+ All Categories
Home > Documents > RCC Design Programmed by Others

RCC Design Programmed by Others

Date post: 22-Oct-2015
Category:
Upload: jessie-radaza-tutor
View: 65 times
Download: 6 times
Share this document with a friend
Description:
RCC
43
Beam Data width 200 mm depth 600 mm d' 36 mm .= cc+ sdia + mdia/2 clear cover to main 15 mm eff depth 565 mm .= d - d' Material Grades Concrete 20 MPa Steel 415 MPa Moment 123 KN-m Mu/bd 2 1.93 xumax 270 .= (700/(1100 * (0.87 * fy)) * d Mulim 176 .= 0.36*fck*b*xumax*(d-(0.42*xumax)) Mulim/bd 2 2.76 Beam is designed as Singly Reinforced Beam Area of Steel Tension (Ast) Compr (Asc) Percentage 0.613 % ------- Refer Table 2 SP 16 pg 48 Area of Steel 692 sqmm Tension Reinforcement Type Bar dia Nos Area of Steel Layer 1 25 mm 2 982 sqmm Layer 2 16 mm 2 402 sqmm Layer 3 - 2 1384 sqmm 1.226 % Compression Reinforcement Type Bar dia Nos Area of Steel Layer 1 12 mm 2 Layer 2 - Layer 3 #VALUE! Shear Force (Vu) 200 KN ζv 1.771 .=Vu / (b * d) ζc 0.562 Refer Table 61 SP 16 pg 179 or =(0.85 * √(0.8*fck)*√(1+5 β) -1)) / (6 β ) ζcmax 2.8 Refer Table J SP 16 pg 175 Type Bar Dia Nos Area of Steel Layer 1 16 mm 2 402 sqmm Layer 2 12 mm 4 452 sqmm Layer 3 - 855 sqmm 0.757 % Sectional Dimensions OK Shear Reinforcements required Type of stirrup 2 legged Stirrup diameter 8 mm Spacing 150 c/c Beam Design Total Steel Provided Provided Steel OK Total Steel Provided Total Steel Provided
Transcript
Page 1: RCC Design Programmed by Others

Beam Data

width 200 mm

depth 600 mm d' 36 mm .= cc+ sdia + mdia/2

clear cover to main 15 mm eff depth 565 mm .= d - d'

Material Grades

Concrete 20 MPa

Steel 415 MPa

Moment 123 KN-m Mu/bd2

1.93

xumax 270 .= (700/(1100 * (0.87 * fy)) * d

Mulim 176 .= 0.36*fck*b*xumax*(d-(0.42*xumax))

Mulim/bd2

2.76

Beam is designed as Singly Reinforced Beam

Area of Steel Tension (Ast) Compr (Asc)

Percentage 0.613 % ------- Refer Table 2 SP 16 pg 48

Area of Steel 692 sqmm

Tension Reinforcement

Type Bar dia Nos Area of Steel

Layer 1 25 mm 2 982 sqmm

Layer 2 16 mm 2 402 sqmm

Layer 3 - 2

1384 sqmm 1.226 %

Compression Reinforcement

Type Bar dia Nos Area of Steel

Layer 1 12 mm 2

Layer 2 -

Layer 3

#VALUE!

Shear Force (Vu) 200 KN

ζv 1.771 .=Vu / (b * d)

ζc 0.562 Refer Table 61 SP 16 pg 179 or =(0.85 * √(0.8*fck)*√(1+5 β) -1)) / (6 β )ζcmax 2.8 Refer Table J SP 16 pg 175

Type Bar Dia Nos Area of Steel

Layer 1 16 mm 2 402 sqmmLayer 2 12 mm 4 452 sqmm

Layer 3 -

855 sqmm 0.757 %

Sectional Dimensions OK

Shear Reinforcements required

Type of stirrup 2 legged

Stirrup diameter 8 mm

Spacing 150 c/c

Beam Design

Total Steel Provided

Provided Steel OK

Total Steel Provided

Total Steel Provided

Page 2: RCC Design Programmed by Others

Steel Calculation

Grade Check

7.1

SRB DRB

a 0.75 .=(0.87435/100) * (fy/fck)2

a 0.75 .=(0.87435/100) * (fy/fck)2

b -3.611 .=(0.87/100) * (fy) b -3.611 .=(0.87/100) * (fy)

c 1.930 .=Mu/bd2

c 2.762 .=Mulim/bd2

-p 0.613 .=-(b ±√(b2-4ac))/2a -p 0.955 .=-(b ±√(b2-4ac))/2aAst 692 .=(p*b*d)/100 Astlim 1079 .=(p*b*d)/100

Mu2 -53 .=Mu - Mulim

Ast2 -278 .=Mu2/((0.87*fy)*(d-d'))

Ast 801 .=Astlim+Ast2

0.0629 d'/d 0.10

0.1 fsc 353 Refer Table F SP 16 pg 13

fcc 8.92 .=0.466*fck

Asc -291 .=Mu2/((fsc-fcc)*(d-d'))

Min steel % 0.205 .=0.85% / fy

Ast 692

Asc -291

Min Steel 231 .=(0.85*b*d) / fy

Max Steel 4516 .=0.04*b*d)

Ast 692

Asc

Shear Calculations

Pt provided 0.757 .=(Ast*100)/(b*d)

Pc provided .=(Asc*100)/(b*d)

β 3.068 .=(0.8*fck)/(6.89*Pt)

Shear Capacity of Concrete (Vs) 63 .=ζc*b*d

Shear Stg to be caried by Stirrup (Vus) 137 .=Vu-Vs

Spacing

actual req 150 .=(Asv*0.87fy*d)/Vus

min 454 .=(Asv*0.87fy)/(b*0.4)

max 423 .=0.75d

max 300 .=300mm pro

vid

e the

least of th

e

4

Page 3: RCC Design Programmed by Others

Design Loads

Load Pu 2000 KN

Moment Mu 20 KN-m

Column Data

width b 200 mm

depth d 200 mm

length l 3.00 meters

Grade

Concrete fck 20 MPa

Steel fy 415 MPa

Pu/(fckbd) 2.50

Mu/(fckbd2) 0.01 ex

d'/d 0.05 ey

Refer Chart 31 of SP 16, Page no: 116

pt/fck 0.18

pt 3.60%

Ast 1440 sqmm

Number of bars

dia nos ast

25 mm 4 1963 sqmm ● ● ● ● ● ● 4- 25#

20 mm 4 1257 sqmm 4- 20#

20 mm 4 1257 sqmm ● ● ● ● ● ● 4- 20#

Total 12 4477 sqmm

Column Design

Steel provided OK

1.27 mm

Minimum eccentricity

OK

OK1.27 mm

Page 4: RCC Design Programmed by Others

Pu/(fckbdl) Mu/(fckbdl2) d'/d

1 - - C1 R 1500 KN 30 KN-m 30 KN-m 200 mm 750 mm 750 mm 50 mm 3.60 m 20 MPa 415 MPa 0.50 0.01 0.1 0.02 0.40% 600 sqmm

Ast less than

min Ast req.

1200 sqmm 4 12 mm 452 sqmm 2 12 mm 226 sqmm 6 679 sqmmSteel

provided

NOT OK

Col

Shape

Design

Paramenters

Area of Steel Design ConstantsCol Nos.

Col

type

Grid

No Type 1 Type 2 Total Reinf ProvidedLoad

Column Design

FigAst Req Remark

Final Ast

Required

CheckSl

No.GradeMoment Column Data

7/14/2013 Page 4 of 43

Page 5: RCC Design Programmed by Others

Slab thickness t 150 mm Sunken Depth 325 mm

Concrete fck 20 MPa

Steel fy 415 MPa

Loading

Slab Load Sunken Slab Load

Dead Load DL 3.750 KN/m Dead Load DL 3.750 KN/m

Live Load LL 2.000 KN/m Filler Load FL 5 KN/m

Finishes Load WL 1.000 KN/m Live Load LL 3.0 KN/m

Total Load Ws 6.750 KN/m Finishes Load WL 1.0 KN/m

Factored Load Wsu 10 KN/m Total Load Wsk 12.37 KN/m

Factored Load Wsku 19 KN/m

Slab Data

Slab Type Regular

Load 10 KN/m

Longer Span (ly) 9.50 m ly/lx ratio 2.02

Shorter Span (lx) 4.70 m Slab type -

Loading on edges one way two way

W longer 24 KN/m .=w*lx/2 .=(w*lx/2) + (1-(1/3)*(lx/ly)2)

Wshorter .=w*lx/3

Moments one way two way

Mx 28 KN-m .=w*lx2/ 8 .= αx * w*lx

2

.= αy * w*lx2

Thickness Check OK .=Mulim > Mux or Muy

Deflection 10 mm .= 5*W*l4/(384EI)

Astx Refer Chart 4 SP 16 pg 21 or

667 sqmm Refer Table 5-44 SP 16 pg 51-80

Spacing required in mm

x y x y x y x x

75 c/c 118 c/c 170 c/c 301 c/c

.=ast of bar*1000/ast req

Slab Design

Final Ast

provided

x y

8# 10# 12# 16#

Area of Steel

Page 6: RCC Design Programmed by Others

Design Calculations

ONE WAY TWO WAY

a 0.75 .=(0.87435/100) * (fy/fck)2

a 0.75 .=(0.87435/100) * (fy/fck)2

b -3.611 .=(0.87/100) * (fy) b -3.611 .=(0.87/100) * (fy)

cx 1.654 .=Mu/bd2

cy #VALUE! .=Mu/bd2

-px 0.513 .=-(b ±√(b2-4ac))/2a -py #VALUE! .=-(b ±√(b2-4ac))/2a

Ast 667 .=(p*b*d)/100 Ast #VALUE! .=(p*b*d)/100

Min Ast % mm2

0.12 180

1 0.056

ly/lx αx αy 1.1 0.064

lower

value

upper

value

exact

value

lower

value

upper

value

interptn.

value 1.2 0.072

FALSE FALSE 2.02 #N/A #N/A #N/A 0.056 1.3 0.079

1.4 0.085

1.5 0.089

2 0.107

xumax 62 .= (700/(1100 * (0.87 * fy)) * d

Mulim 47 KN-m .= 0.36*fck*b*xumax*(d-(0.42*xumax))

Mulim/bd2

2.76

Mux/bd2

1.65

Muy/bd2

#VALUE!

E 2.24E+07

I 2.81E-04 .= bd3/12

Defln 10.23 .= 5*W*l4/(384EI)

Tab

le 2

6 IS

45

6 p

g 9

1Interpolation

Page 7: RCC Design Programmed by Others

Slab thickness t

Concrete fck

Steel fy Sunken Depth 450 mm

Loading

Slab Load Sunken Slab Load

Dead Load DL Dead Load DL 3.75 KN/m

Live Load LL Filler Load FL 6.39 KN/m

Floor Finish FF Live Load LL 3.00 KN/m

Other Load OL Floor Finish Load WL 1.00 KN/m

Total Load Ws Total Load Wsk 14.14 KN/m

Factored Load Wsu Factored Load Wsku 21 KN/m

Design & Reinforcement Details of Slabs

Slab Data

LoadLonger

Span

Shorter

Span

Wsu / Wsku ly lx W longer Wshorter Mx Astx x y x y x y x y

1 Regular 150 mm 12 KN 7.20 m 3.00 m 2.40 - 18 KN/m 14 KN-m OK 302 sqmm 166 c/c 260 c/c 374 c/c -1a Regular 150 mm 12 KN 7.20 m 3.50 m 2.06 - 21 KN/m 18 KN-m OK 420 sqmm 120 c/c 187 c/c 269 c/c -2 Regular 150 mm 12 KN 9.20 m 1.50 m 6.13 - 9 KN/m 3 KN-m OK 180 sqmm 279 c/c 436 c/c 628 c/c -3 Regular 150 mm 12 KN 5.70 m 2.00 m 2.85 - 12 KN/m 6 KN-m OK 180 sqmm 279 c/c 436 c/c 628 c/c -4 Regular 150 mm 12 KN 3.60 m 2.00 m 1.80 + 11 KN/m 8 KN/m 5 KN-m 3 KN-m OK 180 sqmm 180 sqmm 279 c/c 279 c/c 436 c/c 436 c/c 628 c/c 628 c/c +5 Regular 150 mm 12 KN 15.00 m 2.60 m 5.77 - 16 KN/m 10 KN-m OK 224 sqmm 224 c/c 350 c/c 505 c/c -6 Regular 150 mm 12 KN 6.50 m 5.50 m 1.18 + 25 KN/m 22 KN/m 26 KN-m 20 KN-m OK 604 sqmm 468 sqmm 83 c/c 107 c/c 130 c/c 168 c/c 187 c/c 242 c/c +7 Regular 150 mm 12 KN 7.40 m 6.00 m 1.23 + 28 KN/m 24 KN/m 32 KN-m 24 KN-m OK 782 sqmm 567 sqmm 64 c/c 89 c/c 100 c/c 139 c/c 145 c/c 199 c/c +8 Regular 150 mm 12 KN 8.30 m 2.40 m 3.46 - 14 KN/m 9 KN-m OK 190 sqmm 265 c/c 414 c/c 596 c/c -9 Regular 150 mm 12 KN 6.70 m 3.70 m 1.81 + 20 KN/m 15 KN/m 17 KN-m 9 KN-m OK 379 sqmm 203 sqmm 133 c/c 248 c/c 207 c/c 388 c/c 298 c/c 558 c/c +

10 Sunken 150 mm 21 KN 6.50 m 5.00 m 1.30 + 42 KN/m 35 KN/m 41 KN-m 29 KN-m OK 1066 sqmm 706 sqmm 47 c/c 71 c/c 74 c/c 111 c/c 106 c/c 160 c/c +11 Sunken 150 mm 21 KN 5.80 m 4.80 m 1.21 + 39 KN/m 34 KN/m 35 KN-m 27 KN-m OK 869 sqmm 644 sqmm 58 c/c 78 c/c 90 c/c 122 c/c 130 c/c 176 c/c +

Sl.No Sl. Id Thickness8# 10# 12#

Area of Steel

Spacing required in mm Spacing provided in

mm c/c

Sla

b t

yp

e

Sla

b N

am

e

1.00 KN/m

0.00 KN/m

7.75 KN/m

12 KN/m

ly/lx

Sla

b t

yp

e

Loading on edges Moments Thickness

Check

150 mm

20 MPa

415 MPa

3.75 KN/m

3.00 KN/m

Page 8: RCC Design Programmed by Others

x y Mx My Mxy Qx Qy

0 0 0 0 9 0 0

1.5 0 0 0 9 0 15

3 0 0 0 7 0 27

4.5 0 0 0 4 0 36

6 0 0 0 0 0 39

7.5 0 0 0 -4 0 36

9 0 0 0 -7 0 27

10.5 0 0 0 -9 0 15

12 0 0 0 -9 0 0

0 1.5 0 0 9 15 0

1.5 1.5 20 20 8 14 14

3 1.5 38 38 6 10 25

4.5 1.5 49 49 3 6 33

6 1.5 53 53 0 0 36

7.5 1.5 49 49 -3 -6 33

9 1.5 38 38 -6 -10 25

10.5 1.5 20 20 -8 -14 14

12 1.5 0 0 -9 -15 0

0 3 0 0 7 27 0

1.5 3 38 38 6 25 10

3 3 69 69 5 19 19

4.5 3 91 91 3 10 25

6 3 98 98 0 0 27

7.5 3 91 91 -3 -10 25

9 3 69 69 -5 -19 19

10.5 3 38 38 -6 -25 10

12 3 0 0 -7 -27 0

0 4.5 0 0 4 36 0

1.5 4.5 49 49 3 33 6

3 4.5 91 91 3 25 10

4.5 4.5 118 118 1 14 14

6 4.5 128 128 0 0 15

7.5 4.5 118 118 -1 -14 14

9 4.5 91 91 -3 -25 10

10.5 4.5 49 49 -3 -33 6

12 4.5 0 0 -4 -36 0

0 6 0 0 0 39 0

1.5 6 53 53 0 36 0

3 6 98 98 0 27 0

4.5 6 128 128 0 15 0

6 6 139 139 0 0 0

7.5 6 128 128 0 -15 0

9 6 98 98 0 -27 0

10.5 6 53 53 0 -36 0

12 6 0 0 0 -39 0

0 7.5 0 0 -4 36 0

1.5 7.5 49 49 -3 33 -6

3 7.5 91 91 -3 25 -10

4.5 7.5 118 118 -1 14 -14

6 7.5 128 128 0 0 -15

7.5 7.5 118 118 1 -14 -14

9 7.5 91 91 3 -25 -10

10.5 7.5 49 49 3 -33 -6

12 7.5 0 0 4 -36 0

0 9 0 0 -7 27 0

1.5 9 38 38 -6 25 -10

3 9 69 69 -5 19 -19

4.5 9 91 91 -3 10 -25

6 9 98 98 0 0 -27

7.5 9 91 91 3 -10 -25

9 9 69 69 5 -19 -19

10.5 9 38 38 6 -25 -10

12 9 0 0 7 -27 0

0 10.5 0 0 -9 15 0

1.5 10.5 20 20 -8 14 -14

3 10.5 38 38 -6 10 -25

4.5 10.5 49 49 -3 6 -33

6 10.5 53 53 0 0 -36

7.5 10.5 49 49 3 -6 -33

9 10.5 38 38 6 -10 -25

10.5 10.5 20 20 8 -14 -14

12 10.5 0 0 9 -15 0

0 12 0 0 -9 0 0

1.5 12 0 0 -9 0 -15

3 12 0 0 -7 0 -27

4.5 12 0 0 -4 0 -36

6 12 0 0 0 0 -39

7.5 12 0 0 4 0 -36

9 12 0 0 7 0 -27

10.5 12 0 0 9 0 -15

12 12 0 0 9 0 0

Shear (KN)

Mark Location (meters) Moments (KNm)

Values of Moments and Shear force at different locations

Page 9: RCC Design Programmed by Others

Data

Effective Span (l) 3.00 mm

Riser (R) 150 mm

Thread (T) 300 mm

Waist Slab thickness (t) 150 mm

Clear Cover 15 mm

Effective Depth of Waist Slab (d) 135 mm

Grade of Concrete (fck) 20 MPa

Grade of Steel (fy) 415 MPa

Loading

Loads on going Loads on waist slab

Self weight of waist slab 4.19 KN/m Self weight of landing slab 3.75 KN/m

Self weight of steps 1.88 KN/m Live Load 2.00 KN/m

Live Load 3.00 KN/m Floor Finish Load 1.00 KN/m

Floor Finish Load 1.00 KN/m Total Load 6.75 KN/m

Total Load 10.07 KN/m Factored Load 10.13 KN/m

Factored Load 15.10 KN/m

Bending Moment

Bending Moment = 17 KN-m

Reaction

to be used as UDL = 23 KN

60 KN-m

Area of Main Steel

Ast 370 sqmm

Spacing

Diameter of bar 12ø 16øSpacing across x 306 c/c 544 c/c

Provded Main Steel:

Area of Distribution Steel

Ast 180 sqmm

Spacing

Diameter of bar 8ø 10øSpacing across y 279 c/c 436 c/c

Provided Distridution Steel:

Staircase Design

Calculate Bending Moment using the equation (W*L*L )/8

Page 10: RCC Design Programmed by Others

Staircase Design

Page 11: RCC Design Programmed by Others

Seismic Zone II Table 2 IS 1893 2002 pg 16

Seismic Intensity z 0.1

Importance factor I 1.5 Table 6 IS 1893 2002 pg 18

Response Reduction Factor R 3 Table 7 IS 1893 2002 pg 23

Lateral Dimension of Building d 65.6 meters

Height of the of Building h 50.4 meters

Fundamental Natural Period Ta 0.560

Type of Soil

Spectral Acceleration Coefficient Sa/g 2.428

Design Horizontal Seismic Coefficient Ah 0.06071

Seismic Weight of Building W 680034 KN

Design Seismic Base Shear VB 41284.63 KN

Medium Soil

with brick infill

Page 12: RCC Design Programmed by Others

1 Footing Size Design

Load 1 Pu1 2000 KN

Load 2 Pu2 1850 KN

Combine load Pcu 3850 KN

Design Load Pc 2823 KN

Moment in x dir Mux 40 KN-m

Moment in y dir Muy 40 KN-m

c/c dist b/w col in x dir 2.725 meters

c/c dist b/w col in y dir 0.000 meters

Col Dim x dir 0.20 meters

y dir 0.20 meters

SBC q 150 KNm2

Footing Size required A req 18.82 sqmm

L 6.00 meters

B 3.20 meters

Area Provided A prvd 19.20 meters

x bar 1.309

y bar 0.000

Zx 10.24

Zx 19.20

Nup 151 KNm2

Footing Size Provided

Increase the Footing Size

Combined Footing

Page 13: RCC Design Programmed by Others

2 Beam Design

Total Load W 151 KNm2

Factored Load Wu 725 KNm2

1.691 meters 2.725 meters 1.584 meters

3.20 meters

6.00 meters

725 KNm2

1.69 meters 2.73 meters 1.58 meters

Beam Size width 600 mm

depth 900 mm

Moment Mb 898 KN-m

Design the beam from the BEAM DESIGN SHEET

Bottom Reinforcement

Type Bar dia Nos Area of Steel

Layer 1 25 mm 6 2945 sqmm

Layer 2 25 mm 6 2945 sqmm

Layer 3 -

5890 sqmm

1.148 %

Top Reinforcement

Type Bar dia Nos Area of Steel

Layer 1 25 mm 6 2945 sqmm

Layer 2 20 mm 6 1885 sqmm

Layer 3 -

4830 sqmm

Total Steel Provided

Percentage of Steel

Total Steel Provided

Page 14: RCC Design Programmed by Others

3 Slab Design

Net upward pressure Nup 151 KNm2

l 1.30 meters /=width of footing from col face

Bending Moment Ms 128 KN-m M=Nup*l2/2

Factored Moment Mus 191 KN-m 1.5*Ms

Concrete fck 20 MPa

Steel fy 415 MPa

Minimum Depth Required dmin 264 d=sqrt(Ms/Rumax*1000*b)

Depth Provided D 600 mm

Clear Cover c 50 mm

Effective Cover d' 56 mm

Effective Depth d' 544 mm

12# 16# 20#

1014 sqmm 112 c/c 198 c/c 310 c/c

Ast across x direction 12 mm dia @ 100 mm c/c 1131 sqmm

Dist Ast across y direction 8 mm dia @ 175 mm c/c 287 sqmm

4

Vu1 171 KN

δv 0.315 MPa

δc 0.316 MPa

Spacing c/c in mm Area of Steel across x dir

Shear Check for Slab

Shear Check OK

Page 15: RCC Design Programmed by Others

5

6.00 meters

3.20 meters 600 mm

1.7 meters 2.73 meters 1.6 meters

6 - 25 mm dia

6 - 20 mm dia 6 - 25 mm dia

6 - 25 mm dia

8 mm dia @ 175 mm c/c 12 mm dia @ 100 mm c/c

6 - 25 mm dia

6 - 20 mm dia

6 - 25 mm dia

6 - 25 mm dia

60

0 m

m

90

0 m

m

600 mm

250 mm

Page 16: RCC Design Programmed by Others

Design Of Isolated Footing 16 of 43

1 Footing Size Design

Load Pu 1500 KN

Design Load P 1100 KN

Moment in x dir Mux 30 KN-m

Moment in y dir Muy 30 KN-m

Column size cx 450 mm

cy 450 mm

SBC q 150 KN/sqm

Footing Size required A req 7.33 sqmm

L 3.30 meters

B 2.40 meters

Area Provided A prvd 7.92 meters

Zx 3.17

Zx 4.36

Net upward pressure Nup 150 KNm2

2 Slab Design

lx 1.425

ly 0.975

Bending Moment in x dir Mx 228 KN-m

Bending Moment in y dir My 107 KN-m

Concrete fck 20 MPa

Steel fy 415 MPa

Minimum Depth Required dmin 288

Depth Provided D 650 mm

Clear Cover c 50 mm

Effective Cover d' 58 mm

Effective Depth d' 592 mm

12# 16# 20#

1111 sqmm 102 c/c 181 c/c 283 c/c

710 sqmm 159 c/c 283 c/c 442 c/c

Ast across x direction 16 mm dia @ 125 mm c/c

Ast across y direction 16 mm dia @ 125 mm c/c

Minimum Ast required across y direcion

1608 sqmm

1608 sqmm

Footing Size OK

Footing Size Provided

Area of SteelSpacing c/c in mm

Page 17: RCC Design Programmed by Others

Design Of Isolated Footing 17 of 43

3

Vu1 449 KN

δv 0.316 MPa

δc 0.317 MPa

Vc1 451 KN

4 One Way Shear along y direction

Vu1 284 KN

δv 0.145 MPa

δc 0.260 MPa

Vc1 508 KN

5 Two Way Shear

Vu2 1536 KN

δv 0.622 MPa

ks*δc 1.118 MPa

Vc1 2759 KN

One Way Shear Check OK

One Way Shear along x direction

One Way Shear Check OK

Two Way Shear Check OK

Page 18: RCC Design Programmed by Others

Design Of Isolated Footing 18 of 43

L= 3.30 meters

450

B= 2.40 meters 450

16 mm dia @ 125 mm c/c 16 mm dia @ 125 mm c/c

250 mm

65

0 m

m

Page 19: RCC Design Programmed by Others

Dimensions of Dome

Diameter d = 12600 mm

Height h = 3000 mm

Thickness t = 150 mm

Radius of Sphere r = 8115 mm

Φ = 50.93

Ѳ = 0 to 50.93

Loading d = 12.60 m

Dead Load DL = 3.75 KN/m

Live Load LL = 0.10 KN/m 50.93 r = 8.12 m

##

##

##

##

Dome Design

Wind Load WL = 0.10 KN/m

Total Load W = 3.95 KN/m

Factored Load Wu = 5.93 KN/m

Meridional Stress Hoop Stress

Ѳ Mt Ѳ Mt

50.93 0.197 MPa 50.93 0.003 MPa

45.00 0.188 MPa 45.00 0.025 MPa

40.00 0.182 MPa 40.00 0.041 MPa

35.00 0.176 MPa 35.00 0.055 MPa

30.00 0.172 MPa 30.00 0.067 MPa

25.00 0.168 MPa 25.00 0.077 MPa

20.00 0.165 MPa 20.00 0.086 MPa

15.00 0.163 MPa 15.00 0.093 MPa

5.00 0.161 MPa 5.00 0.100 MPa

0.00 0.160 MPa 0.00 0.101 MPa

Maximum Meridional Stress 0.197 MPa Maximum Hoop Stress 0.101 MPa

fck 20 MPa

Fy 415 MPa

бst 230.00

Area of steel 128 sqmm Area of steel 66 sqmm

Bar Dia 10 mm Bar Dia 10 mm

Spacing 613 c/c Spacing 1187 c/c

Meridional Thrust @ Base 29 KN/m

Horizontal Component on Ring Beam 19 KN/m

Hoop Tension on Ring Beam 117 KN

Area of steel 509 sqmm

Bar Dia 16 mm

No of Bars 3 nos

Page 20: RCC Design Programmed by Others
Page 21: RCC Design Programmed by Others

Dome Design

Page 22: RCC Design Programmed by Others
Page 23: RCC Design Programmed by Others

19.7 KNm2

Dimensions of Dome

Diameter d = 12600 mm

Height h = 5000 mm

Radius of Sphere r = 6469 mm

Φ = 76.87

Ѳ = 0 to 76.87

Loading

Dead Load DL = 3.00 KN/m

Live Load LL = 0.10 KN/m

3 Hinged Arch Design

Other Load OL = 10.00 KN/m

Total Load W = 13 KN/m

Factored Load Wu = 20 KN/m

Vertical Reaction VA = VB = 123.8 KN

Horizontal Reaction HA = HB = 234.0 KN

Ѳ x y Moment

76.87 0.00 0.00 0

75.00 0.05 0.21 -42

60.00 0.70 1.77 -331

50.00 1.34 2.69 -481

40.00 2.14 3.49 -596

30.00 3.07 4.13 -680

20.00 4.09 4.61 -737

10.00 5.18 4.90 -769

5.00 5.74 4.98 -777

0.00 6.30 5.00 -780

780 KN-mMax Values

Page 24: RCC Design Programmed by Others

d = 12.60 m

76.87 r = 6.47 m

##

##

##

##

3 Hinged Arch Design

Radial Shear Normal Thrust 0 67 174

67 174 42 59 180

59 180 331 10 224

-10 224 481 56 245

-56 245 596 100 259

-100 259 680 141 265

-141 265 737 178 262

-178 262 769 209 252

-209 252 777 222 244

-222 244 780 234 234

-234 234

234 KN 265 KN

Page 25: RCC Design Programmed by Others

Dimensions of Ring Beam

Radius r = 6.30 mts

No of supports n = 8 nos

Constants Ѳ = 23 deg 0.3927 radians

Φm = 9 1/2 0.1658 radians

C1 = 0.066

C2 = 0.03

C3 = 0.005

Loading

Wu = 10 KN/m

FΦ MΦ Mmt

Shear ForceBending

Moment

Torsional

Moment

deg KN KN-m KN-m

0 24.74 -20.62 0.00

9 1/2 14.29 -0.05 1.57

22 1/2 0.00 10.39 0.00

Beam Data

width 300 mm

depth 600 mm

Equivalent Shear

Ve = V+1.6(T/b) = 33 KN T=M Φ

Equivalent Moment

Mt = T((1+D/b)/1.7) = 1 KN-m

Me1 = M+Mt = 22 KN-m

Me2 = M-Mt = 20 KN-m

Circular Beam

M e1 = Equivalent BM on tension side

M e2 = Equivalent BM on compression side

Φ

Mt = BM due to torsion

Page 26: RCC Design Programmed by Others

A Load 2700

Moment x-dir y-dir

Bottom 0 29

Top 6 137

Col Type

x-dir y-dir

Unsupported Length 8250 8250

Col Size 200 900

d'/D 0.05 0.20

d'

Concrete 20

Steel 415

D

Effective Length Ratio

0.80 from IS Code

0.90 manual Calculation

Effective Length to be considered from

Effective Length (le) lex Ley

7425 7425

E Slenderness Ratio

le/D 8

le/b 37

Moment due to Slen Muax 0

Muay 372

Min Ecc ex 46.5

ey 23.2

Moment due to ecc Mux 125.55

Muy 62.55

G Reduction of Moments

Percentage assumed 2.18

Asc 3924

Puz 2841

k1 K2 Pb

x-x 0.219 0.096 367

y-y 0.184 -0.022 291

Kx 0.06

Ky 0.06

Additional Moments due to ecc Max 0

May 21

Modified Initial Moments Mux 3.6

Muy 70.6

Summary of Moments

A Moment due to eccentricity + Modified additional moments

Mux 126

Muy 83

B Modified initial moments + Modified additional moments

Mux 4

Muy 91

C 0.4Muz + Modified additional moments

Mux 0

Muy 32

Final Design Loads

Pu 2700

Mux 126

Muy 91

Rectangular Column (reinf. on 2 sides)

40

Manual Calculation

Short Column

Slender Column

Page 27: RCC Design Programmed by Others

Pu = 2400 KN

Mux = 192 KN-m

Muy = 517 KN-m

b = 600 mm

D = 750 mm

d' = 40.0 mm

d'/D = 0.10

d'/b = 0.10

fck = 20 MPa

fy = 415 MPa

Steel % pt = 1.2

pt/fck = 0.06

Pu/fck*b*D = 0.27

Mux/fck*b*D2

= 0.11

Muy/fck*b*D2

= 0.11

Puz = 5682

Mux1 = 743

Muy1 = 594

Pu/Puz = 0.42

Mux/Mux1 = 0.26

Muy/Muy1 = 0.87

αn = 1.37

(Mux/Mux 1 )αn

+ (Muy/Muy 1 )αn

0.98

nos dia ast

Type 1 4 20 mm 1257 sqmm

Type 2 8 16 mm 1608 sqmm

Total Steel 12 - 2865 sqmm

Percentage

Bi-Axial Column

Steel Details

0.64%

Steel Percentage OK

Col Data

Design Loads

Material Grades

Design Constants

Ast = 5400 sqmm

Min Ast = 3600 sqmm

Page 28: RCC Design Programmed by Others

Simply supported beam

with UDL

Simply supported beam

with Point Load

Load W 8 KN/m 70 KN/m

Length l 2.60 m 3.00 m

Elasticity of Concrete

= 5000(√fck)Ec 22000000 MPa 22000000 MPa

Width b 0.20 m 0.20 m

Depth d 0.45 m 0.60 m

Moment M 8.66 m 82.13 m

Reaction R 13.33 m 109.50 m

Moment of Inertia =

bd3/12

Ixx 0.0015 mm4 0.0036 mm4

Deflection 0.1 mm 0.5 mm

Formula 5Wl4/384EI Wl

3/48EI

dy

Deflection Calculation

Page 29: RCC Design Programmed by Others

Cantilever beam

with UDL

Cantilever beam

with Point Load

1400 KN/m 10 KN/m

3.80 m 5.00 m

22000000 MPa 22000000 MPa

1.50 m 0.20 m

1.10 m 0.60 m

2601.46 m 40.63 m

2738.38 m 32.50 m

0.1664 mm4 0.0036 mm4

10.0 mm 5.3 mm

Wl4/8EI Wl

3/3EI

Deflection Calculation

Page 30: RCC Design Programmed by Others

Moment

(KNm)Mu/bd

2Ast

(mm2)

SpacingMoment

(KNm)Mu/bd

2Ast

(mm2)

SpacingMoment

(KNm)Mu/bd

2Ast

(mm2)

SpacingMoment

(KNm)Mu/bd

2Ast

(mm2)

Spacing

12# @ 243 c/c 12# @ 293 c/c 12# @ 336 c/c 12# @ 306 c/c

16# @ 432 c/c 16# @ 521 c/c 16# @ 597 c/c 16# @ 546 c/c

12# @ 169 c/c 12# @ 211 c/c 12# @ 253 c/c 12# @ 269 c/c

16# @ 301 c/c 16# @ 375 c/c 16# @ 450 c/c 16# @ 479 c/c

12# @ 126 c/c 12# @ 156 c/c 12# @ 181 c/c 12# @ 202 c/c

16# @ 224 c/c 16# @ 278 c/c 16# @ 322 c/c 16# @ 360 c/c

12# @ 118 c/c 12# @ 137 c/c 12# @ 153 c/c

16# @ 210 c/c 16# @ 244 c/c 16# @ 271 c/c

12# @ 109 c/c 12# @ 121 c/c

16# @ 194 c/c 16# @ 216 c/c

12# @ 85 c/c 12# @ 98 c/c

16# @ 152 c/c 16# @ 174 c/c

12# @ 80 c/c

16# @ 142 c/c

150 mm 175 mm

23 1.36

5

200 mm

3 16 1.45 17

6

125 mm

3.5

4

669

8992.54

2.25

5.5 61 2.54

1.01465 386

536

723

956

1327

25

4.5 41

22 2

28

1.71

50

38

2.38

19 0.59

26 0.8

34

2.01

54

1.05

77

2.08

1.04

32 1.33

18 0.75 337

447

624

824

1039

1.36

1418

Span

369

421

55930 1.78

741

9311.67

65 1155

44

Page 31: RCC Design Programmed by Others

1

i) h 3.00 meters

ii) γs 18 KN/cum

iii) qo 250 KN/sqm

30 degrees

0.524 radians

0 degrees

0.000 radians

vi) µ 0.5

vii) Ws 4 KN/sqm

2

3

Proposed Adopted

i) Thickness of Stem - 0.20 meters

ii) Thickness of footing base slab 0.24 meters 0.30 meters

Length of base slab 1.61 meters

or 2.09 meters

iv) Extra Height of Retaining Wall due to Surcharge 0.22 meters

v) Total Height of Retaining Wall due to Surcharge 3.22 meters

vi) Extra Height of RW due to inclined back fill 0.00 meters

vii) Total Height of RW due to inclined back fill 3.00 meters

viii) Design Height of RW considered H = Max of H1 & H2 3.22 meters

4

i) 4 KN

ii) 27 KN

iii) 31 KN

iv) 33 KNm

v) Moment

W1 Backfill Load = (L-ts)*(h-tb)*γs 87 KN (L-ts) / 2 0.90 meters 79 KNm

W2 Surcharge Load = Ca*Ws*h 4 KN (L-ts) / 2 0.90 meters 4 KNm

W3 Inclined Backfill Load = ((L-ts)*hi)/2*γs 0 KN (L-ts) / 3 0.60 meters 0 KNm

W4 Stem self weight = ts*(h-tb)*γconc 14 KN (L- (ts/2))/2 0.95 meters 13 KNm

W5 Base self weight = L*tb*γconc 15 KN L / 2 1.00 meters 15 KNm

W6 Downward component = Pa*sinӨ 0 KN 0 KNm

W6 Other Load 0 KNm

120 KN 110 KNm

vi) xw=∑Mw/∑W 0.92 meters

vii) 130 KNm

Factor of Safety against OVERTURNING

(FS)OT = 0.9 * (Mr/Mo) 3.54 > 1.4

5

i) Pa*CosӨ 31 KN

ii) F = µ*∑W 60 KN

(FS)SL=0.9*(F/(Pa*CosӨ)) 1.74 > 1.4

iv) Shear key Design

0.00 meters

0.00 meters

b) Distance from stem 0.00 meters

c) Heigth of exacavation 0.00 meters

d) Heigth of exacavation 0.00 meters

e) Passive Pressure 0 KN

Revised Factor of Safety against SLIDING

(FS)sliding = 0.9 * ((F+Pp)/(Pa*CosӨ)) 1.74 > 1.4

6

i) Resultant Vertical Reaction 120 KN

ii) Distance of R from heel 1.19 meters

iii) Eccentricity 0.19 meters

iv) Pressure Distridution on soil qmax = R/L * (1+(6*e/L)) 95 KN/sqm

qmin = R/L * (1-(6*e/L)) 25 KN/sqm

v)Pressure at junction of stem and

heelqsh=qmax-((qmax-qmin)/L)*ts) 88 KN/sqm

h1

h2 = h1 + y + (z * tanØ)

Sliding Force

Shear Key Size

Pp = Cp*γs*(h12-h2

2) / 2

L = 1.5 * √(Ca/3) * (h + hs)

Resisting Force

Stability against Overturning

x

Mo= (Pa1 * h/2) +(( Pa2*CosӨ)* h/3)

Pa = Pa1 + Pa2

Pa1 = Ca*Ws*h

ii)

Stability against Sliding

Passive Pressure Coefficients

iii)

Active pressure due Surcharge Load

Active pressure due Backfill Load

Total Load on stem

Surcharge Load

Preliminary Dimensions

hi = (L-ts)* tanӨ

Hs = h+hs

Cp

Pressure CoefficientsActive Pressure Coefficients

=(cosӨ-√(cos2Ө-cos2Ø)*cosӨ) / (cosӨ+√(cos2Ө-

cos2Ø))

i)

SBC

Angle of repose

Hi = h+hi

DESIGN OF RETAINING WALL

Preliminary Data

iv)

v)

ts

Ø

Height of RW

Soil Density

2.00 meters

Distance of Resultant Vertical Force from end of heel

Mr =∑W * (L - xw)Stabilizing Moment

Safe against Overturning

hs = Ws/γs

0.333

Shear Key not required

ӨSurcharge Angle

Safe against Sliding

Soil Pressures at footing base

∑W = R

Safe against Sliding

L = 0.6h to 0.65h

Overturning Moment

Coefficient of friction

e = Lr- L/2

Eccentricity lies within middle third of the base hence OK

Max Pressure qmax<SBC hence pressure on base is OK

Ca

v)

Pa2 = Ca*γs*h2

/ 2

z

Lever arm from end of stem

∑Mw

viii)

Load

Factor of Safety against SLIDING

∑W

a)

iii)

y

Lr = (Mw+Mo)/R

= (1+SinØ) / (1+SinØ)

tb = 0.08 * (h + hs)

3.00

Page 32: RCC Design Programmed by Others

1 Preliminary Data

i) Height of Retaining Wall h 3.60 meters

ii) Soil Density γs 18 KN/cum

iii) SBC qo 150 KN/sqm

iv) Angle of repose Ø 30 degrees

0.524 radians

v) Surcharge Angle Ө 0 degrees

0.000 radians

vi) Coefficient of friction µ 0.5

vii) Surcharge Load Ws 2 KN/sqm

2 Pressure Coefficients

i) Active Pressure Coefficients Ca 0.333

=(cosӨ-√(cos2Ө-cos2Ø)*cosӨ) /

(cosӨ+√(cos2Ө-cos2Ø))

ii) Passive Pressure Coefficients Cp 3.00

= (1+SinØ) / (1+SinØ)

3 Preliminary Dimensions

Proposed Adopted

i) Thickness of Stem ts min 200mm 0.20 meters

ii) Thickness of footing base slab tb = 0.08 * (h + hs) 0.29 meters 0.25 meters

iii) Length of base slab L = 1.5 * √(Ca/3) * (h + hs) 1.86 meters

L = 0.6h to 0.65h 2.41 meters

iv) Extra Height of Retaining Wall due to Surcharge hs = Ws/γs 0.11 meters

v) Total Height of Retaining Wall due to Surcharge Hs = h+hs 3.71 meters

vi) Extra Height of RW due to inclined back fill hi = (L-ts)* tanӨ 0.00 meters

vii) Total Height of RW due to inclined back fill Hi = h+hi 3.60 meters

viii) Design Height of RW considered H = Max of H1 & H2 3.71 meters

4 Stability against Overturning

i) PHS = Ca*Ws*h 2 KN

ii) PH = Ca*γs*h2 / 2 41 KN

iii) Pa = PHS + PH 44 KN

iv) MOIL = PHS*h/2 5 KN

v) MODL = PH*h/3 51 KN

vi) Mo = (1.2*MDIL) + (1.4*MOIL) 68 KN

v) Load Moment

W1 Backfill Load = (L-ts)*(h-tb)*γs 143 KN ((L-ts) / 2) + ts 1.35 meters 193 KNm

W2 Inclined Backfill Load = ((L-ts)*hi)/2*γs 0 KN ((L-ts) / 3) + ts 0.97 meters 0 KNm

W3 Stem self weight = ts*(h-tb)*γconc 17 KN ts / 2 0.10 meters 2 KNm

W4 Base self weight = L*tb*γconc 16 KN L / 2 1.25 meters 20 KNm

∑W 176 KN ∑Mw 215 KNm

viii) Mw not less than (1.2*MODL) +(1.4*MOIL) Safe against Overturning

-clause 20.1 page 33 of IS 456 2000

5 Stability against Sliding

i) Sliding Force Pa = PHS + PH 44 KN

ii) Resisting Force F = µ*∑W 88 KN

iii) (FS)SL= (0.9*F)/(Pa) 1.81 > 1.4 Safe against Sliding

-clause 20.2 page 33 of IS 456 2000

6 Soil Pressures at footing base

i) Net Moment at toe Mn = Mw - Mo 159 KN

ii) Point of application of Resultant R x = Mn/W 0.90 meters

iii) Eccentricity e = (L/2) - x 0.35 meters L/6= 0.42

iv) Pressure Distridution on soil qmax = W/L * (1+(6*e/L)) 129 KN/sqm

qmin = W/L * (1-(6*e/L)) 12 KN/sqm

v)Pressure at junction of stem and

heelqsh=qmax-((qmax-qmin)/L)*ts) 120 KN/sqm

Overturning Moment

DESIGN OF L Shaped Cantilever RETAINING WALL

Overturning Moment due to Backfill load

2.50 meters

e<L6 Eccentricity lies within middle third of the base hence OK

Max Pressure qmax<SBC hence pressure on base is OK

Lever arm at end of stem

Active pressure due Surcharge Load

Active pressure due Backfill Load

Total Load on stem (Force)

Overturning Moment due to Imposed load

Page 33: RCC Design Programmed by Others

7 Constants for Working Stress Method

Design Constants

i) Grade of concrete 20 MPa

ii) Grade of steel 415 MPa

iii) Compr stress in concrete c 7.0 table 21 page 81 IS 456

iv) Tensile stress in steel t 230

v) Modular ratio m = 280/3c 13.33

vi) Neutral axis depth factor k=mc/(mc+t) 0.289

vii) Lever arm j = 1 - k/3 0.904

viii) Factor R= cjk / 2 0.913

8 Design

A) Stem

i) Beanding Moment at base of stem M = MODL + MOIL 56 KN/m

ii) Thickness required dreq=√(Ms/(R*b) 0.01 meters

iii) Thickness provided ts 0.20 meters

iv) Ast required Ast = M/(t*j*tse) 1914 sqmm

v) Ast provided 16 mm dia @ 105 mm c/c 1915 sqmm

vi) Percentage of Steel pt = Ast/(b*d) 1.37 %

B) Base Slab

Force Moment

i) Force due to backfill+surcharge = (H2-tb)*(L-ts)*γs 143 (L-ts) / 2 1.15 meters 165 KNm

ii) Force due to inclined backfill = hi/2*(L-ts)*γs 0 (L-ts) / 3 0.77 meters 0 KNm

iii) Self Weight of base slab =L *tb*γconc 16 L / 2 1.25 meters 20 KNm

159 Md 184 KNm

vi) Upward soil pressure Nup = ((qsh+qmin)/2)*(L-ts) 151 0.83 meters 126 KNm

Mu 126 KNm

v) Bending Moment Msh = Mu-Md 58

vi) Thickness required dreq=√(Ms/(R*b) 0.25 meters

vii) Thickness provided ts 0.25 meters

viii) Ast required Ast = M/(t*j*tse) 1440 sqmm

ix) Ast provided 16 mm dia @ 125 mm c/c 1608 sqmm

x) Percentage of Steel pt = Ast/(b*d) 0.74 %

C) Reinforcement Details

Thickness of Stem is OK

Steel OK

Thickness of Stem is OK

Steel OK

Lever arm from end of stem

∑Ws

Downward Pressure is greater

((qsh+(2*qmin))/(qsh+qmin)) *

((L-ts)/3)

FILL

Page 34: RCC Design Programmed by Others

1 Preliminary Data

i) Height of Retaining Wall h 3.00 meters

ii) Height of Plinth Fill hp 0.50 meters

iii) Soil Density γs 18 KN/cum

iv) SBC qo 250 KN/sqm

Angle of repose Ø 30 degrees

0.524 radians

Surcharge Angle Ө 0 degrees

0.000 radians

vii) Coefficient of friction µ 0.5

vii) Surcharge Load Ws 4 KN/sqm

2 Pressure Coefficients

i) Active Pressure Coefficients Ca 0.333

=(cosӨ-√(cos2Ө-cos2Ø)*cosӨ) /

(cosӨ+√(cos2Ө-cos2Ø))

ii) Passive Pressure Coefficients Cp 3.000

= (1+SinØ) / (1+SinØ)

3 Preliminary Dimensions

Proposed Adopted

i) Thickness of Stem ts min 200mm 0.20 meters

ii) Thickness of footing base slab tb = 0.08 * (h + hs) 0.24 meters 0.45 meters

iii) Length of base slab α = 1 - (q0/2.7*γs*H) -0.60 meters

L = H*sqrt((Ca*cosβ)/((1-α)*(1+3α)) 0.00 meters

α = 1 - (q0/2.2*γs*H) -0.96 meters

L = 0.95*H*sqrt((Ca)/((1-α)*(1+3α)) 0.00 meters

L = 0.6h to 0.65h 2.09 meters

iv) Extra Height of Retaining Wall due to Surcharge hs = Ws/γs 0.22 meters

v) Total Height of Retaining Wall due to Surcharge Hs = h+hs 3.22 meters

vi) Extra Height of RW due to inclined back fill hi = (L-ts)* tanӨ 0.00 meters

vii) Total Height of RW due to inclined back fill Hi = h+hi 3.00 meters

viii) Design Height of RW considered H = Max of H1 & H2 3.22 meters

4 Stability against Overturning

i) PHS = Ca*Ws*h 4 KN

ii) PH = Ca*γs*h2 / 2 31 KN

iii) Pa = PHS + PH 35 KN

iv) MOIL = PHS*h/2 7 KN

v) MODL = PH*h/3 33 KN

vi) Mo = (1.2*MDIL) + (1.4*MOIL) 50 KN

v) Load Moment

W1 Front fill Load = (L-ts)*(hp-tb)*γs 2 KN ((L-ts) / 2) 1.13 meters 2 KNm

W3 Stem self weight = ts*(h-tb)*γconc 14 KN (ts/2) + (L-ts) 2.35 meters 33 KNm

W4 Base self weight = L*tb*γconc 28 KN L / 2 1.23 meters 34 KNm

W5 Other Load PT Beam Load 0 KN

43 KN 69 KNm

viii) Mw not less than (1.2*MODL) +(1.4*MOIL) Safe against Overturning

-clause 20.1 page 33 of IS 456 2000

5 Stability against Sliding

i) Sliding Force Pa = PHS + PH 35 KN

ii) Resisting Force F = µ*∑W 22 KN

iii) (FS)SL= (0.9*F)/(Pa) 0.55 < 1.4 Unsafe against Sliding

-clause 20.2 page 33 of IS 456 2000

5a Shear key Design

0.30 meters

0.30 meters

b) Distance from stem 0.30 meters

c) Heigth of exacavation 0.60 meters

d) Heigth of earth mobilization 1.07 meters

e) Passive Pressure 21 KN

Revised Factor of Safety against SLIDING

(FS)sliding = 0.9 * ((F+Pp)/(Pa*CosӨ)) 1.09 > 1.4

2.45 meters

Active pressure due Surcharge Load

Overturning Moment

Overturning Moment due to Backfill load

if sloped backfill

if horizontal backfill

Active pressure due Backfill Load

Total Load on stem (Force)

Overturning Moment due to Imposed load

∑Mw

h1

h2 = h1 + y + (z * tanØ)

Pp = Cp*γs*(h12-h2

2) / 2

DESIGN OF Reverse L Shaped Cantilever RETAINING WALL

Lever arm at start of heel

Unsafe against Sliding. Shear Key Required

v)

∑W

z

v)

y

x Shear Key Size

vi)

a)

Page 35: RCC Design Programmed by Others

6 Soil Pressures at footing base

i) Net Moment at toe Mn = Mw - (MOIL+MODL) 28 KN

ii) Point of application of Resultant R x = Mn/W 0.65 meters

iii) Eccentricity e = (L/2) - x 0.58 meters L/6= 0.41

iv) Pressure Distridution on soil qmax = W/L * (1+(6*e/L)) 43 KN/sqm

qmin = W/L * (1-(6*e/L)) -7 KN/sqm

v)Pressure at junction of stem and

heelqsh=qmax-((qmax-qmin)/L)*ts) 39 KN/sqm

Max Pressure qmax<SBC hence pressure on base is OK

e>L6 Eccentricity lies outside the middle third of the base. Revise the base dimensions

Page 36: RCC Design Programmed by Others

7 Constants for Working Stress Method

Design Constants

i) Grade of concrete 20 MPa

ii) Grade of steel 415 MPa

iii) Compr stress in concrete c 7.0 table 21 page 81 IS 456

iv) Tensile stress in steel t 230

v) Modular ratio m = 280/3c 13.33

vi) Neutral axis depth factor k=mc/(mc+t) 0.289

vii) Lever arm j = 1 - k/3 0.904

viii) Factor R= cjk / 2 0.913

8 Design

A) Stem

i) Beanding Moment at base of stem M = MODL + MOIL 40 KN/m

ii) Thickness required dreq=√(Ms/(R*b) 0.01 meters

iii) Thickness provided ts 0.20 meters

iv) Ast required Ast = M/(t*j*tse) 1387 sqmm

v) Ast provided 16 mm dia @ 120 mm c/c 1676 sqmm

vi) Percentage of Steel pt = Ast/(b*d) 0.99 %

B) Base Slab

Force Moment

i) Force due to Frontfill = (L-ts)*(hp-tb)*γs 2 (L-ts) / 2 1.13 meters 2 KNm

iii) Self Weight of base slab = L* tb * γconc 28 L / 2 1.23 meters 34 KNm

∑Ws 30 Md 36 KNm

vi) Upward soil pressure Nup = ((qsh+qmin)/2)*(L-ts) 35 0.58 meters 20 KNm

Mu 20 KNm

v) Bending Moment Msh = Mu-Md 16

vi) Thickness required dreq=√(Ms/(R*b) 0.13 meters Thickness of Stem is OK

vii) Thickness provided ts 0.45 meters

viii) Ast required Ast = M/(t*j*tse) 193 sqmm

ix) Ast provided 12 mm dia @ 150 mm c/c 754 sqmm

x) Percentage of Steel pt = Ast/(b*d) 0.05 %

C) Reinforcement Details

Lever arm from end of stem

Steel OK

Steel OK

Upward Pressure is greater

((qsh+(2*qmin))/(qsh+qmin)) *

((L-ts)/3)

Thickness of Stem is OK

FILL

Page 37: RCC Design Programmed by Others

DESIGN OF Reverse L Shaped Cantilever RETAINING WALL

Page 38: RCC Design Programmed by Others
Page 39: RCC Design Programmed by Others
Page 40: RCC Design Programmed by Others

i) Grade of concrete 20 MPa

ii) Grade of steel 250 MPa

iii) Compr stress in concrete c 7.0

iv) Tensile stress in steel t 140

v) Modular ratio m = 280/3c 13.33

vi) Neutral axis depth factor k=mc/(mc+t) 0.400

vii) Lever arm j = 1 - k/3 0.867

viii) Factor R= cjk / 2 1.213

i) Height of Tank h 3.00 meters

ii) Saturated Soil Density γs 18 KN/cum

iii) Water Density γw 9.81 KN/cum

iv) Dry Soil Density γ' = γ - γw 8.19 KN/cum

v) SBC qo 250 KN/sqm

Angle of repose 30 degrees

0.524 radians

Active Pressure Coefficients

= (1-SinØ) / (1+SinØ)

A) Design of Long Walls

a)

i) 38 KN

ii) Beanding Moment at base of wall M = (pa) *H/3 38 KN/m

iii) Thickness required dreq=√(Ms/(R*b) 0.176 meters

iv) Thickness provided ts 0.230 meters

v) Ast required

vi) Ast provided 16 mm dia @ 100 mm c/c

vii) Percentage of Steel

50 % bars to be Curtailed from base h1 = h - h*(1/2)1/3 0.62 meters

12dia 0.19 meters

thinkness 0.23 meters

0.85 meters

ix) Ast required

b)

Design

Design Constants for Working Stress Method

Ast min = 12 % of area

Ast provided is more than mimimun Ast required hence OK

Tank empty with pressure of saturated soil from side

Tank full with water and no earth fill outside

plus 12 dia or thickness

Total curtaliment length from base

vi) Ø

vii) Ka 0.33

Active pressure pa = (Ka*γ'*H) + (γw*H)

Ast = M/(t*j*tse)

pt = Ast/(b*d)

Thickness of Stem is OK

Steel OK

viii)

Page 41: RCC Design Programmed by Others

i) 29 KN

ii) Beanding Moment at base of wall M = (pa) *H/3 29 KN/m

iii) Thickness required dreq=√(Ms/(R*b) 0.156 meters

iv) Thickness provided ts 0.230 meters

v) Ast required

vi) Ast provided 12 mm dia @ 100 mm c/c

vii) Percentage of Steel

50 % bars to be Curtailed from base h1 = h - h*(1/2)1/3 0.62 meters

12dia 0.14 meters

thinkness 0.23 meters

0.85 meters

ix) Ast required Ast min = 12 % of area

Ast provided is more than mimimun Ast required hence OK

Ast = M/(t*j*tse)

pt = Ast/(b*d)

Steel OK

viii)

Active pressure pa = (γw*H)

Thickness of Stem is OK

Total curtaliment length from base

plus 12 dia or thickness

Page 42: RCC Design Programmed by Others

table 21 page 81 IS 456

pa = w*l/2

1369 sqmm

2011 sqmm

0.70 %

276 sqmm

Ast provided is more than mimimun Ast required hence OK

IS 456 caluse 26.2.3.1 page 44

Steel OK

Page 43: RCC Design Programmed by Others

pa = w*l/2

1071 sqmm

1131 sqmm

0.55 %

276 sqmm

Ast provided is more than mimimun Ast required hence OK

Steel OK

IS 456 caluse 26.2.3.1 page 44


Recommended