+ All Categories
Home > Documents > Recent Developments in the Flux Reconstruction...

Recent Developments in the Flux Reconstruction...

Date post: 07-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
65
Brief Review of Flux Reconstruction Direct FR Method Spectrally-optimal FR Schemes High Fidelity Turbulent Flow Simulations Conclusions Recent Developments in the Flux Reconstruction Method Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan Bull, Postdoctoral Scholar Antony Jameson, Professor Aerospace Computing Laboratory, Stanford University AFOSR Computational Math Meeting Arlington, VA July 28-30 2014 J. Romero, K. Asthana, J. Bull, A. Jameson 1/65
Transcript
Page 1: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Recent Developments in the Flux ReconstructionMethod

Joshua Romero, PhD candidateKartikey Asthana, PhD candidate

Jonathan Bull, Postdoctoral ScholarAntony Jameson, Professor

Aerospace Computing Laboratory, Stanford University

AFOSR Computational Math MeetingArlington, VA July 28-30 2014

J. Romero, K. Asthana, J. Bull, A. Jameson 1/65

Page 2: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Acknowledgements

The research presented has been made possible by the support of thefollowing organizations:

Airforce Office of Scientific Research under grant FA9550-10-1-0418by Dr. Fariba Fahroo

National Science Foundation under grant 1114816 monitored by Dr.Leland Jameson

Thomas V Jones Stanford Graduate Fellowship

National Science Foundation Graduate Fellowship

J. Romero, K. Asthana, J. Bull, A. Jameson 2/65

Page 3: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Outline1 Brief Review of Flux Reconstruction2 Direct FR Method

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

3 Spectrally-optimal FR SchemesMotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

4 High Fidelity Turbulent Flow SimulationsHiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

5 ConclusionsJ. Romero, K. Asthana, J. Bull, A. Jameson 3/65

Page 4: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Outline1 Brief Review of Flux Reconstruction2 Direct FR Method

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

3 Spectrally-optimal FR SchemesMotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

4 High Fidelity Turbulent Flow SimulationsHiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

5 ConclusionsJ. Romero, K. Asthana, J. Bull, A. Jameson 4/65

Page 5: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Flux Reconstruction (FR) Method

Unifying framework that recovers several popular DiscontinuousFinite Element methods:

Nodal Discontinuous Galerkin (nodal DG)Spectral Difference (SD)

Energy Stable Flux Reconstruction (ESFR) formulation proven to belinearly stable for advection-diffusion problems

J. Romero, K. Asthana, J. Bull, A. Jameson 5/65

Page 6: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Review of Existing Methodology

Consider a 1D scalar conservationlaw:

∂u

∂t+∂f (u)

∂x= 0

Represent solution and flux withineach element using Lagrangeinterpolating polynomials throughP + 1 interior solution points.Resulting polynomials are of orderP.

uj(r) =P+1∑n=1

unln

fj(r) =P+1∑n=1

fnln

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L RL R

u

f(u)

J. Romero, K. Asthana, J. Bull, A. Jameson 6/65

Page 7: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Review of Existing Methodology

From left and right solution valuesat each interface, compute acommon interface flux using anappropriate flux formulation.

f IL = fcn(uj−1,R , uj,L)

f IR = fcn(uj,R , uj+1,L)

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L RL R

u

f(u)

J. Romero, K. Asthana, J. Bull, A. Jameson 7/65

Page 8: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Review of Existing Methodology

Acquire values of the discontinuousflux at interfaces using existingLagrange representation.

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree P

J. Romero, K. Asthana, J. Bull, A. Jameson 8/65

Page 9: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Review of Existing Methodology

Acquire values of the discontinuousflux at interfaces using existingLagrange representation.

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree P

J. Romero, K. Asthana, J. Bull, A. Jameson 9/65

Page 10: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Review of Existing Methodology

Introduce left and rightcorrection polynomials ofdegree P + 1.

−3 −2 −1 0 1 2 3−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

gL gR

J. Romero, K. Asthana, J. Bull, A. Jameson 10/65

Page 11: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Review of Existing Methodology

Scale polynomials usingcomputed difference betweendesired common interfaceflux value and existingdiscontinuous flux value.

−3 −2 −1 0 1 2 3−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

J. Romero, K. Asthana, J. Bull, A. Jameson 11/65

Page 12: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Review of Existing Methodology

Add the scaled correctionpolynomials to the discontinuousflux to obtain a C-0 continuous fluxof order P + 1.

f cj (r) = fj(r) + (f I

L − fj(−1))gL(r)

+ (f IR − fj(+1))gR(r)

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree P

J. Romero, K. Asthana, J. Bull, A. Jameson 12/65

Page 13: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Review of Existing Methodology

Add the scaled correctionpolynomials to the discontinuousflux to obtain a C-0 continuous fluxof order P + 1.

f cj (r) = fj(r) + (f I

L − fj(−1))gL(r)

+ (f IR − fj(+1))gR(r)

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree P + 1

J. Romero, K. Asthana, J. Bull, A. Jameson 13/65

Page 14: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Review of Existing Methodology

Advance solution using derivative of the continuous flux.

d

dtuj = −[Dfj + ILgL,x + IRgR,x]

J. Romero, K. Asthana, J. Bull, A. Jameson 14/65

Page 15: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

New Developments in Flux Reconstruction

While existing FR methodology has shown much promise, activeresearch is still being conducted to characterize and improve themethod.

From this research, several exciting new developments haveemerged:

Direct FR - Simplified formulation of the FR method that recoversnodal discontinuous Galerkin (DG) methodSpectrally Optimal FR Schemes - New schemes that minimizewave propagation errors for the range of resolvable wavenumbers

J. Romero, K. Asthana, J. Bull, A. Jameson 15/65

Page 16: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Outline1 Brief Review of Flux Reconstruction2 Direct FR Method

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

3 Spectrally-optimal FR SchemesMotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

4 High Fidelity Turbulent Flow SimulationsHiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

5 ConclusionsJ. Romero, K. Asthana, J. Bull, A. Jameson 16/65

Page 17: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Direct FR Method

In existing FR method, reconstruction process involves severaldistinct computational steps, all aimed at applying correctionpolynomials to construct the continuous flux.

Correction polynomials introduced by Huynh to generate continuousflux of order P + 1 so that terms in conservation law are ofconsistent order P.

J. Romero, K. Asthana, J. Bull, A. Jameson 17/65

Page 18: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Direct FR Method

If this consistency constraint isabandoned, entire reconstructionprocess can be consolidated into asingle Lagrange interpolationthrough the combined set of interiorsolution points and interface fluxpoints.

f C = f IL l0 +

P+1∑n=1

fn ln + f IR lP+2

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree P

J. Romero, K. Asthana, J. Bull, A. Jameson 18/65

Page 19: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Direct FR Method

If this consistency constraint isabandoned, entire reconstructionprocess can be consolidated into asingle Lagrange interpolationthrough the combined set of interiorsolution points and interface fluxpoints.

f C = f IL l0 +

P+1∑n=1

fn ln + f IR lP+2

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree P + 2

J. Romero, K. Asthana, J. Bull, A. Jameson 19/65

Page 20: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Advantages of the New Formulation

Simpler - Does not require explicit definition of correction functions,implicit through selection of solution points

Cheaper - Less operations than existing FR methodology

Equivalent - Recovers nodal DG scheme if solution points arepositioned at the zeros of the Legendre polynomial of correspondingorder

Maintains linear stability properties of this scheme

Potential for new family of schemes - Numerical results indicatethat schemes derived through positioning the solution points at thezeros of Jacobi polynomials (with some constraints) are linearlystable.

J. Romero, K. Asthana, J. Bull, A. Jameson 20/65

Page 21: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Equivalency Requirements

Solution update is only computed and applied discretely at interiorsolution points

DFR can be made to recover the nodal DG scheme if the followingcondition is met on the total continuous flux:

∂r(f (r)− fDFR(r))

∣∣∣∣r=rj

= 0

for j = 1, ...,P + 1 which are the indices spanning only the interiorsolution points.

f (r) = f D(r) + f C (r)

J. Romero, K. Asthana, J. Bull, A. Jameson 21/65

Page 22: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Equivalency Requirements

It can be found that this equivalency requirement can be castequivalently using only the correction fluxes:

∂r(f C (r)− f C

DFR(r))

∣∣∣∣r=rj

= 0 (1)

for j = 1, ...,P + 1

J. Romero, K. Asthana, J. Bull, A. Jameson 22/65

Page 23: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Proof of Equivalency to Nodal DG

Consider splitting the DFR correction flux using effective left and rightcorrection functions, gLDFR and gRDFR

f CDFR(r) = ∆fLgLDFR(r) + ∆fRgRDFR(r) (2)

and compare to the equivalent formula from the standard FR method

f C (r) = ∆fLgL(r) + ∆fRgR(r) (3)

J. Romero, K. Asthana, J. Bull, A. Jameson 23/65

Page 24: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Proof of Equivalency to Nodal DG

Subtracting Eq.(3) and Eq.(2), taking a derivative, and substitutingresults from Eq.(1) gives

∆fL∂

∂r(gL(r)− gLDFR(r))

∣∣∣∣r=rj

+ ∆fR∂

∂r(gR(r)− gRDFR(r))

∣∣∣∣r=rj

= 0

Since ∆fL and ∆fR are arbitrary, it suffices to prove

∂r(gL(r)− gLDFR(r))

∣∣∣∣r=rj

= 0 (4)

∂r(gR(r)− gRDFR(r))

∣∣∣∣r=rj

= 0 (5)

to prove scheme equivalency.

J. Romero, K. Asthana, J. Bull, A. Jameson 24/65

Page 25: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Proof of Equivalency to Nodal DG

It is known that to recover the nodal DG scheme using the standard FRmethodology requires correction functions of the form

gL =(−1)P

2(LP − LP+1) (6)

gR =1

2(LP + LP+1) (7)

which are the left and right Radau polynomials respectively.If the interior solution points using the DFR scheme are located at thezeros of the Legendre polynomial, the effective DFR correction functionsthat results from the Lagrange interpolation can be expressed in terms ofLegendre polynomials as

gLDFR =(−1)P

2(r − 1)LP+1 (8)

gRDFR =1

2(1 + r)LP+1 (9)

J. Romero, K. Asthana, J. Bull, A. Jameson 25/65

Page 26: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Proof of Equivalency to Nodal DG

To satisfy Eq.(5), consider a residual defined as

D =∂

∂r(gR − gRDFR) =

1

2(∂

∂rLP − LP+1 − r

∂rLP+1) (10)

According to A.9 in Huynh (2007)

(1− r2)∂

∂rLP+1 = (P + 1) [Lp − rLP+1] (11)

Substitution into Eq.(10) yields

D =1

2(1− r2)

[(1− r2)(

∂rLP − LP+1)− (P + 1)(rLP − r2LP+1)

](12)

J. Romero, K. Asthana, J. Bull, A. Jameson 26/65

Page 27: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Proof of Equivalency to Nodal DG

According to A.10 in Huynh (2007)

(1− r2)∂

∂rLP = (P + 1)(rLP − LP+1) (13)

Substitution into Eq.(12) yields

D = −1

2(P + 2)LP+1 (14)

At the zeros of LP+1, which correspond to the locations of the interiorsolution points, the residual is exactly equal to zero and Eq.(5) issatisfied.

J. Romero, K. Asthana, J. Bull, A. Jameson 27/65

Page 28: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Proof of Equivalency to Nodal DG

Eq.(4) can be satisfied in similar fashion. Consider a residual defined as

D =∂

∂r(gL − gLDFR) =

(−1)P

2(∂

∂rLP − LP+1 − r

∂rLP+1) (15)

Observing that the bracketed term in Eq.(15) is identical to the term inEq.(10), it can be immediately said that

D =(−1)P+1

2(P + 2)LP+1 (16)

At the zeros of LP+1, which correspond to the locations of the interiorsolution points, the residual is exactly equal to zero and Eq.(4) is alsosatisfied. This proves the equivalence of the DFR scheme to the FRformulation of the nodal DG scheme provided the solution points arelocated at the zeros of the Legendre polynomial of order P + 1.

J. Romero, K. Asthana, J. Bull, A. Jameson 28/65

Page 29: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Comparison of Correction Functions for P = 2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

r

gl

FRDFR

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−8

−6

−4

−2

0

2

r

∂ ∂rgl

J. Romero, K. Asthana, J. Bull, A. Jameson 29/65

Page 30: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Comparison of Correction Functions for P = 4

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

r

gl

FRDFR

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−20

−15

−10

−5

0

5

r

∂ ∂rgl

J. Romero, K. Asthana, J. Bull, A. Jameson 30/65

Page 31: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

2D Euler: Isentropic Vortex

Test Case Parameters:

P = 4

10K Degrees of Freedom

dt = 0.01

6000 Iterations (t = 60)

J. Romero, K. Asthana, J. Bull, A. Jameson 31/65

Page 32: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

2D Euler: Isentropic Vortex

FR (nodal DG): Direct FR:

J. Romero, K. Asthana, J. Bull, A. Jameson 32/65

Page 33: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

2D Euler: Isentropic Vortex

−10 −5 0 5 100.4

0.5

0.6

0.7

0.8

0.9

1

1.1Density Solution along x−axis

x

Den

sity

[kg/

m3 ]

FRDirect FR

−10 −5 0 5 100

1

2

3

4

5

6

7 x 10−13 Magnitude of Error Between Solutions

xD

iffer

ence

Scheme Walltime [s]FR 693.8270

Direct FR 592.9168Percent Reduction 14.5%

J. Romero, K. Asthana, J. Bull, A. Jameson 33/65

Page 34: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

Recovery of Additional Stable Schemes

Beyond recovering the nodal DG scheme, numerical experimentsindicate that DFR is stable with solution points located at the zeros

of the Jacobi polynomial P(α,β)n (x), which is orthogonal on [−1, 1]

with respect to the weight:

W (x) = (1− x)α(1 + x)β

for 0 < α ≤ 0.12 and α = β

This may lead to a new family of schemes of interest.

J. Romero, K. Asthana, J. Bull, A. Jameson 34/65

Page 35: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Outline1 Brief Review of Flux Reconstruction2 Direct FR Method

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

3 Spectrally-optimal FR SchemesMotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

4 High Fidelity Turbulent Flow SimulationsHiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

5 ConclusionsJ. Romero, K. Asthana, J. Bull, A. Jameson 35/65

Page 36: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Spectral resolution

The fraction of resolved wavenumbers for which constituent waves wouldbe propagated with negligible numerical dispersion and dissipation

- The range of numerically resolved wavenumbers is limited by thegrid resolution:

uδ(x , t)|Ωδ =

kmax∫k=−kmax

uδ(k , ωδ)e i(kx−ωδt)dk

- For wave propogation problems, the numerical approximation ofderivatives provides the numerical dispersion relation

ωδ = ωδ(k)

J. Romero, K. Asthana, J. Bull, A. Jameson 36/65

Page 37: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Importance of spectral resolution in fluid phenomena

High Reynolds number flows- In DNS, to accurately capture viscous dissipation at smallestscales, the numerical scheme must add minimal artificial dissipationat high wavenumbers (Moin 1997)

Aeroacoustics- The calculation of far field noise requires acoustic waves topropogate undissipated and undispersed across several acousticwavelengths (Tam 2001)

Instabilites- Numerical dissipation at low wavenumbers can damp out physicalinstabilities, while negative numerical group velocities can lead tospurious bypass transition (Sengupta 2008)

J. Romero, K. Asthana, J. Bull, A. Jameson 37/65

Page 38: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

FR formulation for 1-D convection

Consider the linear flux f (u) = u on a uniform grid of unit spacing:

∂u

∂t+∂u

∂x= 0

Admit the fully upwinded interface flux so that the numerical updatebecomes:

d

dtuδj = −2[C0u

δj + C−1u

δj−1]

for the j th element, where C0 and C1 are discrete operators.

J. Romero, K. Asthana, J. Bull, A. Jameson 38/65

Page 39: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Bloch waves

The governing eqn. admits analytical solutions of the form:

u(x , t) = e ik(x−t) = e ik(j−t)e ik (r+1)2

where r |Ωj = 2x−xj

xj+1−xj− 1 represents the parent domain.

Project the exponential onto a polynomial basis:

uδj (t) = e ik(j−aδ(k)t)v

Admitting the above numerical solution into the numerical update:

−2i

k

(C0 + e−ikC−1

)v = aδv

J. Romero, K. Asthana, J. Bull, A. Jameson 39/65

Page 40: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Semi-discrete dispersion relation

The eigenvalue problem above results into P + 1 eigenmodes.

The eigenvalues relate directly to the numerical wavespeeds whichprovides for the numerical semi-discrete dispersion relation:

aδp(k) = aδpr(k) + iaδpi

(k)

The exact/analytical dispersion relation requires ar = 1, ai = 0

The numerical solution can be expressed as:

uδ(x , t) = ekaδp i

te ik(j−aδp r

t)v

providing the error terms:

Dispersion: e ik(1−aδp r

t)

Dissipation: ekaδp i

t

J. Romero, K. Asthana, J. Bull, A. Jameson 40/65

Page 41: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Eigenmodes for DG via FR on Gauss pts. for P = 2

Real part of the numerical wavespeed Imaginary part of the numericalwavespeed

J. Romero, K. Asthana, J. Bull, A. Jameson 41/65

Page 42: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Relative modal energies

The numerical initial condition is a projection of the exact one onto thepolynomial basis. Due to the Lagrangian nature of the basis, it is exactat solution points:

v0 = e ik (r+1)2 =

P+1∑p=1

vδpλp = VΛ

- Complex weights λp relate to thecontribution of each mode to theinitial condition.

- A measure of relative energyamong modes can be expressed as:

βp =|λp|2

P+1∑q=1|λq|2

Relative modal energies for DG, P=2on Gauss pts.

J. Romero, K. Asthana, J. Bull, A. Jameson 42/65

Page 43: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Choice of solution points

Numerical wavespeeds are independent of the choice of solution points.However, relative energies depend directly on the eigenvectors which aredefined by the location of solution points

Relative modal energies for DG, P=2on equidistant pts.

Relative modal energies for DG, P=2on Gauss-Lobatto pts.

J. Romero, K. Asthana, J. Bull, A. Jameson 43/65

Page 44: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Wave propagation error

Spectral analyses of finite difference schemes have lead to thedevelopment of several spectrally optimal compact schemes that tradeformal order of accuracy for better dispersion properties.

Tam (1993), Lele (1992), Ta’asan (1994), Kim (1996), Gaitonde (1997),Chu (1998), Adams (1996), Zhong (1998), Sengupta (2003)

FR schemes- essentially upwinded - both real and imaginary parts- need to specify relative weights for dissipation and dispersion- convenient to select the actual wave propagation error:

|ep(k , t)| = |uex(k , t)− uδ(k , t)|= |e ik(x−t) − e ik(x−cδt)| = |1− e ik(1−cδ)t |

J. Romero, K. Asthana, J. Bull, A. Jameson 44/65

Page 45: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Constrained minimization problem

An objective function for the optimization process can be specified as theenergy weighted error in wave propagation measured at a characteristictime tc = 100h/c :

η =1

(P + 1)2

P+1∑p=1

(P+1)π∫k=0

|1− e i100k(1−aδp (k))|βp(k)dk

where βp(k) is the relative modal energy of the pth mode.

The optimzation problem can then be stated as follows:

Min η(g(r),P, r0)subject to aδpimag

(k) ≤ 0 ∀k ∈ [0, (P + 1)π], p = 1, 2, ...P + 1

J. Romero, K. Asthana, J. Bull, A. Jameson 45/65

Page 46: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

O-ESFR schemes

Energy Stable Flux Reconstruction (ESFR) schemes(Vincent-Castonguay-Jameson 2011)

- Proved to be stable for linear fluxes

- Correction functions belong to a one-parameter ‘c’ family associatedwith the energy norm

- Recovers DG for c = 0, SD for c = 2P(2P+1)(P+1)(aPP!)2

? Optimal ESFR schemes (O-ESFR)- Can be obtained by optimizing over c for given P.

cDG = 0

cSD = 1.00× 10−3

cOESFR = 1.44× 10−4

J. Romero, K. Asthana, J. Bull, A. Jameson 46/65

Page 47: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

O-FR schemes

General FR scheme

- Generalized correction function on the left boundary

gL(r) =PY

q=1

(r − ζq)

1 + ζq

(r − 1)

2

- The solution space of zeros ζ of gL is of dimension P- Linear stability is not satisfied except in special subsets that may not

form subspaces

? Optimal FR schemes (O-FR) can be obtained by optimizing over theset of P available zeros subject to the constraint that the resultingscheme is stable.→ For P = 1, the O-FR scheme recovers the O-ESFR scheme→ For P > 1, the optimization procedure converges at zeros nottraced by ESFR family.

J. Romero, K. Asthana, J. Bull, A. Jameson 47/65

Page 48: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Spectrally optimal FR schemes on Gauss pts. for P = 5

Real part of the numerical wavespeedImaginary part of the numericalwavespeed

J. Romero, K. Asthana, J. Bull, A. Jameson 48/65

Page 49: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Optimal correction functions for left boundary

Left boundary correction functions for P = 5

J. Romero, K. Asthana, J. Bull, A. Jameson 49/65

Page 50: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

Numerical integration: CFL restrictions

P RK44 RK45

DG OESFR OFR c+ DG OESFR OFR c+

2 0.235 0.238 0.241 0.688 0.352 0.356 0.361 0.864

3 0.139 0.148 0.126 0.376 0.220 0.224 0.191 0.473

4 0.100 0.103 0.108 0.245 0.152 0.158 0.164 0.311

5 0.068 0.076 0.085 0.174 0.110 0.117 0.128 0.223

Limiting CFL values

- c+ is the member of the ESFR family with highest stability limit(Vincent (2011))

- RK45 is the 4th order accurate 5-stage RK scheme with enhancedstability region

J. Romero, K. Asthana, J. Bull, A. Jameson 50/65

Page 51: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

1-D advection of a sharp Gaussian

6th order standard and optimal FR schemes with an initial conditionsharper than a single element

Exact and numerical solutions (acrosstwo elements) at the end of one period

Evolution of numerical error across oneperiod

J. Romero, K. Asthana, J. Bull, A. Jameson 51/65

Page 52: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

1-D advection of a sharp Gaussian

6th order standard and optimal FR schemes with finer meshes toaccurately advect initial condition

Exact and numerical solutions (acrosstwo elements) at the end of one period

Scheme No. of elements

DG 61

Tridiag.implicit

compact FD

57

c+ 76

OFR 45

No. of elements required for < 5%error in peak amplitude across oneperiod

J. Romero, K. Asthana, J. Bull, A. Jameson 52/65

Page 53: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

MotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

1-D advection of a high-wavenumber packet

6th order standard and optimal FR schemes with an initial condition as apacket centered at half of Nyquist limit

Exact and numerical solutions (acrosstwo elements) at the end of one period

Evolution of numerical error across oneperiod

J. Romero, K. Asthana, J. Bull, A. Jameson 53/65

Page 54: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

HiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

Outline1 Brief Review of Flux Reconstruction2 Direct FR Method

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

3 Spectrally-optimal FR SchemesMotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

4 High Fidelity Turbulent Flow SimulationsHiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

5 ConclusionsJ. Romero, K. Asthana, J. Bull, A. Jameson 54/65

Page 55: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

HiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

HiFiLES: Open Source High Fidelity Large EddySimulation Code

High-Order via Flux Reconstruction scheme

RANS/LES

GPU/CPU scalability

Shock capturing

Unstructured grids

4th order explicit time-stepping

J. Romero, K. Asthana, J. Bull, A. Jameson 55/65

Page 56: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

HiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

Taylor Green Vortex - 64x64x64 mesh, 3rd order DG

Q criterion colored by velocity magnitude at 2.5, 5.0, 7.5 and 10.75 secondsJ. Romero, K. Asthana, J. Bull, A. Jameson 56/65

Page 57: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

HiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

Taylor Green Vortex - Comparison to Beck and Gassner DG

Time

Dis

sip

ati

on

Ra

te -

dk

/dt

0 2 4 6 8 10 12 14 16 18 200

0.002

0.004

0.006

0.008

0.01

0.012

0.014

DNS128x264x432x816x16

Time

Dis

sip

ati

on

Ra

te -

dk

/dt

6 8 10 12

0.01

0.011

0.012

0.013 DNS128x264x432x816x16

2 = 1.5 N = 1 N = 3 N = 152563

2563

t = 8s N = 1

N = 3

N = 15

643

h

Re = 1600

2

Left: 3rd order DG via FR (Bull and Jameson 2014)Right: 3rd order filtered DG (Beck and Gassner 2012)

J. Romero, K. Asthana, J. Bull, A. Jameson 57/65

Page 58: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

HiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

Taylor Green Vortex - Kinetic energy and dissipation rate

0 5 10 15 20Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Norm

aliz

ed tu

rbul

ent k

inet

ic e

nerg

y

SD-16x4SD-32x4SD-64x4DRP-512

0 5 10 15 20Time (s)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Dis

sipa

tion

Rate

SD-16x4SD-32x4SD-64x4Beck DG-64x4DRP-512

Kinetic energy k (left) and dissipation rate −dk/dt (right) using 3rd order SDvia FR on 16x16x16, 32x32x32 and 64x64x64 meshes vs. DG (Beck andGassner 2012) and DNS using dispersion relation preserving (DRP) scheme(Debonis 2013)

J. Romero, K. Asthana, J. Bull, A. Jameson 58/65

Page 59: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

HiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

Taylor Green Vortex - Vorticity-based dissipation rate

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0Time (s)

0.0090

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

0.0130D

issi

patio

n Ra

teDG-32x4SD-32x4OFR-32x4DRP-128DRP-512

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0Time (s)

0.0090

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

0.0130

Dis

sipa

tion

Rate

DG-32x5SD-32x5OFR-32x5DRP-128DRP-512

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0Time (s)

0.0090

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

0.0130

Dis

sipa

tion

Rate

DG-32x6SD-32x6OFR-32x6DRP-128DRP-512

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0Time (s)

0.0090

0.0095

0.0100

0.0105

0.0110

0.0115

0.0120

0.0125

0.0130

Dis

sipa

tion

Rate

DG-32x7SD-32x7OFR-32x7DRP-128DRP-512

Vorticity-based dissipation rate using DG, SD and OFR schemes on 32x32x32mesh at 3rd-6th orders (Bull and Jameson 2014)

J. Romero, K. Asthana, J. Bull, A. Jameson 59/65

Page 60: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

HiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

Taylor Green Vortex - Energy spectra

102

10−8

10−6

10−4

k

E(k

)

DG−32x6SD−32x6OFR−32x6spectral

Close-up of energy spectrum at 9 seconds computed using 5th order DG, SDand OFR on 32x32x32 mesh vs. spectral DNS (Carton de Wiart et al. 2014)

J. Romero, K. Asthana, J. Bull, A. Jameson 60/65

Page 61: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

HiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

Flow Over a Supersonic NACA 0012 Airfoil

0.4

0.8

1.2

1.6

Density

0.299

1.88

0.4

0.8

1.2

1.6

2sensor

0.05

2.01

Density (left) and shock sensor (right) in flow over a NACA 0012 airfoil atMach 1.2 and 5 AoA using 6th order FR

J. Romero, K. Asthana, J. Bull, A. Jameson 61/65

Page 62: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

HiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

LES of Flow Over a Square Cylinder at Re = 22, 000

3rd order SD and WALE model on tetrahedral mesh with 130k elements.Isosurface of Q criterion colored by velocity magnitude.

J. Romero, K. Asthana, J. Bull, A. Jameson 62/65

Page 63: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Outline1 Brief Review of Flux Reconstruction2 Direct FR Method

Description of MethodAdvantages of New FormulationProof of Equivalency to Nodal DGNumerical ResultsRecovery of Additional Stable Schemes

3 Spectrally-optimal FR SchemesMotivationModal analysisOptimal Flux Reconstruction schemesNumerical results

4 High Fidelity Turbulent Flow SimulationsHiFiLES: Open Source High Fidelity Large Eddy Simulation CodeTaylor Green VortexShock CaptureLarge Eddy Simulation

5 ConclusionsJ. Romero, K. Asthana, J. Bull, A. Jameson 63/65

Page 64: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Conclusions

DFR is a simplification of nodal DG which may lead to a new familyof schemes

Spectrally optimal FR schemes allow higher accuracy withoutcompromizing formal order, stability, or speed. This may enable theextension of FR to industrial applications in aeroacoustics andturbulence.

Initial simulations of the Taylor-Green vortex using OFR (Bull et. al.2014) have been shown to capture the inertial range better thanconventional FR schemes.

J. Romero, K. Asthana, J. Bull, A. Jameson 64/65

Page 65: Recent Developments in the Flux Reconstruction Methodaero-comlab.stanford.edu/Papers/AFOSR-Meeting-Jul-2014.pdf · Joshua Romero, PhD candidate Kartikey Asthana, PhD candidate Jonathan

Brief Review of Flux ReconstructionDirect FR Method

Spectrally-optimal FR SchemesHigh Fidelity Turbulent Flow Simulations

Conclusions

Questions?

J. Romero, K. Asthana, J. Bull, A. Jameson 65/65


Recommended