+ All Categories
Home > Documents > Radio_Astronomy.ppt

Radio_Astronomy.ppt

Date post: 20-Jul-2016
Category:
Upload: raul-infante-galindo
View: 217 times
Download: 2 times
Share this document with a friend
80
ASTR 3520 ASTR 3520 Observations & Instrumentation Observations & Instrumentation II: II: Spectroscopy Spectroscopy Intro to Radio Astronomy
Transcript
Page 1: Radio_Astronomy.ppt

ASTR 3520ASTR 3520Observations & Instrumentation II:Observations & Instrumentation II: SpectroscopySpectroscopy

Intro to Radio Astronomy

Page 2: Radio_Astronomy.ppt

Intro to Radio Astronomy

• Concepts - Amplifiers - Mixers (down-conversion) - Principles of Radar - Radio Astronomy basics: System temperature, Receiver temperature Brightness temperature, The beam ( = / D) [ its usually BIG] Interferometry (c.f. the Very Large Array – VLA) Aperture synthesis

Page 3: Radio_Astronomy.ppt

Detection of EM Radiation Across the Spectrum

-ray X-ray UV Visible NIR TIR sub-mm mm cm radio

>MeV 0.2 – 100 keV 4000 – 10,000A 3 – 200 m 1 – 10 mm >1 cm 100 – 4000 A 1 – 3 m 200 m – 1000m

Incoherent detection Coherent detection - Particle properties - Wave properties (photons) - Energy, arrival time - Amplitude, phase - quantum noise: Trec > h / 2

Transmission

Page 4: Radio_Astronomy.ppt

History of Radio Astronomy (the second window on the Universe)

• 1929 - Karl Jansky (Bell Telephone Labs)• 1030s - Grote Reber• 1940s - WWII, radar - 21 cm (Jan Oort etc.)• 1950s - Early single dish & interferometry - `radio stars’, first map of Milky Way - Cambridge surveys (3C etc)• 1960s - quasars, pulsars, CMB, radar, VLBI aperture synthesis, molecules, masers (cm)• 1970s - CO, molecular clouds, astro-chemistry (mm)• 1980s /90s – CMB anisotropy, (sub-mm)

Page 5: Radio_Astronomy.ppt

Karl Jansky, Holmdel NJ, 1929

Page 6: Radio_Astronomy.ppt

300 m dish at Arecibo:300 m dish at Arecibo: / D ~ 48” at = 6 cm (5 GHz)

Page 7: Radio_Astronomy.ppt

408 MHz radio sky408 MHz radio sky

Page 8: Radio_Astronomy.ppt

Outline• A Simple Heterodyne Receiver System

– mixers and amplification• Observing in the Radio

– resolution– brightness temperature

• Radio Interferometry• Aperture synthesis

Page 9: Radio_Astronomy.ppt

Mixers

signal inLO

local oscillator

signal out and

A mixer takes two inputs: the signal and a local oscillator (LO).

The mixer outputs the sum and difference frequencies.

In radio astronomy, we usually filter out the high frequency (sum) component.

Page 10: Radio_Astronomy.ppt

Mixers

frequency

sign

al LO

originalsignal

mixedsignal

0 Hz

Page 11: Radio_Astronomy.ppt

Mixers

frequency

sign

al LO

originalsignal

mixedsignal

The negative frequencies in the difference appear the same as a positive frequency.

To avoid this, we can use “Single Sideband Mixers” (SSBs) which eliminate the negative frequency components.

0 Hz

Page 12: Radio_Astronomy.ppt

W-band (94 GHz,4 mm) amplifier

Page 13: Radio_Astronomy.ppt

Local oscillatorDownconverted signal

Frequency

Single sideband mixer:

Band-pass of amplifier: Intermediate frequency = IF

Page 14: Radio_Astronomy.ppt

Local oscillator

Amplifier passband

Frequency

Lower sideband Upper sideband

FLOFIF

Double sideband mixer:

Page 15: Radio_Astronomy.ppt

Local oscillator

Amplifier passband

Frequency

Lower sideband Upper sideband

FLOFIF

Page 16: Radio_Astronomy.ppt

ASTR 3520ASTR 3520Intro to Radio Aastronomy:Intro to Radio Aastronomy:

• Review heterodyne & mixing Radar examples: cars, Venus (review)• Single dish spectroscopy Orion nebula CO example• Radiometer equation (noise vs, exposure time)• Interferometer basics The U, V plane => Dirty beams, Fourier Inversion => Dirty maps De-convolve Dirty Beam => CLEAN maps • The VLA, VLBA, and ALMA

Page 17: Radio_Astronomy.ppt

Freflect = f trans + / - f f = 2 f (V/c) f = 10 GHz V = 100 km/h = 27.8 m /s c = 3 x 1010 cm/s = 3 x 105 km/s f = 1850 Hz

Radar:

Page 18: Radio_Astronomy.ppt

f = 1850 Hz

f trans

Freflect = f trans + / - f

Mixing: Adding waves together

Page 19: Radio_Astronomy.ppt

Local oscillatorDownconverted signal

Frequency

Single sideband mixermixer:

f = 10 GHz

F + f = 10 GHz + 1850 Hz

1850 Hz f = fIF

Band-pass of amplifier: Intermediate frequency = IF

Page 20: Radio_Astronomy.ppt

Planetary Radar imaging: Doppler shift + time delay = 2D map

Radar PulseEarly echo

Late echo

BlueshiftRedshift

Page 21: Radio_Astronomy.ppt

VenusVenusUV

Radar

Radar

Page 22: Radio_Astronomy.ppt

VenusVenusRadar

Page 23: Radio_Astronomy.ppt

A Simple Heterodyne Receiver

low noiseamplifier

filter

receiver horn

LO

tunablefilter

signal @ 1420 MHz

1570 MHz

1420 MHz

tunableLO

~150 MHz

Analog-to-DigitalConverter

Computer

+ +

outputs a power spectrum

150 MHz

Page 24: Radio_Astronomy.ppt

Amplification• Why is having a low noise first amp so

important?– the noise in the first amp gets amplified by all

subsequent amps– you want to amplify the signal before subsequent

electronics add noise• Amplification is in units of deciBells (dB)

– logarithmic scale• 3 dB = x2• 5 dB = x3• 10 dB = x10• 20 dB = x100• 30 dB = x1000

)(log10dB2

110 VV

Page 25: Radio_Astronomy.ppt

Observing in the Radio I

• We get frequency and phase information, but not position on the sky– 2D detector

• A CCD is also a 2D detector (we get x & y position)

Page 26: Radio_Astronomy.ppt

Observing in the Radio II:Typical Beamsize (Resolution)

• i.e. The BURAO 21 cm horn (D ~ 1 m)

o1210021

≈cc

Page 27: Radio_Astronomy.ppt

Observing in the Radio II• i.e. The NRAO GBT (D ~ 100 m)

'2.710000

21≈

cc

''2.6'10.010000

3.0≈

cc

at 21cm = 1.420 GHz

at 0.3 cm = 100 GHz

Page 28: Radio_Astronomy.ppt

Observing in the Radio II• i.e. The Arecibo Telescope (D ~ 300 m)

'4.230000

21≈

cc

''1.230000

3.0≈

cc

at 21cm = 1.420 GHz

at 0.3 cm = 100 GHz

Page 29: Radio_Astronomy.ppt

300 m dish at Arecibo300 m dish at Arecibo

Page 30: Radio_Astronomy.ppt

Transmission (and brightness of the Atmosphere) depends on H2O!

Page 31: Radio_Astronomy.ppt

Observing in the Radio III:Brightness Temperature

Flux: erg s-1 sr-1 cm-2 Hz-1 (1023 Jy)B(T): erg s-1 sr-1 cm-2 Hz-1 (1023 Jy)

We can use temperature as a proxy for flux (Jy)

Conveniently, most radio signals have h/kT << 1, so we can use the Raleigh-Jeans approximation

B(T) = 2kT/2

Thus, flux is linear with temperature

Page 32: Radio_Astronomy.ppt

Antenna TemperatureTB = F2/2k

• Brightness temperature (TB) gives the surface temperature of the source (if it’s a thermal spectrum)

• Antenna Temperature (TA):– if the antenna beam is larger than the source, it will

see the source and some sky background, in which case TA is less than TB

TA ~ TB s/b

Page 33: Radio_Astronomy.ppt

System Temperature

• Noise in the system is characterized by the system temperature (Tsys)– i.e. you want your system temperature

(especially in the first amp) to be low

Page 34: Radio_Astronomy.ppt

Radiometer Equation• Trms = Tsys / ( t) ½

– Trms = r.m.s. noise in observation– a ~ (2)1/2 since you have to switch off-source = position switch

off-frequency = frequency switch

– Tsys = System temperature– = bandwidth, frequency range observed– t = integration time (how long is the exposure?)

Page 35: Radio_Astronomy.ppt

Spectral Resolution• The spectral resolution in a radio

telescope can be limited by several issues:– integration time (signal-to-noise)– filter bank resolution (if you’re using a filter

bank to generate a power spectrum in hardware)

Page 36: Radio_Astronomy.ppt

•Single Dish line & continuum basics • = / D ~ arc minutes 10 m @ 1 cm => 250”

• Brightness temperature: B(T) => I T

• Radiometer equation: TRMS = Tsys / (

Ex: = 100 GHz, = 1 MHz (= 3 km/s), = 1 sec, Tsys = 1000 K TRMS = 1 (Kelvin)

Page 37: Radio_Astronomy.ppt
Page 38: Radio_Astronomy.ppt
Page 39: Radio_Astronomy.ppt
Page 40: Radio_Astronomy.ppt

Orion B

Orion A

Orion Nebula

Orion MolecularClouds

13CO 2.6 mm

Page 41: Radio_Astronomy.ppt

350 m

13CO J=6-5 661 GHz

(Wilson et al. – in prep)

12CO J=9-8(discovery)

12CO J=9-8

OMC1OMC1-S(Kawamura et al. 2002)

THz spectra!

Page 42: Radio_Astronomy.ppt

Milky Way all-sky: Visual wavelengths

Page 43: Radio_Astronomy.ppt

Milky Way all-sky: Infrared wavelengths (COBE)

Page 44: Radio_Astronomy.ppt

408 MHz radio sky408 MHz radio sky

Page 45: Radio_Astronomy.ppt

21 cm HI all-sky map21 cm HI all-sky map

Page 46: Radio_Astronomy.ppt

Dame et al. CO map of Milky WayDame et al. CO map of Milky Way

Page 47: Radio_Astronomy.ppt

Dame et al. CO map of Milky WayDame et al. CO map of Milky Way

R Cor Aust.

-Ophiucus

Galactic Center

Page 48: Radio_Astronomy.ppt

Multi-transitionAnalysis ofOutflow massspectra

Multi-transition analysis of outflow mass spectra

Page 49: Radio_Astronomy.ppt

L1551 J=2-1 CO

Page 50: Radio_Astronomy.ppt

[SII] with COL1551

Page 51: Radio_Astronomy.ppt

Radio Interferometry

+

East

posit

ional

phas

e dela

yto

sourc

e

Page 52: Radio_Astronomy.ppt

Two Dish Interferometry• The fringe pattern as a function of time

gives the East-West (RA) position of the object

• Also think of the interferometer as painting a fringe pattern on the sky– the source moves through this pattern,

changing the amplitude as it goes

Page 53: Radio_Astronomy.ppt

Extended Sources

+ -+ - -+ + • Spacing of the fringes is a function of the projected baseline

• The area under the fringes determines the amplitude of the signal (positive fringes add, negative fringes subtract)

• The projected baseline changes as the source rises or sets

Page 54: Radio_Astronomy.ppt

Extended Sources

The narrow fringes (not visible here), represent the positional delay.

The broad envelope is the self-interference of the extended source.

A four hour observation of the Sun at 12 GHz using a two dish E-W interferometer.

Page 55: Radio_Astronomy.ppt

Extended Sources• In order to determine the extended object’s

shape, we must disentangle the fringes due to the projected baseline (which we’d get from a point source) from the interference of the different parts of the source– to do this, we use delay lines– we introduce a delay between the two antennas

to compensate for the the positional delay– this leaves only the fringes from the structure of

the source

Page 56: Radio_Astronomy.ppt

Aperture Synthesis• A two dish interferometer only gives

information on the E-W (RA) structure of a source

• To get 2D information, we want to use several dishes spread out over two dimensions on the ground

Page 57: Radio_Astronomy.ppt

Radio Telescope ArraysThe VLA:An array of 27 antennas with 25 meter apertures

maximum baseline: 36 km

75 Mhz to 43 GHz

Page 58: Radio_Astronomy.ppt

Very Large Array radio telescope (near Socorro NM)Very Large Array radio telescope (near Socorro NM)

Page 59: Radio_Astronomy.ppt

The VLAThe VLA

An amplifier

Page 60: Radio_Astronomy.ppt

The U-V Plane• Think of an array as a partially filled aperture

– the point source function (PSF) will be have complicated structure (not an airy disk)

– the U-V plane shows what part of the aperture is filled by a telescope

– this changes with time as the object rises and sets

– a long exposure will have a better PSF because there is better U-V plane coverage (closer to a filled aperture)

Page 61: Radio_Astronomy.ppt

The U-V plane

a snapshot of the U-V plane(VLBA)

U-V coverage in a horizon to horizon exposure

Page 62: Radio_Astronomy.ppt

Point Spread FunctionThe dirty beam : the diffraction pattern of the array

Page 63: Radio_Astronomy.ppt

Fourier plane samplingUV plane covered over 6 hrs Amplitude of fringes on a source

Page 64: Radio_Astronomy.ppt

Examples of weightingDirty Beams:A snapshot (few min) Full 10 hrs VLA+VLBA+GBT

Page 65: Radio_Astronomy.ppt

Image Deconvolution• Interferometers have nasty PSFs• To get a good image we “deconvolve” the

image with the PSF– we know the PSF from the UV plane coverage– computer programs take a PSF pattern in the

image and replace it with a point– the image becomes a collection of point

sources

Page 66: Radio_Astronomy.ppt

UV Plane Coverage and PSF

images from a presentation by Tim Cornwell (given at NRAO SISS 2002)

Page 67: Radio_Astronomy.ppt

UV Plane Coverage and PSF

images from a presentation by Tim Cornwell (given at NRAO SISS 2002)

Page 68: Radio_Astronomy.ppt

Image Deconvolution

images from a presentation by Tim Cornwell (given at NRAO SISS 2002)

Page 69: Radio_Astronomy.ppt

The Orion Nebula (at 1.4 GHz)

Page 70: Radio_Astronomy.ppt

SNR Cassiopeia AContinuum in 3 colors:1.4 GHz (L band)5.0 GHz (C band)8.4 GHz (X band)

Page 71: Radio_Astronomy.ppt

Jupiter andits magnetosphere

Page 72: Radio_Astronomy.ppt

W50 SNR: SS 433 (accreting neutron star + 0.27c jets)

Page 73: Radio_Astronomy.ppt
Page 74: Radio_Astronomy.ppt

21 cm HI map21 cm HI mapof M33of M33

Page 75: Radio_Astronomy.ppt

Centaurus A (the nearest radio galaxy)

Page 76: Radio_Astronomy.ppt

PH 227PH 227

Radio galaxyand jets

Page 77: Radio_Astronomy.ppt

Radio galaxyRadio galaxy3C2863C286

Page 78: Radio_Astronomy.ppt

VLBAVLBA

Page 79: Radio_Astronomy.ppt
Page 80: Radio_Astronomy.ppt

Radio Telescope ArraysALMA:An array of 64 antennas with 12 meter apertures

maximum baseline: 10 km

35 GHz to 850 GHz