+ All Categories
Home > Documents > Radiation Characterization and Test Methodology Study of ...

Radiation Characterization and Test Methodology Study of ...

Date post: 25-Dec-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
19
1 « Radiation Characterization and Test Methodology Study of Optocoupler Devices for Space Applications » Work Order WO01/CO03, ESA/ESTEC contract n°11755/NL/PB © Astrium 2 Novembre 2000 Contents 1 Study objectives 2 Test Plan 3 Current Transfer Ratio (CTR) variation with proton fluence 4 CTR variation with neutron fluence 5 CTR variation with Total Ionizing Dose (TID) 6 Comparison between ionization and displacement damage 7 Comparison between proton energies 8 Comparison between proton and neutron + dose 9 Conclusion
Transcript

1

« Radiation Characterization and Test MethodologyStudy of Optocoupler Devices for Space Applications »Work Order WO01/CO03, ESA/ESTEC contract n°11755/NL/PB

© Astrium2 Novembre 2000

Contents

1 Study objectives

2 Test Plan

3 Current Transfer Ratio (CTR) variation with proton fluence

4 CTR variation with neutron fluence

5 CTR variation with Total Ionizing Dose (TID)

6 Comparison between ionization and displacement damage

7 Comparison between proton energies

8 Comparison between proton and neutron + dose

9 Conclusion

2

Study Objectives

1© Astrium3 Novembre 2000

© Astrium4 Novembre 2000

Study objectives

● Establish an industrial methodology for optocoupler radiation testing

✔ validate the calculation of equivalent monoenergetic proton fluence with help of NIEL, whatever proton energy is concerned

✔ quantify the additional degradation due to ionizing dose when proton testing does not allow to reach expected in flight dose level (electron rich orbits)

✔ validate the possibility to perform a combination of [neutron + ionizing dose] testing instead of proton testing

3

Test Plan

2© Astrium5 Novembre 2000

© Astrium6 Novembre 2000

Test Plan 1/

● Devices tested

Devicetype

Manuf. Version Proton samplesize

Neutron/TIDsample size

TIDsample size

4N49 Optek Standard 15 x 3 Ep 18 18(HDR)+18(LDR)

4N49 Isolink standard 15 x 3 Ep 18 18(HDR)+18(LDR)

4N49 Micropac standard 15 x 3 Ep 18 18(HDR)+18(LDR)

66099 Micropac Hardened to

displac t damage and

TID

12 x 3 Ep 12 9(HDR)+9(LDR)

66168 Micropac Hardened to

displac t damage

15 x 3 Ep 18 18(HDR)+18(LDR)

66163 Micropac standard 15 x 3 Ep 18 18(HDR)+18(LDR)

OLH249 Isolink Hardened to

displac t damage

12@Ep=60 MeV

9@Ep=200 MeV

9 9(HDR)+9(LDR)

4

© Astrium7 Novembre 2000

Test Plan 1/

● Optocoupler description

© Astrium8 Novembre 2000

Test Plan 2/

● Electrical testing conditions for proton, neutron and 60Co experiment

✔ 3 biasing mode during irradiation : Static ON : If = 1 mA, 10 mA or static OFF

Static ON mode Static OFF mode

+

Vcc=5V

R1

R2

Optocoupler

Optocoupler

5

© Astrium9 Novembre 2000

Test Plan 3/

✔Electrical measurement test set-up for proton and neutron experiment

Optocoupler

HPIB

Computer

Keithley 220SMU

Anode

Cathode

Base

Collector

Emitter

Keithley 220SMU

Gnd

© Astrium10 Novembre 2000

Test Plan 3/

✔Electrical measurement test set-up for TID experiment

Optocoupler

HPI

Computer

HP4155SemiconductorParameterAnalyzer

Smu2

Smu1

Smu3Anod

Cathod

Base

Collector

Emitte

6

© Astrium11 Novembre 2000

Test Plan 4/

● Proton irradiation : at PSI, Villingen✔ 3 proton energies : 15, 60 and 200 MeV

✔ OPTIS line for 15 and 60 MeV protons, PIF line for 200 MeV

STEP0 STEP1 STEP2 STEP3 STEP4 STEP5 STEP6 STEP7

15 MeV 0 (0k) (1k) 1.24e+10

(5k)

2.48e+10

(10k)

4.9e+10

(20k)

1.2e+11

(50k)

1.8e+11

(75k)

2.42e+11

(100k)

60 MeV 0 7.26e+9 3.63e+10 7.26e+10 1.5e+11 3;63e+11 5.45e+11 7.27e+10

200 MeV 0 1.74e+10 8.59e+10 1.72e+11 3.44e+11 8.6e+11 1.27e12 1.72e+12

© Astrium12 Novembre 2000

Test Plan 5/

● Neutron irradiation : Prospero neutron accelerator from CEA Valduc

✔ flux from 2.05 to 6.2 10E8 n/cm2/s✔ neutron energies from 100 keV to 6 MeV spectrum, assimilated to 1 MeV

neutron based on displacement damage in Silicon

Prot. Eq. Dose (krad) 0 10 kRad 20 kRad 50 kRad 75 kRad 100 kRad

Prot. 15 MeV (p/cm²) 0 2.4e+10 4.8e+10 1.2e+11 1.8e+11 2.4e+11

Neut. 1 MeV(n/cm²) 0 1.84e+11 3.7e+11 9.24e+11 1.38e+12 1.84e+12

7

© Astrium13 Novembre 2000

Test Plan 6/

● Cobalt 60 irradiation✔low dose rate (<140 rad/h) : Shepherd 484, ASTRIUM, Velizy

steps for low dose rate experiment

✔high dose rate (50 krad/h) : PAGURE line, CISbio Int., Saclay

steps for high dose rate experiment

0 kRad 10 kRad 22 kRad 39 kRad 56 kRad 66 kRad 75 kRad 102 kRad

0 kRad 20 kRad 50 kRad 100 kRad

CTR degradation with TID

3© Astrium14 Novembre 2000

8

© Astrium15 Novembre 2000

CTR degradation with TID 1/

● Example of CTR degradation with TID : standard device

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

dose [krad(Si)]

CT

R1

(%)

If = 0 mA (OFF) If = 1 mA If = 10 mA

4N49 (Micropac)

© Astrium16 Novembre 2000

CTR degradation with TID 2/

● Example of CTR degradation with TID : hardened device

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

dose [krad(Si)]

CT

R1

(%)

If = 0 mA (OFF)If = 1 mAIf = 10 mA

66168 (Micropac)

9

CTR degradation with proton fluence

4© Astrium17 Novembre 2000

© Astrium18 Novembre 2000

CTR degradation with proton fluence 1/

● Example of CTR degradation with proton fluence : standard device

0

10

20

30

1,E+10 2,E+10 3,E+10 4,E+10 5,E+10 6,E+10 7,E+10 8,E+10 9,E+10 1,E+11

fluence p15 MeV (p/cm2)

CT

R1

(%)

If = 0 mA (OFF)If = 1 mAIf = 10 mA

4N49 (micropac)

10

© Astrium19 Novembre 2000

CTR degradation with proton fluence 2/

● Example of CTR degradation with proton fluence : hardened device

0

10

20

30

40

50

60

70

80

90

100

1,E+09 1,E+10 1,E+11 1,E+12

fluence p15 MeV (p/cm 2)

CT

R1

(%)

If = 0 mA (OFF)If = 1 mAIf = 10 mA

66168 (micropac)

CTR degradation with neutron fluence

5© Astrium20 Novembre 2000

11

© Astrium21 Novembre 2000

CTR degradation with neutron fluence 1/2

● Example of CTR degradation with neutron fluence : standard device

0,00

10,00

20,00

30,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fluence neut. 1 MeV *1011

(n/cm2)

CT

R1

(%)

If = 0 mA (OFF)

If = 1 mAIf = 10 mA

4N49 (Isolink)

© Astrium22 Novembre 2000

CTR degradation with neutron fluence 2/2

● Example of CTR degradation with neutron fluence : hardened device

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

fluence neut 1 MeV *1011

(n/cm2)

CT

R1

(%)

If = 0 mA (OFF)If = 1 mA

If = 10 mA

OLH249 (Isolink)

12

Comparison between ionization anddisplacement damage

6© Astrium23 Novembre 2000

© Astrium24 Novembre 2000

Comparison between ionization and displacementdamage

● Standard device

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Dose [krad(Si)]

CT

R1

(%)

15 MeV protonCobalt 60

4N49 (micropac), If = 1 mA

13

© Astrium25 Novembre 2000

Comparison between ionization and displacementdamage

● Hardened device

0

10

20

30

40

50

60

70

80

90

1 0 0

0 20 40 60 80 1 0 0

Dose [krad(Si)]

CT

R1

(%)

15 MeV protonCobalt 60

66168 (micropac, If = 1 mA

Comparison of CTR degradation with protonenergy

7© Astrium26 Novembre 2000

14

© Astrium27 Novembre 2000

Comparison of CTR degradation with protonenergy

● Comparison based on real protons fluences, hardened device

0

10

20

30

40

50

60

70

80

90

100

0,E+00 2,E+11 4,E+11 6,E+11 8,E+11 1,E+12 1,E+12 1,E+12 2,E+12 2,E+12 2,E+12

fluence protons [p/cm2]

CT

R1

(%)

15 MeV proton60 MeV proton200 MeV proton

66168 (Micropac), If = 1 mA

© Astrium28 Novembre 2000

Comparison of CTR degradation with protonenergy

● Comparison based on dose deposited by protons, hardened device

0

10

20

30

40

50

60

70

80

90

1 0 0

0 20 40 60 80 1 0 0

Dose [krad(Si)]

CT

R1

(%)

15 MeV proton60 MeV proton

200 MeV proton

66168 (micropac), If = 1 mA

15

© Astrium29 Novembre 2000

Comparison of CTR degradation with protonenergy

● Comparison based on equivalent fluence, hardened device

0

10

20

30

40

50

60

70

80

90

100

0,E+00 5,E+10 1,E+11 2,E+11 2,E+11 3,E+11 3,E+11

15 MeV proton fluence (p/cm2)

CT

R1

(%)

p15 MeVp60 MeV

p200 MeV

66168 (micropac)

© Astrium30 Novembre 2000

Comparison of CTR degradation with protonenergy

● Comparison based on real protons fluences, standard device

0

10

20

30

40

50

60

70

80

90

100

1,E+09 1,E+11 2,E+11 3,E+11 4,E+11 5,E+11 6,E+11 7,E+11 8,E+11 9,E+11

Fluence proton (p/cm²)

CTR

1 (%

)

15 MeV proton60 Mev proton200 MeV proton

4N49 (micropac), If = 1 mA

16

© Astrium31 Novembre 2000

Comparison of CTR degradation with protonenergy

● Comparison based on dose deposited by protons, standard device

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Dose [krad(Si)]

CT

R1

(%)

15 MeV proton60 Mev proton200 MeV proton

4N49 (micropac), If = 1 mA

© Astrium32 Novembre 2000

Comparison of CTR degradation with proton energy

● Comparison based on equivalent fluence, standard device

0

10

20

30

40

50

60

70

80

1,00E+10 1,00E+11 1,00E+12

200 MeV proton equivalent fluence (p/cm²)

CT

R1

(%)

200 MeV

15 MeV60 MeV

4N49 (micropac)

17

Comparison of CTR degradation with protonand neutron

8© Astrium33 Novembre 2000

© Astrium34 Novembre 2000

Comparison of CTR degradation with proton andneutron

● Comparison based on equivalent fluence, hardened device

0

20

40

60

80

100

120

0,E+00 5,E+10 1,E+11 2,E+11 2,E+11 3,E+11 3,E+11

15 MeV proton fluence (p/cm2)

CT

R1

(%)

p15 MeV

p60 MeV

p200 MeV

1 MeV neutron

66168 (micropac)

18

© Astrium35 Novembre 2000

Comparison of CTR degradation with proton andneutron

● Comparison based on equivalent fluence, standard device

0

10

20

30

40

50

60

70

80

90

100

1,00E+10 1,00E+11 1,00E+12

200 MeV proton equivalent fluence (p/cm²)

CT

R1

(%)

200 MeV15 MeV

60 MeV1 MeV neutron

4N49 (micropac)

Conclusion

9© Astrium36 Novembre 2000

19

© Astrium37 Novembre 2000

Conclusion 1/2

● A lot a data to analyse!

● Displacement damage is the main degradation mechanism

● biasing conditions during irradiation have an impact only for standarddevices, for CTR values measured at low If

● NIEL concept works well, when using Barry ’s table

● protons and neutrons results very well correlated for hardened devices,slight differences for unhardened devices

● Test methodology applicable for all optocoupler types

© Astrium38 Novembre 2000

Conclusion 2/2

● Still to perform

✔analysis of dose rate influence for Cobalt 60 results

✔complete tables for 3 remaining types

✔analysis of neutron spectrum in GaAs


Recommended