+ All Categories
Home > Documents > RE 54 Configuration Guideline

RE 54 Configuration Guideline

Date post: 13-Apr-2015
Category:
Upload: 1453h
View: 87 times
Download: 5 times
Share this document with a friend
113
$%%$XWRPDWLRQ 5()B5(0B5(& &RQILJXUDWLRQ*XLGHOLQH
Transcript
Page 1: RE 54 Configuration Guideline

$%%�$XWRPDWLRQ

5()���B��5(0���B��5(&����

&RQILJXUDWLRQ�*XLGHOLQH

Page 2: RE 54 Configuration Guideline
Page 3: RE 54 Configuration Guideline

AB

Configuration Guideline 5()���B5(0���B5(&����

�056��������080Issued: 20.10.1998Version: C/11.05.2000Checked: J.K.Approved: M.K.

We reserve the right to change data without prior notice.

&RQWHQWV

$ERXW�WKLV�PDQXDO� ��������������������������������������������������������������������������

�� 5HOD\�&RQILJXUDWLRQ�7RRO� ����������������������������������������������������������

�� 6SHFLILFDWLRQ�IRU�5HOD\�&RQILJXUDWLRQ���������������������������������������

�� (GLWLQJ�WKH�5HOD\�&RQILJXUDWLRQV� ���������������������������������������������3.1. Getting started ...............................................................................8

3.1.1. Libraries .............................................................................83.1.2. Program organisation unit ................................................103.1.3. Logical POUs ...................................................................123.1.4. Physical hardware ............................................................14

3.1.4.1. Configuration ......................................................143.1.4.2. Resource ............................................................15

Hardware version ...............................................15Analogue channels .............................................16Digital inputs .......................................................21Measurements ...................................................22Condition monitoring ..........................................23

3.1.4.3. Tasks ..................................................................24Programs and tasks ...........................................24Task interval .......................................................24

3.2. Declaring variables ......................................................................263.2.1. Global variables ...............................................................283.2.2. Local variables .................................................................28

3.3. Compiling the project ..................................................................333.4. Downloading the configuration ....................................................33

�� 0DLQ�&RQILJXUDWLRQ�5XOHV�IRU�5(B��BB�������������������������������������4.1. General .......................................................................................354.2. Digital inputs and outputs ............................................................364.3. Explicit feedback path .................................................................374.4. Analogue inputs ..........................................................................384.5. Error outputs of application function blocks ................................384.6. Warnings .....................................................................................394.7. Execution order ...........................................................................394.8. F-key ...........................................................................................40

�� (QJLQHHULQJ�7LSV� �����������������������������������������������������������������������5.1. Horizontal communication ...........................................................42

5.1.1. Guideline for NV polling as PLC logic ..............................425.1.1.1. COMM_IN ..........................................................425.1.1.2. COMM_OUT ......................................................43

B Automation 3

Page 4: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

5.1.1.3. Cyclic sending generation .................................. 435.1.1.4. Cyclic communication check .............................. 445.1.1.5. Blocking ............................................................. 455.1.1.6. Control of objects ............................................... 465.1.1.7. Bypass mode ..................................................... 46

5.2. Events from the measurement function blocks ........................... 47

�� $33(1',;�$��5HOD\�&RQILJXUDWLRQ�3URFHGXUH� �������������������� ��

�� $33(1',;�%��6SHFLILFDWLRQ�IRU�)HHGHU�7HUPLQDO�&RQILJXUDWLRQ��������������������������������������������������������������������������� ��7.1. General data ............................................................................... 497.2. Electrotechnical data .................................................................. 507.3. Functionality ................................................................................ 607.4. Relay MIMIC configuration ......................................................... 627.5. Functionality logic ....................................................................... 647.6. Feeder terminal settings ............................................................. 65

�� $33(1',;�&��6SHFLILFDWLRQ�IRU�0DFKLQH�7HUPLQDO�&RQILJXUDWLRQ��������������������������������������������������������������������������� ��8.1. General data ............................................................................... 678.2. Electrotechnical data .................................................................. 688.3. Functionality ................................................................................ 798.4. Relay MIMIC configuration ......................................................... 818.5. Functionality logic ....................................................................... 838.6. Machine terminal settings ........................................................... 84

�� $33(1',;�'��6SHFLILFDWLRQ�IRU�5HPRWH�0RQLWRULQJ�DQG�&RQWURO�8QLW�&RQILJXUDWLRQ� ���������������������������������������������������� ��9.1. General data ............................................................................... 859.2. Electrotechnical data .................................................................. 869.3. Functionality ................................................................................ 939.4. LED configuration ....................................................................... 949.5. Remote monitoring and control unit settings .............................. 96

���$33(1',;�(��3RZHU�4XDOLW\�$SSOLFDWLRQ�*XLGH�IRU�+DUPRQLFV� ������������������������������������������������������������������������� ��10.1.Power quality and harmonics ..................................................... 9710.2.Background for harmonics ......................................................... 9710.3.Harmonic sources ...................................................................... 9910.4.System response characteristics ............................................. 10210.5.Effects of harmonics ................................................................. 10410.6.Applications for harmonic measurements ................................ 105

���5HIHUHQFHV� ��������������������������������������������������������������������������� ���

���*ORVVDU\� ������������������������������������������������������������������������������� ���

���,QGH[� ������������������������������������������������������������������������������������� ���

4 ABB Automation

Page 5: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

relay that d

tips

nual

ase

(see

Tool d

$ERXW�WKLV�PDQXDO

This guideline describes in general the procedures for configuring the REF 54_ feeder terminals, REM 54_ machine terminals and REC 523 remote monitoring and control units correctly with the Relay Configuration Tool. In this document, the term “device” will be used when referring to all three products.

Section 3 describes step-by-step the engineering actions required to create a configuration for a single device. Section 4 defines a set of programming rulesshould be followed while creating the configuration or at least carefully checkewhen finalizing the configuration. Finally, section 5 provides some engineeringfor doing the configuration.

For instructions on operating the tool itself, refer to the CAP 505 Operator’s Ma(see “References” on page 108).

The version C of the Configuration Guideline complies with products of the ReleSA 2.0. For information about the changes and additions compared to earlier revisions, refer to the Technical Reference Manual of the appropriate product “References” on page 108).

Please note that the examples and dialogue pictures of the Relay Configurationin this manual refer to REF 54_ feeder terminals. The corresponding cases andialogues may be slightly different for REM 54_ and REC 523.

5HYLVLRQ�KLVWRU\

Version B/30.06.99:- Text changed in the following sections: Libraries, Analogue channels/Measurements/Frequency,

Analogue channels/Virtual channels- Index added

Version C/11.05.2000:- Text added/changed and figures updated throughout the manual- Sections “Error outputs of application function blocks” and “Engineering Tips” added- Appendices D (Specification for Remote Monitoring and Control Unit Configuration) and

E (Power Quality Application Guide for Harmonics) added- Appendices B and C updated- References added- Glossary added

B Automation 5

Page 6: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

��� 5HOD\�&RQILJXUDWLRQ�7RRO

The Relay Configuration Tool, which is a standard programming system for RED500 devices, is used for configuring the protection, control, condition monitoring, measurement and logic functions of the feeder terminal. The tool is based on the IEC 61131-3 standard, which defines the programming language for relay terminals, and includes the full range of IEC features. The PLC logics are programmed with Boolean functions, timers, counters, comparators and flip-flops. The programming language described in this manual is a function block diagram (FBD) language.

6 ABB Automation

Page 7: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

��� 6SHFLILFDWLRQ�IRU�5HOD\�&RQILJXUDWLRQ

Prior to starting the configuration of a product, the specification for relay configuration is to be filled out. Separate specifications for REF 54_, REM 54_ and REC 523 can be found in appendices B, C and D in the end of this manual.

The purpose of the specification is to provide the technical information required for the proper configuration of the products.

B Automation 7

Page 8: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

pty ep is nits

s a ent a he sical

ject ting ble

de

es.

be

fer 08.)

wise rrent is

he n the

��� (GLWLQJ�WKH�5HOD\�&RQILJXUDWLRQV�

���� *HWWLQJ�VWDUWHG

Start up the CAP505 tool by double clicking the icon. After adding a new object as an empty configuration to the CAP505 environment (refer to the CAP505 Operator’s Manual, see “References” on page 108), the program opens an emproject template (see Figure 3.1.-1 below) with a toolbar at the top. The next stto build the project tree structure by inserting libraries, program organisation u(POUs) and target specific items to the project tree.

The project tree editor is a window in which the whole project is represented atree. The project tree is illustrated with several icons. Most of the icons represfile of the project and different looking icons represent different types of files. Ttree always contains 4 subtrees: Libraries, Data Types, Logical POUs and PhyHardware.

)LJ�������� 7KH�SURMHFW�WUHH�ZLWK�LWV�IRXU�VXEWUHHV

The project tree is the main tool for editing the project structure. Editing the prostructure means inserting POUs or worksheets to the project structure or deleexisting ones. The editors for editing the data of the code bodies and the variadeclaration can be called by double clicking the corresponding object icons.

If you intend to edit an old project, note that saving the changes mawith the “save as” command will not work as in other Windows programs. In case you want to keep the old project unchanged, theproject has to be saved with a new name before making any chang

������ /LEUDULHV

Before editing any worksheets of POUs, the whole project tree structure mustbuild. The function block library (protection, control, measurement, condition monitoring and standard functions) needed in the relay configuration is to be inserted to the “Libraries” subtree. (For instructions on announcing libraries, reto the manual “Relay Configuration Tool, Tutorial”, see “References” on page 1

Before inserting the library to the project, all worksheets must be closed; otherthe I/O description of function blocks will be confused. The programs, functionblocks (e.g. NOC3Low, the low set stage of non-directional three-phase overcuprotection) and functions of the library can be reused in the new project, whichedited.

The library, e.g. REFLIB01 for REF54_ (see Figure 3.1.1.-1 below), includes tfull set of function blocks, but only those ordered by the customer can be used iconfiguration.

!

8 ABB Automation

Page 9: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Note that if a configuration is transferred to a newer version of the product, the library in the project must also be updated.

)LJ���������� /LEUDULHV�IRU�5()��B��5(0���B�DQG�5(&����

The library version to be selected depends on the software revision of the product as listed in the table below. The directory path to the libraries is <installation drive>\CAP505\Common\IECLibs\Fi.

3URGXFW 6RIWZDUH�UHYLVLRQ

/LEUDU\�ILOH�QDPH

REF 541 A COMMU_01, CONDM_01, CONTR_01, MEASU_01, PROTE_01, STAND_01

B REFLIB01

C REFLIB02REF 541 (RTD1) A REFLIB02REF 543 C and D COMMU_01, CONDM_01, CONTR_01,

MEASU_01, PROTE_01, STAND_01E REFLIB01

F REFLIB02REF 543 (RTD1) A REFLIB02REF 545 A COMMU_01, CONDM_01, CONTR_01,

MEASU_01, PROTE_01, STAND_01B REFLIB01

C REFLIB02REM 543 A REMLIB01

B REMLIB02

REM 543 (RTD1) A REMLIB02REM 545 A REMLIB02REM 545 (RTD1) A REMLIB02

REC 523 A RECLIB01B RECLIB01C RECLIB02

B Automation 9

Page 10: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ 3URJUDP�RUJDQLVDWLRQ�XQLW

Each Program Organisation Unit, a POU, consists of several worksheets: a description worksheet for comments, a variable worksheet for variable declarations and a code body worksheet for the configuration. The name of each worksheet is indicated beside the corresponding icon and the *-symbol after the name of a worksheet indicates that the worksheet has not been compiled yet.

)LJ���������� 3URJUDP�RUJDQLVDWLRQ�XQLW�ZLWK�WKUHH�ZRUNVKHHWV

The description worksheet (e.g. ProtectT) illustrated below is for describing the POU or the configuration element. The worksheet is automatically named by adding a ’T’ to the name of the POU.

)LJ���������� 'HVFULSWLRQ�ZRUNVKHHW

The variable worksheet (e.g. ProtectV) is for the variable declaration. The worksheet is automatically named by adding a ’V’ to the name of the POU. The variable worksheet is not edited manually but is created by the tool.

)LJ���������� 9DULDEOH�GHFODUDWLRQ�ZRUNVKHHW

10 ABB Automation

Page 11: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

ed ts on they tool

POU, eded n be ince tput lock ing. aller des ted or

A code body worksheet (e.g. Protect) is for a code body declaration in the form of an FBD, a Function Block Diagram. All configurations for the devices of the RED 500 platform are made in the graphical FBD language. A code body programmed in the FBD language is composed of functions and function blocks that are connected to each other using variables, connection lines or connectors. An output of a function block can be combined with the output of another function block e.g. via an OR gate (refer to section “General” on page 35). Connectors are objects that can be usinstead of connection lines, for example where the distance between two objecthe worksheet is great. Connectors can only be used within one worksheet andare resolved by textual names. Connectors should be used with care since themay not warn if a match to a connector cannot be found (for example, the comparison of connectors is case sensitive). Note that visually, connectors aredistinguished from variables by embedding them with brackets.

)LJ���������� &RGH�ERG\�GHFODUDWLRQ�LQ�)%'�ODQJXDJH

Even though the tool permits adding several code body worksheets under one only one worksheet is recommended to be used per POU. If more space is nefor a configuration, the worksheet size can be increased or the functionality cadivided into several POUs. Avoid creating very large configurations per POU sthe RED500 PLC environment has an inherent limit for the number of input/oupoints per POU. The limit is 511 I/O points and is consumed by called function binstances only. Note that this limit is checked during the configuration downloadIf the downloading fails for this reason, the user has to divide the POU into smunits. For example, the function block NOC3Low in Figure 3.1.2.-4 above inclu15 I/O points. I/O points are consumed regardless of whether they are connecnot.

B Automation 11

Page 12: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

OUs

ted

w.

le

re uage . The s.

������ /RJLFDO�328V

In the project tree editor and in the library editor, the “Logical POUs” subtree represents a directory for all POUs related to the project. The maximum of 20 Pcan be inserted to the subtree. Figure 3.1.3.-1 below shows a “Logical POUs”subtree with 4 POUs; “CondMon” represents a function block, “Confirm” represents a function, and “Measure” and “Control” are programs. The associaicon represents the POU type.

)LJ���������� �³/RJLFDO�328V´�VXEWUHH�ZLWK���328V

Each POU type has specific characteristics from the programming point of vie

• A function yields exactly one data element which is evaluated from its input parameters. In other words, a function cannot contain any internal state information. Furthermore, a function can call other functions but no function blocks.

• A function block (FB) can return 0,1,2.. output values and can have internal variables. Function blocks can call any other function or function block. Multipcopies of function blocks are called instances and each instance is given anidentifier.

• Programs are specialized function blocks that can only be called by tasks.

Note that recursion is not allowed for any POU type.

The POU category is selected when a POU is inserted to the project tree. Figu3.1.3.-2 below shows the dialogue for inserting POUs. The programming lang(FBD) for the POU and the return data type for functions are also selected here“PLC type” and “Processor type” selections should be left to their default value

12 ABB Automation

Page 13: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

)LJ���������� ,QVHUWLQJ�D�QHZ�SURJUDP�328�FDOOHG�³'HPR´�ZKLFK�LV�SURJUDPPHG�XVLQJ�WKH�IXQFWLRQ�EORFN�GLDJUDP�ODQJXDJH

At first, a POU framework is created, i.e. empty POUs are inserted to the project according to the Specification for Relay Configuration filled out prior to starting the configuration procedure. The physical hardware must be defined before creating the actual contents for the POUs, otherwise predefined target-specific POUs will not be available for the programmer.

The task execution intervals recommended for function blocks must be considered already when defining the POU framework. In general, each POU forms a functional unit, e.g. for protection function blocks. Some function blocks, however, require a different task than most of the same category and must thus be assigned a separate POU. For example, the task execution interval of most protection function blocks is 10 ms but Freq1St_ requires the task of 5 ms, which is why it usually needs a separate POU. However, if all the protection function blocks used are associated with the task of 5 ms, no separate POU is required for Freq1St_.

B Automation 13

Page 14: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

iffer be

re

������ 3K\VLFDO�KDUGZDUH

In the project tree editor, the physical hardware is represented as a subtree (see Figure 3.1.4.-1 below) after the hardware of the device, i.e. Configuration, Resource and Tasks, has been defined.

)LJ���������� ([DPSOH�RI�D�VXEWUHH�IRU�WKH�SK\VLFDO�KDUGZDUH

The configuration elements available in the “Physical Hardware” subtree may dfrom configuration to configuration. Each terminal of the RED 500 platform canconfigured separately.

�������� &RQILJXUDWLRQ

The name of the configuration and the appropriate product family, PLC type, afirst defined in the dialogue Properties/Configuration.

)LJ������������ 'HILQLQJ�WKH�FRQILJXUDWLRQ�W\SH

14 ABB Automation

Page 15: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

/. The rder s

lect

�������� 5HVRXUFH

The PLC type selected in the Configuration dialogue above determines which processor types are available in the dialogue Properties/Resource. Select the correct processor type and name the resource. For example, the processor type REF543R refers to a REF 543 feeder terminal equipped with an RTD/analogue module.

)LJ������������ 'HILQLQJ�WKH�SURFHVVRU�W\SH

+DUGZDUH�YHUVLRQ

After selecting the processor type, click “Settings...” in the dialogue PropertiesResource (see Figure 3.1.4.2.-1 above) to define the correct hardware versionhardware version number in included in the order number of the product. The onumber is labelled on the marking strip on the front panel of the product e.g. afollows:

Order No: REF543FC���$$$$

Note! After selecting the correct hardware version (Relay Variant; see Figure 3.1.4.2.-2 below), do not click OK but wait until the next dialogue opens and se“Analog Channels” (see Figure 3.1.4.2.-3).

)LJ������������ 'HILQLQJ�WKH�KDUGZDUH�YHUVLRQ��1RWH�WKDW�IRU�5(&������WKH�VHOHFWDEOH�UHOD\�YDULDQWV�DUH�JLYHQ�DV�RUGHU�QXPEHUV��H�J��5(&���&����$$$��UHIHU�WR�WKH�7HFKQLFDO�5HIHUHQFH�0DQXDO�RI�5(&������VHH�³5HIHUHQFHV´�RQ�SDJH ����

B Automation 15

Page 16: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

” for

are to

)LJ������������ 6HOHFWLQJ�WKH�GLDORJXH�IRU�DQDORJXH�VHWWLQJV��VHH�)LJXUH������������EHORZ�

$QDORJXH�FKDQQHOV

In the dialogue Settings/Analog Channels, click each channel in turn to select the measuring device and signal type for the channels used and select “Not in useother channels.

Furthermore, the technical data and measurements for the selected channels be completed correctly before the configuration is used in a real application.

)LJ������������ 'HILQLQJ�WKH�DQDORJXH�FKDQQHOV

16 ABB Automation

Page 17: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

8).

any cted

block , the L3)

7HFKQLFDO�GDWD

)LJ������������ 'HILQLQJ�WKH�UDWHG�YDOXHV�IRU�WKH�VHOHFWHG�PHDVXULQJ�GHYLFH

0HDVXUHPHQWV

For information about the special measurements required for each function block, refer to the Technical Descriptions of Functions (see “References” on page 10

7UXH�506�DQG��QG�KDUPRQLF�UHVWUDLQW�PHDVXUHPHQWV

If the signal type selected for an analogue channel is going to be measured bymeasurement function block (MECU3A etc.), the true RMS mode must be selein the Special Measurements dialogue. Moreover, in case the Inrush3 function (3-phase transformer inrush and motor start-up current detector) is to be used2nd harmonic restraint must be selected for the analogue channels (IL1, IL2, Iused.

)LJ������������ 6HOHFWLQJ�WKH�UHTXLUHG�VSHFLDO�PHDVXUHPHQW�PRGHV�IRU�SKDVH�FXUUHQW�PHDVXUHPHQW

B Automation 17

Page 18: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

the n

ency

1HXWUDO�FXUUHQW

When the DEF2_ function block (directional earth-fault protection) is going to be used, intermittent earth-fault protection must be selected for the channel via which the current I0 is measured. The intermittent earth-fault protection can be enabled for the maximum of two physical channels at a time. Note that the intermittent earth-fault protection requires the residual voltage for directional operation. Therefore, the channel for the residual voltage U0 must be defined before the selection can be made. Unless intermittent earth-fault protection has been chosen, the following configuration error indication will appear on the display of REF 54_ or REM 54_ ( # denotes the number of the analogue channel in question):

System: SUPERV

Ch # error

)LJ������������ 6HOHFWLQJ�WKH�UHTXLUHG�VSHFLDO�PHDVXUHPHQW�PRGHV�IRU�QHXWUDO�FXUUHQW�PHDVXUHPHQW

)UHTXHQF\

When, for example, any of the function blocks MEFR_ (system frequency measurement) or SCVCSt_ (synchrocheck/voltagecheck function) is in use, frequency measurement must be selected for the channel via which the voltage is measured for frequency measurement (for example: Channel 10, Voltage Transformer 4, Signal type U3 / Measurements button in the dialogue “Configuration of REF543”). The power quality function blocks PQCU3H and PQVO3H require frequency measurement for the channel that is connected toFREQ_REF input i.e. the channel for frequency reference (for more informatiorefer to the manuals of PQCU3H and PQVO3H on the CD-ROM “Technical Descriptions of Functions”, see “References” on page 108). Furthermore, frequprotection must be selected if the function block Freq1St_ is in use.

18 ABB Automation

Page 19: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

)LJ������������ 6HOHFWLQJ�WKH�UHTXLUHG�VSHFLDO�PHDVXUHPHQW�PRGHV�IRU�IUHTXHQF\�PHDVXUHPHQW

9LUWXDO�FKDQQHOV

In case no measuring devices are applied for measuring residual voltage (U0) and neutral current (I0), the virtual channels 11 and 12 can be used. If only one virtual channel is used, the channel will be numbered as channel 11, regardless of whether residual voltage or neutral current is calculated. If both I0 and U0 are calculated, channel 11 will be used for I0S and channel 12 for U0S.

)LJ������������ 8VLQJ�YLUWXDO�FKDQQHOV����DQG����LQ�FDVH�QR�PHDVXULQJ�GHYLFHV�DUH�DSSOLHG�IRU�PHDVXULQJ�,��DQG�8�

B Automation 19

Page 20: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

s”

In case of the virtual channels for calculating I0 and U0, phase currents and voltages must be associated with current and voltage measuring devices (see Figures 3.1.4.2.-10 and 3.1.4.2.-11 below).

)LJ������������� �$VVRFLDWLQJ�SKDVH�FXUUHQWV�ZLWK�FXUUHQW�PHDVXULQJ�GHYLFHV

)LJ������������� �$VVRFLDWLQJ�SKDVH�YROWDJHV�ZLWK�YROWDJH�PHDVXULQJ�GHYLFHV�

After a compiled configuration is downloaded to a device, it will internally check whether the analogue channels are correctly configured regarding the analogue inputs of function blocks. If the connected channels have been configured incorretly, the ERR output signal of the specific function block goes active and the analogue channel configuration error event (E48) is sent. Some function blocks have special error events that are explained in the corresponding function block manuals on the CD-ROM “Technical Descriptions of Function(see “References” on page 108).

!

20 ABB Automation

Page 21: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

er, r

'LJLWDO�LQSXWV

The filter time is set for each digital input of the device via the resource settings dialogue “Binary Inputs”. Inversion of the inputs can also be set. Note, howevthat the inversion of an input cannot be seen from the configuration. For furtheinformation refer to the Technical Reference Manual of REF 54_, REM 54_ orREC 523 (see “References” on page 108).

)LJ������������� 'HILQLQJ�WKH�GLJLWDO�LQSXWV

B Automation 21

Page 22: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

nels

ls have

0HDVXUHPHQWV

When the MEPE7 function block (power and energy measurement) is used, the measuring mode must be selected via the resource settings dialogue “Measurements”. True RMS measurement must also be selected for the chanused by MEPE7.

Note that the measuring modes can only be selected after the analogue channebeen defined (see Figure 3.1.4.2.-4 on page 16).

)LJ������������� 6HOHFWLQJ�WKH�PHDVXULQJ�PRGH�IRU�SRZHU�DQG�HQHUJ\�PHDVXUHPHQW

22 ABB Automation

Page 23: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

&RQGLWLRQ�PRQLWRULQJ

Values for the circuit-breaker wear function blocks CMBWEAR 1 and 2 can be set via the resource settings dialogue “Condition Monitoring”.

)LJ������������� 6HWWLQJ�WKH�YDOXHV�IRU�FLUFXLW�EUHDNHU�ZHDU

B Automation 23

Page 24: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

e ks,

e the the

�������� 7DVNV

3URJUDPV�DQG�WDVNV

Programs are associated with tasks via the dialogues Properties/Task and Properties/Program. One task may include several programs. Cyclic tasks are activated within a specific time interval and the program is executed periodically.

The two dialogues below illustrate the association of a program type (Prot_Me) with a task (Task1) (see also Figure 3.1.4.-1 on page 14).

)LJ������������ 1DPLQJ�D�F\FOLF�WDVN

)LJ������������ $VVRFLDWLQJ�WKH�VHOHFWHG�WDVN�ZLWK�WKH�GHVLUHG�SURJUDP�W\SH

7DVN�LQWHUYDO

Generally, the operation accuracy is increased when the task speed is increased, but at the same time, the load of the microprocessors is increased as well. Although the task speed can be freely chosen with the tool, it is necessary to determine a maximum task execution interval for each function block; otherwise the operation accuracy and operate times for protection functions cannot be guaranteed. The maximum task execution interval is based on test results and has also been used in the type testing of the function blocks. The recommended task execution interval quaranteed by the manufacturer can be found in section “Technical Data” in thtechnical description of each function block. Furthermore, certain function bloce.g. MEDREC16, must be tied to the task given by the manufacturer, otherwisoperation of these function blocks is not possible. For more information about task execution intervals of function blocks, refer to the manual “Technical

24 ABB Automation

Page 25: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

ee

of

task

ans n, it tion n be

Task ure times

set es

it is other

n the n

the

r

uit

Descriptions of Functions, Introduction” on the CD-ROM 1MRS750889-MCD, s“References” on page 108). For microprocessor loads refer to section “Downloading the configuration” on page 33.

According to the standard, the Relay Configuration Tool includes the possibilitydefining the tasks on two different levels:

1. each program POU (= program organisation unit) can be tied to a separate

2. a separate function block inside a POU can be tied to any task

However, the alternative 2) is not supported in the RED environment, which methat if a separate function block inside a POU is given a separate task definitiowill be ignored when transferred to the device. This means that when the funcblocks are being placed in different POUs, not only the category of the functio(protection, control, etc.) but also the maximum task execution interval shouldconsidered, since all function blocks inside a POU will run at the same speed.

The task execution interval for each task is defined via the dialogue Properties/(click “Settings...”). For example, the task execution interval for Task1 in the figbelow is defined as 10 ms, which means that the program Prot_Me is run 100 per one second. The maximum number of tasks with different intervals is 4.

Note that the task setting is automatically modified by the tool if the network frequency is other than 50 Hz (see “Network Frequency” inFigure 3.1.4.2.-4 on page 16). At 60 Hz, for example, 10 ms becom8.333 ms.

)LJ������������ 6HWWLQJ�WKH�WDVN�H[HFXWLRQ�LQWHUYDO�IRU�D�SURJUDP

If there is a need for several different tasks that control the same output relay,recommended that the output relay is controlled directly in the fastest task and control commands are brought to that task via global variables.

E.g. some protection function blocks can be run in the 5 ms task, some i10 ms task and some even using the 100 ms task. Still, all these functioblocks use the same output relay.

Another way to avoid also the software delays when communicating between different tasks is to use a separate output relay for each protection task.

E.g. the trip signal from the 5 ms task is connected to High-Speed PoweOutput 1 and the trip signal from the 10 ms task to High-Speed-Power-Output 2. The outputs can then control the same opening coil of the circbreaker.

!

B Automation 25

Page 26: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

this nly le

cated cated er or he

l still

iser ays

ich am .

���� 'HFODULQJ�YDULDEOHV

The range of validity of the declarations included in the declaration part shall be�“local” to the POU in which the declaration part is contained. One exception to rule are variables that have been declared to be “global”. Such variables are oaccessible to a POU via a VAR_EXTERNAL declaration. The type of a variabdeclared in a VAR_EXTERNAL block shall agree with the type declared in theVAR_GLOBAL block of the associated program, configuration or resource.

)LJ�������� /RFDO�DQG�JOREDO�YDULDEOHV

The figure above illustrates the ways how values of variables can be communiamong software elements. Variable values within a program can be communidirectly by connecting the output of one program element to the input of anothvia local variables such as the variable y illustrated in the upper left corner of tfigure above. In the same configuration, variable values can be communicatedbetween programs via global variables such as the variable x illustrated in “Configuration C” in the figure above. In such a case, make sure that the globavariable is only written from one location in the project. The global variable can be read from several locations.

According to the IEC standard 61131-3, all variables that have no explicit initialare initialised with a data type dependent default value. Despite of this, it is alwrecommended that the initial value is given explicitly. Naturally, the value to wheach variable should be initialised depends on the logical function of the progr

'DWD�W\SH 'HIDXOW�LQLWLDO�YDOXH

ANY_REAL 0.0ANY_INT 0ANY_BIT 0 (=FALSE)

TIME T#0s

VAR y:BOOL; FB1:FB_X; FB2:FB_Y;END_VAR

FB_X

FB1

a y

FB_Y

FB2

by

Program B

VAR_EXTERNAL x:BOOL;END_VAR

VAR FB1:FB_X;END_VAR

FB_XFB1

a x

Program A

VAR_GLOBAL x:BOOL;END_VAR

Configuration C

VAR FB1:FB_X; FB2:FB_Y;END_VAR

FB_X

FB1

a

FB_Y

FB2

b

Program A

VAR_EXTERNAL x:BOOL;END_VAR

VAR FB2:FB_Y;END_VAR

FB_YFB2

bx

Program B

26 ABB Automation

Page 27: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Especially the initial values of global variables are logically significant for the program. The user cannot choose the order in which tasks are initialised, which means that if a task reading a global variable is initialised before another task gives the variable its first value, it is important that an appropriate initial value has been selected for the global variable.

&$6(����9DULDEOHV�GHFODUDWLRQ

9$5,$%/(�:25.6+((7�RI�ORJLFDO�328

******************************************************************VAR

TRIPPING :BOOL � �)$/6(� BLOCK :BOOL � �758(�

TMP1 :BOOL � �)$/6(� END_VARVAR_EXTERNAL

PS1_4_HSPO1 :BOOL; (* Double pole high speed power output *)(* X4.1/10,11,12,13 *)

PS1_4_HSPO2 :BOOL; (* Double pole high speed power output *)(* X4.1/15,16,17,18 *)

PS1_4_HSPO3 :BOOL; (* Double pole high speed power output *)(* X4.1/6,7,8,9 *)

END_VARVAR_EXTERNAL

TCS1_ALARM :BOOL;

END_VAR

******************************************************************

*/2%$/�9$5,$%/(�:25.6+((7

******************************************************************VAR_GLOBAL

PS1_4_HSPO1 AT %QX 1.1.2 :BOOL � �)$/6(�

(* Double pole high speed power output X4.1/10,11,12,13 *)PS1_4_HSPO2 AT %QX 1.2.2 :BOOL � �)$/6(�

(* Double pole high speed power output X4.1/15,16,17,18 *)

PS1_4_HSPO3 AT %QX 1.3.2 :BOOL � �)$/6(� (* Double pole high speed power output X4.1/6,7,8,9 *)

END_VAR

VAR_GLOBALTCS1_ALARM :BOOL � �)$/6(�

END_VAR

******************************************************************

B Automation 27

Page 28: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

eet. ect ls are logue

tain e

yword risks.

ing

he lue

������ *OREDO�YDULDEOHV

The physical contacts of RE_ 54_ are defined in the “Global Variables” workshDeclarations for the physical contacts are automatically defined when the corrhardware version of RE_ 54_ is selected. Declarations for the analogue channecreated after the analogue channel settings defined in the resource settings diahave been approved.

The textual names of the inputs and outputs, e.g. BIO2-7_BI10IV (see figure below), can be modified. Note, however, that the address (e.g. AT %IX 1.29.1:BOOL := TRUE) following the name may not be changed.

)LJ���������� *OREDO�9DULDEOHV�ZRUNVKHHW

������ /RFDO�YDULDEOHV

At its beginning, each programmable controller POU type declaration is to conat least one declaration part that specifies the types of the variables used in thorganisation unit. The declaration part shall have the textual form of one of thekeywords VAR_INPUT, VAR_OUTPUT, VAR and VAR_EXTERNAL followed by one or more declarations separated by semicolons and terminated by the keEND_VAR. All the comments you write must be edited in parentheses and aste

Caution is required regarding comments and variable declarations. The followcode example will be compiled successfully but because of the non-closed comment, the END_VAR - VAR_EXTERNAL couple will be excluded and thus tchannel numbers become local variables of the POU and they get the initial vazero.

(*******************************)(* Variable declaration

of REF 541 *)

(* *)(*******************************)

28 ABB Automation

Page 29: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Three examples of creating the textual declaration for different kinds of graphical programs are given below.

(;$03/(���

• POU type: FBD program

• Function block type declaration:

)LJ���������� )XQFWLRQ�EORFN�LPDJH

VARSIGNAL1 :BOOL :=FALSE;

SIGNAL2 :BOOL :=FALSE;SIGNAL3 :BOOL :=FALSE;SIGNAL4 :BOOL :=FALSE;

END_VAR

VAR (*AUTOINSERT*)NOC3Low_1 : NOC3Low; (* Erroneous nonclosed comment *

END_VARVAR_EXTERNAL (*AUTOINSERT*)

U12 : SINT; (* Measuring channel 8 *)

U23 : SINT; (* Measuring channel 9 *)U31 : SINT; (* Measuring channel 10 *)

END_VAR

B Automation 29

Page 30: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

(;$03/(���

• POU type: NOC3Low, manufacturer dependent function block

• Function block type declaration:

)LJ���������� )XQFWLRQ�EORFN�LPDJH�RI�12&�/RZ

VAR_INPUTIL1 :SINT :=0; (* Analogue channel *)

IL2 :SINT :=0; (* Analogue channel *)IL3 :SINT :=0; (* Analogue channel *)BS1 :BOOL :=FALSE; (* Blocking signal *)

BS2 :BOOL :=FALSE; (* Blocking signal *)TRIGG :BOOL :=FALSE; (* Triggering *)GROUP :BOOL :=FALSE; (* Grp1/Grp2 select *)

DOUBLE :BOOL :=FALSE; (* Doubling signal *)BSREG :BOOL :=FALSE; (* Blocking registering *)RESET :BOOL :=FALSE; (* Reset signal *)

END_VARVAR_OUTPUT

START :BOOL :=FALSE; (* Start signal *)

TRIP :BOOL :=FALSE; (* Trip signal *)CBFP :BOOL :=FALSE; (* CBFP signal *)ERR :BOOL :=FALSE; (* Error signal *)

END_VAR

30 ABB Automation

Page 31: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

(;$03/(����

• POU type: Programmer dependent FBD function block CONDIS

• Function block type declaration:

)LJ���������� 7\SH�GHFODUDWLRQ�RI�WKH�SURJUDPPHU�PDGH�IXQFWLRQ�EORFN�&21',6

B Automation 31

Page 32: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

)LJ���������� )%'�ZRUNVKHHW�FRQWHQWV�RI�WKH�&21',6�IXQFWLRQ�EORFN

)LJ���������� 8VH�RI�WKH�SURJUDPPHU�PDGH�IXQFWLRQ�EORFN�&21',6

In the example 3 above, part of the configuration has been separated to a programmer made function block called CONDIS. Such function blocks may not be given names already belonging to library functions blocks or IEC standard function blocks. The function block CONDIS has been used like any other function block in the graphical program. The order of inputs of a function block that has been inserted to a worksheet may not be changed. It must also be remembered that a function block with an instance named by the programmer can only be inserted to the project once.

32 ABB Automation

Page 33: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

ect s, ts that roject sed

ion

nt s to

rder item

ct re tion ed

from een over

e

���� &RPSLOLQJ�WKH�SURMHFW

The “Build Project” mode in the “Make” menu is used to compile the whole projfor the first time after editing, which means compiling all POUs, global variableresources etc., whereas the “Make” mode can be used to compile the worksheehave been edited. The changed worksheets are marked with an asterisk in the ptree editor. “Make” is the standard mode for compiling and should normally be uwhen you have finished editing. However, it is recommended that the “Build Project” command is given once more right before downloading the configuratto the product.

In the Relay Configuration Tool you can view the execution order of the differefunctions or function blocks in your worksheet. The execution order correspondthe intermediate PLC code created while compiling. Note that the execution ocan only be seen if you have already compiled the worksheet using the menu“Compile Worksheet” in the submenu “Make”.

���� 'RZQORDGLQJ�WKH�FRQILJXUDWLRQ

After the configuration has been built and succesfully compiled in the Relay Configuration Tool, and the MIMIC configuration has been designed, the projecan be downloaded to the device. The parts of the project to be downloaded aselected via a dialogue box. The MIMIC configuration and the Relay ConfiguraTool project can be downloaded separately. The project can also be downloadseparately as a compressed file, which enables later uploading of the project the device. The compressed file is automatically created if “RCT project” has bselected (see Figure 3.4.-1 below). The target device has an inherent limitationthe size of a stored project file. If this is exceeded, the tool will interrupt the downloading and issue a warning. It is useful to include some information of thproject in the file (Relay Configuration Tool: File/Project Info) by giving e.g. thename of the designer, the date and the version or other description of the configuration.

)LJ�������� 6HOHFWLQJ�5&7�SURMHFW��1RWH�WKDW�IRU�5(&������RQO\�5HOD\�&RQILJXUDWLRQ�LV�SRVVLEOH�

B Automation 33

Page 34: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

. ” is

via the

ut the

the cked

acity” and

When the configuration is downloaded, the total CPU load in percent can be checked via the parameter “Config. capacity” (Main menu/Configuration/General/Configcapacity). If the load exceeds 100%, the downloading fails, an indication “Faileddisplayed in the assisting window of the display of REF 54_ or REM 54_ and amessage appears in the CAP 505. The exceeded CPU load can also be read parameter after a failed downloading, i.e. the load value can be e.g. 115%.

Whenever the downloading fails, no storing sequence is allowed to be started bdevice must be reset before next downloading. Moreover, the device is automatically reset after a failed downloading when the download dialogue in Relay Download Tool is closed. Note that the exceeded CPU load must be chebefore resetting, since after the device is restarted, the parameter “Config. capshows the load of the previous configuration that was downloaded succesfullyhas become valid again.

34 ABB Automation

Page 35: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

).

��� 0DLQ�&RQILJXUDWLRQ�5XOHV�IRU�5(B��BB

���� *HQHUDO

Make sure that all analogue signals are connected and all necessary inputs and outputs are wired. Note that the outputs of function blocks may not be connected together. There are also many other FBD programming rules to follow. One of the most typical rules is not to use the “wired-OR” connection. All signals that are connected to the same output signal (both output relays and horizontal communication outputs) must be connected via an OR gate (see figure below

)LJ�������� 8VH�RI�DQ�H[SOLFLW�%RROHDQ�25�JDWH��RQ�WKH�ULJKW�

I>

I>>

PS1_4_HSPO1

PS1_4_HSPO1

I>

I>>

TRIP

TRIP

PS1_4_HSPO1OR

"wired-OR" structure is not allowed an explicit Boolean "OR" block is required instead

B Automation 35

Page 36: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� 'LJLWDO�LQSXWV�DQG�RXWSXWV

Digital inputs and outputs of RED500 devices are implemented as directly represented global variables. As such, they are special cases and their use in the configuration is limited. Directly represented variables are declared in the Global Variables sheet of the project tree. They can be recognized by the AT keyword as in the examples below.

Note that the parts of the line following the AT keyword may not be changed. Only the name of the signal, i.e. the part before the AT keyword, may be changed if required. If the names are adapted to the logical meanings of the signals, the user is encouraged to create and to follow a naming convention. The name should indicate, apart from the logical meaning, whether the signal is an input or output signal. Examples of such names following a naming convention could be:

Access direction for the directly represented variables is restricted by their purpose. This means that a digital input can be read but not written, see Figure 4.2.-1 below. Accordingly, an output can be written but not read. Note that an input can be read from several locations within a worksheet and even from any program organisation unit within the configuration, whereas an output can only be written from one location at a time.

)LJ�������� :ULWLQJ�RU�UHDGLQJ�D�GLJLWDO�LQSXW�LV�QRW�DOORZHG

BIO1_5_BI1 $7 %IX 1.8.2 :BOOL := FALSE; ( *Binary input X5.1/1,2 *)

BIO2_7_PO1 $7 %QX 1.13.2 :BOOL := FALSE; ( *Single pole output X7.1/17,18 *)

4�BFORVHBVWDB,1 AT %IX 1.8.2 :BOOL := FALSE; (* Binary input X5.1/1,2 *)

4�BFORVHBFPGB287 AT %QX 1.13.2 :BOOL := FALSE; (* Single pole output X7.1/17,18 *)

36 ABB Automation

Page 37: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

ll k f re the ion

���� ([SOLFLW�IHHGEDFN�SDWK

A feedback path exists on the FBD worksheet when an output of a function block is used as an input to a function block that precedes it in the execution order. There are two types of feedback paths, an explicit and an implicit feedback loop (see Figures 4.3.-1 and 4.3.-2 below). It is strongly recommended that explicit feedback loops are changed to implicit loops by means of a feedback variable.

The Relay Configuration Tool can detect explicit loops during compilation. If the menu item “Display warnings” in the “Make” menu is checked, the compiler wigive warnings about the detected explicit feedback loops. To view the feedbacloops, select “Highlight feedback” in the “Layout” menu. The execution order ofunctions compared to the expected behaviour may in some cases dictate whefeedback variable should be added (for instructions on how to view the executorder, refer to section “Execution order” on page 39). The initial value of the feedback variable should also be selected with care.

)LJ�������� ([SOLFLW�IHHGEDFN�ORRS�LV�GHWHFWHG�DQG�KLJKOLJKWHG

)LJ�������� ,PSOLFLW�IHHGEDFN�YLD�WKH�ORFDO�YDULDEOH�)(('%$&.

B Automation 37

Page 38: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

ged

the tion tion etting

via 54_, on

e ask

���� $QDORJXH�LQSXWV

Analogue channels defined in the resource can be connected to the analogue inputs of application function blocks on a code body worksheet. Most of the function blocks with several analogue inputs support unconnected inputs. For example, in Figure 4.4.-1 below, the function block NOC3Low operates on only two inputs. The third and unused input constantly measures a zero current amplitude. This function block only requires that at least one of the three inputs is connected. On the other hand, certain function blocks require that all analogue inputs are connected. An example of such a function block is OV3Low (see Figure 4.4.-1 below). If the analogue channel requirements of a function block are violated, a configuration error is generated. For more information on how analogue inputs are expected to be connected, refer to the function block manuals on the CD-ROM “ Technical Descriptions of Functions”, see “References” on page 108.

Analogue channels connected to application function blocks may not be chanruntime. Therefore, do not use any selectors between analogue channels andfunction blocks.

)LJ�������� &RQQHFWLQJ�DQDORJXH�LQSXWV�RI�DSSOLFDWLRQ�IXQFWLRQ�EORFNV��8VLQJ�D�VHOHFWRU�WR�VZLWFK�EHWZHHQ�FKDQQHOV�LV�IRUELGGHQ�

���� (UURU�RXWSXWV�RI�DSSOLFDWLRQ�IXQFWLRQ�EORFNV

If a configuration for a function block is not correct, its ERR output is activatedimmediately after configuration downloading and the function block is forced to“Not in use” mode. In this case, application function blocks that have the “Operamode” parameter in their actual setting menu will display the “Not in use” operamode, regardless of which mode has been selected for the parameter in the sgroup menu.

The error signals of all application function blocks should be collected togetheran OR gate and connected to e.g. an MMI alarm indication of REF 54_ or REMi.e. an MMIALAR_ function block. This way, detecting any untreated configuratierrors is fast and easy.

Configuration errors typically originate from missing special measurements, thtype, order or number of analogue channels connected to function blocks, or tinterval requirements.

38 ABB Automation

Page 39: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

the ill

ded be

ol

e t on. If n be

���� :DUQLQJV

In case of the indication “Warning: Instance ‘xx’ is never used” in connection with compilation, remove the corresponding instances offunction block from the variables worksheet of the POU. The tool wnot give a warning for unused variables, which is why they are recommended to be removed manually. When a global variable is adto a sheet as a copy-paste -function, the global radio button has to chosen (see figure below); otherwise the variable becomes a local variable of the POU, which is due to the auto-insert feature of the to(global variable = VAR_EXTERNAL, local variable = VAR).

)LJ�������� &RS\LQJ�D�JOREDO�YDULDEOH�WR�D�ZRUNVKHHW�RI�D�328

���� ([HFXWLRQ�RUGHU

Check the execution order in relation to the calling sequence of POUs after thcompilation by using the Layout Execution Order function. Note, however, thaalthough the connection of simple variables to each other generates code, theexecution order cannot be seen by means of the Layout Execution Order functithe MOVE function is used instead of direct connection, the execution order cautilised in concluding whether the result is desirable.

)LJ�������� 'LUHFW�FRQQHFWLRQ�RI�YDULDEOHV�DQG�D�FRQQHFWLRQ�YLD�WKH�029(�IXQFWLRQ

)LJ�������� 7KH�,17(5/2&.,1*�YDULDEOH�LV�XSGDWHG��703���GXULQJ�WKH�WDVN�H[HFXWLRQ�F\FOH��VHH�WKH�H[HFXWLRQ�RUGHU�������

!

B Automation 39

Page 40: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

In addition, the execution order may be illogical or even incorrect considering the functionality.

)LJ�������� 7KH�LPSOLFLW�IHHGEDFN��703���GHOD\V�WKH�XSGDWLQJ�RI�WKH�,17(5/2&.,1*�YDULDEOH�E\�RQH�WDVN�H[HFXWLRQ�F\FOH

���� )�NH\

The freely programmable F-key of REF 54_ or REM 54_ is declared as VAR_GLOBAL in the global variable worksheet as follows:

The F-key parameter can be added to the configuration logic as an external variable (VAR_EXTERNAL).

)LJ�������� ([DPSOH�RI�XVLQJ�)�NH\�ZLWK�WKH�GLVWXUEDQFH�UHFRUGHU�IXQFWLRQ�EORFN�0('5(&��

F001V021:BOOL:=0; (* (R, W) Free configuration point (F-key) *)

40 ABB Automation

Page 41: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

The variables below are internal variables of the system and are thus not recommended to be used like the F-key parameter.

F001V011:BOOL:=0; (* (W) Resetting of operation indications *)

F001V012:BOOL:=0; (* (W) Resetting of operation indications & latched output signals *)

F001V013:BOOL:=0; (* (* (W) Resetting of operation indications, latched output signals & waveform memory

*) *)

F001V020:BOOL:=0; (* (W) Resetting of accumulated energy measurement *)

F002V004:BOOL:=0; (* (* (R, W) Control: Interlocking bypass mode for all control objects (Enables all)

*) *)

F002V005:USINT:=0; (* (W) Control: Recent control position *)

F002V006:BOOL:=0; (* (W) Control: Virtual LON input poll status *)

F900V251:BOOL:=0; (* (* (W) Control: Execute all command for selected objects (inside module)

*) *)

F900V252:BOOL:=0; (* (W) Control: Cancel all command for selected objects (inside module)

*)

F000V251:BOOL:=0; (* (* (W) Control: Execute all command for selected objects (inside module)

*) *)

F000V252:BOOL:=0; (* (W) Control: Cancel all command for selected objects (inside module)

*)

B Automation 41

Page 42: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

��� (QJLQHHULQJ�7LSV

���� +RUL]RQWDO�FRPPXQLFDWLRQ

This example includes four (4) bays. The logic is basically the same in every bay. The intention of this guideline is to point out how to ensure the horizontal inter-bay communication, including correct state indication of control objects via LON communication. The logic also includes an alarm function in case of a broken fibre optic. Incorrect updating of interlocking information blocks the control of objects, but the blocking can be bypassed by setting the device to the bypass mode.

������ *XLGHOLQH�IRU�19�SROOLQJ�DV�3/&�ORJLF

Communication between terminals is executed by using the communication input and output signals (global variables COMM_IN_ and COMM_OUT_). The logic must be designed in a Relay Configuration Tool project. The LON network variable bindings can be created with the LON Network Tool. Communication inputs and outputs are bound to each other on a one-to-one basis by means of unacknowledged repeated unicast service. The signals are named so that the number at the end of COMM_OUT_ (e.g. COMM_OUT�) denotes the bay to which the signal is sent. Accordingly, the number at the end of COMM_IN_ denotes the bay from which the signal is received. This way, COMM_OUT2 of bay 1 is bound to COMM_IN1 of bay 2.

�������� &200B,1

COMM_IN_ signals are converted into Boolean logic mode by INT2BOOL function blocks. The B0 output signal (BLOCK1) in an INT2BOOL function block is used for blocking the control of objects except for the one that is sending the signal. In other words, only one object can be controlled at a time. Furthermore, Comm-Check_ signals are used for checking the condition of fibre optics. Signals for bay interlocking are also received.

)LJ������������ ([DPSOH�RI�WKH�&200B,1�ORJLF

42 ABB Automation

Page 43: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

�������� &200B287

Communication signals sent from one bay to other bays include the reservation of control objects, updating of communication output signals and some indications needed in other bays. Overall, digital signals are sent via LON and converted from Boolean logic to unsigned integer (UINT, 16 bits) values.

)LJ������������ ([DPSOH�RI�WKH�&200B287�ORJLF

�������� &\FOLF�VHQGLQJ�JHQHUDWLRQ

The logic below shows an example of how the cyclic sending of communication output signals can be generated. The idea is to generate a boolean signal with a 5-second pulse duration and a 50-percent duty cycle.

)LJ������������ ([DPSOH�RI�JHQHUDWLQJ�WKH�F\FOLF�VHQGLQJ�RI�FRPPXQLFDWLRQ�RXWSXW�VLJQDOV

B Automation 43

Page 44: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

�������� &\FOLF�FRPPXQLFDWLRQ�FKHFN

Checking of horizontal communication is performed by timers, which activate an alarm signal as a result of failed communication (Bay__Comm_Failed) 15 seconds after the new value of a Comm-Check_ signal has been received. Comm_Check_ signals are updated every 5 seconds, which affects the TON timer functions thus preventing the activation of Q output signals. If the communication fails, all four bays will be blocked.

)LJ������������ &\FOLF�FRPPXQLFDWLRQ�FKHFN

44 ABB Automation

Page 45: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

�������� %ORFNLQJ

If horizontal communication has failed, the BLOCK2 signal is sent to every controllable function block to prevent the control of local objects. Furthermore, the MMI alarm indication 8 (for REF 54_ or REM 54_) will be activated.

The BLOCK1 signal is used to create a mutual exclusion effect between bays. The signal is activated by horizontal communication when a control object is selected in one of the other bays.

)LJ������������ %ORFNLQJ�WKH�FRQWURO�RI�REMHFWV

B Automation 45

Page 46: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

s

tion nd

�������� &RQWURO�RI�REMHFWV

The control of an object, e.g. a breaker, can be executed if the BLOCK input is not active (TRUE). Accordingly, an object cannot be controlled during the reservation of other objects (in the same bay or in other bays) or the failing of horizontal communication. However, the blocking can be bypassed by setting the terminal to the bypass mode (MAIN MENU/CONTROL/GENERAL/INTERLOCKING BYPASS). The bypass mode (see also section“Bypass mode” below) overrideinterlockings provided the bypass signal is included in the logic.

)LJ������������ 'HILQLQJ�WKH�E\SDVV�PRGH�IRU�WKH�FRQWURO�REMHFW

�������� %\SDVV�PRGH

The bypass mode signal can be generated in the logic via the COLOCAT funcblock. After activation of the bypass mode, the BYPASS signal will be active awill therefore prevent activation of the BLOCK input.

)LJ������������ *HQHUDWLRQ�RI�WKH�E\SDVV�PRGH�VLJQDO

46 ABB Automation

Page 47: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

���� (YHQWV�IURP�WKH�PHDVXUHPHQW�IXQFWLRQ�EORFNV

63$�SURWRFRO�XVHG

Measurement values have to be polled because they are not sent with events. Hence, delta supervision events of the measurement function blocks can be masked off.

If limit supervision is set to be done by RTU, the limit event sending must be allowed in event masks. In this case, the client is informed of the activation and resetting of each limit with the corresponding event code numbers.

/21�SURWRFRO�XVHG

Each measured variable is individualised by an IEC address. Measurement values and the corresponding IEC addresses are sent to a client, e.g. to MicroSCADA, with both delta supervision events and limit supervision events.

When the supervision of warning and alarm limits is active, the priority for limit event sending is higher than that for delta event sending if both type of events are sent concurrently. Concurrent event sending appears, for example, when a measured value changes considerably during a short period, e.g. when a circuit breaker is closed or opened. This causes problems if limit supervision events have been masked off, since the client will not receive all measurement values even if major changes have taken place.

Thus, the limit supervision events are not recommended to be masked off if limit supervision is used.!

B Automation 47

Page 48: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

��� $33(1',;�$��5HOD\�&RQILJXUDWLRQ�3URFHGXUH

1. Create a new project2. Create a tree structure

a) Librariesb) Logical POU framework (programs and function blocks)c) Physical Hardware

i) configurationii) resource

- hardware version- used analogue channels and measurement signal types- digital inputs- power and energy measurement- condition monitoring (circuit breaker breaker wear)

iii) tasks- connection between program and task- task interval

d) Logical POU contents3. Design logics4. Check variable declarations

a) Data types and initialisersb) Instances of functions and function blocksc) Variable categories

i) VAR - END_VARii) VAR_EXTERNAL - END_VARiii) VAR_INPUT - END_VARiv) VAR_OUTPUT - END_VARv) VAR_GLOBAL - END_VAR

5. Compile a project6. Download it to the device

48 ABB Automation

Page 49: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

m of

��� $33(1',;�%��6SHFLILFDWLRQ�IRU�)HHGHU�7HUPLQDO�&RQILJXUDWLRQ

���� *HQHUDO�GDWD

This document serves as a technical specification of substation protection and is used for the configuration of REF 54_ feeder terminals.

Special requirements can be specified under “Further information” at the bottoeach page.

Project name: Date:

This specification suitable for bays: Substation name:

Feeder terminal type: Software revision

Order number:

REF54 __ __ __ __ __ __ __ __ __ (e.g. REF543FC127AAAA)

Handled by: Company:

Telephone number: Fax number:

B Automation 49

Page 50: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� (OHFWURWHFKQLFDO�GDWD

������ $QDORJXH�LQSXWV

&KDQQHO 0HDVXULQJ�GHYLFHV�WKDW�FDQ�EH�FRQQHFWHG�WR�WKH�FRUUHVSRQGLQJ�DQDORJXH�PHDVXULQJ�FKDQQHOV

1 Rogowski sensor, voltage divider or general measurement2...5 Current transformer, Rogowski sensor, voltage divider or general measurement6 Current transformer

7...10 Voltage transfomer, Rogowski sensor, voltage divider or general measurement

Further information:

50 ABB Automation

Page 51: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

The measuring device can be connected exclusively to the analogue channels of either MIM or SIM type modules. Ten channels are available.

Further information:

1A5A

1A0,2A

100V

100V

100V

100V

1A5A

1A5A

1A5A

X1.1

161514131211

87654321

10 9

1918

2221

27

2524

MIM

X1.

1.fh

8

Board Terminal number Connectedobject

Signal typeModule type

MIM

X1.1:25, X1.1:27

X1.1:22, X1.1:24

X1.1:19, X1.1:21

X1.1:16, X1.1:18

X1.1:13, X1.1:14, X1.1:15

X1.1:10, X1.1:11, X1.1:12

X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

VT4

VT3

VT2

VT1

CT5

CT4

CT3

CT2

CT1Ch 2

Ch 3

Ch 4

Ch 5

Ch 6

Ch 7

Ch 8

Ch 9

Ch 10

X2.1

X2.2

X2.3

X2.4

X2.5

X2.6

X2.7

DIFF

DIFF

DIFF

DIFF

DIFF

DIFF

DIFF

X2.9DIFFS

IMX

2.fh

8

X2.8DIFF

Terminalnumber

Board

SIM

Module type Connectedobject

Signal type

Ch 9, sensor

Ch 10, sensor

Ch 8, sensor

Ch 7, sensor

Ch 4, sensor

Ch 3, sensor

Ch 2, sensor

Ch 1, sensor

Ch 5, sensor

X2.1

X2.2

X2.3

X2.4

X2.5

X2.6

X2.7

X2.8

X2.9

!

B Automation 51

Page 52: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ 6\VWHP�IUHTXHQF\

������ 'LJLWDO�LQSXWV

50 Hz 60 Hz

Further information:

12

45

67

X4.2

PS

1X4.

2.fh

8

Terminalnumber

Board Connectedobject

X4.2:1, X4.2:2

X4.2:4, X4.2:5

X4.2:6, X4.2:7

PS1(REF541,REF543)

Module type

1) Digital input / counter input

1)

1)

1)

PS1_4_BI1

PS1_4_BI3

PS1_4_BI2

123

456

789

101112

131415161718

X5.1

BIO

1X5.

1.fh

8

X5.1:1, X5.1:2

X5.1:2, X5.1:3

X5.1:4, X5.1:5

X5.1:5, X5.1:6

X5.1:7, X5.1:8

X5.1:8, X5.1:9

X5.1:10, X5.1:11

X5.1:11, X5.1:12

X5.1:13, X5.1:14

X5.1:15, X5.1:16

X5.1:17, X5.1:18

1) Digital input / counter input

BIO1

Terminalnumber

Board Connectedobject

Module type

1)

1)

1)

BIO1_5_BI1

BIO1_5_BI11

BIO1_5_BI9

BIO1_5_BI8

BIO1_5_BI7

BIO1_5_BI6

BIO1_5_BI5

BIO1_5_BI4

BIO1_5_BI3

BIO1_5_BI2

BIO1_5_BI10

52 ABB Automation

Page 53: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Further information:

12

X5.2

BIO

1X5.

2.fh

8

BIO1

Terminalnumber

Board Connectedobject

Module type

BIO1_5_BI12 X5.2:1, X5.2:2

1) Digital input / counter input

1)

X7.1

101112

1314

1516

456

789

123

BIO

2X7.

1.fh

8

BIO2(REF543,REF545)

Terminalnumber

Board Connectedobject

Module type

1) Digital input / counter input

1)

1)

BIO2_7_BI9

BIO2_7_BI8

BIO2_7_BI7

BIO2_7_BI6

BIO2_7_BI5

BIO2_7_BI4

BIO2_7_BI3

BIO2_7_BI2

BIO2_7_BI10

BIO2_7_BI1 X7.1:1, X7.1:2

X7.1:2, X7.1:3

X7.1:4, X7.1:5

X7.1:5, X7.1:6

X7.1:7, X7.1:8

X7.1:8, X7.1:9

X7.1:10, X7.1:11

X7.1:11, X7.1:12

X7.1:13, X7.1:14

X7.1:15, X7.1:16

B Automation 53

Page 54: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ 'LJLWDO�RXWSXWV

Further information:

PS1(REF541,REF543)

Terminalnumber

BoardConnectedobject

Module type

PS

1X4.

1.fh

8

I R F

TCS2

TCS1

X4.1

5

6

79

8

10

111312

15

161817

34

-

X4.1

1

2

1)

1)

1)

1)

1) Please indicate whether the trip circuit supervision inputs will be configured to use or not

X4.1:1, X4.1:2

PS1_4_HSPO3

PS1_4_HSPO1

PS1_4_TCS1

PS1_4_HSPO2

PS1_4_TCS2

PS1_4_TempAlarm

PS1_4_ACFail

X4.1:3, X4.1:4, X4.1:5

X4.1:6, X4.1:7,X4.1:8, X4.1:9

X4.1:10, X4.1:11,X4.1:12, X4.1:13

X4.1:15, X4.1:16,X4.1:17, X4.1:18

+Mains

PS2(REF545)

Terminalnumber

BoardConnectedobject

Module type

PS

2X4.

1.fh

8

I R F

TCS2

TCS1

X4.1

5

6

79

8

10

111312

15

161817

34

-

X4.1

1

2

1)

1)

1)

1)

1) Please indicate whether the trip circuit supervision inputs will be configured to use or not

X4.1:1, X4.1:2

PS2_4_HSPO3

PS2_4_HSPO1

PS2_4_TCS1

PS2_4_HSPO2

PS2_4_TCS2

PS2_4_TempAlarm

PS2_4_ACFail

X4.1:3, X4.1:4, X4.1:5

X4.1:6, X4.1:7,X4.1:8, X4.1:9

X4.1:10, X4.1:11,X4.1:12, X4.1:13

X4.1:15, X4.1:16,X4.1:17, X4.1:18

+Mains

54 ABB Automation

Page 55: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Further information:

PS1(REF541,REF543)

Terminalnumber

BoardConnectedobject

Module type

111012

131514

1617

18

8

9

X4.2

PS

1X4.

2o.fh

8

PS1_4_HSPO5

PS1_4_SO1

PS1_4_HSPO4X4.2:8, X4.2:9,X4.2:10, X4.2:11

X4.2:12, X4.2:13,X4.2:14, X4.2:15

X4.2:16, X4.2:17,X4.2:18

X4.2

2435

6879

10121113

141615

1718 P

S2X

4.2o

.fh8

PS2(REF545)

Terminalnumber

BoardConnectedobject

Module type

1

PS2_4_HSPO4

PS2_4_HSPO5

PS2_4_HSPO6

PS2_4_HSPO7

PS2_4_HSPO8

X4.2:1, X4.2:2,X4.2:3, X4.2:4

X4.2:5, X4.2:6,X4.2:7, X4.2:8

X4.2:9, X4.2:10,X4.2:11, X4.2:12

X4.2:13, X4.2:14,X4.2:15, X4.2:16

X4.2:17, X4.2:18

B Automation 55

Page 56: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

Further information:

5

6

79

8

1012

11

1315

14

1618

17

X5.23

4

BIO

1X5.

2o.fh

8

BIO1

Terminalnumber

BoardConnectedobject

Module type

BIO1_5_SO1

BIO1_5_SO2

BIO1_5_SO3

BIO1_5_SO4

BIO1_5_SO5

BIO1_5_SO6

X5.2:3, X5.2:4

X5.2:5, X5.2:6

X5.2:7, X5.2:8, X5.2:9

X5.2:10, X5.2:11, X5.2:12

X5.2:13, X5.2:14, X5.2:15

X5.2:16, X5.2:17, X5.2:18

5

6

79

8

1012

11

1315

141618

17

X6.23

4

BIO

1X6.

2.fh

8

BIO1(REF545)

Terminalnumber

BoardConnectedobject

Module type

BIO1_6_SO1

BIO1_6_SO2

BIO1_6_SO3

BIO1_6_SO4

BIO1_6_SO5

BIO1_6_SO6

X6.2:3, X6.2:4

X6.2:5, X6.2:6

X6.2:7, X6.2:8, X6.2:9

X6.2:10, X6.2:11, X6.2:12

X6.2:13, X6.2:14, X6.2:15

X6.2:16, X6.2:17, X6.2:18

56 ABB Automation

Page 57: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Further information:

1718

X7.1

BIO

2X7.

1o.fh

8

BIO2(REF543,REF545)

Terminalnumber

BoardConnectedobject

Module type

BIO2_7_PO1X7.1:17, X7.1:18

X7.2

65

7

8

1413

15

16

11

12

12

3

4

1817 B

IO2X

7.2.

fh8

BIO2(REF543,REF545)

Terminalnumber

BoardConnectedobject

Module type

109

BIO2_7_PO2

BIO2_7_PO3

BIO2_7_PO4

BIO2_7_PO5

BIO2_7_PO6

X7.2:1, X7.2:2

X7.2:3, X7.2:4,X7.2:5, X7.2:6

X7.2:7, X7.2:8,X7.2:9, X7.2:10

X7.2:11, X7.2:12,X7.2:13, X7.2:14

X7.2:15, X7.2:16,X7.2:17, X7.2:18

B Automation 57

Page 58: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ 57'�DQDORJXH�PRGXOH

�������� 57'�DQDORJXH�LQSXWV

Further information:

RTD1_6_AI1

RTD1_6_AI2

RTD1_6_AI3

RTD1_6_AI4

RTD1_6_AI5

RTD1_6_AI6

RTD1_6_AI7

RTD1_6_AI8

RTD1(REF541,REF543)

Terminalnumber

Board Connected objectModule type

DIFF

DIFF

DIFF

DIFF

DIFF

X6.2

4567

123

89

10

DIFF

DIFF

DIFF

X6.1

567

1234

121314

89

1011

15161718

+-

+-

+-

+-

SHUNT

SHUNT

SHUNT

SHUNT

SHUNT

SHUNT

SHUNT

SHUNT

-

+

-

+

-

+

-

+

RTD

1X6.

_.fh

8

X6.1:1, X6.1:2, X6.1:3

X6.1:5, X6.1:6, X6.1:7

X6.1:8, X6.1:9, X6.1:10

X6.1:12, X6.1:13, X6.1:14

X6.1:15, X6.1:16, X6.1:17

X6.2:1, X6.2:2, X6.2:3

X6.2:4, X6.2:5, X6.2:6

X6.2:7, X6.2:8, X6.2:9

1)

1) Current transducer / voltage transducer / resistance sensor

58 ABB Automation

Page 59: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

�������� 57'�RXWSXWV

Further information:

X6.2

1112

1314

1516

1718

mA

+-

mA

+-

mA

+-

mA

+-

RT

D1X

6.2.

fh8

RTD1(REF541,REF543)

Terminal number BoardModule type Connected object

RTD1_6_AO1

RTD1_6_AO2

RTD1_6_AO3

RTD1_6_AO4

X6.2:11, X6.2:12

X6.2:13, X6.2:14

X6.2:15, X6.2:16

X6.2:17, X6.2:18

B Automation 59

Page 60: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� )XQFWLRQDOLW\

������ 2UGHU�QXPEHU

REF54 __ __ __ __ __ __ __ __ __ __(e.g. REF543FC127AAAA)

������ $SSOLFDWLRQ�IXQFWLRQ�EORFNV�XVHG

The lists below represent the full set of function blocks, but the selected functionality level (indicated by a letter in the order number, e.g. REF543F&127AAAA) determines the function blocks available for the configuration. Note that optional functions, i.e. those selectable in addition to the functions included in a functionality level, are listed separately.

3URWHFWLRQ

AR5Func Freq1St1 NEF1Inst ROV1HighCUB3Low Freq1St2 NOC3Low ROV1Inst

DEF2Low Freq1St3 NOC3High SCVCSt1DEF2High Freq1St4 NOC3Inst SCVCSt2DEF2Inst Freq1St5 OV3Low TOL3Cab

DOC6Low Inrush3 OV3High TOL3DevDOC6High MotStart PSV3St1 UV3LowDOC6Inst NEF1Low PSV3St2 UV3High

NEF1High ROV1Low

0HDVXUHPHQW

MEAI1 MEAI7 MECU1A MEPE7MEAI2 MEAI8 MECU1B MEVO1A

MEAI3 MEAO1 MECU3A MEVO1BMEAI4 MEAO2 MECU3B MEVO3AMEAI5 MEAO3 MEDREC16 MEVO3B

MEAI6 MEAO4 MEFR1

&RQWURO

COCB1 COIND1 COSW1 MMIALAR6COCB2 COIND2 COSW2 MMIALAR7

COCBDIR COIND3 COSW3 MMIALAR8CO3DC1 COIND4 COSW4 MMIDATA1CO3DC2 COIND5 MMIALAR1 MMIDATA2

CODC1 COIND6 MMIALAR2 MMIDATA3CODC2 COIND7 MMIALAR3 MMIDATA4CODC3 COIND8 MMIALAR4 MMIDATA5

CODC4 COLOCAT MMIALAR5CODC5

!

60 ABB Automation

Page 61: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

������ &RPPXQLFDWLRQ

&RQGLWLRQ�PRQLWRULQJ

CMBWEAR1 CMTCS1CMBWEAR2 CMTCS2

CMCU3 CMTIME1CMGAS1 CMTIME2CMGAS3 CMTRAV1

CMSCHED CMVO3CMSPRC1

&RPPXQLFDWLRQ

EVENT230

*HQHUDO

INDRESET SWGRP5 SWGRP11 SWGRP17MMIWAKE SWGRP6 SWGRP12 SWGRP18

SWGRP1 SWGRP7 SWGRP13 SWGRP19SWGRP2 SWGRP8 SWGRP14 SWGRP20SWGRP3 SWGRP9 SWGRP15

SWGRP4 SWGRP10 SWGRP16

2SWLRQDO�IXQFWLRQV

COPFC

CUB1CapOL3CapPQCU3H

PQVO3H

Protocol used: LON SPABUS

B Automation 61

Page 62: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� 5HOD\�0,0,&�FRQILJXUDWLRQ

������ ,OOXVWUDWLRQ�RI�WKH�V\VWHP��0,0,&�GLDJUDP

6\PERO�XVHG FORVHG RSHQ XQGHI����� XQGHI�����

Disconnector:(truck symbols)

Circuit breaker:

Earth switch:

Further information:

62 ABB Automation

Page 63: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

������ $ODUP�/('V

Please fill in the table below to describe the legend text used as well as the flashing sequence and colour of the LEDs.

/(' 2))�VWDWH 21�VWDWH

7H[W

�PD[�����FKDUDFWHUV�

&RORXU )ODVKLQJ�

VHT�

7H[W

�PD[�����FKDUDFWHUV�

&RORXU )ODVKLQJ�

VHT�

off

gree

nye

llow

red

latc

hed,

blin

king

latc

hed,

ste

ady

non-

latc

hed,

blin

king

off

gree

nye

llow

red

latc

hed,

blin

king

latc

hed,

ste

ady

non-

latc

hed,

blin

king

1_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

3_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

5_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

6_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

7_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

8_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Interlocking_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ X X

Control test mode_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ X X

Further information:

B Automation 63

Page 64: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� )XQFWLRQDOLW\�ORJLF

Please specify the required special PLC logic functionality (see the examples below), by drawing or otherwise, on separate sheets and enclose all additional information with this document (Specification for Feeder Terminal Configuration).

([DPSOH����(DUWKLQJ�VHTXHQFH

Earthing of the outgoing feeder can be done by a circuit breaker when an earthing sequence is activated, an earthing switch is earthed and no voltage is measured. If all conditions are fulfilled, the circuit breaker can be closed after 1 second. The figure below shows the implementation of the desired logic.

([DPSOH����8VDJH�RI�WKH�)�NH\�DQG�D�VRIWZDUH�VZLWFK

64 ABB Automation

Page 65: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

([DPSOH����9ROWDJH�PHDVXUHPHQW�LQ�WKH�0,0,&�YLHZ

Phase-to-phase voltage must be shown in voltages [V] in the MIMIC view.

���� )HHGHU�WHUPLQDO�VHWWLQJV

Responsibility:

The setting of the parameters is not part of the configuration. The end user will normally be responsible for the setting parameters.

The end user defines the feeder terminal settingsFeeder terminal settings according to the turn-key principle

Further information:

!

B Automation 65

Page 66: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

66 ABB Automation

Page 67: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

m of

��� $33(1',;�&��6SHFLILFDWLRQ�IRU�0DFKLQH�7HUPLQDO�&RQILJXUDWLRQ

���� *HQHUDO�GDWD

This document serves as a technical specification of substation protection and is used for the configuration of REM 54_ machine terminals.

Special requirements can be specified under “Further information” at the bottoeach page.

Project name: Date:

This specification suitable for bays: Substation name:

Machine terminal type: Software revision

Order number:

REM54 __ __ __ __ __ __ __ __ __ __ (e.g. REM543BM212AAAA)

Handled by: Company:

Telephone number: Fax number:

B Automation 67

Page 68: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� (OHFWURWHFKQLFDO�GDWD

������ $QDORJXH�LQSXWV

&KDQQHO 0HDVXULQJ�GHYLFHV�WKDW�FDQ�EH�FRQQHFWHG�WR�WKH�FRUUHVSRQGLQJ�DQDORJXH�PHDVXULQJ�FKDQQHOV

1 Rogowski sensor, voltage divider or general measurement2...5 Current transformer, Rogowski sensor, voltage divider or general measurement

6 Current transformer 7...10 Voltage transfomer, Rogowski sensor, voltage divider or general measurement

Further information:

68 ABB Automation

Page 69: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Further information:

MIM1MRS090212-AA_/CA_

Terminal numberBoard Connectedobject

Module type Signal type

1A5A

100V

100V

100V

100V

1A5A

1A5A

1A5A

X1.1

Rem

Mim

1

2725

24

22

21

19

18

16151413121110987654321

0.2A1A Ch 6

Ch 7

Ch 8

Ch 9

Ch 10

Ch 2

Ch 3

Ch 4

Ch 5

CT5

VT1

VT2

VT3

VT4

CT1

CT2

CT3

CT4

X1.1:25, X1.1:27

X1.1:22, X1.1:24

X1.1:19, X1.1:21

X1.1:16, X1.1:18

X1.1:13, X1.1:14, X1.1:15

X1.1:10, X1.1:11, X1.1:12

X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

MIM1MRS090214-AA_/CA_

Terminal numberBoard Connectedobject

Module type Signal type

1A5A

1A5A

100V

1A5A

100V

100V

1A5A

1A5A

1A5A

X1.1

Rem

Mim

2

2725

24

2221

1918

16

15

13

12

10987654321

23

20

17

Ch 6

Ch 7

Ch 8

Ch 9

Ch 10

Ch 2

Ch 3

Ch 4

Ch 5

VT2

CT4

CT5

CT6

VT3

CT1

CT2

CT3

VT1

X1.1:25, X1.1:27

X1.1:22, X1.1:23, X1.1:24

X1.1:19, X1.1:20, X1.1:21

X1.1:16, X1.1:17, X1.1:18

X1.1:13, X1.1:15

X1.1:10, X1.1:12

X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

B Automation 69

Page 70: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

Further information:

MIM1MRS090216-AA_/CA_

Terminal numberBoard Connectedobject

Module type Signal type

1A5A

1A5A

100V

1A5A

1A5A

100V

1A5A

1A5A

1A5A

X1.1

Rem

Mim

3

2725

24

2221

1918

16

15

13

12

10987654321

23

20

17

11

Ch 6

Ch 7

Ch 8

Ch 9

Ch 10

Ch 2

Ch 3

Ch 4

Ch 5

VT1

CT5

CT6

CT7

VT2

CT1

CT2

CT3

CT4

X1.1:25, X1.1:27

X1.1:22, X1.1:23, X1.1:24

X1.1:19, X1.1:20, X1.1:21

X1.1:16, X1.1:17, X1.1:18

X1.1:13, X1.1:15

X1.1:10, X1.1:11, X1.1:12

X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

MIM1MRS090218-AA_/CA_

Terminal numberBoard Connectedobject

Module type Signal type

1A5A

1A5A

1A5A

1A5A

1A5A

100V

1A5A

1A5A

1A5A

X1.1

Rem

Mim

4

2725

24

2221

1918

16

15

1312

10987654321

23

20

17

11

14 Ch 6

Ch 7

Ch 8

Ch 9

Ch 10

Ch 2

Ch 3

Ch 4

Ch 5

CT5

CT6

CT7

CT8

VT1

CT1

CT2

CT3

CT4

X1.1:25, X1.1:27

X1.1:22, X1.1:23, X1.1:24

X1.1:19, X1.1:20, X1.1:21

X1.1:16, X1.1:17, X1.1:18

X1.1:13, X1.1:14, X1.1:15

X1.1:10, X1.1:11, X1.1:12

X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

70 ABB Automation

Page 71: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

The measuring device can be connected exclusively to the analogue channels of either MIM or SIM type modules. Ten channels are available.

������ 6\VWHP�IUHTXHQF\

Further information:

X2.1

X2.2

X2.3

X2.4

X2.5

X2.6

X2.7

DIFF

DIFF

DIFF

DIFF

DIFF

DIFF

DIFF

X2.9DIFFS

IMX

2.fh

8X2.8

DIFF

Terminalnumber

Board

SIM

Module type Connectedobject

Signal type

Ch 9, sensor

Ch 10, sensor

Ch 8, sensor

Ch 7, sensor

Ch 4, sensor

Ch 3, sensor

Ch 2, sensor

Ch 1, sensor

Ch 5, sensor

X2.1

X2.2

X2.3

X2.4

X2.5

X2.6

X2.7

X2.8

X2.9

!

50 Hz 60 Hz

B Automation 71

Page 72: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ 'LJLWDO�LQSXWV

Further information:

12

45

67

X4.2

PS

1X4.

2b.fh

8

Terminalnumber

Board Connectedobject

X4.2:1, X4.2:2

X4.2:4, X4.2:5

X4.2:6, X4.2:7

PS1

Module type

1) Digital input / counter input

1)

1)

1)

PS1_4_BI1

PS1_4_BI3

PS1_4_BI2

123

456

789

101112

131415161718

X5.1

BIO

1X5.

1.fh

8

X5.1:1, X5.1:2

X5.1:2, X5.1:3

X5.1:4, X5.1:5

X5.1:5, X5.1:6

X5.1:7, X5.1:8

X5.1:8, X5.1:9

X5.1:10, X5.1:11

X5.1:11, X5.1:12

X5.1:13, X5.1:14

X5.1:15, X5.1:16

X5.1:17, X5.1:18

1) Digital input / counter input

BIO1

Terminalnumber

Board Connectedobject

Module type

1)

1)

1)

BIO1_5_BI1

BIO1_5_BI11

BIO1_5_BI9

BIO1_5_BI8

BIO1_5_BI7

BIO1_5_BI6

BIO1_5_BI5

BIO1_5_BI4

BIO1_5_BI3

BIO1_5_BI2

BIO1_5_BI10

72 ABB Automation

Page 73: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Further information:

12

X5.2

BIO

1X5.

2.fh

8

BIO1

Terminalnumber

Board Connectedobject

Module type

BIO1_5_BI12 X5.2:1, X5.2:2

1) Digital input / counter input

1)

X7.1

101112

1314

1516

456

789

123

BIO

2X7.

1b.fh

8

BIO2(REM 545)

Terminalnumber

Board Connectedobject

Module type

1) Digital input / counter input

1)

1)

BIO2_7_BI9

BIO2_7_BI8

BIO2_7_BI7

BIO2_7_BI6

BIO2_7_BI5

BIO2_7_BI4

BIO2_7_BI3

BIO2_7_BI2

BIO2_7_BI10

BIO2_7_BI1 X7.1:1, X7.1:2

X7.1:2, X7.1:3

X7.1:4, X7.1:5

X7.1:5, X7.1:6

X7.1:7, X7.1:8

X7.1:8, X7.1:9

X7.1:10, X7.1:11

X7.1:11, X7.1:12

X7.1:13, X7.1:14

X7.1:15, X7.1:16

B Automation 73

Page 74: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ 'LJLWDO�RXWSXWV

Further information:

PS1

Terminalnumber

BoardConnectedobject

Module type

PS

1X4.

1b.fh

8

I R F

TCS2

TCS1

X4.1

5

6

79

8

10

111312

15

161817

34

-

X4.1

1

2

1)

1)

1)

1)

1) Please indicate whether the trip circuit supervision inputs will be configured to use or not

X4.1:1, X4.1:2

PS1_4_HSPO3

PS1_4_HSPO1

PS1_4_TCS1

PS1_4_HSPO2

PS1_4_TCS2

PS1_4_TempAlarm

PS1_4_ACFail

X4.1:3, X4.1:4, X4.1:5

X4.1:6, X4.1:7,X4.1:8, X4.1:9

X4.1:10, X4.1:11,X4.1:12, X4.1:13

X4.1:15, X4.1:16,X4.1:17, X4.1:18

+Mains

PS1

Terminalnumber

BoardConnectedobject

Module type

111012

131514

1617

18

8

9

X4.2

PS

1X4.

2o_b

.fh8

PS1_4_HSPO5

PS1_4_SO1

PS1_4_HSPO4X4.2:8, X4.2:9,X4.2:10, X4.2:11

X4.2:12, X4.2:13,X4.2:14, X4.2:15

X4.2:16, X4.2:17,X4.2:18

74 ABB Automation

Page 75: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Further information:

5

6

79

8

1012

11

1315

14

1618

17

X5.23

4

BIO

1X5.

2o.fh

8

BIO1

Terminalnumber

BoardConnectedobject

Module type

BIO1_5_SO1

BIO1_5_SO2

BIO1_5_SO3

BIO1_5_SO4

BIO1_5_SO5

BIO1_5_SO6

X5.2:3, X5.2:4

X5.2:5, X5.2:6

X5.2:7, X5.2:8, X5.2:9

X5.2:10, X5.2:11, X5.2:12

X5.2:13, X5.2:14, X5.2:15

X5.2:16, X5.2:17, X5.2:18

1718

X7.1

BIO

2X7.

1o_b

.fh8

BIO2(REM545)

Terminalnumber

BoardConnectedobject

Module type

BIO2_7_PO1X7.1:17, X7.1:18

B Automation 75

Page 76: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

Further information:

X7.2

65

7

8

1413

15

16

11

12

12

3

4

1817 B

IO2X

7.2b

.fh8

BIO2(REM545)

Terminalnumber

BoardConnectedobject

Module type

10 9

BIO2_7_PO2

BIO2_7_PO3

BIO2_7_PO4

BIO2_7_PO5

BIO2_7_PO6

X7.2:1, X7.2:2

X7.2:3, X7.2:4,X7.2:5, X7.2:6

X7.2:7, X7.2:8,X7.2:9, X7.2:10

X7.2:11, X7.2:12,X7.2:13, X7.2:14

X7.2:15, X7.2:16,X7.2:17, X7.2:18

76 ABB Automation

Page 77: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

������ 57'�DQDORJXH�PRGXOH

�������� 57'�DQDORJXH�LQSXWV

Further information:

RTD1_6_AI1

RTD1_6_AI2

RTD1_6_AI3

RTD1_6_AI4

RTD1_6_AI5

RTD1_6_AI6

RTD1_6_AI7

RTD1_6_AI8

RTD1

Terminalnumber

Board Connected objectModule type

DIFF

DIFF

DIFF

DIFF

DIFF

X6.2

4567

123

89

10

DIFF

DIFF

DIFF

X6.1

567

1234

121314

89

1011

15161718

+-

+-

+-

+-

SHUNT

SHUNT

SHUNT

SHUNT

SHUNT

SHUNT

SHUNT

SHUNT

-

+

-

+

-

+

-

+

RTD

1X6.

_b.fh

8

X6.1:1, X6.1:2, X6.1:3

X6.1:5, X6.1:6, X6.1:7

X6.1:8, X6.1:9, X6.1:10

X6.1:12, X6.1:13, X6.1:14

X6.1:15, X6.1:16, X6.1:17

X6.2:1, X6.2:2, X6.2:3

X6.2:4, X6.2:5, X6.2:6

X6.2:7, X6.2:8, X6.2:9

1) Current transducer / voltage transducer / resistance sensor

1)

B Automation 77

Page 78: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

�������� 57'�RXWSXWV

Further information:

X6.2

1112

1314

1516

1718

mA

+-

mA

+-

mA

+-

mA

+-

RT

D1X

6.2b

.fh8

RTD1

Terminal number BoardModule type Connected object

RTD1_6_AO1

RTD1_6_AO2

RTD1_6_AO3

RTD1_6_AO4

X6.2:11, X6.2:12

X6.2:13, X6.2:14

X6.2:15, X6.2:16

X6.2:17, X6.2:18

78 ABB Automation

Page 79: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

���� )XQFWLRQDOLW\

������ 2UGHU�QXPEHU

REM54 __ __ __ __ __ __ __ __ __ __(e.g. REM543BM212AAAA)

������ $SSOLFDWLRQ�IXQFWLRQ�EORFNV�XVHG

The lists below represent the full set of function blocks, but the selected functionality level (indicated by a letter in the order number, e.g. REM543B0212AAAA) determines the function blocks available for the configuration.

3URWHFWLRQ

DEF2Low NEF1Low OPOW6St2 UE6High

DEF2High NEF1High OPOW6St3 UI6LowDEF2Inst NEF1Inst OV3Low UI6HighDiff3 NOC3Low OV3High UPOW6St1

Diff6G NOC3High PREV3 UPOW6St2Freq1St1 NOC3Inst PSV3St1 UPOW6St3Freq1St2 NPS3Low PSV3St2 UV3Low

Freq1St3 NPS3High REF1A UV3HighFreq1St4 NUC3St1 ROV1Low VOC6LowFreq1St5 NUC3St2 ROV1High VOC6High

FuseFail OE1Low ROV1InstInrush3 OE1High TOL3DevMotStart OPOW6St1 UE6Low

0HDVXUHPHQW

MEAI1 MEAI6 MEAO3 MEDREC16MEAI2 MEAI7 MEAO4 MEFR1MEAI3 MEAI8 MECU1A MEPE7

MEAI4 MEAO1 MECU1B MEVO1AMEAI5 MEAO2 MECU3A MEVO3A

&RQWURO

COCB1 CODC5 COLOCAT MMIALAR5

COCB2 COIND1 COSW1 MMIALAR6COCBDIR COIND2 COSW2 MMIALAR7CO3DC1 COIND3 COSW3 MMIALAR8

CO3DC2 COIND4 COSW4 MMIDATA1CODC1 COIND5 MMIALAR1 MMIDATA2CODC2 COIND6 MMIALAR2 MMIDATA3

CODC3 COIND7 MMIALAR3 MMIDATA4CODC4 COIND8 MMIALAR4 MMIDATA5

!

B Automation 79

Page 80: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ &RPPXQLFDWLRQ

&RQGLWLRQ�PRQLWRULQJ

CMBWEAR1 CMTCS1CMBWEAR2 CMTCS2

CMCU3 CMTIME1CMGAS1 CMTIME2CMGAS3 CMTRAV1

CMSCHED CMVO3CMSPRC1

&RPPXQLFDWLRQ

EVENT230

*HQHUDO

INDRESET SWGRP5 SWGRP11 SWGRP17MMIWAKE SWGRP6 SWGRP12 SWGRP18

SWGRP1 SWGRP7 SWGRP13 SWGRP19SWGRP2 SWGRP8 SWGRP14 SWGRP20SWGRP3 SWGRP9 SWGRP15

SWGRP4 SWGRP10 SWGRP16

Protocol used: LON SPABUS

80 ABB Automation

Page 81: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

���� 5HOD\�0,0,&�FRQILJXUDWLRQ

������ ,OOXVWUDWLRQ�RI�WKH�V\VWHP��0,0,&�GLDJUDP

6\PERO�XVHG FORVHG RSHQ XQGHI����� XQGHI�����

Disconnector:(truck symbols)

Circuit breaker:

Earth switch:

Further information:

B Automation 81

Page 82: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ $ODUP�/('V

Please fill in the table below to describe the legend text used as well as the flashing sequence and colour of the LEDs.

/(' 2))�VWDWH 21�VWDWH

7H[W

�PD[�����FKDUDFWHUV�

&RORXU )ODVKLQJ�

VHT�

7H[W

�PD[�����FKDUDFWHUV�

&RORXU )ODVKLQJ�

VHT�

off

gree

nye

llow

red

latc

hed,

blin

king

latc

hed,

ste

ady

non-

latc

hed,

blin

king

off

gree

nye

llow

red

latc

hed,

blin

king

latc

hed,

ste

ady

non-

latc

hed,

blin

king

1_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

3_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

5_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

6_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

7_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

8_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Interlocking_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ X X

Control test mode_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ X X

Further information:

82 ABB Automation

Page 83: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

���� )XQFWLRQDOLW\�ORJLF

Please specify the required special PLC logic functionality (see the examples below), by drawing or otherwise, on separate sheets and enclose all additional information with this document (Specification for Machine Terminal Configuration).

([DPSOH����(DUWKLQJ�VHTXHQFH

Earthing of the outgoing feeder can be done by a circuit breaker when an earthing sequence is activated, an earthing switch is earthed and no voltage is measured. If all conditions are fulfilled, the circuit breaker can be closed after 1 second. The figure below shows the implementation of the desired logic.

([DPSOH����8VDJH�RI�WKH�)�NH\�DQG�D�VRIWZDUH�VZLWFK

B Automation 83

Page 84: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

([DPSOH����9ROWDJH�PHDVXUHPHQW�LQ�WKH�0,0,&�YLHZ

Phase-to-phase voltage must be shown in voltages [V] in the MIMIC view.

���� 0DFKLQH�WHUPLQDO�VHWWLQJV

Responsibility:

The setting of the parameters is not part of the configuration. The end user will normally be responsible for the setting parameters.

The end user defines the machine terminal settingsMachine terminal settings according to the turn-key principle

Further information:

!

84 ABB Automation

Page 85: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

m of

��� $33(1',;�'��6SHFLILFDWLRQ�IRU�5HPRWH�0RQLWRULQJ�DQG�&RQWURO�8QLW�&RQILJXUDWLRQ

���� *HQHUDO�GDWD

This document serves as a technical specification of remote monitoring and control of secondary substations in medium-voltage networks and is used for the configuration of REC 523 remote monitoring and control units.

Special requirements can be specified under “Further information” at the bottoeach page.

Project name: Date:

This specification suitable for bays: Substation name:

Monitoring and control unit type: Software revision

Order number:

REC523 __ __ __ __ __ __ __ (e.g. REC523C 033AAA)

Handled by: Company:

Telephone number: Fax number:

B Automation 85

Page 86: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� (OHFWURWHFKQLFDO�GDWD

������ $QDORJXH�LQSXWV

&KDQQHO 0HDVXULQJ�GHYLFHV�WKDW�FDQ�EH�FRQQHFWHG�WR�WKH�FRUUHVSRQGLQJ�DQDORJXH�PHDVXULQJ�FKDQQHOV

1 Rogowski sensor, voltage divider or general measurement2...4 Current transformer, Rogowski sensor, voltage divider, KOHU/KOKU sensor

or general measurement5, 7...9 Voltage transfomer,current transformer, Rogowski sensor, voltage divider or

general measurement6 Voltage transformer or general measururement

10 Voltage transformer, Rogowski sensor, voltage divider or general measurement

Further information:

86 ABB Automation

Page 87: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Further information:

MIM(032 _AA,037 _AA)

Terminal numberBoard Connectedobject

Module type Signal type

1A5A

1A5A

X1.1

Rec

Mim

1

987654321

1A5A

Ch 2

Ch 3

Ch 4

CT1

CT2

CT3X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

MIM(033 _AA,038 _AA)

Terminal numberBoard Connectedobject

Module type Signal type

100V

100V

100V

1A5A

1A5A

X1.1R

ecM

im2

2725

24

22

21

19

18

1615

1312

10987654321

1A5A

11

Ch 8

Ch 9

Ch 10

Ch 2

Ch 3

Ch 4

VT1

VT2

VT3

CT1

CT2

CT3

X1.1:25, X1.1:27

X1.1:22, X1.1:24

X1.1:19, X1.1:21

X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

B Automation 87

Page 88: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

Further information:

MIM(034 _AA,039 _AA)

Terminal numberBoard Connectedobject

Module type Signal type

230V

230V

230V

1A5A

1A5A

X1.1

Rec

Mim

3

2725

24

22

21

19

18

1615

1312

10987654321

1A5A

1A5A11

Ch 8

Ch 9

Ch 10

Ch 2

Ch 3

Ch 4

Ch 5

VT1

VT2

VT3

CT1

CT2

CT3

CT4

X1.1:25, X1.1:27

X1.1:22, X1.1:24

X1.1:19, X1.1:21

X1.1:10, X1.1:11, X1.1:12

X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

MIM(061 _AA,066 _AA)

Terminal numberBoard Connectedobject

Module type Signal type

1A5A

1A5A

100V

1A5A

100V

100V

1A5A

1A5A

1A5A

X1.1

Rec

Mim

4

2725

24

2221

1918

16

15

13

12

10987654321

23

20

17

Ch 6

Ch 7

Ch 8

Ch 9

Ch 10

Ch 2

Ch 3

Ch 4

Ch 5

VT2

CT4

CT5

CT6

VT3

CT1

CT2

CT3

VT1

X1.1:25, X1.1:27

X1.1:22, X1.1:23, X1.1:24

X1.1:19, X1.1:20, X1.1:21

X1.1:16, X1.1:17, X1.1:18

X1.1:13, X1.1:15

X1.1:10, X1.1:12

X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

88 ABB Automation

Page 89: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Further information:

MIM(062 _AA,067 _AA)

Terminal numberBoard Connectedobject

Module type Signal type

100V

100V

100V

1A5A

1A5A

1A5A

X1.1

Rec

Mim

5

2725

24

22

21

19

18

1615

1312

10987654321

100V

100V

100V

Ch 6

Ch 7

Ch 8

Ch 9

Ch 10

Ch 2

Ch 3

Ch 4

Ch 5

VT2

VT3

VT4

VT5

VT6

CT1

CT2

CT3

VT1

X1.1:25, X1.1:27

X1.1:22, X1.1:24

X1.1:19, X1.1:21

X1.1:16, X1.1:18

X1.1:13, X1.1:15

X1.1:10, X1.1:12

X1.1:7, X1.1:8, X1.1:9

X1.1:4, X1.1:5, X1.1:6

X1.1:1, X1.1:2, X1.1:3

DIFF

DIFF

DIFF

DIFF

DIFF

X2.2

+

+-

-

Terminalnumber

Board

SIM(030 _AC,035 _AC)

Module type Connectedobject

Signal type

SIM

1_R

EC

.fh8

X2.1

123

456

1112

14151718

123456789

Ch 5,

Ch 6,

Ch 10, sensor

Ch 9, sensor

Ch 8, sensor

Ch 4, sensor

Ch 3, sensor

Ch 2, sensor

DIFF

DIFF

DIFF

4...20mA0..5V

4...20mA0..5V

X2.1:1, X2.1:2X2.1:3

X2.1:11, X2.1:12

X2.1:4, X2.1:5X2.1:6

X2.1:14, X2.1:15

X2.1:17, X2.1:18

X2.2:1, X2.2:2X2.2:3

X2.2:4, X2.2:5X2.2:6

X2.2:7, X2.2:8X2.2:9

B Automation 89

Page 90: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

The measuring device can be connected exclusively to the analogue channels of either MIM or SIM type modules.

������ 6\VWHP�IUHTXHQF\

Further information:

X2.1

X2.2

X2.3

X2.4

X2.5

X2.6

X2.7

DIFF

DIFF

DIFF

DIFF

DIFF

DIFF

DIFF

X2.9DIFFS

IMX

2.fh

8

X2.8DIFF

Terminalnumber

Board

SIM

Module type Connectedobject

Signal type

Ch 9, sensor

Ch 10, sensor

Ch 8, sensor

Ch 7, sensor

Ch 4, sensor

Ch 3, sensor

Ch 2, sensor

Ch 1, sensor

Ch 5, sensor

X2.1

X2.2

X2.3

X2.4

X2.5

X2.6

X2.7

X2.8

X2.9

!

50 Hz 60 Hz

90 ABB Automation

Page 91: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

������ 'LJLWDO�LQSXWV

Further information:

Terminalnumber

Board Connectedobject

PSC

Module type

PSC_7_BI1

PSC_7_BI2

PSC_7_BI3

X7.3

12

34

56

X4.2:1, X4.2:2

X4.2:4, X4.2:5

X4.2:6, X4.2:7

1) Digital input / counter input

1)

1)

1)

PS

CX

7.3.

fh8

BIO1_3_BI7

BIO1_3_BI8

BIO1_3_BI9

BIO1_3_BI10

BIO1_3_BI11

BIO1_3_BI1

BIO1_3_BI2

BIO1_3_BI3

BIO1_3_BI4

BIO1_3_BI5

BIO1_3_BI6

Terminalnumber

Board Connectedobject

BIO1

Module type

X3.1:1, X3.1:2

X3.1:2, X3.1:3

X3.1:4, X3.1:5

X3.1:5, X3.1:6

X3.1:7, X3.1:8

X3.1:8, X3.1:9

X3.1:10, X3.1:11

X3.1:11, X3.1:12

X3.1:13, X3.1:14

X3.1:15, X3.1:16

X3.1:17, X3.1:18

BIO

1X3.

1.fh

8

123

456

789

101112

13

14

15

16

17

18

X3.1

BIO1_3_BI12

Terminalnumber

Board Connectedobject

BIO1

Module type

BIO

1X3.

2.fh

8

X3.2:1, X3.2:212

X3.2

B Automation 91

Page 92: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ 'LJLWDO�RXWSXWV

Further information:

8

1817

9

121413

15

16

11

X7.3

PSC_7_SO1orHeater Output

PSC_7_HSPO1

PSC_7_HSPO2

PSC

Terminalnumber

BoardConnectedobject

Module type

PS

CX

7.3o

.fh8

X7.3:11, X7.3:12,X7.3:13, X7.3:14

X7.3:15, X7.3:16,X7.3:17, X7.3:18

5

6

79

8

1012

11

1315

14

1618

17

X3.23

4BIO1_3_SO1

BIO1_3_SO2

BIO1_3_SO3

BIO1_3_SO4

BIO1_3_SO5

BIO1_3_SO6

BIO1

Terminalnumber

BoardConnectedobject

Module type

BIO

1X3.

2o.fh

8

X3.2:3, X3.2:4

X3.2:5, X3.2:6

X3.2:7, X3.2:8, X3.2:9

X3.2:10, X3.2:11,X3.2:12

X3.2:13, X3.2:14,X3.2:15

X3.2:16, X3.2:17,X3.2:18

92 ABB Automation

Page 93: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

���� )XQFWLRQDOLW\

������ 2UGHU�QXPEHU

REC523 __ __ __ __ __ __ __ (e.g. REC523C 033AAA)

������ $SSOLFDWLRQ�IXQFWLRQ�EORFNV�XVHG

0HDVXUHPHQW

MEAI1 MEAI6 MECU3A MEVO1AMEAI2 MEAI7 MECU3B MEVO1BMEAI3 MEAI8 MEDREC16 MEVO3A

MEAI4 MECU1A MEFR1 MEVO3BMEAI5 MECU1B MEPE7

)DXOW�LQGLFDWLRQ

CUB3Low DOC6Low NEF1Low NOC3High

DEF2Low DOC6High NEF1High UV3LowDEF2High Inrush3 NOC3Low UV3High

&RQWURO

COCB1 CODC2 COIND2 COIND7

COCB2 CODC3 COIND3 COIND8CO3DC1 CODC4 COIND4 COLOCATCO3DC2 CODC5 COIND5

CODC1 COIND1 COIND6

&RQGLWLRQ�PRQLWRULQJ

CMBWEAR1 CMGAS1 CMTIME1 CMVO3CMBWEAR2 CMSCHED CMTIME2

CMCU3 CMSPRC1 CMTRAV1

&RPPXQLFDWLRQ

EVENT230

*HQHUDO

INDRESET SWGRP6 SWGRP12 SWGRP18

SWGRP1 SWGRP7 SWGRP13 SWGRP19SWGRP2 SWGRP8 SWGRP14 SWGRP20SWGRP3 SWGRP9 SWGRP15

SWGRP4 SWGRP10 SWGRP16SWGRP5 SWGRP11 SWGRP17

B Automation 93

Page 94: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������ &RPPXQLFDWLRQ

���� /('�FRQILJXUDWLRQ

The optional LED panel of REC 523 includes 21 LEDs that can be freely configured with the Relay Configuration Tool (for an example configuration, see Figure 9.4.-1 below). Each LED has four states: on (steady), off, fast blinking (2 Hz) and slow blinking (0.5Hz). Please specify the desired LED configuration in Table 9.4.-1 below.

)LJ�������� ([DPSOH�RI�WKH�/('�FRQILJXUDWLRQ�IRU�5(&����

Protocol used: LON SPABUSIEC 60870-5-101 DNP 3.0

94 ABB Automation

Page 95: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

7DEOH������� 6SHFLILFDWLRQ�IRU�WKH�/('�FRQILJXUDWLRQ

/('�

QR

2Q��VWHDG\�

2II

)DVW�EOLQN

6ORZ�EOLQN3XUSRVH

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

B Automation 95

Page 96: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� 5HPRWH�PRQLWRULQJ�DQG�FRQWURO�XQLW�VHWWLQJV

Responsibility:

The setting of the parameters is not part of the configuration. The end user will normally be responsible for the setting parameters.

The end user defines the remote monitoring and control unit settingsRemote monitoring and control unit settings according to the turn-key principle

Further information:

!

96 ABB Automation

Page 97: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

���� $33(1',;�(��3RZHU�4XDOLW\�$SSOLFDWLRQ�*XLGH�IRU�+DUPRQLFV

����� 3RZHU�TXDOLW\�DQG�KDUPRQLFV

Power quality is a topic that defines the limits for delivered electricity in power network. The key issue is to define acceptable variation limits to ensure that end-customers are able to utilise the delivered power. Power quality is ultimately a customer-driven issue.

Excellent power without interruptions is the ultimate target. Today this target has not been reached. There are many kind of disturbances in the network affecting power quality. Interruptions and other disturbances weaken the utilisation of delivered power in end-customer facilities. If these disturbances have noticeable effects on the utilisation of power, disturbances should be blocked out or the system should be made immune to these disturbances. Before taking action to reduce the effects of disturbances, the reason and source of the disturbance should be found. Only after that can reasonable solutions be weighted against costs and benefits.

Harmonics, i.e. distortion in the voltage and current waveforms, are one of the factors affecting power quality. Harmonic distortion is caused by non-linear loads that are e.g. electronic power supplies, converters, arc furnaces and arc welders. Harmonics may cause maloperation of devices, additional heating in devices and telecommunication interference. The importance of harmonics is emphasized by the fact that the amount of equipment generating harmonics constantly increases. Still, it should be noticed that the existence of harmonics is not automatically a problem.

����� %DFNJURXQG�IRU�KDUPRQLFV

A periodic distorted waveform can be expressed as a sum of sinusoids. The waveform can be represented as a sum of pure sine waves in which the frequency of each sinusoid is an integer multiple of the fundamental frequency. This multiple h is called a harmonic of the fundamental. Harmonics added to the fundamental frequency can be odd harmonics (the integer multiple h is 3,5,7...) or even harmonics (where h is 2,4,6...). In Figure 10.2.-1 odd harmonics with the amplitude 0.1 p.u. of the fundamental are added to the fundamental frequency.

B Automation 97

Page 98: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

)LJ��������� 2GG�KDUPRQLFV�DGGHG�WR�WKH�����S�X��IXQGDPHQWDO�IUHTXHQF\����+]��ZDYHIRUP�DUH�LOOXVWUDWHG�LQ�WKH�ILUVW�SLFWXUH��7KH�VHFRQG�SLFWXUH�VKRZV�WKH�IXQGDPHQWDO�IUHTXHQF\�ZLWK�����S�X��WKLUG�KDUPRQLF��7KH�WKLUG�SLFWXUH�UHSUHVHQWV�WKH�IXQGDPHQWDO�IUHTXHQF\�ZLWK�WKH�����S�X��WKLUG�DQG�����S�X��ILIWK�KDUPRQLFV��,Q�WKH�ODVW�SLFWXUH��WKH�����S�X��VHYHQWK�KDUPRQLF�LV�DGGHG�WR�WKH�IXQGDPHQWDO�IUHTXHQF\�ZLWK�WKH�WKLUG�DQG�ILIWK�KDUPRQLFV�

The relationship for current and voltage harmonics is shown in Figure 10.2.-2.

)LJ��������� 9ROWDJH�GLVWRUWLRQ�LQ�SRZHU�V\VWHP

Oddharm

.CN

V

1) 2)

3) 4)

Voltage drop

Pure Sinusoid Distorted voltage

Distorted load current

Vol

tdis

t.CN

V

98 ABB Automation

Page 99: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

Voltage sources, i.e. generation plants do not generally generate harmonics. Harmonics are created because of power system non-linearity. Non-linear components and loads cause distorted currents because of their operational principles. Distorted currents flow through system impedance causing a voltage drop for each harmonic. This results in voltage harmonics appearing at the load bus.

The created voltage distortion can be calculated if current harmonics as well as system frequency response are known. In most cases the system frequency response is very difficult to determine. Power system is a very large system that contains many non-linear components. This makes it difficult to precisely predict the effects of harmonics in different parts of the power system.

����� +DUPRQLF�VRXUFHV

The most important harmonic sources are basically converters and power supplies for numerous electrical equipment. This equipment is a source for harmonics, and at the same time, its operation principles may be very sensitive to harmonics, especially to voltage harmonics. Still, some devices can be designed to decrease their characteristic harmonics.

������� 6LQJOH�SKDVH�SRZHU�VXSSOLHV

A major harmonic concern in commercial buildings is that power supplies for single-phase electronic equipment will produce too much distortion for the wiring. Direct current power for modern electronic and microprocessor-based office equipment is commonly derived from single-phase full-wave diode bridge rectifiers. Modern technology for single-phase power supplies is based on switch-mode. A distinctive characteristic of switch-mode power supplies is the very high third-harmonic content in the current. Other characteristic harmonics are the 5th and 7th harmonics. Switch-mode power supplies are beginning to find applications in fluorescent lighting systems. Typical current harmonics and the waveform for a switch-mode power supply are shown in Figure 10.3.1.-1.

)LJ����������� 7\SLFDO�FXUUHQW�KDUPRQLFV�DQG�WKH�ZDYHIRUP�IRU�D�VZLWFK�PRGH�SRZHU�VXSSO\

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13

Harmonic

Magnitude p.u. of fundamental

Cur

rhar

m.C

NV

B Automation 99

Page 100: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

������� 7KUHH�SKDVH�SRZHU�FRQYHUWHUV

Three-phase electronic power converters differ from single-phase converters mainly because they do not generate the third harmonic or the third harmonic is quite small. There are many designs and types of converters for AC or DC drives with different power ratings. Harmonics may vary significantly between designs and operation conditions. Still, some examples are given below.

6L[�SXOVH�DQG�WZHOYH�SXOVH�FRQYHUWHUV

Harmonic components of the AC current waveform with q-pulse rectifier are:

and the magnitudes of the harmonic currents are:

where

The most significant harmonics for six-pulse converters are the 5th, 7th, 12th and 13th. For twelve-pulse converters, the 11th, 13th, 23rd and 25th harmonics are the most significant.

3:0�W\SH�$6'

Typical current harmonics and the waveform for a Pulse Width Modulation-type Adjustable Speed Drive with rated speed are shown in Figure 10.3.2.-1 .

)LJ����������� &XUUHQW�KDUPRQLFV�DQG�WKH�ZDYHIRUP�IRU�D�3:0�W\SH�$6'

K the harmonic orderN any positive integerT the pulse number of the rectifier circuit,h the amplitude of the harmonic current of order h,1 the amplitude of the fundamental current

h kq 1±=

IhI1

h---=

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13

Harmonic

Magnitude p.u. of fundamental

Har

mP

WM

.CN

V

100 ABB Automation

Page 101: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

&6,�W\SH�$6'

Typical current harmonics and the waveform for a Current Source Inverter-type Adjustable Speed Drive are shown in Figure 10.3.2.-2.

)LJ����������� &XUUHQW�KDUPRQLFV�DQG�WKH�ZDYHIRUP�IRU�D�&6,�W\SH�$6'

&\FORFRQYHUWHU�KDUPRQLFV

The expressions of cycloconverter current harmonics are complex. They vary as a function of the frequency ratio of the cycloconverter:

where

This means that harmonics may vary significantly and interharmonics (non-integer multiple of fundamental frequency) may also appear. Characteristic harmonics for a six-pulse cycloconverter are harmonics from fundamental to 2nd, 5th to 7th, and 11th to 13th.

������� 2WKHU�KDUPRQLF�VRXUFHV

There are many other harmonic sources in addition to converters and power supplies. These sources are mainly arching devices like arc furnaces and welding equipment.

$UF�IXUQDFHV

The harmonics produced by electric arc furnaces used for the production of steel are unpredictable. The steel scrap to be molten is a very non-linear load and thus the melting arc changes constantly. The arc current may be non-periodic and may include both harmonics and interharmonics. Still, in most applications, the low-order harmonics starting with the second and ending with the seventh predominate the non-integer harmonics. Figure 10.3.3.-1 presents typical harmonics for an arc furnace during the initial melting period and the refining period. These harmonics

IK the harmonic frequency imposed on the AC systemIL the input frequency of the cycloconverterN��Q integersT pulse number of the converterIR the output frequency of the cycloconverter

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13

Harmonic

Magnitude p.u. of fundamental

Har

mC

SI.C

NV

fh fi kq 1±( ) 6nfo±=

B Automation 101

Page 102: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

for ges.

gure nic

ay ere ad

have quite a low percentage magnitude compared to the fundamental component. Arc furnaces form a large load with fundamental currents of several kA, which makes arc furnaces a significant harmonic source for the power system.

)LJ����������� 7\SLFDO�KDUPRQLFV�IRU�DUF�IXUQDFHV��7KH�ILUVW�SLFWXUH�LV�IRU�WKH�PHOWLQJ�SKDVH�DQG�WKH�VHFRQG�IRU�WKH�UHILQLQJ�SKDVH�

Other arching devices similar to arc furnaces are arc welding equipment.

6DWXUDEOH�GHYLFHV

Equipment in this class includes transformers and other electromagnetic devices with a steel core, including motors. Harmonics are generated due to the non-linear magnetising characteristics of the steel. Harmonics are due to exciting current, which is very rich in harmonics like the 3rd, 5th, 7th and 9th. Transformers are not as much a concern as electronic power converters because exciting current is small compared to the rated full load current. However, their effect will be noticeable particularly on utility distribution systems that have hundreds of transformers. A significant increase in triplen harmonic currents is often noticed during the early morning hours when the load is low and thus the percentage of harmonics compared to the fundamental is high.

Motors and synchronous generators also exhibit some distortion, although it is generally of little consequence.

����� 6\VWHP�UHVSRQVH�FKDUDFWHULVWLFV

The effect of one or more harmonic sources on a power system will depend primarily on the frequency response characteristics. The non-linear components described in section “Harmonic sources” can be represented generally as current sources harmonics. Harmonic currents flow through impedance causing harmonic voltaSome basic rules for the harmonic current flow are given in this section.

)ORZ�RI�KDUPRQLF�FXUUHQWV

Harmonic currents tend to flow from the non-linear loads (harmonic sources) towards the lowest impedance, usually the utility source. This was shown in Fi10.2.-2. However, other connected loads provide an alternative path for harmocurrents. The flow path to be chosen will depend on impedance ratios. This mresult in a situation where a neighbouring load includes harmonics although thare no harmonic sources in this load branch. Harmonics generated by other lobranches will flow to this branch. This is shown in Figure 10.4.-1.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2 3 4 5 6 7

Harmonic

Magnitude p.u. of fundamental

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

2 3 4 5 6 7

Harmonic

Magnitude p.u. of fundamental

Har

mfu

rn.C

NV

102 ABB Automation

Page 103: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

)LJ��������� 6SUHDGLQJ�RI�KDUPRQLF�FXUUHQWV�LQ�WKH�SRZHU�V\VWHP

7UDQVIRUPHUV

Transformers essentially isolate the load at higher harmonic frequencies. High-order harmonics are not passed through transformers. Another effect of the transformers is the isolation of triplen harmonics due to the transformer winding design. Triplen harmonics tend to stay trapped into the delta connection and do not show up in the line currents in the delta side. Some examples for the third harmonic current flow in transformers are shown in Figure 10.4.-2.

)LJ��������� 7KLUG�KDUPRQLF�IORZ�LQ�D�Z\H�GHOWD�FRQQHFWHG�WUDQVIRUPHU�DQG�LQ�D�Z\H�Z\H�FRQQHFWHG�WUDQVIRUPHU

These rules about triplen harmonic current in transformers only apply to balanced loading conditions. When the phases are not balanced, the triplen harmonics may as well show up where they are not expected.

Figure 10.4.-2 also shows the nature of the third harmonic and neutral line. Third harmonics in line conductors tend to be in phase with each other. This means that as currents summarise in neutral connection, the third harmonic in neutral line is three times the third harmonic in the line conductor. This may result in a too high current flowing in the neutral conductor.

Xsystem Xtrafo

RL RL RL XC

iharmonic

Har

mpo

w.C

NV

Har

mtr

an.C

NV

B Automation 103

Page 104: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

f

ions and

to or revent as

ion ic

high-ct the

sed m stray d.

&DSDFLWRUV

Capacitor banks used for voltage control and power factor correction are the major components that affect the system frequency response characteristics. Capacitors can chance the system response to harmonics by creating high impedance or, on the other hand, low impedance for harmonic currents at some frequencies. This means that although capacitors are not harmonic sources, they may cause severe harmonic distortion. On the other hand, capacitors can be used for creating paths with the lowest impedance for harmonics and applied to filtering of harmonics. The connection of capacitors may cause resonance conditions that may magnify harmonic levels.

����� (IIHFWV�RI�KDUPRQLFV

The main effects of voltage and current harmonics within the power system are:

• amplification of harmonic levels resulting from series and parallel resonance

• reduction of efficiency in power generation, transmission and utilisation

• ageing of the insulation of electrical plant components and thus shortening otheir useful life

• equipment maloperation

5HVRQDQFHV�DQG�FDSDFLWRUV

The presence of capacitors may result in local resonances. Resonance conditmay lead to excessive harmonic currents and voltages which increase heatingvoltage stress in capacitors. Another area where resonance effects may lead component failure is associated with the power line signalling (ripple control) fload management. In such systems, tuned stoppers (filters) are often used to pthe signalling frequency from being absorbed in low impedance elements suchpower factor correction capacitors. Where local resonance exists, excessive harmonic currents can flow, resulting in damage to the tuning capacitors.

5RWDWLQJ�PDFKLQHV

A major effect of harmonic voltages and currents in rotating machinery (inductand synchronous) is increased heating due to iron and copper losses. Harmonpairs, such as the fifth and seventh harmonics, have the potential for creating mechanical oscillations in a turbine-generator or in a motor-load system. Then stress mechanical forces may be developed. A pulsating output torque may affeproduct quality where motor loads are sensitive to torque variations.

7UDQVIRUPHUV

With the exception that harmonics applied to transformers may result in increaaudible noise, the effects of harmonics on these components usually arise froadditional heating. Current harmonics cause an increase in copper losses andflux losses. Voltage harmonics cause an increase in iron losses and stress theinsulation. Additional heating may result in overheating with less than rated loaAccelerated ageing of transformers is also possible.

104 ABB Automation

Page 105: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

(OHFWURQLF�HTXLSPHQW

Power electronic equipment is susceptible to misoperation caused by harmonic distortion. This equipment is often dependent upon accurate determination of voltage zero crossing or other aspects of voltage wave shape. Other types of electronic equipment may be affected by the transmission of ac supply harmonics through the equipment power supply or by the magnetic coupling of harmonics into equipment components. Computers and allied equipment such as programmable controllers may suffer from erratic data or malfunctions. Malfunctions may in some cases have serious consequences, for example in medical equipment. Less dramatic interference may occasionally be observed in radio and television equipment, as well as in video recorders and audio reproduction systems.

0HWHULQJ

Metering instruments initially calibrated on pure sinusoidal alternating current and subsequently used on a distorted electricity supply may be prone to error. Both positive and negative metering errors are possible because error is connected to the direction of the harmonic flow. In general, the distortion must be severe (>20%) before significant errors are detected.

7HOHSKRQH�LQWHUIHUHQFH

The presence of harmonic currents or voltages in circuitry associated with power conversion apparatus may produce magnetic and electric fields that will impair the satisfactory performance of the communication system that, by virtue of its proximity and susceptibility, may be disturbed.

����� $SSOLFDWLRQV�IRU�KDUPRQLF�PHDVXUHPHQWV

Harmonics measurement function blocks can be utilised in applications like monitoring power quality affected by harmonics, monitoring harmonics in selected points of the network and locating sources of harmonics.

������� 3RZHU�TXDOLW\�DQG�KDUPRQLFV

There are several standards and recommendations for acceptable levels of harmonics in power system. Recommendations for both voltage and current harmonics can be found for distributed electricity. European Standard EN 50160 and IEEE Std 1159-1995 are well known references for power quality.

Harmonic measurements can be utilised in several ways in the network. Here a utility 110/20 kV substation is taken as an example. The substation is shown in Figure 10.6.1.-1 with measurement points for currents and voltages on 20 kV side. There are three feeders connected to busbar. Feeders have different types of loads connected. Load A is generating harmonic currents and load B is a simple motor or resistive load. In addition, there is a capacitor unit connected to the busbar for reactive power compensation. This unit could also include load.

B Automation 105

Page 106: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

ith

at all m

ing:

ent her

)LJ����������� $��������N9�VXEVWDWLRQ�ZLWK�GLIIHUHQW�W\SHV�RI�ORDGV�FRQQHFWHG�WR�WKH�IHHGHUV

Power quality affected by harmonics at the substation can be measured in the incoming feeder for both voltage harmonics and current harmonics. If individual feeders are monitored, it should be noticed that measuring the current harmonics from each feeder is enough. The 20 kV bus voltage is common for all of the feeders. Measuring the voltage harmonics from all the feeders results in unnecessary information. Most of the time only the most important feeders (e.g. harmonic sources) are monitored.

������� +DUPRQLF�PRQLWRULQJ�ZLWK�LQGLYLGXDO�ORDGV�DQG�GHYLFHV

Harmonic measurement function blocks can be applied to monitor harmonic levels on different types of loads and devices. There are several standards for acceptable harmonic levels with different devices. Recommendations are also given by equipment manufacturers. Still, it should be noticed that “harmonic protection” wPQVO3H and PQCU3H is not applicable. These function blocks have a long measurement delay to update values (minimum 600 ms). Another feature is thkinds of spikes and other rapid changes in measured signals are filtered off frooutput values. Measurement of interharmonics is not possible.

Some general recommendations for acceptable harmonic levels are the follow

���7UDQVIRUPHUV

• current distortion should not exceed 5 percent

���0RWRUV

• heat problems begin when voltage distortion reaches approximately 8 perc(motor unit without drive, harmonics in drive input may be considerably higas shown in section “Harmonic sources”)

M3~

Load AHarmonicsource

Load B Compensation

Trafo 110/20 kV

Voltage measurement

Current measurement

110 kV

20 kV

Current meas. Current meas. Current meas.

Load

s.C

NV

106 ABB Automation

Page 107: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

o

the

in oad The

s were nics, ics,

ding gainst

ctor be

ic or

well igned

ted f

c ter

���&DSDFLWRUV

• voltage limit to 120 percent of peak voltage (with harmonics) -> sum of individual voltage harmonics <20% with rated fundamental

In case of feeders containing many individual loads and devices, it is difficult trecommend levels according to specific devices. In such a case, the recommendations given in standards for power quality can be followed. Then harmonics are monitored for the feeder itself, not for the load devices.

������� /RFDWLQJ�VRXUFHV�RI�KDUPRQLFV

On radial utility distribution feeders and industrial plant power systems, the matendency is for harmonic currents to flow from the harmonic producing load (LA in Figure 10.6.1.-1) to the power system source (towards 110 kV incoming). impedance of the power system is normally the lowest impedance seen by theharmonic currents.

There are factors that may alter the path for at least one harmonic. These factordiscussed in section “Harmonic sources”. Transformers may block some harmopower factor correction capacitors may provide paths for higher-order harmonand there may be harmonic filters.

To locate the harmonic source (Load A), harmonic currents in all feeders, incluthe incoming feeder, should be measured. These results should be checked aeach other. The harmonic source is the one containing the largest amount of harmonics. It may also be useful to check the harmonic flow while the power facapasitances are not connected. In this situation, paths for harmonics should decreased and locating the sources of harmonics should be easier.

������� +DUPRQLF�ILOWHU�SHUIRUPDQFH�PRQLWRULQJ

Harmonic filters are designed to catch harmonic currents produced by harmonsources. There can be filters for a single harmonic component or filter banks fseveral harmonic components, like the 5th, 7th, 11th and 13th harmonics. Thecurrent harmonic measurement function block can be utilised to evaluate howthe harmonic components are caught into the filters. In case of a filter bank desto catch several harmonic components, the connection of the filter bank to thesystem may lead to a situation where uncharacteristic (mostly even) harmoniccomponents are created. These uncharacteristic harmonics may have unwaneffects on the system performance and the filter bank. Even though the level ouncharacteristic harmonics is low and negligible after installation, the harmonilevels may be considerably magnified due to the ageing of capacitors in the filbank.

B Automation 107

Page 108: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� 5HIHUHQFHV

0DQXDOV�IRU�5()���B��5(0���B�DQG�5(&����

7RRO�VSHFLILF�PDQXDOV

1) Included on the CD-ROM “Technical Descriptions of Functions”, 1MRS750889-MCD2) Included on the CD-ROM “Relay Product Engineering Tools”, 1MRS751788-MCD3) Included on the CD-ROM “Relay Setting Tools”, 1MRS751787-MCD4) Included on the CD-ROMs 1MRS751788-MCD and 1MRS751787-MCD

• Installation Manual RE_ 5_ _1) 1MRS750526-MUM

• Operator’s Manual RE_ 54_1) 1MRS750500-MUM

• Technical Reference Manual REF 54_1) 1MRS750527-MUM

• Technical Reference Manual REM 54_1) 1MRS750915-MUM

• Technical Reference Manual REC 5231) 1MRS750881-MUM

• Configuration Guideline 1) 1MRS750745-MUM

• Technical Descriptions of Functions (CD-ROM) 1MRS750889-MCD

• CAP505 Installation and Commissioning Manual 2) 1MRS751273-MEN

• CAP505 Operator’s Manual 2) 1MRS751709-MUM

• CAP501 Installation and Commissioning Manual 3) 1MRS751270-MEN

• CAP501 Operator’s Manual 3) 1MRS751271-MUM

• Relay Configuration Tool, Quick Start Reference 2) 1MRS751275-MEN

• Relay Configuration Tool, Tutorial 2) 1MRS751272-MEN

• Relay Mimic Editor, Configuration Manual 2) 1MRS751274-MEN

• SM/RED Configuration Manual 4) 1MRS751392-MEN

• RED Relay Tool, Operator’s Manual 4) 1MRS751383-MUM

• DR Collector Tool, Operator’s Manual 4) 1MRS751387-MUM

• LNT 505 Installation and Commissioning Manual 1MRS751705-MUM

• LNT 505 Operator’s Manual 1MRS751706-MUM

108 ABB Automation

Page 109: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

���� *ORVVDU\

ASD adjustable speed driveCPU central processing unitCSI current source inverterFBD function block diagramI/O input/outputLCD liquid-crystal displayLED light-emitting diodeLON Locally Operating Networka

a. LON is a trademark of Echelon Corporation registered in the United States and other countries.

MIMIC a graphic configuration picture on the LCD of a device (REF 54_ or REM 54_)

MMI man-machine interfaceNV network variablePLC programmable logic controllerPOU program organisation unitPWM pulse width modulationRCT project file Relay Configuration Tool project, a zipped project fileRMS root mean squareSPA data communication protocol developed by ABB

B Automation 109

Page 110: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

���� ,QGH[

AAnalogue channels ............................................................................................ 16BBlocking ............................................................................................................ 45Bypass mode ..................................................................................................... 46CCode body worksheet .................................................................................. 10, 11Communication ................................................................................................. 42Communication signals ............................................................................... 42, 43Compiling the project ....................................................................................... 33Condition monitoring ........................................................................................ 23Configuration ........................................................................7, 14, 48, 49, 67, 85Configuration error ..................................................................................... 18, 20Control of switchgears ...................................................................................... 46Cyclic communication check ............................................................................ 44Cyclic sending generation ................................................................................. 43DData types ........................................................................................................... 8Description worksheet ...................................................................................... 10Digital inputs ............................................................................................... 21, 36Digital outputs ................................................................................................... 36Downloading the configuration ........................................................................ 33EError outputs ............................................................................................... 20, 38Events .......................................................................................................... 20, 47Execution order ................................................................................................. 39Explicit feedback .............................................................................................. 37FF-key ................................................................................................................. 40Frequency .......................................................................................................... 18GGlobal variables .......................................................................................... 26, 28HHardware version .............................................................................................. 15Harmonic restraint measurement ...................................................................... 17Harmonics ......................................................................................................... 97Horizontal communication ............................................................................... 42LLibraries .............................................................................................................. 8Logic ................................................................................................................. 42Logical POUs ................................................................................................ 8, 12MManuals ........................................................................................................... 108Measurement function blocks ..................................................................... 17, 47Measurements ............................................................................................. 17, 22MIMIC ......................................................................................33, 62, 65, 81, 84MMI ............................................................................................................ 38, 45

110 ABB Automation

Page 111: RE 54 Configuration Guideline

1MRS 750745-MUM Configuration Guideline 5()���B5(0���B5(&����

AB

NNeutral current ...................................................................................................18PPhysical hardware ......................................................................................... 8, 14Polling ................................................................................................................42Power quality .....................................................................................................97Program Organisation Unit (POU) ....................................................................10Project tree ...........................................................................................................8RReferences ........................................................................................................108Relay configuration procedure ..........................................................................48Relay Configuration Tool ....................................................................................6Resource ............................................................................................................15SSpecification for Feeder Terminal Configuration ..............................................49Specification for Machine Terminal Configuration ..........................................67Specification for Remote Monitoring and Control Unit Configuration ............85TTask interval ......................................................................................................24Tasks ..................................................................................................................24Technical data ....................................................................................................17True RMS measurement ....................................................................................17VVariable worksheet ..................................................................................... 10, 27Virtual channels .................................................................................................19WWarnings ............................................................................................................39

B Automation 111

Page 112: RE 54 Configuration Guideline

1MRS 750745-MUMConfiguration Guideline5()���B5(0���B�5(&����

112 ABB Automation

Page 113: RE 54 Configuration Guideline

ABB Substation Automation OyP.O. Box 699FIN-65101 VAASAFinlandTel. +358 10 224 000Fax. +358 10 224 1094

1MR

S75

0745

-MU

M E

N 0

5.20

00


Recommended