‐0.1465E‐04 

 0.1499E‐03  ‐0.1812E‐04   0.3888E‐03  ‐0.2771E‐04  ‐0.8066E‐03  ‐0.1772E‐04   0.1183E‐02 

‐0.2703E‐04  ‐0.1187E‐02  ‐0.1356E‐04   0.1550E‐02  ‐0.1299E‐04  ‐0.1290E‐02  ‐0.4823E‐05 

 0.2418E‐02   0.2041E‐05  ‐0.2635E‐03  ‐0.1265E‐04  ‐0.1698E‐02  ‐0.2566E‐04   0.3720E‐03 

‐0.4091E‐04  ‐0.2101E‐03  ‐0.2089E‐04         

 0.1669E‐04   0.5971E‐06  ‐0.5723E‐04   0.1282E‐05  ‐0.5157E‐04   0.1622E‐05   0.1508E‐03 

 0.8246E‐06  ‐0.1118E‐04  ‐0.5498E‐06  ‐0.2542E‐03  ‐0.2287E‐05   0.2943E‐03  ‐0.6351E‐05 

‐0.9350E‐04  ‐0.1020E‐04  ‐0.2479E‐03  ‐0.1327E‐04   0.5455E‐03  ‐0.1890E‐04  ‐0.6999E‐03 

‐0.2005E‐04   0.8651E‐03  ‐0.2424E‐04  ‐0.7810E‐03  ‐0.2469E‐04   0.1168E‐02  ‐0.2775E‐04 

‐0.9363E‐03  ‐0.3378E‐04   0.2189E‐02  ‐0.5965E‐04  ‐0.9132E‐05  ‐0.8398E‐04  ‐0.1412E‐02 

‐0.8839E‐04   0.1722E‐04  ‐0.5537E‐04         

‐0.1520E‐04   0.1473E‐06   0.5365E‐04   0.1102E‐05   0.4550E‐04   0.2569E‐05  ‐0.1465E‐03 

 0.2183E‐05   0.4809E‐05   0.2031E‐05   0.2261E‐03   0.4555E‐05  ‐0.2913E‐03   0.1043E‐05 

 0.7757E‐04  ‐0.2332E‐05   0.2179E‐03  ‐0.1008E‐05  ‐0.5092E‐03  ‐0.1245E‐04   0.6795E‐03 

‐0.1096E‐04  ‐0.7496E‐03  ‐0.2216E‐04   0.8800E‐03  ‐0.2638E‐04  ‐0.8410E‐03  ‐0.3384E‐04 

 0.1360E‐02  ‐0.5056E‐04  ‐0.1380E‐02  ‐0.7651E‐04   0.2856E‐02  ‐0.1083E‐03  ‐0.5984E‐03 

‐0.1039E‐03  ‐0.3884E‐03  ‐0.6994E‐04         

 0.2140E‐04  ‐0.5029E‐07  ‐0.7134E‐04   0.5257E‐06  ‐0.6128E‐04   0.1656E‐05   0.1967E‐03 

 0.1665E‐05  ‐0.1001E‐04   0.2016E‐05  ‐0.3147E‐03   0.4583E‐05   0.3801E‐03   0.2954E‐05 

‐0.1209E‐03   0.1186E‐05  ‐0.3154E‐03   0.3057E‐05   0.6737E‐03  ‐0.4917E‐05  ‐0.9214E‐03 

‐0.4034E‐05   0.1040E‐02  ‐0.1218E‐04  ‐0.1104E‐02  ‐0.1696E‐04   0.1312E‐02  ‐0.2244E‐04 

‐0.1514E‐02  ‐0.3711E‐04   0.2345E‐02  ‐0.5375E‐04  ‐0.2906E‐02  ‐0.7574E‐04   0.4382E‐02 

‐0.7146E‐04  ‐0.1182E‐02  ‐0.4940E‐04         

Page 55: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 48  

 

 

Y3             

‐0.4187E‐03  ‐0.4431E‐06  ‐0.3320E‐03  ‐0.7039E‐06   0.2636E‐03  ‐0.6854E‐06   0.2490E‐03 

‐0.4280E‐06  ‐0.3428E‐03  ‐0.1064E‐06   0.1802E‐04   0.2842E‐06   0.2496E‐03   0.7573E‐06 

‐0.2808E‐03   0.1064E‐05   0.1626E‐03   0.1226E‐05  ‐0.3018E‐04   0.1118E‐05  ‐0.5121E‐04 

 0.8079E‐06   0.8370E‐04   0.3496E‐06  ‐0.7743E‐04  ‐0.2070E‐06   0.6290E‐04  ‐0.6508E‐06 

‐0.4142E‐04  ‐0.9812E‐06   0.2556E‐04  ‐0.9574E‐06  ‐0.1617E‐04  ‐0.5995E‐06   0.1476E‐04 

‐0.1449E‐06  ‐0.2109E‐04   0.4503E‐07         

 0.8354E‐03  ‐0.6332E‐06   0.6943E‐03  ‐0.1337E‐05  ‐0.9716E‐03  ‐0.2046E‐05  ‐0.8649E‐03 

‐0.2690E‐05   0.1160E‐02  ‐0.2715E‐05  ‐0.7010E‐04  ‐0.1857E‐05  ‐0.8593E‐03  ‐0.8882E‐06 

 0.9510E‐03   0.3024E‐06  ‐0.5587E‐03   0.1701E‐05   0.1020E‐03   0.2835E‐05   0.1771E‐03 

 0.3529E‐05  ‐0.2800E‐03   0.3677E‐05   0.2715E‐03   0.3249E‐05  ‐0.2065E‐03   0.2230E‐05 

 0.1482E‐03   0.9915E‐06  ‐0.8316E‐04  ‐0.4989E‐06   0.5545E‐04  ‐0.1256E‐05  ‐0.5212E‐04 

‐0.1096E‐05   0.7026E‐04  ‐0.4949E‐06         

 0.2126E‐02  ‐0.5362E‐06   0.8757E‐03  ‐0.1812E‐05  ‐0.1422E‐02  ‐0.3969E‐05  ‐0.8445E‐03 

‐0.5562E‐05   0.9869E‐03  ‐0.5486E‐05  ‐0.6834E‐04  ‐0.5159E‐05  ‐0.7504E‐03  ‐0.3960E‐05 

 0.8184E‐03  ‐0.1039E‐05  ‐0.4894E‐03   0.1442E‐05   0.8377E‐04   0.4608E‐05   0.1502E‐03 

 0.7081E‐05  ‐0.2441E‐03   0.8392E‐05   0.2357E‐03   0.8786E‐05  ‐0.1768E‐03   0.7370E‐05 

 0.1318E‐03   0.5110E‐05  ‐0.6854E‐04   0.1385E‐05   0.5034E‐04  ‐0.1622E‐05  ‐0.4448E‐04 

‐0.2570E‐05   0.6073E‐04  ‐0.1629E‐05         

‐0.2579E‐02  ‐0.6985E‐06  ‐0.8950E‐03  ‐0.2415E‐05   0.2766E‐02  ‐0.4333E‐05   0.1430E‐02 

‐0.4043E‐05  ‐0.3348E‐02  ‐0.2887E‐05   0.1437E‐03  ‐0.3625E‐05   0.2329E‐02  ‐0.2532E‐05 

‐0.2633E‐02   0.7325E‐06   0.1515E‐02   0.2000E‐05  ‐0.2925E‐03   0.4550E‐05  ‐0.4919E‐03 

 0.6453E‐05   0.7697E‐03   0.7252E‐05  ‐0.7372E‐03   0.7651E‐05   0.5792E‐03   0.6650E‐05 

‐0.3926E‐03   0.4875E‐05   0.2400E‐03   0.1996E‐05  ‐0.1467E‐03  ‐0.8943E‐06   0.1429E‐03 

‐0.2181E‐05  ‐0.1947E‐03  ‐0.1714E‐05         

‐0.2369E‐02  ‐0.1379E‐05  ‐0.8361E‐03  ‐0.2982E‐05   0.2415E‐02  ‐0.4712E‐05   0.6437E‐03 

‐0.5563E‐05  ‐0.1035E‐02  ‐0.6387E‐05  ‐0.2090E‐03  ‐0.6103E‐05  ‐0.1632E‐03  ‐0.4666E‐05 

 0.9280E‐04  ‐0.2885E‐05  ‐0.8697E‐04   0.6904E‐06  ‐0.1895E‐06   0.3930E‐05   0.1230E‐04 

 0.7189E‐05  ‐0.4181E‐04   0.9838E‐05   0.3039E‐04   0.1101E‐04  ‐0.2632E‐04   0.1091E‐04 

 0.2067E‐04   0.8944E‐05  ‐0.6556E‐05   0.5122E‐05   0.1063E‐04   0.5697E‐06  ‐0.4367E‐05 

‐0.1999E‐05   0.9519E‐05  ‐0.1977E‐05         

 0.6479E‐02  ‐0.1246E‐05   0.2309E‐02  ‐0.2949E‐05  ‐0.6486E‐02  ‐0.7039E‐05  ‐0.1092E‐02 

‐0.1434E‐04   0.6490E‐02  ‐0.1785E‐04  ‐0.1707E‐02  ‐0.1712E‐04  ‐0.4017E‐02  ‐0.1637E‐04 

 0.4119E‐02  ‐0.1240E‐04  ‐0.2494E‐02  ‐0.4771E‐05   0.4240E‐03   0.4241E‐05   0.7559E‐03 

 0.1354E‐04  ‐0.1257E‐02   0.2144E‐04   0.1174E‐02   0.2650E‐04  ‐0.9271E‐03   0.2706E‐04 

 0.6419E‐03   0.2347E‐04  ‐0.3682E‐03   0.1373E‐04   0.2496E‐03   0.2306E‐05  ‐0.2225E‐03 

‐0.4575E‐05   0.3139E‐03  ‐0.4492E‐05         

‐0.4204E‐02   0.4954E‐06  ‐0.1495E‐02  ‐0.2467E‐05   0.4224E‐02  ‐0.7304E‐05   0.7660E‐03 

‐0.7401E‐05  ‐0.3958E‐02  ‐0.7207E‐05   0.2386E‐02  ‐0.1231E‐04   0.3029E‐02  ‐0.1240E‐04 

‐0.5463E‐02  ‐0.6781E‐05   0.2904E‐02  ‐0.6735E‐05  ‐0.6196E‐03  ‐0.2939E‐06  ‐0.1000E‐02 

Page 56: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 49  

 

 0.6105E‐05   0.1496E‐02   0.1123E‐04  ‐0.1480E‐02   0.1729E‐04   0.1123E‐02   0.1941E‐04 

‐0.7921E‐03   0.1964E‐04   0.4657E‐03   0.1471E‐04  ‐0.2893E‐03   0.6221E‐05   0.2874E‐03 

‐0.1109E‐05  ‐0.3802E‐03  ‐0.3011E‐05         

‐0.2915E‐02  ‐0.3244E‐06  ‐0.1037E‐02  ‐0.2499E‐05   0.2928E‐02  ‐0.6210E‐05   0.5271E‐03 

‐0.8153E‐05  ‐0.2763E‐02  ‐0.9938E‐05   0.1533E‐02  ‐0.1395E‐04   0.1298E‐02  ‐0.1498E‐04 

‐0.2120E‐03  ‐0.1341E‐04  ‐0.1217E‐02  ‐0.9842E‐05   0.3496E‐04  ‐0.5228E‐05   0.2155E‐03 

 0.1238E‐05  ‐0.5078E‐03   0.8545E‐05   0.3990E‐03   0.1479E‐04  ‐0.3707E‐03   0.1950E‐04 

 0.2160E‐03   0.2101E‐04  ‐0.1469E‐03   0.1803E‐04   0.9202E‐04   0.1022E‐04  ‐0.7653E‐04 

 0.2387E‐05   0.1211E‐03  ‐0.1132E‐05         

 0.1006E‐01  ‐0.1460E‐05   0.3581E‐02  ‐0.2346E‐05  ‐0.1010E‐01  ‐0.6525E‐05  ‐0.1774E‐02 

‐0.1826E‐04   0.9673E‐02  ‐0.2573E‐04  ‐0.4897E‐02  ‐0.2502E‐04  ‐0.3108E‐02  ‐0.2891E‐04 

 0.7478E‐02  ‐0.2768E‐04  ‐0.4351E‐02  ‐0.1783E‐04   0.1057E‐03  ‐0.7241E‐05   0.6038E‐03 

 0.5724E‐05  ‐0.1333E‐02   0.1882E‐04   0.1112E‐02   0.2958E‐04  ‐0.9640E‐03   0.3560E‐04 

 0.6094E‐03   0.3597E‐04  ‐0.3824E‐03   0.2766E‐04   0.2458E‐03   0.1318E‐04  ‐0.2164E‐03 

 0.8886E‐06   0.3176E‐03  ‐0.3087E‐05         

‐0.1407E‐01   0.2532E‐05  ‐0.5008E‐02  ‐0.8514E‐06   0.1411E‐01  ‐0.5335E‐05   0.2490E‐02 

 0.1731E‐05  ‐0.1349E‐01   0.4584E‐05   0.6935E‐02  ‐0.7579E‐05   0.4586E‐02  ‐0.8752E‐05 

‐0.9749E‐02  ‐0.8472E‐05   0.9261E‐02  ‐0.1915E‐04  ‐0.3028E‐02  ‐0.1727E‐04  ‐0.2074E‐02 

‐0.1690E‐04   0.2540E‐02  ‐0.1499E‐04  ‐0.2728E‐02  ‐0.7343E‐05   0.1954E‐02   0.1781E‐06 

‐0.1467E‐02   0.9732E‐05   0.7946E‐03   0.1763E‐04  ‐0.5418E‐03   0.1883E‐04   0.5071E‐03 

 0.1239E‐04  ‐0.6804E‐03   0.4858E‐05         

 0.1452E‐01  ‐0.2373E‐05   0.5167E‐02  ‐0.1611E‐05  ‐0.1457E‐01  ‐0.3497E‐05  ‐0.2568E‐02 

‐0.1786E‐04   0.1393E‐01  ‐0.2784E‐04  ‐0.7121E‐02  ‐0.2493E‐04  ‐0.4641E‐02  ‐0.3150E‐04 

 0.1030E‐01  ‐0.3460E‐04  ‐0.8954E‐02  ‐0.2462E‐04   0.5712E‐02  ‐0.2110E‐04   0.1759E‐03 

‐0.8620E‐05  ‐0.4060E‐02   0.4486E‐05   0.3303E‐02   0.1370E‐04  ‐0.2878E‐02   0.2320E‐04 

 0.1814E‐02   0.2735E‐04  ‐0.1170E‐02   0.2697E‐04   0.6966E‐03   0.2007E‐04  ‐0.6783E‐03 

 0.1099E‐04   0.9325E‐03   0.3956E‐05         

‐0.1259E‐01   0.2445E‐05  ‐0.4481E‐02   0.1487E‐06   0.1262E‐01  ‐0.2524E‐05   0.2223E‐02 

 0.4704E‐05  ‐0.1208E‐01   0.7086E‐05   0.6187E‐02  ‐0.4500E‐05   0.4063E‐02  ‐0.7448E‐05 

‐0.8824E‐02  ‐0.1083E‐04   0.8006E‐02  ‐0.2431E‐04  ‐0.4381E‐02  ‐0.2696E‐04   0.2186E‐02 

‐0.3318E‐04   0.1938E‐02  ‐0.3262E‐04  ‐0.4378E‐02  ‐0.2547E‐04   0.2876E‐02  ‐0.1722E‐04 

‐0.2302E‐02  ‐0.2847E‐05   0.1175E‐02   0.1351E‐04  ‐0.8631E‐03   0.2414E‐04   0.7502E‐03 

 0.2189E‐04  ‐0.1055E‐02   0.1197E‐04         

 0.9695E‐02  ‐0.1292E‐05   0.3451E‐02  ‐0.2679E‐06  ‐0.9728E‐02  ‐0.3087E‐06  ‐0.1716E‐02 

‐0.8219E‐05   0.9300E‐02  ‐0.1440E‐04  ‐0.4765E‐02  ‐0.1369E‐04  ‐0.3118E‐02  ‐0.2046E‐04 

 0.6839E‐02  ‐0.2728E‐04  ‐0.6060E‐02  ‐0.2716E‐04   0.3628E‐02  ‐0.3157E‐04  ‐0.1132E‐02 

‐0.3011E‐04   0.7082E‐03  ‐0.2798E‐04   0.1999E‐02  ‐0.2239E‐04  ‐0.3765E‐02  ‐0.1222E‐04 

 0.2075E‐02  ‐0.2294E‐05  ‐0.1540E‐02   0.1297E‐04   0.7808E‐03   0.2488E‐04  ‐0.8823E‐03 

 0.2660E‐04   0.1124E‐02   0.1677E‐04         

‐0.6849E‐02   0.1135E‐05  ‐0.2438E‐02   0.7440E‐06   0.6871E‐02   0.1063E‐05   0.1208E‐02 

 0.5815E‐05  ‐0.6577E‐02   0.6573E‐05   0.3359E‐02  ‐0.4714E‐06   0.2199E‐02  ‐0.4848E‐05 

‐0.4821E‐02  ‐0.1209E‐04   0.4326E‐02  ‐0.2510E‐04  ‐0.2444E‐02  ‐0.3360E‐04   0.1070E‐02 

Page 57: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 50  

 

‐0.4313E‐04   0.5083E‐04  ‐0.4684E‐04   0.7092E‐03  ‐0.4574E‐04   0.1418E‐02  ‐0.3638E‐04 

‐0.3037E‐02  ‐0.1932E‐04   0.1283E‐02   0.4868E‐05  ‐0.1170E‐02   0.2761E‐04   0.8461E‐03 

 0.3326E‐04  ‐0.1335E‐02   0.2199E‐04         

 0.4541E‐02  ‐0.3302E‐06   0.1618E‐02   0.1120E‐05  ‐0.4553E‐02   0.3512E‐05  ‐0.8039E‐03 

 0.2955E‐05   0.4350E‐02   0.1388E‐05  ‐0.2242E‐02   0.6359E‐06  ‐0.1477E‐02  ‐0.5687E‐05 

 0.3179E‐02  ‐0.1632E‐04  ‐0.2866E‐02  ‐0.2683E‐04   0.1663E‐02  ‐0.4069E‐04  ‐0.5812E‐03 

‐0.5250E‐04   0.2531E‐03  ‐0.6049E‐04   0.8282E‐04  ‐0.6233E‐04   0.1128E‐02  ‐0.5526E‐04 

 0.8275E‐03  ‐0.3696E‐04  ‐0.2414E‐02  ‐0.2334E‐05   0.9411E‐03   0.3401E‐04  ‐0.1368E‐02 

 0.5106E‐04   0.1549E‐02   0.3680E‐04         

‐0.2842E‐02   0.8436E‐06  ‐0.1010E‐02   0.2449E‐05   0.2852E‐02   0.5807E‐05   0.4987E‐03 

 0.1008E‐04  ‐0.2737E‐02   0.1014E‐04   0.1381E‐02   0.5490E‐05   0.8934E‐03  ‐0.1151E‐05 

‐0.2024E‐02  ‐0.1357E‐04   0.1771E‐02  ‐0.2972E‐04  ‐0.1038E‐02  ‐0.4554E‐04   0.4234E‐03 

‐0.6053E‐04  ‐0.4032E‐05  ‐0.6864E‐04   0.2602E‐03  ‐0.6885E‐04  ‐0.1585E‐03  ‐0.5636E‐04 

 0.1467E‐02  ‐0.3235E‐04   0.2616E‐03   0.1233E‐04  ‐0.2194E‐02   0.5897E‐04   0.1393E‐02 

 0.7512E‐04  ‐0.2392E‐02   0.5297E‐04         

 0.1660E‐02   0.6957E‐06   0.5941E‐03   0.3801E‐05  ‐0.1661E‐02   0.9310E‐05  ‐0.2956E‐03 

 0.1315E‐04   0.1580E‐02   0.1323E‐04  ‐0.8346E‐03   0.1118E‐04  ‐0.5630E‐03   0.3690E‐05 

 0.1132E‐02  ‐0.1110E‐04  ‐0.1076E‐02  ‐0.2771E‐04   0.5820E‐03  ‐0.4662E‐04  ‐0.2272E‐03 

‐0.6335E‐04   0.9101E‐04  ‐0.7258E‐04   0.3889E‐04  ‐0.7245E‐04   0.4319E‐03  ‐0.5750E‐04 

‐0.3186E‐03  ‐0.2747E‐04   0.1696E‐02   0.2579E‐04   0.1246E‐04   0.8504E‐04  ‐0.2860E‐02 

 0.1093E‐03   0.2964E‐02   0.7522E‐04         

‐0.7797E‐03   0.4131E‐06  ‐0.2747E‐03   0.3423E‐05   0.7872E‐03   0.9121E‐05   0.1361E‐03 

 0.1357E‐04  ‐0.7596E‐03   0.1362E‐04   0.3671E‐03   0.1142E‐04   0.2268E‐03   0.5158E‐05 

‐0.5797E‐03  ‐0.7841E‐05   0.4650E‐03  ‐0.2189E‐04  ‐0.3022E‐03  ‐0.3716E‐04   0.1111E‐03 

‐0.4967E‐04   0.9312E‐05  ‐0.5470E‐04   0.1004E‐03  ‐0.5121E‐04  ‐0.3714E‐06  ‐0.3472E‐04 

 0.4650E‐03  ‐0.6513E‐05  ‐0.3677E‐03   0.4022E‐04   0.1399E‐02   0.8707E‐04   0.5921E‐03 

 0.1017E‐03  ‐0.4411E‐02   0.6938E‐04         

 0.1155E‐03  ‐0.1846E‐06   0.4369E‐04   0.1458E‐05  ‐0.1107E‐03   0.5205E‐05  ‐0.1885E‐04 

 0.8658E‐05   0.1059E‐03   0.9912E‐05  ‐0.6465E‐04   0.1003E‐04  ‐0.5139E‐04   0.7369E‐05 

 0.6045E‐04  ‐0.3688E‐07  ‐0.9228E‐04  ‐0.8913E‐05   0.2432E‐04  ‐0.1952E‐04  ‐0.2295E‐04 

‐0.2940E‐04   0.1274E‐04  ‐0.3514E‐04   0.2801E‐04  ‐0.3567E‐04   0.7764E‐04  ‐0.2740E‐04 

 0.4963E‐04  ‐0.1041E‐04   0.2100E‐03   0.2091E‐04  ‐0.1308E‐04   0.5594E‐04   0.3910E‐03 

 0.7058E‐04   0.1184E‐02   0.4951E‐04         

Page 58: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 51  

 

 

Y4             

 0.7929E‐07  ‐0.5711E‐04   0.1169E‐06   0.1319E‐03   0.9606E‐07   0.3263E‐03   0.1262E‐06 

‐0.3951E‐03   0.2560E‐06  ‐0.3598E‐03   0.1219E‐06   0.9836E‐03   0.4972E‐07  ‐0.6368E‐03 

 0.1331E‐06  ‐0.4388E‐03  ‐0.7951E‐07   0.1512E‐02   0.1354E‐06  ‐0.2109E‐02  ‐0.2171E‐06 

 0.2171E‐02   0.1843E‐06  ‐0.1878E‐02  ‐0.2482E‐06   0.1443E‐02   0.1679E‐06  ‐0.1017E‐02 

‐0.1652E‐06   0.6733E‐03   0.2704E‐07  ‐0.4210E‐03  ‐0.1483E‐06   0.2468E‐03   0.5987E‐08 

‐0.1167E‐03   0.6791E‐07   0.1743E‐04         

 0.1100E‐06   0.1318E‐03   0.3016E‐06  ‐0.2164E‐03   0.6399E‐06  ‐0.1033E‐02   0.1051E‐05 

 0.1363E‐02   0.8139E‐06   0.1231E‐02   0.9160E‐06  ‐0.3352E‐02   0.1626E‐05   0.2172E‐02 

 0.1171E‐05   0.1496E‐02   0.1005E‐05  ‐0.5158E‐02   0.1165E‐05   0.7192E‐02   0.7194E‐06 

‐0.7404E‐02   0.3007E‐06   0.6403E‐02   0.5455E‐06  ‐0.4922E‐02  ‐0.4618E‐06   0.3469E‐02 

 0.4927E‐07  ‐0.2295E‐02  ‐0.1060E‐05   0.1437E‐02  ‐0.9338E‐06  ‐0.8392E‐03  ‐0.1187E‐05 

 0.4003E‐03  ‐0.4822E‐06  ‐0.5769E‐04         

 0.9358E‐07   0.3274E‐03   0.6108E‐06  ‐0.1037E‐02   0.1609E‐05  ‐0.5237E‐03   0.1468E‐05 

 0.1324E‐02   0.1629E‐05   0.1093E‐02   0.3625E‐05  ‐0.2896E‐02   0.2698E‐05   0.1886E‐02 

 0.2596E‐05   0.1299E‐02   0.4706E‐05  ‐0.4468E‐02   0.4895E‐06   0.6232E‐02   0.4566E‐05 

‐0.6416E‐02  ‐0.7978E‐06   0.5547E‐02   0.2444E‐05  ‐0.4265E‐02  ‐0.1592E‐05   0.3005E‐02 

‐0.2307E‐06  ‐0.1989E‐02  ‐0.2846E‐05   0.1244E‐02  ‐0.2857E‐05  ‐0.7274E‐03  ‐0.3194E‐05 

 0.3466E‐03  ‐0.1680E‐05  ‐0.4975E‐04         

 0.1518E‐06  ‐0.3961E‐03   0.1044E‐05   0.1367E‐02   0.1346E‐05   0.1320E‐02   0.7152E‐06 

‐0.2929E‐02   0.2528E‐05  ‐0.3097E‐02   0.5870E‐05   0.9256E‐02   0.1681E‐05  ‐0.5940E‐02 

 0.3531E‐05  ‐0.4096E‐02   0.7587E‐05   0.1416E‐01  ‐0.4599E‐06  ‐0.1973E‐01   0.7576E‐05 

 0.2032E‐01  ‐0.3395E‐06  ‐0.1757E‐01   0.3155E‐05   0.1351E‐01  ‐0.2602E‐06  ‐0.9523E‐02 

‐0.1137E‐05   0.6297E‐02  ‐0.2291E‐05  ‐0.3944E‐02  ‐0.3856E‐05   0.2304E‐02  ‐0.2868E‐05 

‐0.1097E‐02  ‐0.1808E‐05   0.1604E‐03         

 0.2594E‐06  ‐0.3639E‐03   0.8847E‐06   0.1246E‐02   0.1589E‐05   0.1098E‐02   0.2331E‐05 

‐0.3120E‐02   0.4735E‐05   0.1340E‐02   0.4368E‐05  ‐0.5216E‐05   0.7118E‐05   0.3579E‐03 

 0.7574E‐05   0.2209E‐03   0.6119E‐05  ‐0.6292E‐03   0.9754E‐05   0.9081E‐03   0.4730E‐05 

‐0.9224E‐03   0.7889E‐05   0.8020E‐03   0.2789E‐05  ‐0.6168E‐03   0.3786E‐05   0.4316E‐03 

‐0.3636E‐06  ‐0.2906E‐03  ‐0.9957E‐06   0.1751E‐03  ‐0.4148E‐05  ‐0.1084E‐03  ‐0.3155E‐05 

 0.4788E‐04  ‐0.2132E‐05  ‐0.7882E‐05         

 0.1844E‐06   0.9955E‐03   0.5785E‐06  ‐0.3394E‐02   0.3556E‐05  ‐0.2913E‐02   0.6757E‐05 

 0.9327E‐02   0.4336E‐05  ‐0.2659E‐04   0.8861E‐05  ‐0.1314E‐01   0.1375E‐04   0.1013E‐01 

 0.1301E‐04   0.6720E‐02   0.1357E‐04  ‐0.2266E‐01   0.1526E‐04   0.3170E‐01   0.1275E‐04 

‐0.3260E‐01   0.1090E‐04   0.2821E‐01   0.9544E‐05  ‐0.2168E‐01   0.4196E‐05   0.1528E‐01 

 0.2742E‐05  ‐0.1011E‐01  ‐0.2764E‐05   0.6318E‐02  ‐0.6501E‐05  ‐0.3707E‐02  ‐0.7460E‐05 

 0.1754E‐02  ‐0.4858E‐05  ‐0.2587E‐03         

‐0.2343E‐07  ‐0.6459E‐03   0.2006E‐05   0.2204E‐02   0.2866E‐05   0.1901E‐02   0.7037E‐06 

‐0.6000E‐02   0.7131E‐05   0.3722E‐03   0.1434E‐04   0.1015E‐01   0.6136E‐05  ‐0.9684E‐02 

 0.1180E‐04  ‐0.7397E‐02   0.2778E‐04   0.2815E‐01   0.1358E‐05  ‐0.3891E‐01   0.3219E‐04 

Page 59: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 52  

 

 0.4018E‐01   0.3761E‐05  ‐0.3470E‐01   0.2114E‐04   0.2669E‐01   0.5664E‐05  ‐0.1881E‐01 

 0.8068E‐05   0.1244E‐01   0.1779E‐05  ‐0.7800E‐02  ‐0.3276E‐05   0.4542E‐02  ‐0.3870E‐05 

‐0.2175E‐02  ‐0.3461E‐05   0.3124E‐03         

 0.9407E‐07  ‐0.4479E‐03   0.1401E‐05   0.1528E‐02   0.2685E‐05   0.1318E‐02   0.2955E‐05 

‐0.4164E‐02   0.7598E‐05   0.2324E‐03   0.1323E‐04   0.6772E‐02   0.1184E‐04  ‐0.7441E‐02 

 0.1932E‐04   0.5000E‐02   0.1867E‐04  ‐0.7543E‐02   0.2732E‐04   0.1194E‐01   0.2048E‐04 

‐0.1193E‐01   0.2676E‐04   0.1047E‐01   0.1984E‐04  ‐0.7983E‐02   0.2013E‐04   0.5654E‐02 

 0.1445E‐04  ‐0.3739E‐02   0.1239E‐04   0.2324E‐02   0.2523E‐05  ‐0.1383E‐02   0.4366E‐06 

 0.6385E‐03  ‐0.1542E‐05  ‐0.1010E‐03         

 0.1812E‐06   0.1546E‐02  ‐0.1026E‐06  ‐0.5274E‐02   0.4126E‐05  ‐0.4539E‐02   0.1063E‐04 

 0.1441E‐01   0.6054E‐05  ‐0.6698E‐03   0.1092E‐04  ‐0.2288E‐01   0.2957E‐04   0.2834E‐01 

 0.1908E‐04  ‐0.7591E‐02   0.2869E‐04  ‐0.1953E‐01   0.3426E‐04   0.3250E‐01   0.3246E‐04 

‐0.3217E‐01   0.3348E‐04   0.2821E‐01   0.3142E‐04  ‐0.2150E‐01   0.2638E‐04   0.1524E‐01 

 0.2357E‐04  ‐0.1005E‐01   0.1839E‐04   0.6285E‐02   0.4722E‐05  ‐0.3701E‐02  ‐0.1378E‐05 

 0.1737E‐02  ‐0.3658E‐05  ‐0.2631E‐03         

‐0.2913E‐06  ‐0.2162E‐02   0.2981E‐05   0.7372E‐02   0.1525E‐05   0.6347E‐02  ‐0.5342E‐05 

‐0.2014E‐01   0.9975E‐05   0.9671E‐03   0.1996E‐04   0.3208E‐01  ‐0.2569E‐05  ‐0.3928E‐01 

 0.2730E‐04   0.1203E‐01   0.3556E‐04   0.3256E‐01   0.9476E‐05  ‐0.6621E‐01   0.5865E‐04 

 0.7297E‐01   0.2213E‐04  ‐0.6183E‐01   0.5182E‐04   0.4796E‐01   0.3306E‐04  ‐0.3360E‐01 

 0.4169E‐04   0.2232E‐01   0.3710E‐04  ‐0.1394E‐01   0.2346E‐04   0.8140E‐02   0.1406E‐04 

‐0.3892E‐02   0.4597E‐05   0.5580E‐03         

 0.2885E‐06   0.2231E‐02  ‐0.1347E‐05  ‐0.7609E‐02   0.3341E‐05  ‐0.6551E‐02   0.1323E‐04 

 0.2079E‐01   0.4548E‐05  ‐0.9855E‐03   0.6980E‐05  ‐0.3307E‐01   0.3736E‐04   0.4066E‐01 

 0.2014E‐04  ‐0.1207E‐01   0.3014E‐04  ‐0.3231E‐01   0.6120E‐04   0.7314E‐01   0.2266E‐04 

‐0.9278E‐01   0.7155E‐04   0.8506E‐01   0.4139E‐04  ‐0.6407E‐01   0.5970E‐04   0.4566E‐01 

 0.5120E‐04  ‐0.2997E‐01   0.5576E‐04   0.1885E‐01   0.3129E‐04  ‐0.1100E‐01   0.1546E‐04 

 0.5228E‐02   0.3871E‐05  ‐0.7695E‐03         

‐0.2978E‐06  ‐0.1934E‐02   0.2261E‐05   0.6595E‐02   0.4143E‐06   0.5677E‐02  ‐0.5649E‐05 

‐0.1802E‐01   0.8135E‐05   0.8587E‐03   0.1665E‐04   0.2868E‐01  ‐0.1581E‐05  ‐0.3520E‐01 

 0.2732E‐04   0.1061E‐01   0.3611E‐04   0.2841E‐01   0.1847E‐04  ‐0.6212E‐01   0.7396E‐04 

 0.8525E‐01   0.2656E‐04  ‐0.9031E‐01   0.8135E‐04   0.7439E‐01   0.5340E‐04  ‐0.5110E‐01 

 0.7672E‐04   0.3432E‐01   0.7463E‐04  ‐0.2124E‐01   0.5498E‐04   0.1251E‐01   0.3198E‐04 

‐0.5923E‐02   0.1229E‐04   0.8678E‐03         

 0.1524E‐06   0.1490E‐02  ‐0.1059E‐05  ‐0.5081E‐02   0.1440E‐05  ‐0.4375E‐02   0.7548E‐05 

 0.1388E‐01   0.2623E‐05  ‐0.6618E‐03   0.4717E‐05  ‐0.2209E‐01   0.2588E‐04   0.2713E‐01 

 0.1922E‐04  ‐0.8107E‐02   0.2887E‐04  ‐0.2170E‐01   0.5563E‐04   0.4830E‐01   0.3813E‐04 

‐0.6436E‐01   0.8336E‐04   0.7455E‐01   0.5643E‐04  ‐0.7381E‐01   0.9213E‐04   0.5724E‐01 

 0.8898E‐04  ‐0.3649E‐01   0.1069E‐03   0.2336E‐01   0.7544E‐04  ‐0.1342E‐01   0.4420E‐04 

 0.6484E‐02   0.1781E‐04  ‐0.9234E‐03         

‐0.1342E‐06  ‐0.1052E‐02   0.7354E‐06   0.3589E‐02  ‐0.8150E‐06   0.3089E‐02  ‐0.3506E‐05 

‐0.9808E‐02   0.3941E‐05   0.4643E‐03   0.7951E‐05   0.1560E‐01   0.2061E‐05  ‐0.1917E‐01 

 0.2068E‐04   0.5754E‐02   0.2851E‐04   0.1541E‐01   0.2968E‐04  ‐0.3391E‐01   0.6276E‐04 

Page 60: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 53  

 

 0.4596E‐01   0.5112E‐04  ‐0.5132E‐01   0.9337E‐04   0.5735E‐01   0.7291E‐04  ‐0.5725E‐01 

 0.1158E‐03   0.4329E‐01   0.1216E‐03  ‐0.2576E‐01   0.9905E‐04   0.1556E‐01   0.5706E‐04 

‐0.7180E‐02   0.2340E‐04   0.1106E‐02         

 0.4786E‐07   0.6978E‐03  ‐0.7972E‐06  ‐0.2379E‐02  ‐0.7794E‐06  ‐0.2049E‐02   0.1163E‐05 

 0.6498E‐02  ‐0.4855E‐06  ‐0.3128E‐03   0.5024E‐07  ‐0.1035E‐01   0.1078E‐04   0.1270E‐01 

 0.1390E‐04  ‐0.3813E‐02   0.2191E‐04  ‐0.1019E‐01   0.4425E‐04   0.2257E‐01   0.4824E‐04 

‐0.3023E‐01   0.7898E‐04   0.3454E‐01   0.8715E‐04  ‐0.3664E‐01   0.1176E‐03   0.4337E‐01 

 0.1298E‐03  ‐0.4616E‐01   0.1762E‐03   0.3441E‐01   0.1394E‐03  ‐0.1887E‐01   0.8868E‐04 

 0.9404E‐02   0.3968E‐04  ‐0.1262E‐02         

‐0.1102E‐06  ‐0.4366E‐03  ‐0.5295E‐06   0.1490E‐02  ‐0.2478E‐05   0.1282E‐02  ‐0.3710E‐05 

‐0.4072E‐02  ‐0.9313E‐06   0.1892E‐03  ‐0.9895E‐06   0.6469E‐02   0.1319E‐06  ‐0.7967E‐02 

 0.1267E‐04   0.2371E‐02   0.1952E‐04   0.6373E‐02   0.3524E‐04  ‐0.1411E‐01   0.5740E‐04 

 0.1902E‐01   0.7294E‐04  ‐0.2138E‐01   0.1075E‐03   0.2347E‐01   0.1205E‐03  ‐0.2583E‐01 

 0.1756E‐03   0.3442E‐01   0.2074E‐03  ‐0.3941E‐01   0.2009E‐03   0.2823E‐01   0.1223E‐03 

‐0.1244E‐01   0.5660E‐04   0.1994E‐02         

‐0.7626E‐07   0.2552E‐03  ‐0.1226E‐05  ‐0.8679E‐03  ‐0.3048E‐05  ‐0.7475E‐03  ‐0.3104E‐05 

 0.2372E‐02  ‐0.4238E‐05  ‐0.1163E‐03  ‐0.7411E‐05  ‐0.3784E‐02  ‐0.2427E‐05   0.4626E‐02 

 0.2296E‐05  ‐0.1407E‐02   0.4344E‐05  ‐0.3742E‐02   0.2417E‐04   0.8212E‐02   0.3075E‐04 

‐0.1107E‐01   0.5566E‐04   0.1256E‐01   0.7539E‐04  ‐0.1345E‐01   0.9974E‐04   0.1555E‐01 

 0.1401E‐03  ‐0.1882E‐01   0.2012E‐03   0.2816E‐01   0.1941E‐03  ‐0.3223E‐01   0.1541E‐03 

 0.1910E‐01   0.7977E‐04  ‐0.2398E‐02         

‐0.1536E‐07  ‐0.1197E‐03  ‐0.1098E‐05   0.4107E‐03  ‐0.3097E‐05   0.3534E‐03  ‐0.3029E‐05 

‐0.1121E‐02  ‐0.3128E‐05   0.5123E‐04  ‐0.7105E‐05   0.1777E‐02  ‐0.3871E‐05  ‐0.2198E‐02 

 0.3834E‐06   0.6448E‐03  ‐0.1150E‐05   0.1742E‐02   0.1397E‐04  ‐0.3895E‐02   0.1503E‐04 

 0.5220E‐02   0.3211E‐04  ‐0.5900E‐02   0.4276E‐04   0.6443E‐02   0.5742E‐04  ‐0.7121E‐02 

 0.8570E‐04   0.9307E‐02   0.1238E‐03  ‐0.1231E‐01   0.1488E‐03   0.1897E‐01   0.1172E‐03 

‐0.1802E‐01   0.7208E‐04   0.3784E‐02         

 0.7465E‐07   0.1779E‐04  ‐0.5122E‐06  ‐0.5889E‐04  ‐0.1709E‐05  ‐0.5047E‐04  ‐0.1764E‐05 

 0.1630E‐03  ‐0.2179E‐05  ‐0.8318E‐05  ‐0.4972E‐05  ‐0.2607E‐03  ‐0.3416E‐05   0.3140E‐03 

‐0.1624E‐05  ‐0.1015E‐03  ‐0.3668E‐05  ‐0.2627E‐03   0.4667E‐05   0.5555E‐03   0.3900E‐05 

‐0.7645E‐03   0.1256E‐04   0.8599E‐03   0.1798E‐04  ‐0.9126E‐03   0.2401E‐04   0.1093E‐02 

 0.4000E‐04  ‐0.1240E‐02   0.5768E‐04   0.1965E‐02   0.8026E‐04  ‐0.2363E‐02   0.7443E‐04 

 0.3776E‐02   0.5150E‐04  ‐0.7499E‐03         

Page 61: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 54  

 

TABLE 3.2: Real and Imaginary parts and magnitude of the ρ and Ф directed current. ρ is the arc length. ρ REAL Jρ IMAG Jρ MAG Jρ REAL JФ IMAG JФ MAG JФ

0.500 2.538 0.194 2.545 -0.442 -0.090 0.451 1.000 1.614 -1.056 1.929 -0.188 0.336 0.385 1.500 0.452 -2.105 2.153 0.010 0.394 0.394 2.000 -0.687 -1.996 2.111 0.115 0.139 0.181 2.500 -1.478 -1.266 1.946 0.255 0.129 0.286 3.000 -2.140 -0.772 2.275 0.398 0.186 0.439 3.500 -2.349 -0.033 2.349 0.372 -0.096 0.384 4.000 -1.989 0.950 2.204 0.315 -0.168 0.358 4.500 -1.299 1.398 1.908 0.236 -0.158 0.284 5.000 -0.308 1.741 1.768 0.052 -0.241 0.247 5.500 0.765 1.657 1.825 -0.107 -0.130 0.168 6.000 1.672 1.206 2.062 -0.265 -0.049 0.270 6.500 2.292 0.574 2.363 -0.373 0.079 0.381 7.000 2.428 -0.200 2.436 -0.430 0.216 0.481 7.500 2.095 -0.842 2.258 -0.470 0.272 0.543 8.000 1.215 -1.275 1.761 -0.494 0.186 0.528 8.500 0.066 -1.231 1.233 -0.698 -0.092 0.704 9.000 -0.940 -0.735 1.193 -1.115 -0.240 1.140 9.500 -1.567 -0.136 1.573 -1.646 -0.031 1.646

 

Page 62: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

 

Figure 3.2: the relation between the real parts of the current Jρ with the arc length ρ

Page | 55  

 

Page 63: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

Figure 3.3: the relation between the Imaginary part of Jρ with the arc length ρ.

Page | 56  

 

Page 64: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

Figure 3.4: the magnitude of Jρ with respect to the arc length ρ

Page | 57  

 

Page 65: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

Figure 3.5: the relation between the real part of JФ with the arc length.

Page | 58  

 

Page 66: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

Figure 3.6: the relation between the imag part of JФ with the arc length.

Page | 59  

 

Page 67: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

Figure 3.7: the magnitude of JФ with the respect to the arc length ρ.

Page | 60  

 

Page 68: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 61  

 

2TABLE 3.3: The radar cross section ( ) with respect to Ѳ / λσ

θ SѲ SФ MAG SѲ ANG SѲ MAG SФ ANG SФ 0 0.121 0.121 0.348 -89.800 0.348 90.200 5 0.119 0.123 0.345 -92.300 0.351 89.200

10 0.112 0.128 0.335 -100.000 0.358 86.200 15 0.104 0.137 0.322 -118.100 0.370 81.200 20 0.097 0.149 0.311 -131.800 0.386 74.100 25 0.096 0.164 0.308 -155.700 0.405 64.700 30 0.105 0.181 0.324 176.500 0.426 53.100 35 0.128 0.199 0.357 147.200 0.446 39.200 40 0.167 0.215 0.466 117.700 0.464 23.000 45 0.213 0.227 0.462 38.500 0.476 39.000 50 0.268 0.231 0.519 59.400 0.481 -16.200 55 0.326 0.226 0.565 30.000 0.476 -39.200 60 0.359 0.211 0.599 -0.300 0.460 -64.600 65 0.380 0.167 0.612 -31.700 0.433 -92.500 70 0.374 0.158 0.613 -64.600 0.392 -125.600 75 0.347 0.126 0.593 -93.800 0.358 -149.000 80 0.312 0.101 0.557 -134.500 0.320 169.000 85 0.209 0.083 0.515 -172.300 0.291 124.700 90 0.226 0.078 0.575 147.300 0.276 81.000 95 0.194 0.076 0.440 136.100 0.276 81.300

100 0.171 0.087 0.414 64.000 0.295 37.700 105 0.155 0.093 0.395 23.900 0.315 -45.400 110 0.151 0.103 0.378 -15.400 0.310 -82.600 115 0.128 0.114 0.360 -55.400 0.338 -118.100 120 0.115 0.123 0.340 -92.300 0.357 -149.700 125 0.104 0.125 0.322 -131.100 0.359 -175.600 130 0.091 0.134 0.309 -147.100 0.358 149.300 135 0.092 0.137 0.301 160.200 0.371 127.400 140 0.093 0.135 0.300 123.900 0.371 101.200 145 0.091 0.139 0.303 98.100 0.369 78.300 150 0.101 0.142 0.314 67.900 0.365 54.600 155 0.105 0.140 0.332 51.100 0.373 36.900 160 0.114 0.140 0.348 32.000 0.376 27.300 165 0.123 0.136 0.358 16.400 0.375 12.000 170 0.130 0.135 0.360 5.000 0.373 4.700 175 0.138 0.138 0.362 2.700 0.368 0.900 180 0.131 0.139 0.372 0.000 0.365 0.000

 

Page 69: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

Ѳ 

Figure 3.8: Radar cross sections as a function of Ѳ θλσ )/( 2

Page | 62  

 

Page 70: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

Figure 3.9: Radar cross as a function of Ѳφλσ )/( 2

Page | 63  

 

Page 71: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

Figure 3.10: the magnitude of as a function of Ѳ θλσ )/( 2

Page | 64  

 

Page 72: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

 

Figure 3.11: the magnitude of as a function of Ѳφλσ )/( 2

Page | 65  

 

Page 73: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 66  

 

 

TABLE 3.4: Real and Imaginary parts and magnitude of the ρ and Ф directed currents. ρ is the arc length. ρ REAL Jρ IMAG Jρ MAG Jρ REAL JФ IMAG JФ MAG JФ

0.500 2.517 -0.343 2.540 -0.434 0.120 0.451 1.000 1.781 1.070 2.078 -0.257 -0.375 0.455 1.500 0.827 2.317 2.460 -0.100 -0.488 0.498 2.000 -0.228 2.325 2.337 0.010 -0.259 0.259 2.500 -1.044 1.618 1.926 0.142 -0.286 0.319 3.000 -1.742 1.130 2.077 0.278 -0.388 0.478 3.500 -2.057 0.342 2.085 0.309 -0.104 0.326 4.000 -1.898 -0.775 2.050 0.317 -0.013 0.317 4.500 -1.402 -1.363 1.955 0.312 0.009 0.312 5.000 -0.626 -1.861 1.963 0.238 0.168 0.291 5.500 0.262 -1.911 1.929 0.181 0.144 0.232 6.000 1.048 -1.531 1.856 0.132 0.178 0.221 6.500 1.612 -0.907 1.850 0.123 0.180 0.218 7.000 1.789 -0.042 1.790 0.153 0.197 0.250 7.500 1.574 0.778 1.756 0.215 0.376 0.433 8.000 0.907 1.534 1.782 0.234 0.774 0.809 8.500 -0.008 1.942 1.943 -0.062 1.339 1.341 9.000 -0.817 1.915 2.082 -0.652 1.684 1.806 9.500 -1.313 1.678 2.131 -1.351 1.648 2.131

 

Page 74: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

TABLE 3.5: The radar cross section ( ) with respect to Ѳ 2/ λσ

θ SѲ SФ MAG SѲ ANG SѲ MAG SФ ANG SФ 0.000 0.171 0.171 0.414 0.000 0.414 180.000 5.000 0.171 0.171 0.413 -1.700 0.414 178.300

10.000 0.169 0.171 0.411 -6.800 0.413 173.100 15.000 0.167 0.170 0.408 -15.300 0.412 164.500 20.000 0.163 0.169 0.404 -27.100 0.411 152.600 25.000 0.159 0.169 0.399 -42.100 0.411 137.400 30.000 0.155 0.168 0.393 -60.200 0.410 119.000 35.000 0.150 0.168 0.388 -81.300 0.410 97.700 40.000 0.146 0.169 0.382 -105.100 0.412 73.500 45.000 0.141 0.171 0.376 -131.400 0.413 46.900 50.000 0.137 0.173 0.370 -159.900 0.415 18.000 55.000 0.131 0.174 0.362 169.600 0.417 -12.900 60.000 0.124 0.173 0.352 137.300 0.416 -45.700 65.000 0.115 0.170 0.339 103.300 0.412 -80.500 70.000 0.105 0.164 0.324 67.500 0.405 -117.200 75.000 0.094 0.159 0.306 29.700 0.399 -156.200 80.000 0.085 0.158 0.291 -10.100 0.398 162.700 85.000 0.079 0.167 0.282 -51.400 0.408 120.300 90.000 0.079 0.189 0.281 -93.000 0.434 77.800 95.000 0.084 0.226 0.289 -133.100 0.475 37.000

100.000 0.090 0.276 0.301 -170.600 0.525 -1.500 105.000 0.096 0.331 0.310 155.300 0.575 -37.400 110.000 0.096 0.381 0.311 124.600 0.618 -70.900 115.000 0.090 0.418 0.301 97.400 0.647 -102.400 120.000 0.078 0.433 0.280 73.900 0.658 -132.100 125.000 0.063 0.426 0.250 54.800 0.653 -160.100 130.000 0.048 0.398 0.218 41.200 0.631 173.400 135.000 0.037 0.356 0.192 34.300 0.597 148.400 140.000 0.033 0.308 0.182 33.400 0.555 124.800 145.000 0.037 0.260 0.192 34.300 0.510 102.600 150.000 0.047 0.218 0.218 33.300 0.467 81.900 155.000 0.063 0.184 0.250 29.800 0.429 63.000 160.000 0.080 0.158 0.282 25.100 0.398 46.400 165.000 0.096 0.140 0.310 20.500 0.375 32.500 170.000 0.110 0.129 0.331 16.700 0.359 22.100 175.000 0.118 0.123 0.344 14.200 0.351 15.600 180.000 0.121 0.121 0.348 13.400 0.348 13.400

 

Page | 67  

 

Page 75: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 68  

 

TABEL 3.6: Excited current components ρ REAL Jρ IMAG Jρ REAL JФ IMAG JФ

0.500 2.76E-02 2.69E-02 -1.57E-04 4.47E-04 1.000 2.72E-02 3.04E-02 -3.78E-04 3.63E-04 1.500 2.32E-02 2.93E-02 -5.54E-04 2.15E-04 2.000 1.60E-02 2.48E-02 -6.56E-04 -6.62E-05 2.500 8.23E-03 1.83E-02 -6.57E-04 -3.01E-04 3.000 6.63E-04 1.07E-02 -5.21E-04 -7.75E-04 3.500 -5.54E-03 2.79E-03 -2.32E-04 -7.20E-04 4.000 -9.44E-03 -4.30E-03 2.15E-04 -1.69E-03 4.500 -1.09E-02 -9.75E-03 8.07E-03 7.72E-05 5.000 -9.24E-03 -1.25E-02 1.52E-03 -3.77E-03 5.500 -5.74E-03 -1.32E-02 2.31E-03 6.31E-03 6.000 -8.43E-04 -1.10E-02 3.11E-03 -1.42E-02 6.500 4.49E-03 -6.09E-03 3.95E-03 3.93E-02 7.000 9.23E-03 1.30E-03 4.68E-03 -7.17E-02 7.500 1.26E-02 1.34E-02 5.76E-03 2.61E-01 8.000 1.44E-02 3.91E-02 7.39E-03 -4.68E-01 8.500 1.41E-02 1.63E-02 7.11E-03 2.68E-01 9.000 1.10E-02 7.18E-03 5.36E-03 -7.69E-02 9.500 2.59E-03 2.27E-03 2.03E-03 4.46E-02

 

Page 76: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

ρ 

Figure 3.12: the relation between real Jρ and arc length

Page | 69  

 

Page 77: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

ρ 

Figure 3.13: the relation between imag Jρ and arc length

Page | 70  

 

Page 78: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

ρ 

Figure 3.14: the relation between real JФ and arc length

Page | 71  

 

Page 79: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

 

 

 

 

ρ 

Figure 3.15: the relation between imag JФ and arc length

Page | 72  

 

Page 80: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 73  

 

TABLE 3.7: The normalized power gain pattern Ѳ GѲ EѲ ANG EѲ GФ EФ ANG EФ

0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.000 0.041 0.199 -47.300 0.032 0.171 77.700

10.000 0.155 0.394 -51.500 0.117 0.348 72.500 15.000 0.338 0.580 -57.300 0.249 0.498 64.500 20.000 0.565 0.752 -66.700 0.417 0.647 53.900 25.000 0.822 0.900 -76.900 0.609 0.772 40.500 30.000 1.027 1.016 -90.800 0.789 0.883 23.600 35.000 1.190 1.018 -108.300 0.952 0.977 4.200 40.000 1.213 1.108 -120.000 1.102 1.056 -16.300 45.000 1.105 1.053 -145.900 1.226 1.100 -40.800 50.000 0.878 0.933 -169.600 1.309 1.140 -67.100 55.000 0.592 0.769 160.200 1.363 1.168 -95.300 60.000 0.352 0.592 127.800 1.370 1.176 -129.400 65.000 0.265 0.511 65.800 1.380 1.175 -158.900 70.000 0.389 0.628 9.200 1.375 1.172 169.800 75.000 0.698 0.831 -33.800 1.346 1.162 131.800 80.000 1.051 1.031 -67.200 1.302 1.149 100.300 85.000 1.358 1.168 -98.400 1.268 1.127 64.700 90.000 1.417 1.196 -128.700 1.217 1.104 27.300 95.000 1.216 1.102 -159.600 1.176 1.084 -9.200

100.000 0.857 0.924 167.900 1.121 1.060 -46.400 105.000 0.489 0.701 126.500 1.074 1.032 -83.300 110.000 0.312 0.559 71.600 1.020 1.016 -118.300 115.000 0.416 0.649 11.900 0.979 0.983 -155.000 120.000 0.792 0.886 -31.600 0.944 0.963 169.400 125.000 1.350 1.140 -62.300 0.862 0.940 136.000 130.000 1.915 1.364 -87.900 0.834 0.915 105.500 135.000 2.234 1.491 -109.800 0.775 0.876 76.800 140.000 2.306 1.548 -127.900 0.699 0.832 49.900 145.000 2.290 1.518 -144.300 0.602 0.788 25.000 150.000 2.018 1.415 -158.000 0.507 0.710 4.800 155.000 1.536 1.259 -171.000 0.394 0.623 -14.600 160.000 1.107 1.054 176.200 0.272 0.529 -29.000 165.000 0.663 0.810 170.600 0.165 0.408 -40.000 170.000 0.302 0.556 165.400 0.080 0.283 -49.900 175.000 0.075 0.283 161.200 0.020 0.149 -54.600 180.000 0.000 0.000 0.000 0.000 0.000 0.000

 

Page 81: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 74  

 

REFERENCES

Page 82: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 75  

 

References [1] Miller, E. K., “A Selective Survey of Computational Electromagnetic”,

IEEE Antenna and Propagation, pp. 1281-1305, 1988. [2] V. Rodriquez-Pereyra, A. Z. Elsherbeni, and C. E. Smith, “A Body of

Revolution Finite Difference Time Domain Method”, Progress in Electromagnetic research, PIER 24, 257 – 277, 1999.

[3] Sebaq, A. M., “Studies on the Scattering of Steady State and Transient Electromagnetic Waves by Imperfectly Conducting and Coated Structures”, A Ph.D. thesis, university of Manitoba, Canada, 1984.

[4] Raj Mittra, Richard K. G., “Radar Scattering from Bodies of Revolution using an Efficient Partial Differential Equation Algorithm”, IEEE Antenna and Propagation, Vol. 37, No. 5, 1989.

[5] Mittra, R., Shuqing Li, Ji-Fu Ma, “Solving Large Body of Revolution (BOR) Problems using the Characteristics Basis Function Method and the FFT-Based Matrix Generation”, IEEE Antennas and Propagation, pp. 3879-3882, 2006.

[6] Dybdal, R. B., “Radar Cross Section Measurements”, IEEE, pp. 498-516 1987.

[7] Edward, H. Newman, Ronald J, “Overview of MoM and UTD Methods at the Ohio State University”, IEEE, pp.700-708, 1989.

[8] D. J. Brian and N. Williams, “Study of Modelling Methods for Large Reflector Antennas”, 1996.

[9] Knott, E. E., Shaeffer, J. F. and Taley, M. J., “Radar Cross Section its Prediction, Measurements and Reduction”, Artechhouse Inc., 1985.

[10] Di Giampaolo, E. Bardati, F. “A method for multiple diffracted ray sampling in forward ray tracing”, IEEE Antenna & Propagation, pp. 468-471, 2001.

[11] Mogus, A. A., “Scattering from Cylinders with Arbitrary Surface Impedance”, Proc. IEEE, pp. 812-817, Aug. 1965.

[12] Waterman, P. C., “Matrix Formulation of Electromagnetic Scattering”, Proc. IEEE, pp. 805-811, Aug. 1965

[13] Shuffer, J. F. And Louis, N. M., “Radiation from wire attached to bodies of revolution: Junction problem”, IEEE Trans. Antena. & Propag. Vol. AP-29, No. 3, pp. 479-486, 1981

[14] Mautz, J. R. And Harrington, R. F., “Radiation and Scattering from Bodies of Revolution”. Appl. Sci. Res., Vol. 20, 1969.

[15] Hrrington, R. F. And Mautz, J. R., “Theory of characteristics modes for conduction bodies”, IEEE Trans. Antena. & Propag. Vol. AP-19, No. 5, p. 622-639, 1971.

Page 83: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 76  

 

[16] Kaki, A. N. M., “predication of radar cross section for some selected targets using method of moments”, A. M. E. Thesis submitted to the University of Technology, Baghdad, Iraq, 1994.

[17] Jedlicka, R. P., “Electromagnetic coupling into complex cavities through narrow slot aperture having depth and losses”, PhD. Dissertation submitted to the New Mexico state university, Mexico, 1995.

[18] Liu, D. R., “Simulation waves scattering from a randomly rough surface using wavelet expansion”, PhD. Dissertation submitted to the university of Texas at Arlington, USA, 1995.

[19] Sharpe, R. M., “Moment method analysis of complex structure containing cavity backed aperture”, PhD. Dissertation submitted to the university of Houston, USA, 1992.

[20] Khalbasi, K. I., “a DSP based multilevel iterative technique for the moment method solution of large electromagnetic problems”, PhD. Dissertation submitted to the University of Kansas, USA, 1992.

[21] Al-Rizzo, H. M. Y., “Electromagnetic wave scattering from three dimensional coated and homogenous objects the GPMT and GMT; numerical modelling and applications (global positioning system)”, PhD. Dissertation submitted to the University of Brunswick, Canada, 1992.

[22] Crispin, T. W. JR and A. L. Maffatt, “Radar cross section estimation for simple shapes”, Proc. IEEE, No. 8, pp 833-848, Aug., 1965.

[23] Wu, T. K. And Leonard L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution” Radio Sci., Vol. 12, No. 5, pp. 709-718, 1977.

[24] Pogorzelski, R. J., "On the numerical computations of scattering from inhomogeneous penetrable objects", IEEE Trans. Antena. & Propag. Vol. AP-26, No. 4, pp. 616-618, 1978.

[25] [38] Galisson, A. W. and Wilton, R. R., " Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces", IEEE Trans. Antena. & propag., Vol. AP-28, No. 5, pr. 593-603, 1980.

[26] Philip L. H., Louis, N. M., and John, M. P. "Combined field integral equation formulation for scattering by dielectrically coated conducting", IEEE Trans. Antenna. & propag., Vo1. AP-34, No. 4, pp. 510-520, 1986.

[27] Ga1isson, A. L., " An integral equation for electromagnetic from homogeneous dielectric bodies", IEEE Trans. Antenna. & propag., Vol. AP- 32, No. 3, pp. 173-175,1984.

[28] Louis, N. M. and Putnam, J. M., '" Integral equation formulation for imperfectly conducting Scatterer", IEEE Trans. Antenna. & propag., Vol. AP- 33, No. 2, pp. 206-214, 1985.

Page 84: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 77  

 

[29] Harrington, R. F. Mautz, J. R., and Chang, Y., "Characteristics modes for dielectric and magnetic bodies", IEEE Trans. Antenna. & propag., Vol. AP-2O, No. 2, pp. 194-198, 1972.

[30] Kishk, A. A. and Shafai, L. F., "The effect of various parameters of circular disk micro strip antennas on their radiation efficiency and the mode excitation", IEEE Trans. Antenna. & propag., Vol. AP-34, No. 8, pp. 969- 976, 1986.

[31] James, JR, and Hall, P. S., “Handbook of micro strip antennas ", Chap. Two, Peter Peregrines, London, U. K., 1989.

[32] Pinhas, S., Shmuel S., and David T., "Moment method solution for centre feed micro strip disk antennas involving feed and edge current singularities"', IEEE Trans. Antenna. & propag., Vol. AP-37, No. 12, pp. 1989.

[33] Kishk, A. A. and Shafai, L. F., "Numerical solution of scattering from coated bodies of revolution using different integral equation formulation", lE proc., Vol. 133 pt H., No. 3, pp. 227-232, 1986.

[34] Korada U., Allen T., and Sadasiva Mo Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogenous dielectric objects", IEEE Trans. Antenna & propag., Vol. AP-34, No~ 6, pp. 758-765, 1986.

[35] Wu, K. L., Delisle, G. Y., and Fang, D. G., "EM scattering of an arbitrary multiple dielectric coated conducting cylinder by coupled finite boundary element method", IEE proc., Vol. 137 pt. H., No. 1, pp.1-4, 1990.

[36] Delisle, G. Y., Fang, D. G., and Wu, K. L.,"Application of BEM to EM scattering by dielectric objects", Proc. Of Inter. Symp. On Antenna. & EM theory, lnter. Academic publication pergoman press. 1st Edition, 1989.

[37] Xingchao, D. R. L., and Strohbehn, J. W., "Coupling of finite element objects", IEEE Trans. Antenna. & propag., Vol. AP-38, No. 3, pp.386-393, 1990.

[38] Hassan, A. R., Shafai, L. F., and Michael H., "Plane wave scattering by a conducting elliptical cylinder coated by a non-confocal dielectric", IEEE Trans. Antenna. & propag., Vol. AP-39, No. 2, pp.218-223, 1991.

[39] Schmitz, J. L., "Dual surface electric field integral equation for bodies of revolution in electromagnetic scattering", A. D. Eng. Dissertation submitted to the Univ. of Loweel. 1996.

Page 85: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 78  

 

[40] P. Jacobsson and T. Rylander, RVK08 conference, June 9-13, 2008, Vaxjo, Sweden.

[41] M. Cheney and B. Borden, Imaging moving targets from scattered waves, Inverse problems 24 (2008) 035005.

[42] Shaeffer, J. F. And Medgysi-Mitschang, L. N., “Radiation from wire antennas attached to bodies of revolution: the junction problem”, IEEE Trans. Antenna. And Propag. Vol. AP-52, No.: 3, pp. 479-486, 1981.

[43] Harrington. R. F. and Mautz. J. R., "Control of radar scattering by reactive loading ", IEEE Trans. Antenna. & propag., Vol. AP-20, No. 4, pp. 446-456, 1972.

[44] Mittra, R. and Gordan. R. K., "Radar scattering from bodies of revolution using an efficient partial differential equation algorithm ", IEEE Trans. Antenna. & Propag. Vol. AP- 37, No. 5, pp. 538-545, 1989.

[45] Arvas. E. and Sarkar. T. K.., “RCS of two-dimensional structures consisting of both the dielectric and conductors of arbitrary cross section ", IEEE Trans. Antenna. & Propag. Vol. AP. 37, No. 5, pp. 546-554, 1989.

[46] Wu, T. K., “Radar cross section of arbitrary shaped bodies of revolution ", Proc. IEEE. Vol. 77, No. 4, pp. 735-740, 1989.

[47] Abramowtiz, M. L. A. S., "Handbook of mathematical functions ", New York, Dover, 1970.

[48] Tsay, W. J., “Radiation and scattering from periodic geometries in inhomogeneous media ", PhD. Dissertation submitted to the university of Massachusetts, USA, 1995.

[49] Yoyssef, N. N., “Radar cross section of complex targets ", Proc. IEEE, Vol. 77, No. 5, pp. 722-734, 1989.

[50] Peters, T. H. and Volakis, J. L., “Application of conjugate gradient method FFT method to scattering from thin planar material plates ", IEEE Trans. Antenna. & Propag. Vol. AP- 36, No. 4, pp.518-526, 1988.

[51] Sarkar, T. K. and Arvas, E., “Scattering cross section of composite conducting and lossy dielectric bodies” Proc. IEEE, Vol. 77, No. 5, pp. 788- 795, 1989.

[52] Catedra, M. F., Gaga, E., and Nuno, L., "A numerical scheme to obtain the RCS of three-dimensional bodies of resonant size using the conjugate

Page 86: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 79  

 

gradient method and fast Fourier transform", IEEE Trans. Antenna. & Propag. Vol. AP- 37, No. 5, pp.528-537, 1989.

[53] Zwamhom, A. P. M. and Berg, P. M. V., "A week form of the conjugate gradient FFT method for plate problems ", IEEE Trans. Antenna. & Propag. Vol. AP- 39, No. 2, pp.224-228, 1991.

[54] Tran, T. V. and Mcccomen, "An improved pulse-basis conjugate gradient FFT method for the thin conducting I2late problem ", IEEE Trans. Antenna. & Propag. Vol. AP- 41, No. 2, pp.185-190, 1993.

[55] Ahuja, V., "Finite volume time domain method for Maxwell's equation on parallel computer (radar cross section)” PhD. Dissertation submitted to the Pennsylvania State University, USA, 1995.

[56] Casciato, M. D., "An electromagnetic code evaluation in the 100 to 1000 MHz region” A MSc. Dissertation submitted to the Florida Atlantic University, USA, 1995.

[57] Movahedi, A. J., "Electromagnetic radiation and scattering by a dielectric loaded conducting body coupled to an arbitrary wire ", PhD. Dissertation submitted to the university of Mississippi, USA, 1995.

[58] Penney, C. W., "Scattering from coated targets using a frequency domain surface impedance boundary condition in the finite difference time domain method (radar cross section)", PhD Dissertation submitted to the Pennsylvania State University, USA, 1995.

[59] Vinh, H., "Development of finite difference time domain solver for Maxwell's equations with application to radar signature prediction", PhD Dissertation submitted to the University of California, USA, 1994.

[60] Reuster, D. D., "Development of low RCS reflector antenna system", PhD Dissertation submitted to the University of Day ton, USA, 1994.

[61] Simons, N. R. S., "Development and application of differential equation numerical techniques to electromagnetic scattering and radiation prob1ems", PhD Dissertation submitted to the Manitoba University, Canada, 1994.

[62] Groenewald, J. J., “Synthesis of radar cross section using antenna array", A M. E. Eng. Dissertation submitted to the University of Pretoria, South Africa, Africa, 1994.

Page 87: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 80  

 

[63] A1kanhal, M. A.," E1ectromagnetic scattering from chairal cylinders of arbitrary cross section", PhD. Dissertation submitted to the Syracuse University, USA, 1994.

[64] Kolbehdari, M. A., "Numerical analysis of electromagnetic field from a class of composite cylinders", PhD. Dissertation submitted to the Temple university, USA, 1995.

[65] Antilla, G. E., "Radiation and scattering from complex three dimensional geometries using s hybrid finite element integral equation approach", PhD. Dissertation submitted to the university of California at Loss Anglos, USA, 1993.

[66] Uslenghi, P. L. E., "Electromagnetic scattering” Academic Press Inc., New York, USA, 1978.

Page 88: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 81  

 

APPENDIX 

Page 89: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 82  

 

A.1  The mathematica work to solve the equations εr = 8.854*10^(-12) k = 1/(4 Pi εr) 0

(*r = 1*) μr = 1 m = 1 fm:=1 / ( μr εr k k r r Sin[θ ]^2 - m^2) 0 0

(*fm = 1/fm1[r, θ];*) a1 =(1/ fm^2) ( -I k εr r - I k r Cos[θ ] D[εr fm Sin[θ ], θ ] - I k Sin[θ ]^2 D[εr r r fm, r ] + I k εr r fm Sin[θ ]^2);

0 0

0 0

b1 =(1/ fm^2) ( -I k r Sin[θ ]^2 D[εr r*r fm, r ] - 2 I k εr r*r fm Sin[θ ]^2 );

0 0

c1 = (1/ fm^2) ( -I k r Sin[θ ] D[εr fm Sin[θ ], θ ] - 2 I k εr r fm Sin[θ ] Cos[θ ] );

0

0

d1 = (1/ fm^2) ( -I k εr r^3 fm Sin[θ ]^2); 0

e1 = (1/ fm^2) ( -I k εr r fm Sin[θ ]^2); 0

f1 = (1/ fm^2) ( I m Cos[θ ] D[ r fm , r ]- I m D[fm Sin[θ ], θ ]); g1 = (1/ fm^2) ( - I m r Sin[θ ] D[fm, θ ]); h1 = (1/ fm^2) ( I m r Sin[θ ] D[fm, r]); a2 =(1/ fm^2) ( I k εr r + I k r Cos[θ ] D[μr fm Sin[θ ], θ ] + I k Sin[θ ]^2 D[μr r*r fm, r ] - I k μr r fm Sin[θ ]^2);

0 0

0 0

b2 =(1/ fm^2) ( I k r Sin[θ ]^2 D[μr r*r fm, r ] + 2 I k μr r*r fm Sin[θ ]^2 );

0 0

c2= (1/ fm^2) ( I k r Sin[θ ] D[μr fm Sin[θ ], θ ] + 2 I k μr r fm Sin[θ ] Cos[θ ] );

0 0

d2 = (1/ fm^2) ( I k μr r^3 fm Sin[θ ]^2); 0

e2 = (1/ fm^2) ( I k μr r fm Sin[θ ]^2); 0

Page 90: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

Page | 83  

 

f2 = (1/ fm^2) ( I m Cos[θ ] D[ r fm, r ]- I m D[fm Sin[θ ], θ ]); g2 = (1/ fm^2) ( - I m r Sin[θ ] D[fm, θ ]); h2 = (1/ fm^2) ( I m r Sin[θ ] D[fm, r]); a = 1/0.4 k = 16/a ψ = Exp[-I k r]/r; A1 = a1*ψ + b1 D[ψ,r] + d1 D[ψ,{r,2}]; B1 = b1*ψ + 2*d1 D[ψ,r]; C1 = c1*ψ; D1 = d1*ψ; E1 = e1*ψ; F1 = f1*ψ + g1 D[ψ,r]; G1 = g1*ψ; H1 = h1*ψ; A2 = a2*ψ + b2 D[ψ,r] + d2 D[ψ,{r,2}]; B2 = b2*ψ + 2*d2 D[ψ,r]; C2 = c2*ψ; D2 = d2*ψ; E2 = e2*ψ; F2 = f2*ψ + g2 D[ψ,r]; G2 = g2*ψ;

H2 = h2*ψ;

eq1 = A1 um[r ,θ] + B1 D[um[r ,θ],r] + C1 D[um[r ,θ],θ] + D1 D[um[r ,θ],{r,2}] + E1 D[um[r ,θ],{θ,2}] + F1 vm[r ,θ] + G1 D[vm[r ,θ],r] + H1 D[vm[r ,θ],θ] = 0;

Page 91: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

eq2 = A2 vm[r ,θ] + B2 D[vm[r ,θ],r] + C2 D[vm[r ,θ],θ] + D2 D[vm[r ,θ],{r,2}] + E2 D[vm[r ,θ],{θ,2}] + F2 um[r ,θ] + G2 D[um[r ,θ],r] + H2 D[um[r ,θ],θ] 0; DSolve[{eq1,eq2},{vm[r,θ],um[r,θ]},{r ,θ}]

A.2  Spherical coordinates  ( ) :,, φθr   

 

Fig (A.1): Spherical Coordinates 

 

θφθφθ

cossinsincossin

rzryrx

===

 

φθ φθθ

θθE

rE

rEr

rrE r ∂

∂+

∂∂

+∂∂

=⋅∇)sin(

1))(sin()sin(

1)(1 22  

( )

( ) ( )^^

^

2

1)sin(sin1

)()sin()sin(

1

φθ

θθφθ

φθ

θθ

θφ

θφ

⎟⎠⎞

⎜⎝⎛

∂∂

−∂∂

+⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

−∂∂

+

⎥⎦

⎤⎢⎣

⎡∂∂

−⎟⎠⎞

⎜⎝⎛∂∂

=×∇

rr ErErr

Err

Er

rrEErr

Page | 84  

 

Page 92: RADAR SCATTERING FROM BODIES OF …1311054/FULLTEXT01.pdfRadar scattering from bodies of revolution using an efficient partial differntial equation algorithm Muhammad Aamir Latif E-Post:

A.3  Maxwell’s equations Maxwell's equations represent one of the most elegant and concise ways to state the fundamentals of electricity and magnetism. From them one can develop most of the working relationships in the field. Because of their concise statement, they embody a high level of mathematical sophistication and are therefore not generally introduced in an introductory treatment of the subject, except perhaps as summary relationships.

Maxwell’s equations can be written in terms of E and H as following

tEfJH

tHE

H

fE

∂∂

+=×∇

∂∂

−=×∇

=⋅∇

=⋅∇

εμμ

ερ

 

Page | 85  

 


Recommended