+ All Categories
Home > Documents > Reduced-order models for uncertainty quantification and ... · Reduced-order models for...

Reduced-order models for uncertainty quantification and ... · Reduced-order models for...

Date post: 19-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
15
Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio Quarteroni Andrea Manzoni MOX-Dipartimento di Matematica Politecnico di Milano (Italy) MATH-CMCS Modelling and Scientific Computing EPFL (Switzerland)
Transcript
Page 1: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

Reduced-order models for uncertainty quantification and parameter estimation in cardiac models

Stefano Pagani

Alfio Quarteroni Andrea Manzoni

MOX-Dipartimento di Matematica Politecnico di Milano (Italy)

MATH-CMCS Modelling and Scientific Computing EPFL (Switzerland)

∫∆ ∆

Page 2: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

Challenging issues:

I computational complexity of full-order models (e.g. finite element method);

I noisy clinical data;

I uncertainties related to geometry, (partially known) physical coefficients,

boundary/ initial conditions.

Clinical

data

segmentation +meshing

sensitivity analysis forward UQ

Pipeline

potential recordings

Forward model

parameter estimation backward UQ

evaluation of new scenarios

Parameter selection Personalization Prediction

imaging

Pre-processing

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Integrating data within mathematical models

Stefano Pagani

electrophysiology electromechanics

Page 3: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

Many-query problems:

I parameter selection for reducing the uncertainty space dimension (sensitivity

analysis);

I uncertainty propagation on outputs of clinical interest (forward UQ);

I parameter estimation for model personalization (backward UQ).

Clinical

data

segmentation +meshing

sensitivity analysis forward UQ

Pipeline

potential recordings

Forward model

electrophysiology electromechanics

parameter estimation backward UQ

evaluation of new scenarios

Parameter selection Personalization Prediction

imaging

Pre-processing

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 100 200 300 400

t [ms]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Integrating data within mathematical models

Stefano Pagani

Page 4: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

sensitivity analysis forward UQ

Forward model

parameter estimation backward UQ

Parameter selection Personalization

Methods

Stefano Pagani

SURROGATE MODELs

LOCAL Reduced Order Modelslocal approximation of both nonlinear term and solution

kriging and GP-based ROM error surrogate (ROMES)

Variance-based sensitivity analysis for parameter selection

RB-MCMC sampling procedure

Reduced basis Ensemble Kalman filter for sequential state/parameter estimation

ROMES for time-dependent outputs

electrophysiology electromechanics

- S. Pagani, A. Manzoni, A. Quarteroni. “Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method”. In preparation, 2017.

- D. Bonomi. “Reduced order models for the parametrized cardiac electromechanical problem”. PhD Thesis (2017).

- M. Drohmann and K. Carlberg. “The ROMES method for statistical modeling of reduced-order-model error”. SIAM/ASA Journal on Uncertainty Quantification, 3(1):116–145, 2015.

- S. Pagani. “Reduced-order models for inverse problems and uncertainty quantification in cardiac electrophysiology”. PhD Thesis (2017).

- S. Pagani, A. Manzoni and A. Quarteroni. “Efficient state/parameter estimation in nonlinear unsteady PDEs by a reduced basis ensemble Kaman filter”. SIAM/ASA Journal on Uncertainty Quantification, 5(1): 890–921, 2017.

- A. Manzoni, S. Pagani and T. Lassila. “Accurate solution of Bayesian inverse uncertainty quantification problems using model and error reduction methods”. SIAM/ASA Journal on Uncertainty Quantification, 4(1):380–412, 2016.

Page 5: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

Vh

Mh

uh(µ1)

uh(µN )

uh(µ2)

∈ ∈

uh(µ1), . . . , uh(µ

N )uh(µn)

Goal: compute efficiently the solution of a problem when a set of parameters vary

Reduced basis method in a nutshell

Stefano Pagani

µ

µN

µ1

µ2

µ1P

µ2

µd

• parameter-dependent PDEs(e.g. cardiac electrophysiology, nonlinear mechanics, coupled electro-mechanics,…)

• (un)steady (non)linear PDEs• physical/geometrical parameters material coefficients electrical conductivities initial/boundary data geometrical configuration …

uh(µd)

Page 6: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

I Idea: Galerkin approximation on a low dimensional subspace Vn Vh (reduced

basis space) of dimension nNh = dim(Vh).

Test case: forward problem

=Ah fhuh =un fnAn

Finite Elements method Reduced Basis method

Nh ! n

uh

ϕi

φi

un

un(x;µ) =

nX

i=1

un

iφi(x)uh(x;µ) =

NhX

i=1

uh

iϕi(x)

Linear steady case:

Stefano Pagani

Reduced basis method in a nutshell

Page 7: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

µ

µN

µ1

µ2

µ1P

µ2

Vh

Mh

uh(µ1)

uh(µ2)

uRB Approximation (new parameter value)

) un(µ)) : µ ∈ P

A numerical example

Stefano Pagani

Reduced basis method in a nutshell

) Pn

• parameter-dependent PDEs(e.g. cardiac electrophysiology, nonlinear mechanics, coupled electro-mechanics,…)

• (un)steady (non)linear PDEs• physical/geometrical parameters material coefficients electrical conductivities initial/boundary data geometrical configuration …

φ1

φ2

φn

µd

=un fnAn

Vn = spanφ1, . . . ,φ

n

uh(µd)

Page 8: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

I Construction of the subspace: proper orthogonal decomposition (POD) on the

set of high-fidelity snapshots u(`)h (µ) and w

(`)h (µ).

Given a training set Ptrain ⊂ P of Ntrain parameter vectors, we compute the so-called

snapshots matrix by solving the full-order system for each µ ∈ Ptrain:

Su = [uh(t(0);µ1),uh(t

(1);µ1), . . . ,uh(t(0);µ2),uh(t

(1);µ2), . . . , ] ∈ RNh×Ns ,

of dimensions Nh×Ns , with Ns =NtrainNt .

The POD technique selects as basis functions φi of the reduced-space the first n left

singular vectors of the snapshots matrix Su .

Su =

φ1 . . .φn . . . φN

σ1

. . .

σN

ζT1

...

ζTN

.

I ROM: projection of the full-order arrays on the reduced subspace Vn through an

orthogonal projection.

Test case: forward problem

Stefano Pagani

=Ah fhuh

=un fnAn

Finite Elements method Reduced Basis method

Nh ! n

uh

ϕi

φi

un

un(x;µ) =

nX

i=1

un

iφi(x)uh(x;µ) =

NhX

i=1

uh

iϕi(x)

=

=

An

fn

Ah

fh

VVT

VT

V = [φ1, . . . , φn]

Stefano Pagani

Galerkin projection

∈ ∈

uh(µ1), . . . , uh(µ

N )

Page 9: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

I To deal efficiently with the nonlinear terms at the reduced order level we employ

the discrete empirical interpolation method (DEIM)

N(un;µ)≈ VTU(PT

U)−1

| z

n×mD

N(PTVun;µ)

| z

mD×1

.

Procedure:

I compute the snapshots matrix of the nonlinear term N:

SN = [N(u(1)h ;µ1),N(u

(2)h ;µ1), . . . ,N(u

(1)h ;µ2),N(u

(2)h ;µ2) . . .] ∈ R

Nh×Ns ;

I compute the matrix of basis functions U= [φ1, . . . ,φmD] by applying the POD

technique on SN ;

I select mD degrees of freedom i1, . . . , imD and construct the index matrix

P= [ei1 , . . . ,eimD] (ei )j = δij .

Reduced-mesh: we need to assemble the nonlinear operator on the elements related

to the degrees of freedom i1, . . . , imD selected by the DEIM algorithm.

Test case: forward problem

S. Chaturantabut and D. C. Sorensen. “Nonlinear model reduction via discrete empirical interpolation”. SIAM J. Sci. Comp., 32(5):2737–2764, 2010

Discrete empirical interpolation method

March 1, 2017Stefano Pagani

Page 10: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

I Warning: for advection dominant or traveling front problem it is difficult to

ensure that nNh.

µ

µN

µ1

µ2

µ1P

µ2

Vh

Mh

uh(µ1)

uh(µ2)

φ1

n

A numerical example

Stefano Pagani

Local Reduced basis method

µd

=un fnAn

uh(µd)

V i

n= spanφi

1, . . . ,φi

ni i = 1, . . . , Nc

φ1

1

φ1

2

φ2

n

φ2

2

φ2

1

Pi

n

Tested clustering techniquesfor offline snapshots subdivision:• time based• parameter based• state based: -projection error based

-k-means

S. Pagani, A. Manzoni, A. Quarteroni. “Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method”. In preparation (2017).

Page 11: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

We consider the Monodomain equation (tissue ΩH level) coupled with the

Aliev-Panfilov model (cell level): find u(x ,t) and w(x ,t) such that8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Am

Cm∂u

∂ t+Ku(u−a)(u−1)+wu

−div(D(x)∇u) = AmIapp(t) in ΩH ,t ∈ (0,T )

∂w

∂ t=

ε0+c1w

c2+u

(−w −Ku(u−a−1)) in ΩH ,t ∈ (0,T )

∇u(t) ·n= ∇w(t) ·n= 0 on ∂ΩH ,t ∈ (0,T )

u(0) = u0 w(0) = w0 in ΩH ,t = 0,

Under the assumption that the left-ventricle tissue is an axisymmetric anisotropic

media the conductivity tensor is given by:

D(x) = σt I+(σl −σt) f0(x)⊗ f0(x),

where f0(x) is a vector parallel to the fiber direction at any point x ∈ΩH .

Finally f0 is rotated with from an angle θepi on the epicardium to an angle θendo on

the endocardium with the following relationship:

θ = (θepi −θendo)r − r1

r2− r1+θendo .

Stefano Pagani

Test case

Page 12: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

Stefano Pagani

Influence of the parameters on the solution

Fig: activation times on varying the epicardial and the endocardial angle of the fibers

Fig: activation times on varying the longitudinal and the traversal conductivity

Page 13: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

Ingredient: a criterium for the subdivision of the snapshots matrix.

Su = [. . . ,u(30)h (µ1), . . . ,u

(100)h (µ1), . . . ,u

(180)h (µ1), . . . ,u

(10)h (µ2), . . . ,u

(150)h (µ2), . . .].

Algorithm:

1. Su is partitioned into Nc submatrices Sku , k = 1, . . . ,Nc ;

2. SI (matrix of nonlinear term snapshots) is partitioned into Nc submatrices SkI ,

k = 1, . . . ,Nc ;

3. the localized basis functions are constructed through the POD technique applied

to each Sku and Sk

I , k = 1, . . . ,Nc ;

4. the reduced arrays forming the reduced system are computed by means of the

Galerkin projection.

Stefano Pagani

Local ROM method

Page 14: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

S1

u, . . . ,S

k

u = argmin

Su

NcX

k=1

X

uh∈Sku

kuh − ck

hk

Nc

Stefano Pagani

K-means clustering

c1

hc2

hc3

hc4

h c5

h

c6

hc7

h c8

hc9

hc10

h

2

Page 15: Reduced-order models for uncertainty quantification and ... · Reduced-order models for uncertainty quantification and parameter estimation in cardiac models Stefano Pagani Alfio

2

Stefano Pagani

Results

Localized reduced-order model based on k-means clustering

Finite elements DOFs: 31764Number of Elements: 140271

POD/DEIM ROM speedup: 4.6x

Parameters μ: - epicardial and endocardial angles

-longitudinal and traversal conductivities

max # basis functions: 192min # basis functions: 11

Localized ROM speedup 25.2x

log10(|uh − un|)un

local ROM reduction errorFOM

uh


Recommended