+ All Categories
Home > Documents > Radial Basis-Function Networks

Radial Basis-Function Networks

Date post: 31-Jan-2016
Category:
Upload: brooks
View: 43 times
Download: 0 times
Share this document with a friend
Description:
Radial Basis-Function Networks. Back-Propagation Stochastic Back-Propagation Algorithm Step by Step Example Radial Basis-Function Networks Gaussian response function Location of center u Determining sigma Why does RBF network work. Back-propagation. - PowerPoint PPT Presentation
34
Radial Basis-Function Networks
Transcript
Page 1: Radial Basis-Function Networks

Radial Basis-Function Networks

Page 2: Radial Basis-Function Networks

Back-Propagation Stochastic Back-Propagation Algorithm Step by Step Example

Radial Basis-Function Networks Gaussian response function Location of center u Determining sigma Why does RBF network work

Page 3: Radial Basis-Function Networks

Back-propagation

The algorithm gives a prescription for changing the weights wij in any feed-forward network to learn a training set of input output pairs {xd,td}

We consider a simple two-layer network

Page 4: Radial Basis-Function Networks

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (LZW)“

benötigt.

xk

x1 x2 x3 x4 x5

Page 5: Radial Basis-Function Networks

Given the pattern xd the hidden unit j receives a net input

and produces the output

net jd = w jk

k=1

5

∑ xkd

V jd = f (net j

d ) = f ( w jk

k=1

5

∑ xkd )

Page 6: Radial Basis-Function Networks

Output unit i thus receives

And produce the final output

netid = W ij

j=1

3

∑ V jd = (W ij ⋅

j=1

3

∑ f ( w jk

k=1

5

∑ xkd ))

oid = f (neti

d ) = f ( W ij

j=1

3

∑ V jd ) = f ( (W ij ⋅

j=1

3

∑ f ( w jk

k=1

5

∑ xkd )))

Page 7: Radial Basis-Function Networks

In our example E becomes

E[w] is differentiable given f is differentiable Gradient descent can be applied

E[r w ] =

1

2(ti

d

i=1

2

∑d =1

m

∑ − oid )2

E[r w ] =

1

2(ti

d

i=1

2

∑d =1

m

∑ − f ( W ij

j

3

∑ ⋅ f ( w jk xkd

k=1

5

∑ )))2

Page 8: Radial Basis-Function Networks

Consider a network with M layers m=1,2,..,M

Vmi from the output of the ith unit of the

mth layer V0

i is a synonym for xi of the ith input Subscript m layers m’s layers, not

patterns Wm

ij mean connection from Vjm-1 to Vi

m

Page 9: Radial Basis-Function Networks

Stochastic Back-Propagation Algorithm (mostly used)

1. Initialize the weights to small random values

2. Choose a pattern xdk and apply is to the input layer V0

k= xdk for all k

3. Propagate the signal through the network

4. Compute the deltas for the output layer

5. Compute the deltas for the preceding layer for m=M,M-1,..2

6. Update all connections

7. Goto 2 and repeat for the next pattern

Vim = f (neti

m ) = f ( wijm

j

∑ V jm−1)

δiM = f '(neti

M )(tid −Vi

M )

δim−1 = f '(neti

m−1) w jim

j

∑ δ jm

Δwijm = ηδ i

mV jm−1

wijnew = wij

old + Δwij

Page 10: Radial Basis-Function Networks

Examplew1={w11=0.1,w12=0.1,w13=0.1,w14=0.1,w15=0.1}

w2={w11=0.1,w12=0.1,w13=0.1,w14=0.1,w15=0.1}

w3={w11=0.1,w12=0.1,w13=0.1,w14=0.1,w15=0.1}

W1={w11=0.1,w12=0.1,w13=0.1}

W2={w11=0.1,w12=0.1,w13=0.1}

X1={1,1,0,0,0}; t1={1,0}

X2={0,0,0,1,1}; t1={0,1}

f (x) = σ (x) =1

1+ e(−x )

f '(x) = σ ' (x) = σ (x) ⋅(1−σ (x))

Page 11: Radial Basis-Function Networks

net11 = w1k

k=1

5

∑ xk1 V1

1 = f (net11) =

1

1+ e−net11

net21 = w2k

k=1

5

∑ xk1 V2

1 = f (net11) =

1

1+ e−net21

net31 = w3k

k=1

5

∑ xk1 V3

1 = f (net31 ) =

1

1+ e−net31

net11=1*0.1+1*0.1+0*0.1+0*0.1+0*0.1

V11=f(net1

1 )=1/(1+exp(-0.2))=0.54983

V12=f(net1

2 )=1/(1+exp(-0.2))=0.54983

V13=f(net1

3 )=1/(1+exp(-0.2))=0.54983

Page 12: Radial Basis-Function Networks

net11 = W1 j

j=1

3

∑ V j1 o1

1 = f (net11) =

1

1+ e−net11

net21 = W2 j

j=1

3

∑ V j1 o2

1 = f (net21 ) =

1

1+ e−net21

net11=0.54983*0.1+ 0.54983*0.1+ 0.54983*0.1= 0.16495

o11= f(net11)=1/(1+exp(- 0.16495))= 0.54114

net12=0.54983*0.1+ 0.54983*0.1+ 0.54983*0.1= 0.16495

o12= f(net11)=1/(1+exp(- 0.16495))= 0.54114

Page 13: Radial Basis-Function Networks

We will use stochastic gradient descent with =1

ΔW ij = η (tid − oi

d ) f '

d =1

m

∑ (netid ) ⋅V j

d

ΔW ij = (ti − oi) f '(neti)V j

f '(x) = σ ' (x) = σ (x) ⋅(1−σ (x))

ΔW ij = (ti − oi)σ (neti)(1−σ (neti))V j

δi = (ti − oi)σ (neti)(1−σ (neti))

ΔW ij = δiV j

Page 14: Radial Basis-Function Networks

δ1=(1- 0.54114)*(1/(1+exp(- 0.16495)))*(1-(1/(1+exp(- 0.16495))))= 0.11394

δ2=(0- 0.54114)*(1/(1+exp(- 0.16495)))*(1-(1/(1+exp(- 0.16495))))= -0.13437

δ1 = (t1 − o1)σ (net1)(1−σ (net1))

ΔW1 j = δ1V j

δ2 = (t2 − o2)σ (net2)(1−σ (net2))

ΔW2 j = δ2V j

Page 15: Radial Basis-Function Networks

Δw jk = δi

1

2

∑ ⋅W ij f '(net j ) ⋅ xk

Δw jk = δi

1

2

∑ ⋅W ijσ (net j )(1−σ (net j )) ⋅ xk

δ j = σ (net j )(1−σ (net j )) W ij

i=1

2

∑ δ i

Δw jk = δ j ⋅ xk

Page 16: Radial Basis-Function Networks

δ1= 1/(1+exp(- 0.2))*(1- 1/(1+exp(- 0.2)))*(0.1* 0.11394+0.1*( -0.13437))

δ1= -5.0568e-04

δ2= -5.0568e-04

δ3= -5.0568e-04

δ1 = σ (net1)(1−σ (net1)) W i1

i=1

2

∑ δ i

δ2 = σ (net2)(1−σ (net2)) W i2

i=1

2

∑ δ i

δ3 = σ (net3)(1−σ (net3)) W i3

i=1

2

∑ δ i

Page 17: Radial Basis-Function Networks

First Adaptation for x1

(one epoch, adaptation over all training patterns, in our case x1 x2)

δ1= -5.0568e-04 δ1= 0.11394

δ2= -5.0568e-04 δ2= -0.13437

δ3= -5.0568e-04

x1 =1 v1 =0.54983

x2 =1 v2 =0.54983

x3 =0 v3=0.54983

x4 =0

x5 =0

ΔW ij = δiV j

Δw jk = δ j ⋅ xk

Page 18: Radial Basis-Function Networks

Radial Basis-Function Networks RBF networks train rapidly No local minima problems No oscillation Universal approximators

Can approximate any continuous function Share this property with feed forward networks with

hidden layer of nonlinear neurons (units) Disadvantage

After training they are generally slower to use

Page 19: Radial Basis-Function Networks
Page 20: Radial Basis-Function Networks

Gaussian response function

Each hidden layer unit computes

x = an input vector u = weight vector of hidden layer neuron i

hi = e−Di

2

2σ 2

Di2 = (

r x −

r u i)

T (r x −

r u i)

Page 21: Radial Basis-Function Networks

The output neuron produces the linear weighted sum

The weights have to be adopted (LMS)

Δwi = η (t − o)x i€

o = wi ⋅hi

i= 0

n

Page 22: Radial Basis-Function Networks

The operation of the hidden layer

One dimensional input

h = e−(x−u)2

2σ 2

Page 23: Radial Basis-Function Networks

Two dimensional input

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (LZW)“

benötigt.

Page 24: Radial Basis-Function Networks

Every hidden neuron has a receptive field defined by the basis-function x=u, maximum output Output for other values drops as x deviates from u Output has a significant response to the input x only

over a range of values of x called receptive field The size of the receptive field is defined by u may be called mean and standard deviation The function is radially symmetric around the

mean u

Page 25: Radial Basis-Function Networks

Location of centers u

The location of the receptive field is critical

Apply clustering to the training set each determined cluster center would

correspond to a center u of a receptive field of a hidden neuron

Page 26: Radial Basis-Function Networks

Determining The object is to cover the input space with

receptive fields as uniformly as possible If the spacing between centers is not uniform, it

may be necessary for each hidden layer neuron to have its own

For hidden layer neurons whose centers are widely separated from others, must be large enough to cover the gap

Page 27: Radial Basis-Function Networks

Following heuristic will perform well in practice For each hidden layer neuron, find the RMS

distance between ui and the center of its N nearest neighbors cj

Assign this value to i€

RMS =1

n⋅ uk −

c lk

l=1

N

∑N

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟

2

i= k

n

Page 28: Radial Basis-Function Networks

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (LZW)“

benötigt.

Page 29: Radial Basis-Function Networks

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (LZW)“

benötigt.

Page 30: Radial Basis-Function Networks

Why does a RBF network work?

The hidden layer applies a nonlinear transformation from the input space to the hidden space

In the hidden space a linear discrimination can be performed

( )

( )

( )( )( )

( )

( )( )

( )

( )

( )

( )( )

( )

( )( )

Page 31: Radial Basis-Function Networks

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (LZW)“

benötigt.

Page 32: Radial Basis-Function Networks

Back-Propagation Stochastic Back-Propagation Algorithm Step by Step Example

Radial Basis-Function Networks Gaussian response function Location of center u Determining sigma Why does RBF network work

Page 33: Radial Basis-Function Networks

Bibliography

Wasserman, P. D., Advanced Methods in Neural Computing, New York: Van Nostrand Reinhold, 1993

Simon Haykin, Neural Networks, Secend edition Prentice Hall, 1999

Zur Anzeige wird der QuickTime™ Dekompressor „TIFF (Unkomprimiert)“ benötigt.

Page 34: Radial Basis-Function Networks

Support Vector Machines


Recommended