+ All Categories
Home > Documents > Rearrangements

Rearrangements

Date post: 10-Jul-2016
Category:
Upload: bandita-datta
View: 1 times
Download: 2 times
Share this document with a friend
64
Molecular Rearrangements CH423 Course on Organic Synthesis; Course Instructor: Krishna P. Kaliappan Migration of one group from one atom to another within the molecule Generally the migrating group never leaves the molecule There are five types of skeletal rearrangements- 1. Electron deficient skeletal rearrangement 2. Electron rich skeletal rearrangement 3. Radical rearrangement 4. Rearrangements on an aromatic ring 5. Sigmatropic rearrangement 1
Transcript
Page 1: Rearrangements

Molecular Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Ø  Migration of one group from one atom to another within the molecule

Ø  Generally the migrating group never leaves the molecule

Ø  There are five types of skeletal rearrangements-

1. Electron deficient skeletal rearrangement

2. Electron rich skeletal rearrangement

3. Radical rearrangement

4. Rearrangements on an aromatic ring

5. Sigmatropic rearrangement

1  

Page 2: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Electron Deficient Skeletal Rearrangement Molecular Rearrangements

Ø  Generally it involves migration of a group from one atom to an adjacent atom, having six electrons in the valence shell

Ø  The molecular system may be either a cation or a neutral molecule

Examples:

C CR

C CR

C CR

C CR R

C NR

C NR

NR

C OR

C OR

OR

2  

Page 3: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Molecular Rearrangements Wagner- Meerwin Rearrangement

Ø  Rearrangement of alcohols under acidic condition

Me

Me

OH

MeH+

Me

Me

Me

OH2

H+

Me

Me

Ø  Alkyl migration occurs to give stable carbocation

Me

Me

H

Ø  This is the driving force for the migration of alkyl, aryl or even hydrogen atom

3  

Page 4: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Molecular Rearrangements Wagner- Meerwin Rearrangement

HOH+

IsoborneolCamphene

H+

4  

Page 5: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Molecular Rearrangements Ring Expansion

Ø  More stable carbocation will be generated

Ø  Cations can be made more stable if they become less strained

Ø  Stability of carbocations- 3°> 2°> 1°

Can we go from 3° to 2° ??

HCl Cl

H+

Relief in strain from four to five membered

ring is driving force

5  

Page 6: Rearrangements

Me

MeH

H

Me

H Me

Me

Me

OH2

H

H

Me

H Me

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Molecular Rearrangements Ring Expansion

Me

Me

O

H

H

Me

HMeLi Me

Me

OH

H

H

Me

H Me 40% H2SO4 Me

Me

OHH

H

Me

Me

Me

Me

H

H

Me

Me

H2O

6  

Tertiary carbocation migrated to secondary

Page 7: Rearrangements

The lone pair of electrons on the oxygen is another source to stabilize the carbocation

OH O

H2SO4 Pinacolone

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

HO OH

O

Ø  Carbocation is already tertiary Ø There is no ring strain Ø Then why should it rearrange?

7  

Molecular Rearrangements Pinacol-Pinacolone Rearrangement

Pinacol

HO OH2 HOHO OH

Ø  Reason:

Page 8: Rearrangements

Ø The carbocation formed as a result of loss of H2O, pulls the migrating group

Preparation of Spiro System: HO OH

H

O

H

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Ø  Lone pair on oxygen pushes the migrating group

8  

Molecular Rearrangements Pinacol-Pinacolone Rearrangement

Ø  Pinacol-Pinacolone rearrangement can be viewed as a push and a pull rearrangement

HO OH2 HOO

Page 9: Rearrangements

HHO OH O OHNaBH4 H

Epoxides : Epoxides also undergo pinacol type rearrangement on treatment with acid

O

Ph PhMgBr2 OHC

Ph

Ph

O1) RMgBr

2) H

OH

R

Ø With a Grignard reagent, rearrangement occurs faster than addition to the epoxide

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  9  

Molecular Rearrangements Pinacol-Pinacolone Rearrangement

Ph Ph

OMgBr

Page 10: Rearrangements

Ph

Ph

HO

Ø  Migrating group preference:

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  10  

Molecular Rearrangements Pinacol-Pinacolone Rearrangement

It doesn’t matter when we have symmetrical diols & epoxides It doesn’t matter when we have unsymmetrical epoxides & diols

HO OHPh

Ph

HO OH2PhPh

OPhPh

H2O OHPh

Ph

OHPh

PhPh

O

Ph

I

II Only I is formed in quantitative amount because the carbocation is stabilized by two phenyl groups

Page 11: Rearrangements

They are nothing but pinacol rearrangement without choice

O

Isonopinone

OsO4

HO OH

O

Under normal acidic conditions

OOH

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

CHO

11  

Molecular Rearrangements Semipinacol Rearrangement

H2O

OH

H HO H

Page 12: Rearrangements

For the required product, the primary hydroxyl group needs to be made as better leaving group

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

HO

OHTsClPy

HO

OTs

CaCO3

Weak base O

Corey exploited a similar sequence in the synthesis of longifolene

CH3

12  

Molecular Rearrangements Semipinacol Rearrangement

HO

OTs

Page 13: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

TsClPy

OO

HOHO

OO

TsOHO CaCO3 O

O O

Leaving group need not be tosylated and it can be anything which can readily leave

AgNO3

O

CH3

Longifolene

13  

Molecular Rearrangements Semipinacol Rearrangement

I

OH

Page 14: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Molecular Rearrangements

14  

Semipinacol Rearrangement

OMe

OH

H+ OMe

OH2

OO

OMeOH H+

OMeOH2

OO

Page 15: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Diazonium salts Tiffeneau-Demjanov Rearrangement:

HO NH2NaNO2/HCl N2

H

_

_

O

Selectivity :

CHONaNO2/HCl

NaNO2/HCl CHO

NaNO2/HClO

NaNO2/HCl O

15  

Molecular Rearrangements

N2

OH

OHNH2

NH2

OH

NH2

OH

NH2

OH

Page 16: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Mechanism :

CHO

Alkyl group which is anti to the leaving group, will migrate

O

16  

Diazonium salts Molecular Rearrangements

OHN2

OH

N2

OH

N2

HO

OH

N2

Page 17: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Fragmentation:

NOH

AcCl

N

CN

Stable carbocation

Ø  Fragmentations always require electron push and electron pull

17  

Molecular Rearrangements

NOAc

CN

OHHOH OHH2O CHO

Page 18: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

O

OMe

H

O

O

An Important Method to Make Higher Cycloalkanes:

O

OOMe

H

O

OHO

18  

Molecular Rearrangements

O

OMe

H OH

OMe

O

OOMe

H

O

O OMeH

Page 19: Rearrangements

O

OTs

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Base Conditions or Nucleophilic Conditions:

OH

O

NMe

MeH3O

OHC

Antiperiplanar bond migrates

Base

O

10-membered ring

19  

Molecular Rearrangements

O

OMsOH O OH

OMs

OTsMe2N

OH

OTs

Page 20: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Eschenmoser Fragmentation O

NaOH/H2O2O

O

TsNHNH2PTSA O

NNHTs

Base

HO OH

H3OO

1) NaBH4

2) PTSAO3/Me2S

O

O

O

Base

1) NaOH/H2O2

2) TsNHNH2/PTSAO

Base

20  

Molecular Rearrangements

O

NN Ts

O

NNTs

CHOTs N2#

N

O

NHTs

Page 21: Rearrangements

HO

MsO

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Fragmentation of Four-Membered Ring

O

BF3.Et2O

O O

AcOH

O

OAc

Base

O

21  

Molecular Rearrangements

Other Examples:

OH

O

BaseO

O

Aldolcondensation

O

Page 22: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Sigmatropic Rearrangements

Cope Rearrangement : It is a [3,3]- sigmatropic rearrangement with only carbon atoms involved in the six membered transition state

Why is it called [3,3] ?

The new σ bond formed has 3,3- relationship with the old σ-bond

32

1

12

3

HO HO Ο

ω

αβ

δ

γ

22  

Molecular Rearrangements

[3,3]-Sigmatropic Rearrangement

Page 23: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Mechanism : It goes via six-membered chair-like transition state

H3CH3C

trans trans CH3

CH3More stable conformer Less stable

conformer

E,E-isomer Z,Z-isomer Favoured

cis    

E,Z

cis

Z,E

23  

Molecular Rearrangements Sigmatropic Rearrangements

Page 24: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

1) Cope:

2) Oxy-Cope:

HO HOOHC

24  

Molecular Rearrangements Sigmatropic Rearrangements

O O

OH

OH O

O

Page 25: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

3) Anionic-Oxy-Cope: O O OHC

25  

Molecular Rearrangements Sigmatropic Rearrangements

4) Claisen Rearrangement of Allylvinyl Ethers:

O α

βδ

γ

O γ-δ-unsaturated aldehyde

O

O

H3C CH3

OMOMLiO

H3C

OTBDMSCH3H3C

H3CO

CH3

MOMOOTBDMS

Page 26: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

5) Claisen Rearrangement of Allylphenyl Ethers: O OH

6) Ortho-Ester Claisen Rearrangement:

OORRO

ROH_O

OR

O

OR

26  

Molecular Rearrangements Sigmatropic Rearrangements

O

OHHg(OAc)2

OEtO

OEt

O

OEt

Page 27: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

7) O-Allyl-O-TMS-Ketone Acetals:

O

OTMS

O

OTMS

O

OH

8) Ester-Enolate Claisen:

O

O

O

O

9) Ketene Aminals:

O

NR2

O

NR2

27  

Molecular Rearrangements Sigmatropic Rearrangements

Page 28: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

10) Aza-Claisen Rearrangement:

O NH

R

O NH

R

28  

Molecular Rearrangements Sigmatropic Rearrangements

CO2Et CO2Et

K=0.25

275 oC

H3CO OCH3

OH

C2H5

CH3

H3CO OCH3O

HH

H

CH3

C2H5

Other Examples:

Page 29: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Stereochemistry:

OR

OTMSR

Z-silyl ether

O

OTMS

RR

trans

29  

Molecular Rearrangements Sigmatropic Rearrangements

OR

OTMSH

R

O

OTMS

RR

H

cis E-silyl ether

Page 30: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

XY

YX

Charged Neutral

1) Allylic Sulfoxides:

OS

R

OS

R

30  

Sigmatropic Rearrangements Molecular Rearrangements

[2,3]-Sigmatropic Rearrangement

2) Allylic Sulfonium Ylides:

S S

Page 31: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

3) N-Oxides:

R NR

O R NR

O

Sommelet-Hauser Rearrangement

NH3C

CH3

CH3

NaNH2

NH3C

CH3

CH3NCH3H3C

NCH3H3C

31  

Sigmatropic Rearrangements Molecular Rearrangements

NH3C

CH2

CH3

Page 32: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Stevens Rearrangement

N Ph

O

C6H5

NaOH NPh

CH2Ph

O

Wittig Rearrangement

H3CO Ph PhLi

Ph OH

OMe

O PhLiOH

32  

Sigmatropic Rearrangements Molecular Rearrangements

Page 33: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Ene Reaction

H EWG EWG

H CO2R

O

33  

Sigmatropic Rearrangements Molecular Rearrangements

CO2R

OH

Page 34: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

SO2

O

O

34  

Molecular Rearrangements

SO2

SO2

Ph

PhO

OPh

Ph

SO2

O

H

H

H H

O

Cheletropic Elimination

Two bonds are broken at a single atom

Page 35: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

PhPh

PhPh

Ph

PhO

Ph

PhPhPhPh Ph

O

Ph

PhPh

Ph

O

O

Ph

Ph Ph

Ph

O

OH

O

Ph

Ph35  

Molecular Rearrangements

Ph CHOO

H OEt

Elimination of Carbon monoxide (CO) O

Page 36: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Molecular Rearrangements

36  

O O

MeO OMeCO2Me

Δ OMe

CO2Me

OO

MeO2COMe

OMe

[4+2]-Cycloaddition

- CO2

MeO2COMe

OMe

- MeOHAromatization

Elimination of Carbon monoxide (CO)

Page 37: Rearrangements

Dienone-Phenol Rearrangement

H2SO4

Ø The driving force for this reaction is the formation of aromatic rings

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Ø  Can be considered as a reversal of pinacol rearrangement  

Ø  Pinacol & semipinacol rearrangements are driven by the formation of a carbonyl group

Ø  In dienone-phenol rearrangement protonation of carbonyl group Rearranges to a tertiary carbocation

37  

Molecular Rearrangements

O

Me

Me OH

HH

H

Me OH

HHHO

MeH

Page 38: Rearrangements

H

OH

Me Me

O

Me Me

OH

Me Me

OH

Me

Me

H

OH

MeMe

Mechanism:

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  38  

Dienone-Phenol Rearrangement Molecular Rearrangements

Page 39: Rearrangements

Beckmann Rearrangement

The industrial formation of nylon relies upon the alkaline polymerization of a acyclic amide known as caprolactam

HN

O

n

baseHN O

acidNOH

oxime

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  39  

Molecular Rearrangements

Caprolactam can be produced by the action of sulfuric acid on the oxime of cyclohexanone in a rearrangement known as the Beckmann rearrangement

Page 40: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Ø  Follows the same pattern as pinacol

Ø  Converts the oxime into a good leaving group

Ø Alkyl/ Aryl group migrates on to nitrogen as water departs

Ø The product cation is then trapped by water to give an amide

40  

Beckmann Rearrangement Molecular Rearrangements

Mechanism:

NOH

NOH2

N N OHOH2

Page 41: Rearrangements

Ø  PCl5, SOCl2 & other acyl or sulfonyl chlorides can be used instead of acid

NOH

Ph Ph

H NOH2

Ph Ph

NC

Ph

Ph

Nitrilium ion

Me

ONH2OH

Me

NOH

Me

NHO

Al2O3

NH

MeO

Me O

NHMe

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Ø  It can also works with acyclic oximes

major

minor

41  

Beckmann Rearrangement Molecular Rearrangements

Migratory Aptitude:

Page 42: Rearrangements

Ø The group that has migrated, is trans to the -OH group

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

In case of unsymmetrical ketone:

Ø There are two groups that could migrate  

Ø There are two possible geometrical isomers of unsymmetr-ical oxime  

Ø When the mixtures of geometrical isomer of oximes are rearranged, mixtures of products result

Ø  Interestingly, the ratio of products mirrors exactly the ratio of geometrical isomers in the starting materials

42  

Beckmann Rearrangement Molecular Rearrangements

Page 43: Rearrangements

O1) NH2OH

2) pTSCl

HNO

CH3

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  43  

Beckmann Rearrangement Molecular Rearrangements

ONH2OH

Me

NOH

Me

NHO

86 : 14 Steric effect

Al2O3HN Me

ON

OHMe

88 : 12

Page 44: Rearrangements

Baeyer Villiger Oxidation

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Mechanism:

R R'

O R'' CO

O OH R R'

OH

OO

R''O

R' OR

O

44  

Molecular Rearrangements

Migratory Aptitude:

t-Bu > i-Pr = Ph > Et > Me

AlCl3AcClHO

CO2H

NH2 HO

H3C

OCO2H

NH2H2O2NaOH

O

HO

CO2H

NH2

H3C

OHO

CO2H

NH2

HOL-dopa

Page 45: Rearrangements

B.V.O. of Unsaturated Ketones:

There are three possibilities

1) Peracids can selectively epoxidize 2) Peracids can selectively carry out B.V.O 3) Can carry out both reactions

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  45  

Baeyer Villiger Oxidation Molecular Rearrangements

It is difficult to predict the outcome & it depends on-

1) Electrophilic nature of the ketone 2) Nucleophilic nature of the alkene

Page 46: Rearrangements

O

R R R' OH

O

BnO

O

mCPBA

O O

BnO

Ø The alkene is not as reactive as expected because of steric crowding

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Ø Tertiary group migrates in preference of the secondary group

46  

Baeyer Villiger Oxidation Molecular Rearrangements

R R

OH O

R'O

Page 47: Rearrangements

Small ring ketones will readily undergo B.V.O.

H2O2, OHO O

O

H

H

Starting material configuration is retained in the product

Me

OPh

Me

ArCO3H

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

OPh

Me

Me

O

47  

Baeyer Villiger Oxidation Molecular Rearrangements

OPh

OO Ar

O

Me

Me

Page 48: Rearrangements

Electron-Rich (Anionic) Skeletal Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Ø The transition state has two more electrons

Ø Generally initiated by basic reagents which remove a group or an atom such as hydrogen

Ø The residual anion then stabilizes itself by rearrangement

Ø  In the first step an acid strengthening substituent is necessary to stabilize the ionic center

48  

Molecular Rearrangements

Page 49: Rearrangements

Electron-Rich (Anionic) Skeletal Rearrangements Stevens Rearrangement

NH2C

H3CH3C

C6H5H2CCO

C6H5OH N

HC

H3CH3C C

OC6H5

CH2C6H5

NH3C

H3C

HCCH2C6H5

COC6H5

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  49  

Molecular Rearrangements

Proton removal is facilitated by the positive charge in the cationic substrate and also by the enolate ion formation

SH3CCH2

HC COC6H5

C6H5

SH3CH2C

H2CC6H5

COC6H5 OH

Migrating groups are generally benzyl or allyl system

SH3CHC

CH2C6H5

COC6H5

Page 50: Rearrangements

Wittig Rearrangement

Ø  Powerful basic reagents are required to cause the Wittig Rearrangement

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  50  

Electron-Rich (Anionic) Skeletal Rearrangements Molecular Rearrangements

Ø  Only difference is substrates are much less acidic than those encountered in Stevens rearrangement

Ø  It also follows a similar pathway

OH2C

H3CC6H5

PhLi OHC C6H5CH3

HOHC C6H5CH3

H2C

HCCH2

OCH2

HCCH2

1) PhLi

2) H3O H2C

HCCH2

CH

CH2OH

O CH3C

C6H5H

Page 51: Rearrangements

Nucleophilic alkylation of the aromatic rings of a benzyl-trimethylammonium ion

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  51  

Electron-Rich (Anionic) Skeletal Rearrangements Molecular Rearrangements

Sommelet-Hauser Rearrangement

NH3C

CH3

CH3

NaNH2

NH3C

CH3

CH3NCH3H3C

NCH3H3C

NH3C

CH2

CH3

Page 52: Rearrangements

C6H5 CO

CO

C6H5KOHEtOH,

COH

COOHC6H5

C6H5

Mechanism:

Ar CO

CO

Ar OHAr C C

O O

ArOH Ar C

O

ArCO

O

H

Ar COH

ArCO

O

Formation of stable carboxylate salt is driving force for the reaction

OO

KOHEtOH

CO2HHO

Application has been limited only to aromatic α-diketones

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Rearrangements Benzilic acid Rearrangement

52  

Page 53: Rearrangements

Rearrangements on an Aromatic Ring

1. Fries Rearrangement

Rearrangements of Derivatives of Aniline:

NHCOCH3 NCO

CH3Cl

HCl

NHCOCH3Cl

NHCOCH3

Cl

NCO

CH3Cl

HCl

HN

O

CH3

Cl FriedelCrafts like

HNCl

O

CH3HN

O

CH3

ClCH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Rearrangements

53  

3. Rearrangements of Derivative of aniline 2. Claisen Rearrangement

Cl2

Page 54: Rearrangements

It is still not clear whether it involves inter or intramolecular mechanism

HN N N Ph

H

NH2

NNPh

Diazoamino benzene

p-amino diazobenzene

Rearrangement of N-Methyl-N-Nitrosoamine:

NMe NO

H

NHMe

NO

NHMe

NO

NHMe

NO

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Rearrangements

54  

Rearrangements of Derivatives of Aniline:

Rearrangements on an Aromatic Ring

Page 55: Rearrangements

Rearrangement of N-Phenylhydroxylamine:

NHOH

H

NH2

OH

NH2OH

NH

Mechanism

NH NH

OH

NH2

OH

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Rearrangements

55  

Rearrangements on an Aromatic Ring

NHHO

H+

NHH2O

Page 56: Rearrangements

Rearrangement of N,N-Dimethylanilinium chloride:

NCH3

CH3H

NHCH3 NHCH3

H3C Cl

NH

HH3C

CH3NH2

CH3

CH3

275 C0

NHCH3

CH3

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Rearrangements

56  

Rearrangements on Aromatic Ring

Δ

HN

CH3

CH3

CH3Cl

Page 57: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

HN

CH3

OH

H

HN

CH3

OH2 NH

CH3

H2O

NH

H3C OH

H3Ohydrolysis

O

H3C OH

HOH

H3C OH

OH

OH

HH3C

Rearrangements

57  

Rearrangements on Aromatic Ring

OH

OH

HH3C

- H+OH

OHH3C

Page 58: Rearrangements

Rearrangement of Phenylnitramine:

NHNO2

H

H2N NO2 NH2NO2H

NH2NO2

NH2

NO2

Rearrangement of Phenylsulfamic acid:

NHSO3H

H

H2N SO3H NH2SO3H

NH2

SO3H

These reactions involve intramolecular pathway

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Rearrangements

58  

Rearrangements on an Aromatic Ring

Page 59: Rearrangements

Benzidine Rearrangement:

HN

HN N N

H H

H H

NH2H2N NH2

NH2

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Rearrangements

2H

59  

Rearrangements on an Aromatic Ring

Page 60: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

Some Additional Problems

NaCN C CCl

ClCl

O

HCN CH C

Cl

Cl O

CN

hydrolysis of

acid derivativeCH C

Cl

Cl O

O

H3O CH CCl

Cl O

OH

dichloro acetic acid

Rearrangements

60  

+ 2CaCO3C CCl

ClCl

O

H

(CHCl2COO)2Ca + 2CO2 + CaCl2 + H2O

Page 61: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

methanolic NH3

sealed tube heatingO CO

CH3 N

OH

CH3

O CO

CH3NH3

O C

H2N

HO

CH3

ring opening

vinylogous substitution

NH2

O

OCH3

N

OH

CH3

Rearrangements

61  

Some Additional Problems

Page 62: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

RH3C

O

RH3C

HO

RH3C

HO

CH3

HOH

R

CH3

HOR

Rearrangements

62  

Some Additional Problems

H

HO

RCH3

HO

RCH3 CH3

HHO

R

CH3

HO

R

Page 63: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

OH

OHHOretro Pinacol Pinacolone

Rearrangement

Pinacol PinacoloneRearrangement

HOH

O

Rearrangements

63  

Some Additional Problems

C C OC

C

OC C O

C

C

mCPBA C C OC

C

O

C C OC

C

O O

O

CH3

H3CCCH3

H3CH3C

H3C

Page 64: Rearrangements

CH-­‐423  Course  on  Organic  Synthesis;  Course  Instructor:  Krishna  P.  Kaliappan  

H3CCH3

O

O

H3CCH3

O

O

O

O

CH3

H3CH2O

H

Rearrangements

64  

OH

OH3C

CH3HOH

OHCH3

OHOH

H3C

Acid cat. aldolcondensation H2O

Some Additional Problems


Recommended