+ All Categories
Home > Technology > Reduced size m3 ft 15sn08180210 hansen

Reduced size m3 ft 15sn08180210 hansen

Date post: 16-Jan-2017
Category:
Upload: sandia-national-laboratories-energy-climate-renewables
View: 84 times
Download: 5 times
Share this document with a friend
230
Transcript
Page 1: Reduced size m3 ft 15sn08180210 hansen
Page 2: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop ii January 30, 2015

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents

that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by

trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

Page 3: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop January 30, 2015 iii

Page 4: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop iv January 30, 2015

ACKNOWLEDGEMENTS

We are delighted with the organization and assembly of these Proceedings provided by Laura A. Connolly of Sandia National Laboratories. LeAnn Mays, Shannon Casey and V. Dina Howell of Sandia National Laboratories were instrumental in organizing and facilitating the workshop in real-time. Of course, the value of this workshop is measured by advancement of the safety basis for salt disposal. To that end, the authors of these Proceedings owe a debt of gratitude to contributing researchers, who continue to illuminate the path of excellence.

Page 5: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop v January 30, 2015

ABSTRACT

The 5th US/German Workshop on Salt Repository Research, Design, and Operation was held in Santa Fe New Mexico September 8-10, 2014. The forty seven registered participants were equally divided between the United States (US) and Germany, with one participant from The Netherlands. The agenda for the 2014 workshop was under development immediately upon finishing the 4th Workshop. Ongoing, fundamental topics such as thermomechanical behavior of salt, plugging and sealing, the safety case, and performance assessment continue to advance the basis for disposal of heat-generating nuclear waste in salt formations. The utility of a salt underground research laboratory (URL) remains an intriguing concept engendering discussion of testing protocol. By far the most interest in this years’ workshop pertained to operational safety. Given events at the Waste Isolation Pilot Plant (WIPP), this discussion took on a new sense of relevance and urgency.

The Proceedings summary is divided into a four major areas of discussion, which include operational safety, geomechanics issues, URL concepts, and capturing early evolution of excavation in salt. Performance assessment and the safety case are also central and ongoing themes of these workshops and have been summarized in previous Proceedings. Details can be found in Appendix E, where all presentations and abstracts are available.

1. Operational Safety. Operational safety was undertaken as a new topic. The workshop agenda was established before the incidents at the WIPP occurred: a truck fire on February 5 and a radiological release on February 14, 2014. However, these serious operational events provided sharp focus and tangible reality to the topic of operational safety. Participants gained deeper appreciation for the seriousness of operational safety and the complexity involved with recovery from off-normal events. Design of salt repository for high-level waste and spent nuclear fuel takes into account retrievability and safety requirements. Examples are provided in the main text as well as a synopsis of material presented on this topic at the 5th Workshop.

2. Geomechanics Issues. As the participants continue collaboration we examine the scientific basis for disposal of heat-generating nuclear waste in salt. With an abundance of scientific information in hand, the group is challenged to articulate remaining geomechanics issues for this purpose. The scientific technical foundation supporting a licensed salt repository has been developed in the US and Germany for many years. Although the level of effort has been inconsistent and discontinuous over this period, site characterization activities, laboratory testing, field-scale experiments, and advanced computational capability provide information and tools required for a license application, should any nation make that policy decision. Ample scientific bases exist to develop a safety case in the event a site is identified and governing regulations promulgated. Some of the key remaining geomechanics issues pertain to application of advanced computational tools to the repository class of problems, refinement of constitutive models and their validation, reduction of uncertainty in a few areas, operational elements, and less tractable requirements that may arise from regulators and stakeholders. These issues pertaining to salt repositories are being addressed in various research, development and demonstration activities in the US and Germany, including extensive collaborations. Research areas such as constitutive models and performance of geotechnical barriers have industry applications beyond repositories. The workshop context pertains to development of a license application, rather than an exploration of the entire breadth of salt research. While esoteric salt-specific phenomenology and micromechanical processes remain of interest, they are not specifically examined in these collaborations to date. The importance of various geomechanics issues and their associated prioritization are subject to ongoing discussion.

3. Underground Research Laboratory. Evaluating the basis of need for a URL for salt science and engineering is imperative because of the significant commitment of time and money required.

Page 6: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop vi January 30, 2015

Decades of salt repository studies, numerous experiments, and sophisticated modeling capabilities underpin the scientific basis that supports safe disposal of nuclear waste in salt. The safety case for disposal of non-heat-generating waste such as transuranic waste interred at the WIPP is robust, with the only long-term releases to the environment projected to be by way of human intrusion. The scientific evidence also favors safe disposal of heat-generating waste. Technical evaluations for disposal of heat-generating waste in salt experienced a rather long hiatus in the US subsequent to certification of the WIPP (1999) and issuance of the Nuclear Waste Policy Act Amendment (1987) that ended salt disposal research for the civilian nuclear waste program. Similar salt repository research in Germany was delayed by a ten-year moratorium that ended in 2010. In collaboration with German peers, the US Department of Energy has reviewed and evaluated thermally driven processes in salt disposal and identified key technical areas in which to prioritize resources. The goal for disposal research in salt is to provide sufficient technical information to license a repository successfully. The necessity or utility of a salt underground laboratory is to be evaluated in the context of an overall research agenda that supports a license application. It is to be mentioned that both in the advanced programs and also in the less advanced ones URLs are considered to be indispensable especially to perform experiments and demonstration activities under repository like conditions.

4. Capturing Early Evolution of Salt Excavations. In situ tests implemented in a research facility mined from salt deposits, if planned appropriately, provide an opportunity to characterize the evolution of the host rock before, during, and after excavation of test rooms. Characterization of the test bed is essential to interpret structural deformation, formation and evolution of the disturbed rock zone, and measurement of first-order properties as the salt evolves from an impermeable undisturbed state to a more-permeable state. Geophysical measurements are identified to characterize the initial state of a test bed and its evolution over the course of a field test. Discussion includes what measurements could be made, why the measurements would be made, how they are made, and how accurately they need to be made. Quantifiable parameters will establish field-scale boundary conditions and data quality objectives to characterize the test bed in an underground salt research facility. This work ties together model prediction and confirmation of geophysical phenomena that are basic to the goals of the US/German salt workshops.

Principal evolutionary measurements make it possible to monitor geomechanical response and the associated changes in permeability. This progression will help establish boundary conditions for later tests conducted within the excavations. Pretest predictions of the response include strain magnitudes, room closure, and margins of the damaged zone. In turn, evolutionary measurements themselves will allow assessment of the predictive capability. Geomechanics modeling provides a basis for data quality objectives, which help define instrumentation requirements. Sufficient detail is provided to install gauges, conduct tests, and describe applicable functional and test-specific requirements. This type of forward thinking provides a primary means to reach and document consensus on all aspects of a test or experiment, including design, cost, schedule, interface controls, and data management. It might be interesting to consider such activities as a part of a monitoring program.

Collaborators continue to compile an international catalogue for Features, Events and Processes (FEPs) pertaining to the safety case for disposal of heat-generating nuclear waste in salt referring to existing catalogues for domal and bedded salt. Differences and similarities between bedded and domal salt are being examined. The goal is to have available a FEPs catalogue for use by the Nuclear Energy Agency (NEA) Salt Club members. The catalogue will identify and classify FEPs leading to a comprehensive list. A subset of the most important FEPs that individually or in combination contribute to long-term repository performance will be compiled using a new documentation template and numbering system. Overall, this is a large effort that will eventually become a product of the NEA Salt Club.

Page 7: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop vii January 30, 2015

These Proceedings conclude with certain reflections on progress made. Our focus remains on issues pertaining to salt repository research, design and operation. We continue to challenge ourselves to develop products collaboratively that objectively document progress and deliver resources to external groups. As particular topics mature, new themes are added. In the following Proceedings, four selected topics noted above are developed in detail. Specific additional reference detail can be acquired from the abstracts, source references found throughout, and oral presentation slides included in Appendix D of this document.

Page 8: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop viii January 30, 2015

CONTENTS

ACKNOWLEDGEMENTS ......................................................................................................................... iv

ABSTRACT .................................................................................................................................................. v

CONTENTS ............................................................................................................................................... viii

TABLE OF FIGURES ................................................................................................................................. ix

ACRONYMS ................................................................................................................................................ x

1 STATEMENT OF SIGNIFICANCE .................................................................................................... 1

2 INTRODUCTION ................................................................................................................................ 2

3 DESIGN AND OPERATIONAL SAFETY ......................................................................................... 3

3.1 Design Safety ................................................................................................................. 3

3.2 Operational Safety ........................................................................................................... 5

4 GEOMECHANICS ISSUES................................................................................................................. 6

4.1 Evolution ....................................................................................................................... 7

4.2 Modeling ........................................................................................................................ 9

4.3 US/German Collaboration .............................................................................................. 11

4.4 Lessons Learned from the VSG ....................................................................................... 12

4.5 Geomechanics Going Forward ........................................................................................ 14

5 A URL IN THE CONTEXT OF SALT DISPOSAL RESEARCH .................................................... 16

5.1 Discussion .................................................................................................................... 17

5.2 Framework ................................................................................................................... 18

5.3 Use of the URL ............................................................................................................. 19

5.4 Concluding Remarks on Salt URLs ................................................................................. 19

6 CAPTURING EARLY EVOLUTION OF SALT OPENINGS .......................................................... 20

6.1 Salt Behavior ................................................................................................................ 21

6.1.1 Geomechanical Measurements .................................................................................21

6.1.2 Room Closure ........................................................................................................22

6.1.3 Damage Evolution ..................................................................................................22

6.2 Structural Analysis ........................................................................................................ 22

6.2.1 Geomechanics Modeling .........................................................................................23

6.2.2 Results ..................................................................................................................23

6.3 Permeability Measurements ............................................................................................ 24

6.3.1 Gas Flow ...............................................................................................................25

Page 9: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop ix January 30, 2015

6.3.2 Brine Flow ............................................................................................................25

6.3.3 Data Quality Objectives ..........................................................................................26

7 CONCLUDING REMARKS .............................................................................................................. 26

8 REFERENCES ................................................................................................................................... 29

APPENDIX A: AGENDA .......................................................................................................................... 33

APPENDIX B: WELCOME ADDRESS: ................................................................................................... 37

APPENDIX C: LIST OF PARTICIPANTS AND OBSERVERS FROM 5th WORKSHOP .................... 41

APPENDIX D: PRESENTATIONS ........................................................................................................... 43

TABLE OF FIGURES

Figure 3.1: Site-specific design of a repository- drift disposal concept (basis: VSG design) in view of retrievability ................................................................................................................................ 5

Figure 4.1. Creep of rock salt. a) Extension of a power law creep model to low stresses compared to measurements at low creep stresses. b) Creep tests results of WIPP-samples at different temperatures (clean salt strata), approximated with the constitutive Günther-Salzer law. .......................................... 8

Figure 4.2. Permeability-porosity data sets for crushed salt and mixtures. ............................................ 9

Figure 4.3. Benchmarking Room D deformation..............................................................................11

Figure 4.4. Simplified NW-SE geological cross-section of the Gorleben salt dome. .............................13

Figure 6.1. Damage contours from Geomechanics models. ...............................................................23

Figure 6.2 Displacements as a function of position between observation drift and test drift. ..................24

Page 10: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop x January 30, 2015

ACRONYMS

ABC Actinide and Brine Chemistry (Workshop) ARMA American Rock Mechanics Association BAMBUS Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt / Germany BGR Federal Institute for Geosciences and Natural Resources (Germany) BMU Bundesministerium für Umwelt (German Federal Ministry for the Environment, Nature

Conservation and Nuclear Safety) BMWi Federal Ministry for Economic Affairs and Energy (Germany) BSEP Brine Sampling and Evaluation Program DBE Tec DBE Technology GmbH DOE Department of Energy DOPAS Full Scale Demonstration of Plugs and Seals DQO Data Quality Objective DRZ Disturbed Rock Zone EC European Commission EDZ Excavation Damaged Zone ELSA Schachtverschlüsse für Endlager für hochaktive Abfälle (Shaft Seals for Repositories for High-Level Radioactive Waste) EM Office of Environmental Management EPA Enivronmental Protection Agency EWG Containment Providing Rock Zone FEPs Features, Events, and Processes GRS Gesellschaft für Anlagen- und Reaktorsicherheit mbH HLW High-Level Waste IAEA International Atomic Energy Agency IfG Institut für Gebirgsmechanik GmbH IGD-TP Implementing Geological Disposal of Radioactive Waste Technology Platform KIT Karlsruhe Institute of Technology MoDeRn Monitoring Development for Safe Repository Operation and Staged Closure MoU Memorandum of Understanding MPBX Multipoint Borehole Extensometer NE Office of Nuclear Engineering NEA Nuclear Energy Agency NRC Nuclear Regulatory Agency NWTRB Nuclear Waste Technical Review Board OECD Organisation for Economic Co-operation and Development PTKA-WTE Project Management Agency, Water Technology and Waste Management R&D Research and Development RD&D Research Development and Demonstrations REPOPERM Restporosität und permeabilität von kompaktierendem Salzgrus-Versatz SIERRA Sandia Integrated Environment for Robust Research Algorithms

Page 11: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop xi January 30, 2015

SNL Sandia National Laboratories THM Thermal Hydrological Mechanical TU Technical University TUBS Technical University Braunschweig URL Underground Research Laboratory US United States VSG Vorläufige Sicherheitsanalyse Gorleben (Preliminary Safety Analysis) WIPP Waste Isolation Pilot Plant

Page 12: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 1 January 30, 2015

Proceedings of the 5th US/German Workshop on Salt Repository Research, Design and Operation

Meeting Venue: La Fonda Hotel

Santa Fe New Mexico September 8-10, 2014

Frank D. Hansen and Christi Leigh, Sandia National Laboratories (SNL)

Walter Steininger, Karlsruhe Institute of Technology (KIT)/(PTKA-WTE)

Wilhelm Bollingerfehr and Thilo von Berlepsch, DBE Technology GmbH

1 STATEMENT OF SIGNIFICANCE The German Ministry collaborates with the United States (US) salt researchers under a Memorandum of Understanding signed by the US Department of Energy (DOE) and Federal Ministry for Economic Affairs and Energy in Germany (BMWi), a reflection of a long and trusted cooperation. This agreement has allowed salt repository engineers and scientists to advance the basis for salt disposal in the US and Germany.

Through these collaborations, past-present-and-future research is evaluated, which in turn illuminates the frontier of salt repository research, development and demonstration. In addition, collaboration between the US and Germany helps preserve knowledge, while at the same time mentoring the next generation of salt repository scientists. Together, the nations of Germany and the US define and explore salt-repository knowledge established in both countries over many years.

Under the patronage of the Organisation for Economic Co-operation and Development’s (OECD´s) Nuclear Energy Agency (NEA), recent collaborations have advanced an international Salt Club which permits stewardship of national programs in Germany and the US while providing derivative benefit to the international community.

Building the scientific basis for salt disposal combines the extensive knowledge from Germany on domal salt structures with that from the US on bedded salt formations. Collectively, salt researchers combine the technical basis for salt disposal in either geologic setting as their national site selection programs moves forward.

Partnerships among researchers on salt repositories ensure that science and engineering effective at the state of the art is accomplished. Bringing together the best minds in salt repository research, design and operation addresses a wide breadth of issues and facilitates the capability to dive deeply into selected issues.

Collaboration helps extend budgets of both countries, broadens personnel capabilities, and improves productivity over time. A prime example is a Joint Project (JP) between German and US modelers. This benchmarking exercise tests the best-in-the-world salt constitutive models on high-end computing platforms. This collaboration will identify the best modeling tools for future salt repository design, analysis, and performance assessment.

Although Germany and the US have collaborated for many years, workshop proceedings document solidification of the recent relationships enriched by the historic past and which sets the mutual programs on a productive course.

Page 13: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 2 January 30, 2015

2 INTRODUCTION Proceedings of the 5th US/German Workshop on Salt Repository Research, Design, and Operation provide a summary of the sequence of presentations and discussions and deliver a record of our workshop activities. Since restarting close US/German collaborations in 2010, annual workshops have assembled invited key investigators in salt repository science and engineering to address a coordinated research agenda. The authors of these Proceedings have functioned as the primary coordinators of these workshops and they are responsible for the scientific agenda and reporting. The workshops were put together for the mutual benefit of the US and German salt repository programs, which face the challenges of preserving and improving capabilities in salt repository science and technology.

US and German researchers have collaborated in salt repository research since the 1970s, where early collaboration between the US and West Germany involved thermal testing in the Asse Mine. Steininger and Hansen recount a chronology of salt repository research in the first presentation of these Proceedings. Note: all workshop presentations are provided in Appendix E. Techniques for waste emplacement and demonstration have been executed in Germany and the US. Instruments, tools and methodologies for modelling used in the safety assessment have been substantially developed and applied. Scientific work on salt repositories for nuclear waste is augmented by national programs in solution mining, strategic petroleum reserve, and traditional salt and potash mining where real-world applications are proven.

Direct collaborations between Germany and the US on salt disposal of heat-generating waste experienced a ten-year hiatus between 2000 and 2010 owing to political decisions and a formal moratorium in

Germany. When the moratorium lifted in 2010, representatives of institutions in both countries wished to renew collaborations and cooperation on overall salt repository science, to coordinate a potential research agenda of mutual interest, and to leverage collective efforts for the benefit of their respective programs. Thereupon, the first of the new US/German Workshops on Salt Repository Research, Design and Operation collaboration was organized. Initial intentions were to exchange experiences and know-how to inculcate external expertise and feedback. Perceived benefits were first to make science-based recommendations on the pros and cons of the host rock, to add mutual value while sharing costs, and to garner internationally held opinions as well as facts.

By the time of this 5th Workshop, accomplishments and on-going activities include an impressive portfolio, [Steininger et al. 2013] all recorded and accessible electronically at our website

(http://energy.sandia.gov/page_id=17258). At a high level, US/German collaboration is conducted under a Memorandum of

This annual workshop is a poster child of our cooperation. There is a long tradition of co-operation between the US and Germany dating back to the 1970s. Some of our American colleagues were part of the research being done then, especially in the underground laboratory in the Asse research mine in Germany. We well remember the famous “BAMBUS” project, the world’s first long-term demonstration experiment.

Changes in political priorities in both countries repeatedly led to the joint research work being put on hold. However, in the scientific community the view prevailed that it is indeed technically feasible to construct, operate, and safely close final repositories within salt rock formations.

Starting in 2009, both countries have again been more open-minded about rock salt to host final repositories and thus reverted back to the long-standing tradition of German-US co-operation in this area. So far, four workshops have been held as part of the effort to share scientific experience and resume our fruitful co-operation.

Dr. Pape—Welcome Address Excerpt

(Complete Text in Proceedings)

Page 14: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 3 January 30, 2015

understanding between our federal agencies. Results of our cooperation contribute to the OECD/NEA Salt Club. Significant reported work thus far includes natural analogues, a FEPs catalogue for salt, a state-of-the-art report on granular salt reconsolidation and a salt knowledge archive.

Engagement between researchers has given rise to many derivative activities. Notable is collaboration in the Joint Project on benchmarking constitutive models for rock salt between Sandia National Laboratories (SNL) and German organizations. Presentations on the third part of the Joint Project (JPIII) are provided by Hampel and Argüello in Appendix E. Collaborators also advance salt science in related conferences and workshops, such as the American Rock Mechanics Association (ARMA) conferences, Mechanical Behavior of Salt Symposia, and the annual Waste Management conference. Reinvigoration of salt research is strikingly apparent at the 2014 ARMA conference, which entertained five sessions on salt with many contributions made by US/German collaborators. Collective efforts were completed and reported in the European Commission (EC) Euratom-Project 7th Framework Program called Monitoring Development for Safe Repository Operation and Staged Closure (MoDeRn). Ongoing collaboration and information exchange in the area of safety case encompass a joint activity on Handling of Uncertainties in the framework of the IGD-TP (Implementing Geological Disposal of Radioactive Waste Technology Platform http://www.igdtp.eu).

This 5th Workshop carries on a content-rich tradition with the addition of the topic of Operational Safety. A keynote address was provided by J. Stephen Rottler of SNL (complete presentation is provided in Appendix E). In addition to JPIII modelling, laboratory testing, repository design, plugging and sealing, safety case and performance assessment, notes from the Salt Club, and other collaboration topics were covered at the 5th Workshop. As always, advanced and mature considerations are documented and published, allowing room for introduction of other relevant areas of mutual interest.

3 DESIGN AND OPERATIONAL SAFETY In this section, we describe retrievability and safety requirements pertaining to design of a repository for high-level waste and spent fuel (HLW and SF).

3.1 Design Safety The first generic repository concepts for the disposal of heat-generating waste and spent fuel in salt formations in Germany have been developed on the basis of safety requirements in the 1980s. A continuous improvement process led to a reference concept. Full-scale transport and emplacement technologies have been tested successfully in surface test facilities, again in compliance with safety requirements. In 2010, the Bundesministerium für Umwelt (German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety) [BMU 2010] issued the new Safety Requirements Governing the Final Disposal of Heat-Generating Radioactive Waste. The safety requirements focus on retrievability and make it a strict licensing requirement. According to the safety requirements, retrievability is considered as the planned technical option to remove emplaced radioactive waste containers from the repository during the operational period. In order to meet these requirements, adaptations to existing repository concepts must be analyzed. These adaptations and modifications could include

• an optimization of the spacing between waste containers and drifts • the installation of adequate drift or borehole lining systems where necessary • adaptions to the ventilation system • the implementation of cooling systems • monitoring and radiological protection measures during the retrieval process

As an example for the analysis of the necessary design adaptions the drift disposal concept was considered. It comprises the emplacement of heat-generating radioactive waste and spent fuel in standardized POLLUX® casks (casks with a cylindrical shape, a diameter of 1.5 m and a length of 5.5 m)

Page 15: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 4 January 30, 2015

on the floor of emplacement drifts of a repository. The layout is characterized by two access drifts from the two shafts. The access drifts are connected by cross-cuts which provide access to the emplacements drifts (parallel blind-ending drifts). The dimension of the emplacement device defines the minimum cross section of 17 m² for the emplacement drifts. Directly after emplacement, the remaining space inside the drift will be backfilled with crushed rock salt. The emplacement equipment (shaft hoisting system, transport unit and emplacement device) was successfully tested by DBE in the mid-nineties. These surface demonstration tests showed the technical feasibility of the emplacement concept and the reliability of the technical devices.

One option to retrieve POLLUX® casks from the emplacement drifts is the re-mining strategy. This strategy includes the re-excavation of the backfilled emplacement drifts, the access drifts and the cross-cuts (Figure 3.1). The new retrieval drifts will be excavated in three steps. First, two small drifts will be excavated at both sides in parallel to the waste containers. They will be connected with the nearest cross-cuts and will provide continuous ventilation and cooling. Afterwards, the remaining pillar between the two drifts will be removed by road headers and modified mining equipment. Eventually, the final retrieval drift provides a cross section sufficiently large to pick up the POLLUX® casks with a modified emplacement device. It is necessary to adapt the supporting frame for lifting and carrying the POLLUX® cask and to change the rail-bound system for retrieval. The modified emplacement device will transfer the POLLUX® cask to a transport cart. The transport back to the shaft and afterwards to the surface will be realized in reverse order to the emplacement process.

However, it is noted that before the POLLUX® casks can be retrieved, a concept for their subsequent handling and storage aboveground must be implemented. In the context of a research and development (R&D) project on behalf of the Karlsruhe Project Management Agency, DBE Tech will analyze in more detail the technical consequences of the retrieval requirement and the subsequent management of waste container. There still is a series of questions to be answered before state-of-the-art system has been achieved. Eventually the retrieval technique has to be confirmed in a series of demonstration tests.

Page 16: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 5 January 30, 2015

Figure 3.1: Site-specific design of a repository- drift disposal concept (basis: VSG design) in view of retrievability

Detailed planning of retrieval actions:

• green: retrieval drifts • red: retrieval drifts not connected with a second crosscut • yellow: retrieval drifts connected with main transport drift North • yellow frame: prior to excavation start need for geomechanical proof of pillar stability)

3.2 Operational Safety Operational Safety is an overriding concern from the first design of a repository for HLW and SF in salt formations to the closure phase. As geologic repository projects advance throughout the world, implementors and regulators are increasingly concerned with operational issues. In parallel, regulatory regimes develop further from pure deterministic to probabilistic approaches for nuclear installations in general. At present, only Germany and the US have real experience in the operation of geologic repositories. Hence, at last year’s US/German Workshop it was agreed to organize this year a session specifically dedicated to operational safety. The two unfortunate events early in 2014 at the WIPP imparted an unexpected relevance to operational safety.

The relevance became obvious in that a central topic of the keynote address had been precisely operational safety. Insights were given to operational safety across a wide spectrum of activity of SNL. Dr. Rottler highlighted examples spanning a variety of research, design, development, prototype, qualification and production activities, where the breadth of work encompasses micro- to macro-scale efforts with varying levels of complexity. For the 2718 labs located within Sandia National Laboratories, multiple hazards in combination typically have to be considered. To ensure safety in this highly complex environment the approach of Engineered Safety had been developed and introduced at SNL. Engineered Safety means that operational systems are systematically and critically analyzed to identify ways in which they can fail to perform as intended, and, hence, are designed and validated to prevent identified failure modes and to mitigate the consequences of a failure should one occur. At each planning and design step safety is considered by systematically asking guiding questions involving the entire staff and management. How the approach is implemented in reality was explained by Dr. Rottler by means of the examples of a bioremediation project, a polymer R&D laboratory, and the Z-Machine accelerator containment system. A very important basis for gaining safety is implementing a Critical Thinking Mindset which means to encourage critical thinking in daily life.

Concerning geologic repositories, safety is governed by requirements from nuclear regulation, mining regulation, and public law. A similar approach is followed in Germany for geologic repositories as it is the case for SNL. Safety is key for the design of technology and for its operation. But safe designs and procedures must be backed by the right mindset of the staff. If the staff is not fully and wholeheartedly committed to safety, all safety would be ineffective. But even in normal and undisturbed operation the potential occurrence of hazards has to be considered in order to be prepared in case that a hazard actually does happen. Protecting people has highest priority in case of a hazard. Hence, staff has to be sufficiently trained and safety equipment and systems have to be adequately designed.

Developments and changes occur in the approach to safety, and also the evaluation of safety. A very recent and important development is the increasing relevance of probabilistic approaches in the regulation of geologic repositories. The shift from deterministic to probabilistic approaches is clearly exemplified in the US DOE nuclear facility safety analysis (WIPP Documented Safety Analysis) and the Yucca

Page 17: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 6 January 30, 2015

Mountain License Application. For the Yucca Mountain Project probabilistic requirements have even been formalized in the U.S. safety regulation (10 CFR Part 63). The approach is evolutionary in that event compilation, sequence development, and hazard analysis are performed using traditional methods, combined with probability estimation under uncertainty, and explicit simulation of dose consequences for comparison to quantitative regulatory screening criteria. It can be seen that operational safety analysis is changing, at the same time that safety experience is accumulating at existing facilities. Especially for new systems and technologies, probabilistic approaches provide important supplements for safety demonstration. Nevertheless, since probabilistic approaches for large-scale systems are yet under development it is of vital importance to facilitate an international exchange in order to avoid diverging methodologies, respectively to build up confidence in probabilistic approaches.

Real life implication of operational safety issues could be observed in the unfortunate sequence of events and combination of events which happened in the WIPP facility in February 2014. Two incidents, a truck fire and an apparently unrelated radioactive release, occurred after fifteen years of successful operation. Despite the independence of the two events, a root cause was found to be insufficient safety culture [DOE 2014], which resulted in ineffective nuclear safety, maintenance, radiation protection, and emergency management programs. However, a route to overcome deficiencies and an approach to bring WIPP back into operation has been developed. Despite the unfortunate sequence of events, the idea of isolation of radioactive waste in geologic formations is not questioned.

In addition to the description of the events and the formal criticism, there are also positive findings to be recounted. Warning and mutual assistance of workers underground was effective and personnel exhibited detailed knowledge of the underground and ventilation splits. On-site medical response was effective in treating personnel. Technically, it can be concluded that the mine remains safe and stable. On that basis the main immediate activities have been developed and implemented. Special attention is directed to the evaluation of the situation in the area of the mine in which the radioactive release occurred. A key conclusion, which also closed the loop of the session, was that nuclear safety culture is a driving factor for WIPP’s future.

The discussion at the end of the session showed that operational safety considerations are an important contribution to the US/German workshop. While operational safety activities on site are very much dependent on the governing general regulatory regime and existing culture, regulatory requirements and methodologies for the assessment and evaluation of operational safety are still in development. Hence, chances were seen by the workshop participants to fruitfully and constructively contribute to the development by joint activities. Nevertheless, it was also seen as being meaningful to mutually follow operational activities on site as well in the course of the US/German workshop.

4 GEOMECHANICS ISSUES This section provides several examples of direct collaboration in the area of geomechanics, which advance salt repository science. To capture the extent of the geomechanics issues, background information is provided to demonstrate historic perspective of the research agenda. Geomechanical response of the geologic formation to perturbations caused by excavation, structural evolution over time, subsequent disposal of heat-generating waste, and emplacement of sealing systems are first-order concerns for heat-generating nuclear waste disposal in salt. Use of salt formations for toxic waste and transuranic waste disposal is supported by broad technical understanding and experience gained from operating facilities in the US and Germany. The WIPP in New Mexico represents a successful process of site characterization and licensing of a salt repository in the US, while Germany has compiled the Preliminary Safety Analysis for Gorleben (Vorläufige Sicherheitsanalyse Gorleben or VSG) [GRS 2012]. Sufficient scientific bases exist to develop a viable safety case for heat-generating waste if a national program should decide to move in that direction.

Ongoing collaborations between US and German salt researchers continue to add to the imposing scientific basis for permanent disposal in salt. In this section, it is possible to present only a few highlights

Page 18: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 7 January 30, 2015

of salt-repository scientific inquiry. Additional detail of the most recent several years of accomplishment can be found on our website [http://energy.sandia.gov/?page_id=17258]. Collaborations facilitate evaluation of many elements of salt research, design and operation, which include testing on all scales, advanced thermal-mechanical modeling and benchmarking, and seal system performance, to name a few. Laboratory and field testing applied to nuclear waste disposal, particularly dealing with temperature effects, has been conducted since the 1960s. Decades of R&D have rendered a mature understanding of salt formation behavior as well as interactions between the salt and engineered and geotechnical barriers. The maturity of the technical basis for salt disposal also facilitates identification of areas where uncertainty can be reduced, areas where advanced computational capabilities can be brought to the problem and areas where operational and long-term improvements can be gained.

The US DOE’s goal is to have a repository sited by 2026; the site characterized, and the repository designed and licensed by 2042; and the repository constructed and its operations started by 2048 [DOE 2013]. Given this time line, one daunting challenge will be preservation of accumulated knowledge and competence maintenance over the next 20 years. Ongoing international salt research collaboration is one well recognized development that contributes to knowledge preservation, which is systematically achieved by mentoring the next generation of scientists.

The geomechanical reaction to excavation establishes the starting point for all repository activities that ensue. Section 4.1 provides a brief description of the mechanical response and evolution of the salt underground initiated by excavation. These inescapable developments establish boundary conditions for the concept of operations, long-term repository evolution, and any field-scale testing that might be undertaken. Section 4.1 also provides an overview of ongoing geomechanics matters pertaining to room closure. Section 4.2 reviews code benchmarking of salt constitutive modeling and implementation using large, modern computational capacity. Section 4.3 summarizes progress made through international collaborations, particularly with German research groups. As documented in Section 4.5, the experience of preparing the preliminary safety assessment for Gorleben represents not only a high level of knowledge and advanced long-term safety analyses, but helped also to identify specific areas for additional research. US/German workshops on salt repository research, design and operation have progressively identified and addressed common issues, many of which pertain to geomechanics. Section 4.6 summarizes some of the geomechanics issues that can be constructively addressed in the near future. This section includes information that is being prepared for an invited, external publication [Hansen and Popp 2015].

4.1 Evolution The technical basis for salt disposal of nuclear waste resides in salt’s favorable physical, mechanical and hydrological characteristics. Undisturbed salt formations are essentially impermeable and exist in essentially isostatic equilibrium. When openings are created the state of stress is altered and salt deformation ensues. Understanding the features of salt deformation constitutes the bulk of geomechanics addressed in this section. Salt deformation can occur while preserving constant volume (isochoric) or can include damage, which increases permeability. Salt damage can be reversed under certain stress conditions and fracture healing is a vital feature of operational and long-term salt repository performance. Room closure is a combined result of isochoric creep at some distance from the opening, damaging salt deformation proximal to the free surfaces, and discontinuity contributions from interbeds, such as anhydrite and clay. Depending on design and operational choices, room closure eventually brings formation salt into contact with material placed within the openings, whether it is waste packages, geotechnical barriers, or run-of-of-mine salt used for backfill. Reconsolidation of granular salt constitutes another fundamental process that must be understood to ensure operational and long-term sealing performance. Geomechanics is concerned with all these phenomena, including possible thermal effects.

Accurate prediction of salt repository response is enhanced by a thorough understanding of the mecha-nistic processes and application of valid models. In the instance of a salt formation providing the host medium, the scientific community has made great strides toward formulating and using models that

Page 19: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 8 January 30, 2015

a) b)

capture observed physical phenomena in computational mechanics applications. Incorporation of micro-mechanics helps explain history effects, normal and inverse transient responses, and dependence of creep rate on stress difference and temperature, which are direct consequences of existing and evolving substructures. If one understands the physical processes, operational and long-term predictions can be made with a measure of confidence.

Extension of this principle to micromechanics of deformation at very low stress difference is especially challenging. Minute strain measurements require extreme load and temperature control, although some outstanding experiments have been conducted [Bérest et al. 2005]. Changes to the microstructure would likely be below detection and documentation using normal microscopic techniques. Nonetheless, creep behavior of salt at low stress differences appears to be substantially faster than predicted from extension of power law models based on dislocation creep mechanisms parameterized from tests under repository conditions as shown in Figure 4.1. Conventional laboratory experiments, usually performed at differential stresses > 5 MPa, reflect steady state dislocation creep rate as a function of stress difference raised to a power greater than one, of which 4.9 is typical [Hardin et al. 2014]. When this relationship is extrapolated to low stress levels, the creep rate is much less than measured. Recently, an extensive series of creep lab tests on clean WIPP salt was performed using a new sophisticated creep test approach consisting of a series of single tests with load and unloading steps at overlapping stresses [Günther et al. 2014]. The test results confirm qualitatively the suggested dependence of creep behavior according to different stress regimes and show, in addition, the overlapping effect of temperature. A reasonable approximation of creep behavior is obtained using the advanced Günther/Salzer material law, but the remaining uncer-tainties at low stresses are obvious. Therefore, further work is needed to evaluate creep at low stress and high temperature levels and to resolve the deformation mechanisms.

Figure 4.1. Creep of rock salt. a) Extension of a power law creep model to low stresses compared to measurements at low creep stresses. b) Creep tests results of WIPP-samples at different temperatures (clean salt strata), approximated with the constitutive Günther-Salzer law.

Upon mining, a salt formation experiences damage in the near-field rock proximal to the mined opening and salt permeability increases dramatically. The volume of rock that has been altered by such damage is called an excavation damaged zone (EDZ) or disturbed rock zone (DRZ). Creation of the DRZ can enable formation brine to flow into the mined opening via increased permeability. The mechanical response to excavation initiates several important changes to the favorable characteristics that exist in salt formations

Page 20: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 9 January 30, 2015

before excavation takes place. Investigations that utilize the underground for experimental activities would benefit greatly from the knowledge of initial, undisturbed conditions, the evolutionary changes imparted by excavation, and the boundary conditions extant when field activities are undertaken. This concept is developed further in Section 6 of these Proceedings and is being prepared for external publication [Hansen et al. 2015]. Regulatory compliance of a geologic repository in salt is demonstrated in part by credible representation of DRZ development and healing around panel and shaft seals to prevent this zone from becoming a pathway for radionuclide movement. Understanding DRZ development is essential to design and analysis of waste containment systems during disposal operations as well as to the design and analysis of repository sealing systems to fulfill permanent closure functions. Looking forward, ongoing research in these areas provide the basis for modular repository design, including closure systems in drifts, sectional closure, performance assessment, and input to sequential licensing.

Concepts for disposal operations and seal systems often include elements of crushed salt. Disaggregated salt can reconsolidate to a state approaching the native, undisturbed salt. Mechanical, thermal, and hydrological properties change as a function of porosity. Of these, the permeability/porosity function is the most important in terms of repository performance. Considerable research has gone into illuminating mechanical processes responsible for the observed permeability/porosity relationship illustrated in Figure 4.2 [IfG 2012; Kröhn et al. 2009]. The preponderance of consolidation experimental work, as well as analogue examples, suggest that reconsolidating granular salt will achieve a state of extremely low permeability. Development of the arguments is still advancing, which include new experiments that consolidate salt/bentonite mixtures. How quickly granular salt reconsolidates to performance specifications remains a key question. Construction techniques can utilize research results to place crushed salt seal elements to maximal density using optimal additives.

Figure 4.2. Permeability-porosity data sets for crushed salt and mixtures.

4.2 Modeling Computer-based geomechanical modeling of salt repositories has been one of the most important activities in salt repository science and remains so today. Remarkable progress is possible because computational hardware has advanced significantly over the last 20 years. Modeling capability includes representation of thermal-mechanical behavior over long time periods, appreciable variations of temperature, nonlinear large deformation (finite strain) and other phenomena associated with salt deformation in the repository setting. Integral to modeling studies are conventional issues of discretization, stability, and accuracy. A current research challenge is to identify best-in-class constitutive models, simulation architecture, and solution algorithms appropriate for analyzing the performance of underground salt repositories. To this end, a consortium called the Joint Project between SNL and

Page 21: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 10 January 30, 2015

German partners is comparing constitutive models and simulation procedures. Modeling will simulate WIPP Rooms B and D, of identical geometry but different thermal loads. Calculations are isothermal, thermal-mechanical uncoupled, and thermal-mechanical coupled. Sandia uses a state-of-the-art Sandia Integrated Environment for Robust Research Algorithms (SIERRA) solid and thermal mechanics computer codes [Argüello 2014], while the German partners use their respective codes and models as described by Hampel et al. [2012; 2013 ]. All calculations use highly advanced constitutive laws that mathematically describe deformational processes inherent to those found in nuclear waste repository environment. The first goal of the project is to check the ability of numerical modeling tools to correctly describe relevant deformation phenomena in rock salt under various influences.

Twenty years ago or longer, models of WIPP large-scale experiments often matched the field data well [Munson et al. 1988; 1990]. Despite limited discretization, modeling symmetry assumptions, two-dimensional plane strain grids, field test results could be remarkably well reproduced by finite element models. Validation modeling in the Joint Project will include existing ambient and elevated temperature room response data to compare current constitutive models and simulation procedures for calculations of the thermal-mechanical behavior and healing of rock salt. A preliminary example of these benchmarking legacy calculations of WIPP Room D is shown in Figure 4.3. In Figure 4.3a) an all-salt idealization with relatively coarse mesh matched the vertical closure precisely, while a model with more detailed stratigraphy resulted in calculated closures below the measured values. By comparison, using a mesh about 8 times finer, Argüello [2014] obtains the results shown in Figure 4.3b). As Argüello points out, an under-refined mesh is typically stiffer, but it would appear that parameters and features, such as the coefficient of friction of clay seams, were adjusted to match test results in legacy calculations. In lieu of testing, assumptions were made about the clay seam behavior in closure measurements associated with Rooms B and D. These are just examples of challenges being addressed by the Joint Project partners.

a)

Page 22: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 11 January 30, 2015

b)

Figure 4.3. Benchmarking Room D deformation.

International collaboration on model benchmarking is complemented immensely by additional testing of WIPP salt cores by German research laboratories. In concert with benchmarking of WIPP in situ experiments, German research groups are parameterizing their respective model variables through a series of special laboratory tests on WIPP salt. Thus their codes and models, which have been thoroughly calibrated against in situ experiments conducted in domal salt formations, will be appropriately parameterized for generic salt repository analysis with the inclusion of parameters representative of bedded salt. The benchmark problem extent, geometry, initial and boundary conditions and history will be established from well-documented technical information from existing WIPP literature. Thus far, preliminary benchmark validation efforts suggest that additional characterization of non-salt elements such as anhydrite and clay seam would improve model fidelity. Results from independent calculations will be compared and critically reviewed to assess how well the respective modeling and simulations capture full-scale field response. Continued work on the leading-edge constitutive models will provide the next generation of modeling capability that would then be applied to salt repository design, operations, seal systems, in situ test prediction, and performance assessment.

4.3 US/German Collaboration In addition to the specific benchmarking discussed above, German and US salt researchers are addressing numerous salt repository issues, both technical and societal. The US DOE offices of Environmental Management and Nuclear Engineering (DOE/EM and DOE/NE) have collaborated on international salt repository research under the auspices of a 2011 Memorandum of Understanding with the German Ministry. Consistent with this agreement, collaboration in laboratory and field testing and geomechanical modeling has advanced significantly [Hampel et al. 2012; 2013]. This work has ensured validated and verified computational capabilities for both bedded and domal salt are being developed and parameterized. In addition to a technical mission, the scope of international collaborations explores public outreach initiatives implemented successfully in other countries to help frame a societal strategy.

Page 23: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 12 January 30, 2015

International collaboration on salt repository research, especially between the US and Germany builds and reinvigorates previous partnerships.

Recent developments in Germany and the US have renewed efforts in salt repository investigations. On a yearly rotational schedule, workshops including representatives of institutions in both countries have reinitiated collaborations and cooperation on overall salt repository science. Workshops showcase accomplishment witnessed in several areas, such as repository analogue studies [NEA 2014], treatment of uncertainty, granular salt reconsolidation, seal systems, constitutive modeling, thermal effects on mechanical deformation, knowledge archive, a salt underground research laboratory (URL), an international catalogue for features, events, and processes (FEPs) for a salt repository [Freeze et al. 2014]. Progress made on these also contributes to the OECD/NEA Salt Club (http://www.oecd-nea.org/rwm/saltclub/). Close technical ties with the international nuclear waste disposal community allow the US salt repository program to capitalize on research being supported by other countries and to develop and have at its disposal the best salt repository capabilities in the world. The scope of these initiatives advances our nation’s international repository position by leveraging collaborative salt science at favorable return on investment.

4.4 Lessons Learned from the VSG In Germany, salt domes have been discussed as possible sites for a repository for heat-generating radioactive waste since the 1960s. As a candidate site, the Gorleben site located in Northern Germany has been investigated since 1979, at first from the surface and since 1986 from underground, when shaft sinking started [Bornemann et al. 2011]. The investigations were ceased between 2000 and 2010 based on an agreement between the German Government and the electric utilities. In 2010 site investigations were resumed and the preliminary safety assessment for the Gorleben site [VSG] was completed.

It should be noted the Project VSG is not intended as a safety demonstration for a possible later licensing procedure, which is still required by the Atomic Energy Act. Rather the objective was to prepare a comprehensive safety analysis for a salt dome with focus on long-term safety. An important part of work was also the identification of needs for future research and development and possible additional Gorleben site investigation. With elaboration of an overall synthesis the project ended in an orderly manner in 2013. A short project overview was given by Bracke and Fischer-Appelt [2013]. The complete reports (written in German) are available from GRS [2012].

The salt dome is 4 km wide and nearly 15 km long. It is composed of different salt rock types of the Zechstein (Upper Permian) series and extends to a depth of more than 3 km (Figure 4.4). As shown by Bornemann et al. [2011], in the course of the salt dome formation the salt was moved and uplifted several kilometers resulting in extensively folded, complex internal structure. During the uplift competent anhydrite layers were broken to isolated blocks. In the core of the salt dome the Hauptsalz forms a homogeneous halite body with a volume of several cubic kilometers. Contemporaneous with the diapiric movement of the salt, the effective stresses repeatedly fractured the rock salt and then healed it again, due to its high creeping capacity. This caused the Hauptsalz to become homogenized into a mixture in which blocks of primary rock salt crystals and shredded anhydrite fragments float in a matrix of recrystallized rock salt. Thus in the central part of the Hauptsalz no lithological or stratigraphical discontinuities such as bedding exist.

Page 24: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 13 January 30, 2015

Figure 4.4. Simplified NW-SE geological cross-section of the Gorleben salt dome.

The Hauptsalz contains small amounts of gaseous and liquid hydrocarbons in separated zones of decimeter to meter dimensions. Brine reservoirs with fluid volumes in the range of liters to hundreds of cubic meters exist in certain regions of this part of the salt dome. The average water content of the Hauptsalz is below 0.02 %. Interconnected pores do not exist in the salt rock outside of fluid bearing or fractured area, i.e., the salt rock is impermeable.

Following the German safety requirements, released in 2010 by BMU, initially, a safety concept and a concept for demonstrating long-term safety were developed, that provided the basis for the design of the repository and the safety assessments performed in the Project VSG. Based on the safety concept specific requirements were derived concerning the site, the repository concept, the design of the mine buildings and the assessments to be performed within the Project VSG. The requirements concerning the site have to be fulfilled by the characteristic properties of the host rock and the overall geological situation. The main objective of the disposal is to contain the radioactive waste inside a defined rock zone, which is called containment-providing rock zone (EWG). The radionuclides shall remain essentially at the emplacement site, and at the most, a small defined quantity of material shall be able to leave this rock zone. This shall be accomplished by the geological barrier and a technical barrier system, which is required to seal the inevitable penetration of the geological barrier by the construction of the mine.

The repository is planned in a depth of 870 m below surface and will have a maximum length of approximately 4 km and a width varying between 300 m and 700 m, according to the geology and depending on the emplacement concept. An overview about the technical design of the repository and the detailed design of the geotechnical barriers is given by Bollingerfehr et al. [2013]. In addition to special designed engineered barriers (e.g., dams made of MgO-concrete), implemented in the drifts at selected locations and in the shafts, backfill made out of crushed salt is the main technical long-term barrier. The backfill compacts due to the convergence of the surrounding rock thereby sealing the backfilled drifts. The estimate for the minimum porosity that the backfill can achieve is 1 % ± 1 %. Since moisture accelerates the compaction of backfill, slightly moistened backfill is emplaced in the main drifts (0.6 wt.-% moisture).

According to the objective of safe waste containment, a crucial part of the Project VSG was to analyze the integrity of the geological barrier in order to determine whether stresses, which occur over time as a result of the forecast behavior of the geologic repository system, could violate the integrity of the barrier over the specified verification period. In other words, it was necessary to investigate whether the properties of the geological barrier forming the effective isolation system are maintained over the verification period. The geomechanical integrity analysis was jointly performed by the Federal Institute for Geosciences and Natural Resources (BGR), Hannover, and the Institute for Geomechanics (IfG), Leipzig, [Eickemeier et

Page 25: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 14 January 30, 2015

al. 2013], considering two concepts: (1) the emplacement of Pollux casks in drifts and (2) the emplacement of BSK3 fuel element canisters in boreholes [Kock et al. 2013]. Both institutions used different material models, whose parameters were derived from site-specific investigations, according to the different rock units as illustrated in Figure 4.4.

To assess the barrier properties of rock salt layers under the influence of thermo-mechanical effects associated with the release of heat in the emplacement zone, computer simulations are carried out on the geomechanical processes which give rise to the creation of micro-fractures due to mechanical damage or fluid-pressure-driven opening up of grain boundaries. Understanding this process is important because the migration paths created in this way could ultimately cause liquids to penetrate the emplacement zone. This conceptual procedure means that the assessment of the hydraulic barrier properties is undertaken on the basis of mechanical parameters. This involves the use of the dilatancy criterion and the minimal stress criterion as proof of the BMU-safety requirements [BMU 2010] according to the two well-known mechanisms of hydro-mechanical integrity loss:

• deviatoric stress induced growth and connection of intercrystalline and transcrystalline cracks, which is assessed by the dilatancy criterion

• fluid pressure driven crack and grain boundary opening and their interconnection, which is assessed by the minimum (or fluid) stress criterion

2D models (IfG) and 3D models (BGR) were used for the thermo-mechanical calculations, illustrating all relevant loading conditions at different scales, i.e. in the proximal field in the emplacement zone (near field), including the drifts and emplacement containers, as well as to investigate the thermal effects on the salt dome as a whole (far field).

The realized integrity analysis clearly documents the high level of safety analysis based on geomechanical modelling demonstrating the requested geological barrier integrity for the site Gorleben for at least one million years. Additional studies on liquid and gaseous transport of radionuclides [Kock et al. 2013] confirm that the compaction behaviour of crushed salt backfill is one of the most relevant factors for the hydrodynamic evolution of the repository and the transport of contaminants.

Focusing on the geomechanical integrity, future safety analyses should involve more detailed investigations on the pressure-driven infiltration of fluids, e.g., along stratigraphic boundary horizons (bedding) within salt rock masses or zones where the integrity criteria are not fulfilled. Coupled THM calculations on fluid infiltration into the barriers (both geological and technical) require further developments of appropriate numerical tools supplemented by a comprehensive experimental data base, e.g., about discontinuities acting as mechanical and hydraulic weakness planes.

4.5 Geomechanics Going Forward US scientists continue to cooperate with international peers to establish the integrity of salt repositories. Although a strong basis for salt disposal exists, analysis tools can be improved and updated, special studies to reduce uncertainty can be championed, and process improvements are always possible. This section stresses geomechanics issues, while recognizing importance of societal, stakeholder, operational, and regulatory input to the licensing processes. Confidence toward licensing a salt repository is couched in many instances by our deep understanding of the geomechanical behavior and our ability engineer safe systems.

The Joint Project III [Hampel et al. 2012; 2013] provides a prime example of updating analysis capabilities, which can applied to a salt repository for heat-generating nuclear waste. The best available constitutive models and computational methods provide the tools for next generation of design, analysis, operations, sealing, and performance assessment. New testing of WIPP salt coupled with existing data from bedded and domal salt allow for timely assessment of generic differences and similarities as regards

Page 26: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 15 January 30, 2015

repository geomechanics. A compendium that compares and contrasts bedded and domal salt as applicable to repositories would be beneficial for US and international salt repository programs.

The Project VSG represents a milestone of extended German research activities aiming toward establishing an underground repository for heat-generating radioactive waste in domal salt formations. The outcome provides convincing results demonstrating not only the highly developed level of safety analyses, but also supporting the general assumption of suitability of salt formations. A homogeneous halite body with a large enough volume was identified as possible host rock unit. The occurrence of fluid inclusions (brine or locally hydrocarbons) of Permian age confirms tightness which was preserved over geological time scales. As major part of the safety analysis the geomechanical modeling demonstrates the integrity of the salt barrier under consideration of likely and unlikely load conditions, especially with respect to heat-generated effects. The overall synthesis confirmed the adequacy of the approach, indicated the compatibility with the German safety requirements, and allowed the interpretation that there are no findings which actually contradicted the suitability of the location. In the VSG report on future R&D, open questions were addressed, i.e., concerning the integrity criteria. This confirms the need for development and improvement of advanced numerical tools for coupled hydro-mechanical calculations of pressure driven fluid transport in the salt mass (and the technical barriers). In addition, crushed salt backfill compaction was identified as one of the most relevant factors for the hydrodynamic evolution of the repository and the transport of contaminants.

Granular salt is likely to be used in the mine design for repository applications to provide structural support and other operational functions, thus reconsolidation processes and properties as a function of porosity continue to be key areas of ongoing research. Analogue evidence of reconsolidation to conditions that mimic native salt is substantial and supports the proposition that granular salt becomes effectively impermeable under many conditions. Owing in part to difficulty in measurement, uncertainty remains concerning flow behavior at very low porosities. Because characteristics that approach undisturbed salt are desired for many repository safety functions, demonstration is potentially more influential in the licensing arena than is model prediction of performance. Repository functions of granular salt can be advanced via analogue studies, evaluation of low porosity characteristics, and enhanced engineering performance attained by additives to the crushed salt. Until recently, most backfill research and design used run-of-mine crushed salt without additives such as bentonite. Evidence suggests that performance characteristics could be improved with admixtures that enable placement at greater density with lower initial permeability and porosity. This engineering achievement reduces uncertainty and perceived reliance on modeling. Repository designs, analyses and performance assessment for heat-generating waste will hinge on our state of knowledge concerning reconsolidation of granular salt.

A salt repository for heat-generating waste should take advantage of experience gained at WIPP, Project VSG and elsewhere. Rooms can be designed structurally stable to minimize geotechnical ground support. Forward looking engineering and performance assessment is likely to require intrinsic modular closure, which will no doubt include drift seal elements comprising reconsolidated granular salt. A recurring debate is the prerequisite that seals need to be demonstrated at full scale. In principle this can neither be attained in any reasonable time nor can the functionality be monitored. On the positive side, multiple construction demonstrations of various seal elements have been completed. In addition to crushed salt, the other most important engineering materials are concrete and bentonite. Looking forward, salt repository collaborators should consider compiling seal-system information into a document nominally called A Synthesis of Salt Repository Seal Systems. Such a jointly authored state-of-the-art report could include reconsolidation analogues, experience with bentonite and performance of special concretes. In the meantime, tests with admixtures are further enhancing the database.

A generic description of the evolution of the underground setting expounding upon geomechanics highlights as identified in this section would be of utility for analysts new to the field. The scientific community has firmly established knowledge of salt underground workings that should be recognized by modelers new to the field. Perhaps it would be useful for US and German collaborators to write another

Page 27: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 16 January 30, 2015

position paper that describes the evolution, properties and mitigation of the salt DRZ. Creation of a DRZ in salt is well recognized and for many engineering purposes sufficiently understood to provide confidence in its forward evolutionary characteristics and its mitigation through healing processes. However, quantification of anisotropic permeability associated with damage levels is elusive. Time-wise healing has little full-scale documentation aside from bulkhead (dammjoch) measurements being modeled in the Joint Project [Hampel et al. 2012; 2013]. It will be mandatory to close a repository; therefore, it is essential to establish that it can be sealed by appropriate and integrity-proven seal systems, including both shaft and drift settings. Fruitful collaboration is ongoing in the US/German workshops.

Salt remains a well characterized material for waste isolation. However, the future path is projected to be very long. The US repository program has identified a goal of 2048—and the German future repository policy is embarking on a review of the site selection process. Considering the very long times projected before a salt repository site is established through a new consent-based negotiated-consultancy siting process, it may be worthwhile for the established salt scientists to write a geomechanics salt repository primer that documents fundamental concepts. Such a book would be useful today as a means of knowledge preservation and for education purposes for the next generation of salt repository scientists and engineers.

5 A URL IN THE CONTEXT OF SALT DISPOSAL RESEARCH Given the long history and encyclopedic information that underwrites salt repository science, what is the role for a URL at this stage? Salt disposal research provides many of the building blocks for licensing a salt repository. The question pursued in this section is twofold: Does URL testing reach a high priority in today’s salt research, development and demonstration program, and if so, how are URL tests to be evaluated and prioritized? As of today, neither the US nor any other country has an operating URL in salt. It is widely believed that further salt testing in a URL is not required to address a perceived technical deficiency to be answered as a prerequisite to preparation of a safety case for salt disposal of heat-generating HLW. The technical basis for salt disposal provides strong and pervasive evidence that radionuclides in a salt repository will not migrate from the disposal horizon. Current knowledge of thermal effects supports viable concepts for disposal operations and underground evolution. The suitability of salt as a disposal medium has been recognized by national and international repository programs. Therefore, the scientific community must balance perceived necessity for field experiments with the recognition that a very strong scientific basis already exists for salt disposal of nuclear waste.

The essence of this section will be prepared as an external publication [Hansen 2015], which sets forth principles as well as a methodology for evaluating proposed URL activities. Because field testing is costly, any such test will necessitate commitment of money and time. Given the vast and compelling basis for successful waste isolation in salt, a choice to perform field-scale tests must be based on merit and a tangible connection to the Safety Case. Scientific investigations to support a license application are broad in scope, including laboratory tests at ambient and elevated temperature that characterize such properties as salt creep, the potential for fracture damage and its mitigation, permeability functionality of seal system components, brine accessibility via induced damage, chemical conditions in the disposal environment, and a host of other primary properties pertaining to performance assessment. The general goals for any future site characterization and laboratory or field investigations should build upon earlier work to reduce uncertainty and to enhance the safety basis for salt disposal. This document briefly discusses characteristics and modeling pertaining to waste disposal in salt with the intent to assess how a salt URL fits into the research agenda.

How then will decisions be made for potential URL activities within a focused salt repository R&D program? In this section, guidelines are put forward that outline a review and prioritization process for large-scale underground testing. Implementation principles include analysis and justification for generic testing or demonstration activities that meaningfully address technical issues in a credible manner. Implementation of demonstration and confirmation activities, integrated with other beneficial uses, could

Page 28: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 17 January 30, 2015

help establish an expected precondition for public and political acceptance of salt disposal of heat-generating nuclear waste.

5.1 Discussion In-depth explanation of salt attributes for permanent disposal of heat-generating waste can be found in Hansen and Leigh [2011] and on the SNL website for US/German collaboration (http://energy.sandia.gov/?page_id=17258). A brief review of these characteristics will help clarify the foundation from which salt repository research proceeds. Long-term behavior of salt, fundamental to repository applications, requires detailed understanding of deformational processes, such that extrapolation can be made beyond human experience.

The scale of research to date ranges from a microstructural level to full-scale demonstration in the underground. Under most conditions involving elevated temperature and modest confining pressure, salt deforms plastically. The phenomenon of flow without fracture (isochoric creep) is one of the attractive attributes of salt as a disposal medium. Advanced constitutive models in the US and Europe have been used to describe phenomena associated salt deformation and their dependence on different fundamental mechanisms. These constitutive models are currently being benchmarked in ongoing international collaborations. Advanced modeling capability provides a dual purpose for field testing—modeling can be used to design test configurations at the outset and subsequently validated by test results. Regardless of proposed field activity, structural mechanics modeling has a role in defining the test bed.

Laboratory investigations in Germany and the US have provided the background understanding of salt mechanical and thermomechanical responses to anticipated repository conditions. Temperature has a dramatic effect on salt deformation and, therefore, temperature and associated heat management are first-order concerns for disposal of heat-generating nuclear waste in salt. The importance of heat from radioactive decay depends on the effects that the induced temperature changes could have on mechanics, fluid flow, and geochemical processes within a salt formation.

Salt deformation in the laboratory and in the field can be accompanied by significant fracturing at room temperature, low confinement, and relatively high differential stress, conditions that occur near free surfaces of the repository openings. Under these conditions salt exhibits a measure of brittle deformation near the roof, floor and ribs, but deforms by constant volume processes at depth within the rock formation. The properties that typically define the DRZ include (1) fractures ranging from microscopic to readily visible scales, (2) loss of strength evidenced by rib spall, floor heave, roof degradation and collapse, and (3) increased fluid permeability via connected porosity. Extant DRZ characteristics define boundary conditions for activities conducted within the excavated space. The general setting evolves with time and deformation; however, fracture development near excavations occurs rapidly. Evidence shows that damaged salt can heal under certain conditions, which is another important phenomenon conducive to investigations in a URL.

The Joint Project III collaboration, called Comparison of Current Constitutive Models and Simulation Procedures on the Basis of Model Calculations of the Thermo-Mechanical Behavior and Healing of Rock Salt started in October 2010 [Hampel et al. 2012]. This project compares modeling capability for temperature influence on deformation and for sealing and healing of damaged and dilatant rock salt. The research group is in the process of benchmarking salt mechanics codes against WIPP field tests, which were conducted during site characterization. The benchmarking study on sealing and healing comprises all phenomena that result from the elastic closure of open microcracks up to the re-establishment of chemical bonding along fracture surfaces. In the constitutive models of the partners, modeling these effects is based on a description of the healing rate as function of the current dilatancy and the stress state. Differences in the models arise from differing assumptions regarding the healing boundary. This phase comprises performance and back-calculation of specific laboratory tests as well as simulations of selected in situ structures. At the conclusion of this collaboration, the benchmarked codes will thereafter provide analysis tools for any possible test or demonstration in a salt URL.

Page 29: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 18 January 30, 2015

A salt URL could potentially host a wide assortment of tests to confirm our collective (international) knowledge on the technical basis for salt disposal. Consistent with our goals of collaboration, URL space could be used to underwrite internationally significant science and engineering, such as demonstration of sealing elements and DRZ evolution and healing. An ongoing performance confirmation program would be an integral part of a license for regulatory approval of nearly any repository and a URL setting could host an array of performance confirmation measurements associated with safety case arguments. Ongoing science made available by a salt URL holds the potential to reassure societal and political stakeholders. Due diligence also demands ongoing scientific research to confirm the licensing basis, even though the safety case for a salt repository is robust and well substantiated.

5.2 Framework The opportunity to set out a generic research strategy for salt disposal helps focus objectives, which can be justified in several ways. A test or demonstration might address specific features, events or processes to confirm our understanding and ability to model performance of a deep geologic repository for heat generating radioactive waste in salt. An activity might be proposed to build confidence that the safety functions of a deep geologic repository in salt are understood and can be forecast over regulatory time periods. A URL activity might be identified by consensus of international collaborations. Many test concepts pertain to design and operational practice, which embody model prediction and confirmation at full-scale. These particular objectives align with similar lists put forward by the International Atomic Energy Agency [IAEA 2001] and Nuclear Energy Agency [NEA 2013], which also point out the benefit of training and education of the next generation of scientists. Many objectives taken from the literature are intertwined and expressible in different descriptive forms. For example, addressing FEPs essentially means the same as assessing performance of the repository system. Building confidence by reducing uncertainty is a well-recognized basis for field testing. International collaboration is a goal and perhaps a strong justification for investing in a field activity of mutual interest.

Development of proposed testing activities will benefit considerably by integrating information from Performance Assessment into the planning and prioritization of science and engineering activities. The Performance Assessment methodology uses a hierarchy of upper tier requirements that drive data requirements to support safety case development. This structured framework can be used to prioritize activities and transparently communicate up-to-date understanding of the repository safety case. Information within Performance Assessment calculations can readily identify the nature and potential impact of remaining uncertainties, which provide measures of perceived benefit to be realized by testing. Fundamentally, activities to be undertaken in a salt URL would require justification on an objective basis, one of which is impact on Performance Assessment.

Given broad descriptions of objectives, how can various URL ideas be rated and evaluated? What process is available to differentiate and select URL activities? A commitment to pursue URL testing must be predicated on a structure to weigh relative merits of proposed activities. This process basically describes a simple progression from concept development to evaluation and selection in the following order:

1. Describe activity

2. Conduct independent review

3. Rank and prioritize

4. Make recommendations

5. Select, plan and budget

The framework concept is quite simple: describe proposed URL activities and assemble a small independent review panel to evaluate merit. A framework for conduct of URL studies facilitates objective, rigorous, and transparent science. With strategic planning, investigations conducted in the underground can address a number of salt-based disposal issues while supporting generic salt studies. If

Page 30: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 19 January 30, 2015

undertaken with a view toward the future, operations within a URL could become a national and international centerpiece for salt repository research. Involvement of the international community would add scientific credibility and further strengthen stakeholder confidence. Operating a URL should allow participation by the next generation of students and nuclear waste management scientists through provision of a unique laboratory for basic and applied model development, laboratory testing, and field investigations.

5.3 Use of the URL There are many potential uses of a salt URL, so it is essential to have a process to evaluate and prioritize. Furthermore, a long-term view of URL functions is vital to assess dual-purpose synergy, test-to-test interference, data acquisition, and infrastructure. Although a URL would focus on issues related to nuclear waste disposal, the overall portfolio would also include repository design and operation issues that can be isolated from heat effects, such as engineered barrier construction.

The idea of salt disposal, as well as disposal in other media, was restarted after the Yucca Mountain Project was declared unworkable in 2008. Concepts to reinvigorate salt disposal investigations were also outlined at that time, including a sequence of laboratory testing, benchmark modeling, international collaboration, and field testing. Description of several large-scale tests and demonstrations has been published [Hansen 2013]. In addition to a series of public manuscripts describing possible tests within a salt URL, the US/German Workshops on Salt Research, Design and Operation examined a suite of the proposed URL activities. International collaborations between US and German researchers has availed the possibility to review and discuss various salt URL test concepts. At the 4th Workshop potential URL activities were reviewed, including those previously identified in the literature as well as some new ideas. Workshop participants were asked to provide high-level review and feedback concerning a sense of duration, cost, and merit among several potential activities. Physical phenomena such as thermally driven creep processes or damage healing also require relatively large scale and time-dependent evolution. Considering there is no salt URL operating in the world, salt repository programs are in a position at this time to reflect deliberately upon the matter of a URL in the context of an overall research, development and demonstration agenda.

A variety of approaches can be taken toward grouping field tests in terms of information to be obtained. For example, seal system testing could involve excavation, short term DRZ evolution, concrete placement and DRZ healing. Thereby operational construction issues, model validation, first-order properties and confirmation could be integrated into one sealing demonstration. Tests could be grouped in relation to expected phenomena, such as thermally driven processes. In turn, the thermally driven processes could be ramped up from relatively low temperatures and low areal thermal loading applicable to a certain waste inventory to high temperatures associated high-burn-up used fuel. In each case, the technical basis (justification for the activity) would be different. Tests may be grouped with respect to degree of difficulty or complexity and evaluated based on cost-versus-benefit analysis. International experience in salt and other geologies provide further insights into the proper design and operation of URL research programs for maximum utility. There are many possible uses of a salt URL, which highlights the need for review and consensus [Van Luik 2013].

5.4 Concluding Remarks on Salt URLs The viability of salt formations to host a nuclear waste repository has been well established. Therefore, a salt repository program does not require a field-scale disposal demonstration to resolve an unknown technical issue before a license application can be prepared. This conclusion is based on a wealth of scientific information that supported both the WIPP compliance certification and the preliminary safety case for Gorleben. The former is in bedded salt and the latter in domal salt. Sufficient technical backing has therefore been demonstrated to produce a license application for a salt repository for heat-generating waste if US policy is set in that direction. On the other hand, if confirmation or demonstration of

Page 31: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 20 January 30, 2015

performance expectations is felt to be essential for public acceptance, then it is possible that confirmation testing or disposal demonstrations could be developed to address such a societal prerequisite. The use of a salt URL could also signal that the repository program for salt disposal is committed to performance confirmation.

Examples of field testing and engineered barrier construction could further demonstrate existing ability to seal a salt repository. The state of international repository research, design and operation has been discussed and published in several annual workshops between US and German researchers. International collaboration continues to advance the basis for salt disposal, with exceptional modeling of WIPP Rooms B&D and many new laboratory tests on WIPP salt. Within the context of salt R&D, the proposition of a salt URL requires justification and establishment of merit in an objective and open implementation framework. Given the likely programmatic outlay in terms of time and money, a careful assessment of the return on investment is imperative. Therefore, a framework for implementation has been provided to guide selection of the most promising uses of underground space.

A URL in salt would provide opportunities for advancing identified US/German research interests and university outreach. Collaboration with Germany and other nations with salt disposal interests (The Netherlands and Poland) would help assure credibility of proposed URL activities and could promote partnering on certain ventures. No matter what activity is selected for the URL, new excavation provides a test bed for measuring evolving formation properties before, during and after the openings are made. Advanced planning allows modeling prediction of deformation and changing permeability. Pre-test characterization sets up a code validation/confirmation exercise in the process of defining boundary conditions for tests involving excavations, which is elaborated upon in the next section.

6 CAPTURING EARLY EVOLUTION OF SALT OPENINGS The bulk of this section will be presented and published at Geomechanics Conference of the ARMA [Hansen et al. 2015]. Salt formations hold many favorable characteristics that combine to make them promising sites for permanent waste disposal. Salt formations are plentiful in the US, providing ample areal extent and substantial thickness in aseismic geologic settings [Johnson and Gonzales 1978]. In addition to high thermal conductivity and plastic deformational response, undisturbed salt has extremely low permeability. Some of the favorable characteristics are modified during the excavation process and evolve during operations. If experiments or operational demonstrations are conducted in a salt underground research facility, rapid changes to the preexisting conditions create a new setting in the test bed. The DRZ near the excavation free surfaces provides access to formation brine in bedded salt and becomes an anisotropic, high-permeability region. Depending upon objectives, liberated brine can significantly influence evolution of the test bed. In addition, transient creep strain accumulates rapidly, but is usually not measurable because the rock mass would have to be instrumented before mining occurs. Therefore, potentially large strain accumulation in the salt formation can be overlooked. To model salt deformation completely, an accounting of the transient creep contribution is needed. Fortunately, evolutionary characteristics of salt are well known and straightforward engineering measures can be made to quantify early evolution, which allows the experimentalist to understand and mitigate deleterious effects.

Investigations that utilize a mined salt formation for experimental activities would benefit greatly from the knowledge of initial, undisturbed conditions, the evolutionary changes imparted by excavation, and the boundary conditions extant when field activities are undertaken. Here we describe the essence of a Test Plan to quantify conditions before space is opened and to measure the evolution of displacement, strain, damage, and permeability that occurs during and after excavation. Testing of this nature would support virtually any type of field demonstration or test that involves room-scale excavation in a geologic salt formation. Test methods are adaptable to essentially any configuration. In order to demonstrate the monitoring concepts, a hypothetical test configuration has been assumed.

Page 32: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 21 January 30, 2015

At this point in salt repository collaborations, neither the US nor Germany has a salt URL. However, the concepts put forward here would be applicable in any salt formation, bedded or domal in the US or in Germany. In addition the particular size, length and geometry of the excavation are assumed for purposes of displaying this test strategy. The host-rock characterization program begins from a minimally disturbed state where instrumentation is installed at the periphery of test rooms before room mining begins. After mining begins, changes are measured as stresses are redistributed and damage processes ensue.

The primary approach for characterizing the DRZ is by use of fluid-flow test boreholes and injecting gas or brine in the areas of interest where mechanical changes occur. This testing program will make deformation and fluid flow measurements at similar locations so that unambiguous correlations can be established between rock deformation and permeability changes. The arrangement of instrumentation and measurement techniques allows establishment of initial (undisturbed or minimally disturbed) conditions, capture of the rapid transient response, and evolutionary monitoring as the salt creeps into the room. Measurement of mechanical response coupled with hydrologic changes establishes boundary conditions for any test or demonstration that might be conducted in the excavation.

An underground research facility in salt provides an opportunity to measure undisturbed permeability, which is expected to be almost immeasurably low. Such a measurement would confirm this widely recognized salt property. Excavation perturbs the stress state and the static salt formation begins to deform into the opening. The process of mechanical deformation creates fractures in the proximity to the openings. Fracture damage creates a permeability that did not exist before, and the accessible brine moves down the hydrologic gradient toward the opening. Some of the brine reaches the walls of the opening and is evaporated by ventilation air. Some of the brine remains in the DRZ and flows by gravitation into void space created in the floor region by flexure. The brine below the floor would continue to flow down the geologic slope of a bedded salt formation. The creation of the DRZ and its geometry and properties, as well as the availability of brine and its fate create initial boundary conditions of the site regardless of the technical purpose for which an excavation is used. These fundamental properties of the salt formation can be predicted by calculation, monitored for confirmation, thus validating the computational simulation.

6.1 Salt Behavior To explain the testing strategy, some assumptions of the configuration are necessary, mindful that the philosophy, evolution, and measurement concepts are adaptable to essentially any reasonable opening geometry. The surrounding stratigraphy is predominantly halite, though bedding layers of clay and anhydrite are common and will be included in discussions here.

Mechanical deformation of the rock in a salt formation surrounding excavations controls the development of initial or boundary conditions for subsequent experimental work in the drifts. Geomechanical deformation comprises instantaneous elastic deformation, rapid transient creep, dislocation creep, and damage imparted to the host rock under certain stress conditions. Combined, these processes can be quantified through observations of deformation rates, finite displacements, and characteristics of the DRZ.

6.1.1 Geomechanical Measurements Testing techniques proposed have been used previously in salt applications and can be considered generic. The instruments would be arranged around a to-be-mined drift configuration appropriate for geologic waste disposal. Testing and monitoring include primary measurements of deformation, strain rate, and brine and gas flow and secondary measurements of temperature and barometric pressure.

Salt creep has been extensively measured and characterized by US and German salt repository programs and other salt-based industries (e.g., salt and potash mining). Crystal plasticity is isochoric; therefore, it does not induce damage to the salt matrix. Damage occurs when the deviatoric (i.e., shear) stresses are relatively high compared to the applied mean stress. Salt damage manifests through time-dependent

Page 33: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 22 January 30, 2015

initiation, growth, and coalescence of microfractures. These processes lead to a bulk dilation of the affected rock, increasing the porosity and permeability of the salt to brine and gas flow. The extent of the DRZ surrounding mined salt openings has been measured directly at WIPP and elsewhere using techniques such as sonic velocity, brine and gas flow properties, and laboratory analysis of cores. Point geophysical measurements have validated the geometry and rock properties predicted by numerical damage models. These features and their measurements are discussed subsequently.

6.1.2 Room Closure The test configuration described here would confirm the geophysical response of the test bed before, during and after the mining of the testing drifts. The bases for these proposed measurements draw from principles of salt deformation. A structural model prediction has been run to provide guidance for instrumentation placement. The calculation is based a salt-creep constitutive model that tracks stress/strain history of the host rock. Expected results from the structural calculation can be supplemented and corroborated by taking advantage of extensive database of geotechnical measurements made in connection with actual operations in salt. Classical strain-time behavior for salt includes rapid transient deformation that slows to a pseudo steady-state as substructure evolves with time. Model simulations can be used to provide a more complete deformation history, including hard-to-collect early-time data. Modeling results can be analyzed to include continuous predictions of DRZ extent and absolute displacement quantities.

6.1.3 Damage Evolution Development of the dilatancy boundary represents an ongoing pursuit of German and US salt research scientists [Schulze et al. 2001]. A more sophisticated treatment of DRZ development would be expected for analyses of an actual URL test. For exemplary purposes we use a simple relationship relating volumetric strain and principal stresses [Van Sambeek et al. 1993]. Stress states that resulted in net volume increase (damage or dilation) were defined in terms of the first invariant of the traditional Cauchy stress tensor, I1, and the square root of second invariant of the deviatoric stress tensor, J2. These invariants are related to mean (or confining) stress and deviatoric stress, respectively, and a clear delineation in the I1 – J2 stress space exists between conditions that cause dilation and those that do not, regardless of the type of salt or type of test considered. A simple empirical relationship separates dilating stress states from nondilating stress states expressed as

This relationship is called the stress-invariant model and is used is this analysis.

Measurements of the DRZ around openings in salt have been made using various geophysical techniques. Predictions of the one-way evolution of the DRZ without subsequent long-term salt healing replicate geophysical observations. The size and shape of the DRZ around an opening based on a stress-invariant criterion are comparable to the size and shape derived from sonic velocity studies and from microscopy of core damage.

6.2 Structural Analysis Results of the ongoing Joint Project collaborations should identify the best-available tools for structural analyses. Geomechanical model predictions should be integral to field test planning because they demonstrate that the experimental concept has been thought out, while calculations help clarify boundary conditions likely for the field test. Placement of gauges before excavation permits evolutionary measurements that can be predicted using a variety of models. Subsequent accomplishment of the test provides an opportunity to validate predictions. Predicted response coupled with practical experience provide the bases for instrumentation range, accuracy, and data quality objectives (DQOs), which quantify needed precision and accuracy based on how the measurement applies to safety functions.

12 27.0 IJ =

Page 34: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 23 January 30, 2015

6.2.1 Geomechanics Modeling For illustrative purposes, a preliminary two-dimensional isothermal structural analysis of a proposed mine-by test has been performed [Holland 2014]. The primary reason for the calculation is to determine the extent of the damage zone around a potential test drift and to aid in the design and placement of instrumentation. If such an excavation is actually made at some future date, it would provide an additional opportunity to validate these calculations.

The finite element model used for this example represents a two-dimensional cross-section passing through the mid-length of a nominal test drift. A two-dimensional geometry was chosen for this example because the analysis was time-and-budget limited. A full three-dimensional model would more accurately represent a particular configuration. Material layering used in this example simulation is based on WIPP Room D stratigraphy, which can be considered typical for bedded salt. A final test location with site geology and mining sequences should be used to develop a three-dimensional geomechanical model of the actual area, especially since the purpose of this effort is to quantify damage of the salt and development of the DRZ surrounding test drifts.

6.2.2 Results Geomechanical modeling can predict microfracturing using the stress-invariant criterion provides a tool for pre-test calculations of the test room conditions. The ratio of the square root of the second invariant of the deviatoric stress tensor (J2) and 0.27 times the first invariant of the stress tensor (I1) can be used to outline a zone with a Damage Factor > 1, as shown in Figure 6.1. This plot is a snapshot at 887 days, though the damage factor contours can be calculated at any time. Multipoint Borehole Extensometers (MPBXs) can now be situated to straddle the predicted extent of the DRZ using this type of information.

Figure 6.1. Damage contours from Geomechanics models.

To provide an estimate of the temporal change in the displacement field between the drifts a horizontal line of displacement probes is assumed between observation drift (N-940 in the example) and Test Drift 1 as shown in Figure 6.2a). Time histories of the horizontal displacements at these nominal locations are shown in Figure 6.2b). A positive value of the displacement means the probe location is moving toward the test drift excavation. In this simulation, the probes are installed soon after excavation of observational drift N-940. At first, all probe locations would be moving toward N-940. The kink in the displacement history curves occurs when the test drift is excavated.

Based on these calculations, the extensometers range and accuracy can be specified. For example, an anchor could be set at 0.5 m from the new excavation wall, with a measurement range of 0.10 m (double the expected displacement). The outer anchor would be set at about 5 m, which is approximately neutral

Page 35: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 24 January 30, 2015

between the two drifts. Displacement precision should be approximately 0.001 m (1 mm), which is 1% of range. Off-the-shelf extensometers are typically more sensitive than +/- 0.001 m. Final arrangements and gauge selection would be determined by the Principal Investigator, but this example shows how the prediction can assist with DQOs.

a)

b)

Figure 6.2 Displacements as a function of position between observation drift and test drift.

Temperature and mechanical deformation measurements will be collected at like locations to enable data collection for thermal-expansion compensation of the extensometers. Final design depths, ranges, and DQOs would be aided by final test site selection and preliminary geomechanical model predictions.

6.3 Permeability Measurements Permeability testing boreholes would be situated in the expected DRZ. The combination of MPBX measurements strain and fluid testing will generate data to allow a correlation to be made between a 1-D stain level and a fluid flow potential. Intact geologic salt is essentially impermeable to brine or gas flow (permeabilities <10-20 m2). In its undisturbed state, the intergranular porosity of intact salt is quite low (~1%), unconnected, and filled with saturated brine. Pressure within occluded pores would be equal to

Page 36: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 25 January 30, 2015

lithostatic pressure. Interconnected porosity, which can be created by salt dilation, is required to allow brine to flow under a stress or pressure gradient.

Once the changes to the porosity, intrinsic permeability, and brine saturation have occurred, brine flows into the DRZ under the influence of gravity, pressure, and capillarity. This redistribution of brine is slower than the initial mechanical response of the system, which creates the DRZ and largely air-filled zone surrounding the excavation.

Depending on the method used to characterize the DRZ, it typically develops from 1-2 meters up to one excavation “radius” into the host rock. Characterization of the DRZ provides concrete information regarding the initial and boundary conditions for the drift. The DRZ can act as a source, sink, and pathway for brine and vapor moisture. Characterizing the spatial extent and temporal evolution of the DRZ around excavations provides boundary conditions for any of the proposed experiments.

6.3.1 Gas Flow Laboratory and in situ testing programs at WIPP have characterized both brine and gas flow through the DRZ [Freeze et al. 1997; Beauheim and Roberts 2002]. In general, gas flow measurements are simpler to conduct in areas where the air entry pressure is low enough (i.e., the DRZ), and provide a good diagnostic for delineating the extent of the DRZ. Estimates of DRZ extent and shape from gas flow measurements are qualitatively similar to those estimated from geomechanical model predictions and cross-hole sonic velocity measurements. Gas flow rate can be measured at a specified working pressure, into a short packed-off borehole interval. The test is relatively quick to conduct, and can be repeated across different intervals to assess the variability of the DRZ along the length of the borehole. Gas flow measurements will be made before during, and after excavation of test rooms to confirm initial absence of a DRZ and subsequently to confirm creation and evolution of the DRZ upon test room mining.

Gas is a non-wetting fluid, and would only displace brine (the wetting fluid) under relatively high pressures when intergranular porosity comprised pore diameters that allowed such displacement. Typical undisturbed salt has a pore structure that precludes gas displacing brine prior to reaching lithostatic pressure. Therefore gas flow measurements will essentially test only the air-filled porosity and relative gas permeability of the DRZ. Residual brine will remain in the DRZ, but this fraction of the porosity will be inaccessible to low-pressure gas. Attempting to make gas flow measurements at the far edge of the DRZ (where porosity is lower and therefore brine saturation is higher) or in areas where brine has flowed back into the DRZ, may result in gas displacing brine, which is a non-linear process that complicates test interpretation. Gas testing will essentially be used to quantify the extent of the DRZ, with some rough quantification damage. High gas flow rates can be associated with macroscopic fractures and bedding separations, often associated with non-salt, relatively brittle materials.

6.3.2 Brine Flow Brine flow measurements are more difficult to make than gas measurements because brine is more viscous, and in a low permeability media, this contributes to very low or no flow in injection test configurations. Historic testing of brine permeability in boreholes was sometimes accomplished using a complex packer apparatus to minimize tool movement, measure borehole deformation, and accommodate high-pressure long-term tests [Roberts et al. 1999]. Characterization activities proposed here do not envision complex long-term brine flow tests, but will measure brine pressure in boreholes before and after test drift mining. If salt permeability and brine saturation are both high enough, brine pressure is expected to stabilize readily (indicating a meaningful inter-granular pore pressure can be interpreted). When this occurs constant pressure tests will be conducted to estimate brine permeability. But unlike gas flow tests, if a brine flow test interval is too damaged or dilated (high intrinsic permeability but low brine saturation), the shut-in pressure will likely not stabilize, indicating the brine is penetrating significant gas-filled DRZ porosity.

Page 37: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 26 January 30, 2015

While brine will readily displace gas that is not trapped, the penetration of brine into an air-filled porous or fractured medium is a highly non-linear process. These types of tests would be difficult to analyze with linear well-test solutions developed for either brine or gas flow without significant simplifying assumptions of flow behavior around the borehole.

Interbeds comprising non-creeping minerals typically exist within salt formations. In excavations similar to that proposed for this test configuration, such interbeds become highly fractured due to the extent of the DRZ and brittle material behavior. The Brine Sampling and Evaluation Program (BSEP) conducted at WIPP from 1982 to 1993 included “water table” observations in vertical boreholes in the floor [Deal et al. 1989; 1995]. The BSEP investigations found brine readily flowed into boreholes completed in the marker bed, especially at the intersection of large drifts. Recognizing the connectivity of the DRZ below the rooms, particularly if a marker bed is intersected, brine accumulation could be monitored in vertical boreholes. Based on BSEP experience, a relatively brittle stratum located beneath an excavation will potentially act as a brine collection drain for the test drifts because of its stratigraphic location. Since vertical boreholes provide simple measurement opportunity, short pumping or purging tests may be conducted to estimate permeability of the damaged zone penetrated by these boreholes.

6.3.3 Data Quality Objectives A quality scientific endeavor is predicated on sound application of the scientific method. This document provides a look forward to an opportunity for characterizing a future test or demonstration activity. Measurements include undisturbed conditions and transient characteristics during and after excavation. We therefore have an opportunity to confirm our understanding of these physical changes, while providing detailed boundary conditions for field experiments. In addition, results of these measurements provide opportunities for validation of modeling techniques.

Because of extensive history in this type of experimental work, both in the US and internationally, the basic material and geologic formation behavior is well known. Undamaged salt is essentially impermeable, while minimal damage (volumetric strains as small as 0.01%) will increase anisotropic permeability by 5-6 orders of magnitude. Reversing the stress state toward equilibrium and simultaneously reducing shear stress will heal salt fractures. Understanding these two processes of creating and healing the salt DRZ has been sufficient for engineering and seal system applications to date. Geomechanical simulations can track the stress state and post-process ratios of stress invariants for the damage contours as shown in Figure 6.1.

Modeling, testing, and measurement methods can be used to characterize a generic test bed in a salt formation. An actionable Test Plan to proceed with the described scope of work would conform to requirements of the sponsoring agency under the provisions of an appropriate quality assurance plan. In this preview, a means to collect relevant information has been presented. Creep deformation and evolution of damage around new excavations in salt greatly alter favorable characteristics of the virgin ground. Investigations and salt characterization, as described here, would provide boundary conditions for any particular test bed. Geomechanics simulation can be used to define DQOs and instrumentation specification, while measurements before during and after the test itself provide data for model validation.

7 CONCLUDING REMARKS Collaboration between German and US researchers ensures that science and engineering at the state of the art is accomplished. Bringing together the best minds in salt repository research, design, and operation lets us address a wide breadth of subjects and dive deeply into selected issues [Howell 2014]. These sentiments are echoed in the Ministry address by Dr. Pape, which is provided in Appendix B. Mutual benefit is at the nucleus of these modern-day collaborations. Collaborations between scientists of American and German research institutions in the field of radioactive waste disposal in rock salt started in the 1970s and emphasized geomechanics and brine migration at the Asse Mine.

Page 38: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 27 January 30, 2015

The cooperation activities particularly between researchers of SNL and several German research institutions (German Federal Institute for Geosciences and Natural Resources (BGR), Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für Abfallstoffe (DBE Tech), and Institut für Gebirgsmechanik GmbH (IfG), to name a few) continued and culminated in the participation of SNL in the famous international EC-funded Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt / Germany (BAMBUS) experiment [Bechthold et al. 2004]. In the year 2000 political circumstances (nuclear phase-out talks in Germany and Gorleben Moratorium) led to a slow-down in salt repository research in Germany. In the US priorities changed as well and salt research was reduced and collaboration between the US and Germany slowed accordingly.

In 2009 policy changes in both countries (e.g., in Germany prospects to end the Moratorium and in the US a move away from Yucca Mountain) gave rise to positive and encouraging motivation for intensified resumption of salt research. Therefore, representatives of research institutions in the US and in Germany took the initiative to renew collaborations and cooperation on overall salt repository science, to coordinate a potential research agenda of mutual interest, and to leverage collective efforts for the benefit of their respective programs. This started in 2010 with the first common workshop on Salt Repository Research, Design and Operation, organized by SNL, DBE Technology, and KIT/PTKA in Mississippi, US.

As witnessed in this and previous Proceedings, this was the beginning of a very productive and successful collaboration. Since then five annual workshops were organized; collaboration in the Joint Project on benchmarking constitutive models for rock salt was pursued and showed impressive results; many common contributions to conferences, workshops and journals were made; participation in EC-projects (MoDeRn) and IGDT-TP activities (Joint Activity on Handling of Uncertainties) were initiated and performed. These workshops also address the fundamental challenges of maintaining and honing their respective current state-of-the-art core capabilities in rock salt repository science and technology.

All these activities were and are in accord with the 2011 Memorandum of Understanding (MoU) between US DOE offices and the BMWi. This MoU represents the umbrella for collaboration and signifies an important acknowledgement of the interest of the responsible authorities in the cooperation, the technical agenda, and the benefits for the national programs. The general issues addressed in the workshops, namely the safety case, salt repository concepts and designs, geomechanical response, groundwater flow and radionuclide transport, geotechnical barriers, and site/host-rock characterization, are scientifically up-to-date. To broaden the central construct of collaborations, flexibility and openness allow treatment of additional topics of arising interest. For example, the issue of operational safety was introduced in the 5th Workshop, serving as a trademark of these collaborations. Another important derivative was initiative to found the OECD/NEA Salt Club to bring together international multidisciplinary scientist working in the field of salt repository research.

Some of the lessons learned so far from the successful cooperation are

• comprehensive knowledge and sound expertise of US and German scientists in various fields of salt repository science and engineering can be applied to the problems defined and guarantee to tackle existing and future challenges

• ongoing activities and scientific results exemplify the benefits of this collaboration and prove the importance of international cooperation

• collaboration helps optimize scarce human resources in joint projects and activities • duplication of efforts can be avoided in the process of adding value of shared national

capabilities (e.g., computer resources, modeling, URL experiments, etc.) • knowledge preservation, education and training (e.g., involvement of universities) • different perspectives and diverse perception of identical issues support the finding of

solutions • cooperation with foreign partners (e.g., via the Salt Club, conferences and publications)

generates great benefit for the national programs

Page 39: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 28 January 30, 2015

In view of the future developments in HLW disposal in the US and Germany, especially in view of the Site Selection Act, cooperation becomes more and more important.

Concerning domal rock salt there are still open R&D questions that have been identified as a result of the preliminary safety analysis Gorleben (VSG). Moreover, conceptual questions concerning the disposal in bedded salt are to be addressed in Germany. This effort will draw on the expertise and experience of US researchers because of their extensive work on WIPP salt.

Page 40: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 29 January 30, 2015

Summing up by referencing Dr. Pape´s (BMWi) welcome address:

On behalf of the organizers PTKA-WTE, DBE Technology GmbH and Sandia, we would like to make you aware of preliminary preparations for our 6th US/German Workshop on Salt Repository Research, Design, and Operation. At the 5th US-German Workshop held in Santa Fe, September 2014, it was decided to hold the 6th Workshop in Dresden, Germany. The workshop is again jointly organized by PTKA-WTE, DBE Technology GmbH, and SNL.

We have made tremendous progress since restarting collaboration in core research areas of geomechanics, constitutive benchmark modeling, plugging and sealing, and the safety case. Recently we added the important issue of operational safety. We will continue to build on these efforts as we open new areas of collaboration such as hydrologic modeling applied to salt repositories, comparison of bedded and domal salt, and the impact of extended storage. We will entertain related topics such as other country participation, actinide chemistry, and open up to special topics, as appropriate.

8 REFERENCES Argüello, J.G. 2014. Results from the US-German Benchmark Initiative for FY14. SAND2014-18272R. Sandia National Laboratories, Albuquerque, NM.

Beauheim, R.L. and R.M. Roberts. 2002. Hydrology and Hydraulic Properties of a Bedded Evaporite Formation. Journal of Hydrology, 259(1):66–88.

Bechthold, W., E. Smailos, S. Heusermann, W. Bollingerfehr, B. Sabet, T. Rothfuchs, P. Kamlot, J. Grupa, S. Olivella, and F.D. Hansen. 2004. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project): final report. European Commission. Directorate General for Research. Office for Official Publications of the European Communities. Call No: EUR 20621 EN.

Bérest, P., P.A. Blum, J.P. Charpentier, H. Gharbi and F. Valès. 2005. Very Slow Creep Tests on Rock Samples. Int. J. Rock Mech. & Mining Sci. V.42.

BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit). 2010. Sicherheitsanforderungen an die Endlagerung wärmeentwickelnder radioaktiver Abfälle. www.bmub.bund.de

Bollingerfehr, W., W. Filbert, C. Lerch, P. Herold, N. Müller-Hoeppe, F. Charlier, and R. Kilger. 2013. Technical Design and Optimization of a HLW-Repository in the Gorleben Salt Dome including Detailed Design of the Sealing System. WM2013 Conference, Phoenix, AZ, USA. No.13305.

The work that is being done as part of our US-German co-operation is important for us to gain detailed insights into the qualities of rock salt as a host rock and to bring older findings in line with the current state-of-the-art of science and technology. Our countries have similar salt formations, i.e. salt domes and bedded salt, and could use them in similar ways. This geological fact makes the US our most important international research partner on salt rock – and the fact, of course, that your country has excellent expertise in this area. As we address the challenges in hand, Germany will continue to add to its own long-standing expertise on salt rock and share it. Our co-operation makes it possible for both partners to create synergies in our work and thus advance our programs.

Dr. Pape—Welcome Address Excerpt

(Complete Text in Proceedings)

Page 41: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 30 January 30, 2015

Bornemann, O., J. Behlau, R. Fischbeck, J. Hammer, W. Jaritz, S. Keller, G. Mingerzahn, and M. Schramm. 2011. Description of the Gorleben Site. Part 3: Results of the geological surface and underground exploration of the salt formation. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), ISBN 978-3-9813373-6-5, Hannover, Germany.

Bracke, G. and K. Fischer-Appelt. 2013. Overview on the Preliminary Safety Analysis of the Gorleben Site. WM2013 Conference, Phoenix, AZ, USA. No.13298.

Deal, D.E., R.J. Abitz, D.S. Belski, J.B. Case, M.E. Crawley, C.A. Givens, P.P.J. Lipponer, D.J. Milligan, J. Myers, D.W. Powers, and M.A. Valdivia. 1995. Brine Sampling and Evaluation Program 1992-1993 Report and Summary of BSEP Data since 1982. DOE-WIPP 94-011, Westinghouse Electric Corporation, Carlsbad, NM.

Deal, D.E., R.J. Abitz, J.B. Case, M.E. Crawley, R.M. Deshler, P.E. Drez, C.A. Givens, R.B. King, B.A. Lauctes, J. Myers, S. Niou, J.M. Pietz, W.M. Roggenthen, J. R. Tyburski, M.G. Wallace, and D.S. Belski. 1989. Brine Sampling and Evaluation Program, 1988 Report. DOE/WIPP-89-015. Prepared for the US Department of Energy by IT Corporation and Westinghouse Electric Corporation, Carlsbad, NM.

DOE. 2013. Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Washington, DC: US Department of Energy.

DOE. 2014. Waste Isolation Pilot Plant Recovery Plan. http://www.wipp.energy.gov/Special/WIPP%20Recovery%20Plan.pdf.

Eickemeier, R., S. Heusermann, M. Knauth, W. Minkley, H.-K. Nipp. And T. Popp. 2013. Preliminary Safety Analysis of the Gorleben Site: Thermo-mechanical Analysis of the Integrity of the Geological Barrier in the Gorleben Salt Formation. WM2013 Conference, Phoenix, AZ, USA. No. 13307.

Freeze, G.A., T.L. Christian-Frear, and S.W. Webb. 1997. Modeling Brine Inflow to Room Q: A Numerical Investigation of Flow Mechanisms. SAND96-0561. Sandia National Laboratories, Albuquerque, NM.

Freeze, G., S. D. Sevougian, C.D. Leigh, M. Gross, J. Wolf, J. Mönig, and D. Buhmann. 2014. A New Approach for Feature Event and Process (FEP) Analysis of UNF/HLW Disposal. Waste Management Symposium, Phoenix, AZ.

GRS (Gesellschaft für Anlagen- und Reaktorsicherheit). 2012. Vorläufige Sicherheitsanalyse für den Standort Gorleben. Köln, Germany. http://www.grs.de/vorlaeufige-sicherheitsanalysegorleben-vsg.

Günther, R.-M., K. Salzer, T. Popp, and C. Lüdeling. 2014. Steady-state Creep of Rock Salt - Improved Approaches for Lab Determination and Modeling to Describe Transient, Stationary and Accelerated Creep, Dilatancy and Healing. 48th US Rock Mechanics Symposium, Minneapolis, MN, USA. No. 14-7051.

Hampel, A., J.G. Argüello, F. Hansen, R.M. Günther, K. Salzer, K., W. Minkley, K.-H. Lux, K. Herchen, U. Düsterloh, A. Pudewills, S. Yildirim, K. Staudtmeister, R. Rokahr, D. Zapf, A. Gährken, C. Missal, and J.Stahlmann. 2013. Benchmark Calculations of the Thermo-Mechanical Behavior of Rock Salt – Results from a US-German Joint Project. 47th US Rock Mechanics Symposium, San Francisco, California.

Hampel, A., K. Salzer, R.-M. Günther, w. Minkley, A. Pudewills, B. Leuger, D. Zapf, K. Staudtmeister, R. Rokahr, K. Herchen, R. Wolters, and K.-H. Lux, 2012. Joint Projects on the Comparison of Constitutive Models for the Mechanical Behavior of Rock Salt - II. Overview of the Models and Results of 3-D Benchmark Calculations. In P. Bérest, M. Ghoreychi, F. Hadj-Hassen & M. Tijani (eds.), Mechanical Behavior of Salt VII, Proc. 7th Conference, Paris. London: Taylor & Francis Group (Balkema)

Page 42: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 31 January 30, 2015

Hansen, F.D. and C.D. Leigh. 2011. Salt Disposal of Heat-Generating Nuclear Waste. SAND2011-0161. Sandia National Laboratories, Albuquerque, NM.

Hansen, F.D. 2013. Underground Salt Research Laboratory at the Waste Isolation Pilot Plant. SAND2013-0356C. International High Level Radioactive Waste Management Symposium. Sandia National Laboratories, Albuquerque, NM.

Hansen, F.D., K. Kuhlman, C. Howard and J. Holland. 2015. Capturing Early Evolution of Salt Openings. American Rock Mechanics Association, San Francisco. In Press.

Hansen, F. and T. Popp. 2015. Geomechanics Issues Regarding Heat-Generating Waste Disposal in Salt. American Rock Mechanics Association, San Francisco. In press.

Hansen, F.D. 2015. An Underground Laboratory in the Context of Salt Disposal Research. WM2015 Conference, Phoenix, AZ. SAND2014-18368C. Sandia National Laboratories, Albuquerque, NM.

Hardin, E., K. Kuhlman, and F. D. Hansen. 2014. Technical Feasibility of Measuring Low-Stress, Low Strain-Rate Deformation Relevant to a Salt Repository. Prepared for US Department of Energy, Office of Used Nuclear Fuel Disposition. FCRD-UFD-2014-000614 Rev. 0. SAND2014-17435 R. Sandia National Laboratories, Albuquerque, NM.

Holland, J.F. 2014. Mechanical and Hydrological Characterization of the Near-field Surrounding Excavations in a Geologic Salt Formation. SAND2014-17822 R (Appendix D). Sandia National Laboratories, Albuquerque, NM.

Howell, V.D. 2014. Sandia Hosts Successful US-German Workshop. Sandia National Laboratories/Lab News. Albuquerque, NM.

http://energy.sandia.gov/?page_id=17258.

http://www.oecd-nea.org/rwm/saltclub/.

http://www.modern-fp7.eu.

http://www.igdtp.eu

IAEA. 2001. The Use of Scientific and Technical Results from Underground Research Laboratory Investigations for the Geological Disposal of Radioactive Waste. International Atomic Energy Agency. IAEA-TECDOC-1243.

IfG. 2012. Laboruntersuchungen am Gemisch Schnittsalz - Friedländer Ton. Institut für Gebirgsmechanik GmbH, Leipzig, 07.12.2012, 56 pp.

Johnson, K.S. and S. Gonzales. 1978. Salt Deposits in the United States and Regional Characteristics Important to Storage of Radioactive Waste. Prepared for Union Carbide Corporation, Nuclear Division, Office of Waste Isolation Y/OWI/SUB.-7414/1.

Kock, I., J. Larue, H. Fischer, G. Frieling, M. Navarro, and H. Seher. 2013. Results from One- and Two- Phase Fluid Flow Calculations within the Preliminary Safety Analysis of the Gorleben Site. WM2013 Conference, Phoenix, AZ. No. 13310.

Kröhn, P-K., D. Stührenberg, M. Herklotz, U. Heemann, C. Lerch, X. Mingliang. 2009. Restporosität und-permeabilität von kompaktierendem Salzgrus-Versatz. Gesellschaft für Anlagen-und Reaktorsicherheit. GRS-254 ISBN 978-3-939355-29-8.

Munson, D.E., R.L. Jones, D.L. Hoag, and J.R. Ball. 1988. Mining Development Test (Room D): In-Situ Data Report (March 1984 – May 1988) Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program. SAND88-1460, Sandia National Laboratories, Albuquerque, NM.

Page 43: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 32 January 30, 2015

Munson, D.E., R.L. Jones, J.R. Ball, R.M. Clancy, D.L. Hoag, and S.V. Petney. 1990. Overtest for Simulated Defense High-Level Waste (Room B): In-Situ Data Report (May 1984 - February 1988) Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program. SAND89-2671, Sandia National Laboratories, Albuquerque, NM.

Nuclear Energy Agency. 2013. Underground Research Laboratories (URL). Radioactive Waste Management NEA/RWM/R. NEA No. 70122.

Nuclear Energy Agency. 2014. Natural Analogues for Safety Cases of Repositories in Rock Salt, Salt Club Workshop Proceedings, Braunschweig, Germany. Radioactive Waste Management, NEA/RWM/R(2013).

Roberts, R.M., R.L. Beauheim, and P.S. Domski. 1999. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final report. SAND98-2537. Sandia National Laboratories, Albuquerque, NM.

Steininger, W., F.D. Hansen, E. Biurrun and W. Bollingerfehr. 2013. US/German Collaboration in Salt Repository Research, Design and Operation. WM2013 Conference. Phoenix, AZ.

Schulze, O., T. Popp, and H. Kern. 2001. Development of Damage and Permeability in Deforming Rock Salt. Engineering Geology, 61(2-3):163–180.

Van Luik, A. 2013. The Role of In-Situ Testing In Support of a Salt Repository Safety Case. ABC-Salt Workshop III Actinide Brine Chemistry. US Department of Energy, Carlsbad Field Office, Carlsbad, NM.

Van Sambeek, L.L., J.L. Ratigan, and F.D. Hansen. 1993. Dilatancy of Rock Salt in Laboratory Tests, International Journal of Rock Mechanics, Mineral Science & Geomechanics Abstracts. SAND92-2184A, Sandia National Laboratories, Albuquerque, NM.

Page 44: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 33 January 30, 2015

APPENDIX A: AGENDA

Page 45: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 34 January 30, 2015

Page 46: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 35 January 30, 2015

Page 47: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 36 January 30, 2015

Page 48: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 37 January 30, 2015

Page 49: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 38 January 30, 2015

APPENDIX B: WELCOME ADDRESS: Dr. Pape—Welcome Address

Ladies and Gentlemen,

On behalf of the Federal Ministry for Economic Affairs and Energy – the German ministry responsible for non-site specific project-funded research into nuclear waste disposal – I would like to extend my warmest greetings to you at the start of the fifth US-German workshop on Salt Repository Research, Design and Operation organized by Sandia National Laboratories, DBE-Technology, and Project Management Agency Karlsruhe. I would particularly like to thank Sandia for the excellent preparations in Santa Fe.

I am looking forward to this event, attended by fifty international participants, which will give us an overview of topics reflecting the current status of salt repository research, design, and operation, in particular addressing the thermomechanical behaviour of salt, plugging and sealing, and the safety case.

The event brings together “salt experts” from the US and Germany, providing them with the opportunity to exchange information, to analyse the current status of research, discuss what has happened so far, and in doing so, draw conclusions for the future joint research activities.

This annual workshop is a poster child of our cooperation. There is a long tradition of co-operation between the US and Germany dating back to the 1970s. Some of our American colleagues were part of the research being done then, especially in the underground laboratory in the Asse research mine in Germany. We well remember the famous “BAMBUS” project, the world’s first long-term demonstration experiment.

Changes in political priorities in both countries repeatedly led to the joint research work being put on hold. However, in the scientific community the view prevailed that it is indeed technically feasible to construct, operate, and safely close final repositories within salt rock formations.

Starting in 2009, both countries have again been more open-minded about rock salt to host final repositories and thus reverted back to the long-standing tradition of German-US co-operation in this area. So far, four workshops have been held as part of the effort to share scientific experience and resume our fruitful co-operation.

We owe these workshops to four people in particular, namely Frank Hansen of Sandia National Laboratories, Walter Steininger from the Project Management Agency in Karlsruhe, and Enrique Biurrun and Wilhelm Bollingerfehr of DBE Technology. A very special thanks to these three men for their dedicated work over many years and for preparing and organising the event.

2011 marks another important milestone in US-German co-operation: this was the year of the signing of the agreement between the Federal Ministry for Economic Affairs and the two Offices of the U.S. Department of Energy – Environmental Management and Nuclear Energy. I would like to thank the two representatives of the US-DOE for their support and for their active commitment to our co-operation.

The fact that both countries had resumed their exploratory work on rock salt was highlighted by the establishment of the Salt Club, an expert group within the OECD/NEA. Both the US and Germany were founding members of this group, which was set up in 2012 and is chaired by Germany’s Jörg Mönig. We are of course also delighted that Michael Siemann has been appointed Head of Division for Radiological Protection and Radioactive Waste Management in the Secretariat of the NEA (Nuclear Energy Agency) in Paris.

I think that this brief overview of the history of our co-operation in research on rock salt disposal has already given us an idea of how influential politics and changes in the political situation in both our countries have always been in the context of the issues we are dealing with at this workshop.

This brings me to my next point, namely the changes that have come about in Germany with regard to the final disposal of nuclear waste.

The legal framework for this is given by the European Directive on spent fuel and radioactive waste adopted in 2011, which has to be implemented at a national level, and the German Site Selection Act at the national level which entered into force in 2013. The Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety has the lead responsibility for both areas. It shares areas of common interest with the Federal Ministry for Economic Affairs and Energy regarding the final disposal of radioactive waste since the latter is mainly responsible for site-independent applied research into nuclear waste disposal. In this role, the Federal Ministry for Economic Affairs and Energy determines together with the Project Management Agency Karlsruhe the strategic and technical orientation of the research activities.

Based on the European spent fuel and radioactive waste directive, Germany like all other EU Member States is called upon to set up a National Waste Management Program for all radioactive waste by summer 2015. Draft programs so far include two repository sites for Germany, one waste with negligible heat generation and one for heat-generating high-level radioactive waste.

Specific cases are on the one hand the ERAM at Morsleben. This final repository for low and medium-level radioactive waste was established in a former potash and rock salt mine. The storage in Morsleben was halted in 1998. Currently, the mine areas are being stabilised and the closure procedure is underway.

Page 50: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 39 January 30, 2015

Dr. Pape—Welcome Address (Continued)

On the other hand, there is the Asse II mine, a former salt mine. I will address it later.

The Shaft Konrad has been proposed as a final repository for low and medium-level radioactive waste and the planning approval has been granted. The work on converting Konrad into a final repository has been ongoing since 2007, and completion of the work is currently scheduled for 2022. The Konrad repository is crucial for the storage of non-heat generating low and medium-level radioactive waste resulting from the decommissioning of Germany’s nuclear power plants. A speedy completion of the Konrad repository without any further delay is necessary to provide planning certainty for nuclear power plant operators and the institutions involved.

According to the Site Selection Act, a storage site and/or alternative methods of disposal are being sought. The content of the Site Selection Act was covered in detail at the last workshop in Berlin in 2013. An essential aspect of the Act is that it prescribes an open-ended and unbiased site selection process, starting with a “white map” of Germany. As a result, potential sites in rock salt will have to compete with sites in alternative rock formations.

At the same time, the implementation of the Act means that, in addition to consideration of alternative means of disposal and rock formations, further work has to be done on the science and technology of the suitability of rock salt for the disposal of radioactive waste. Here, we particularly need to draw on international networks and experience.

The Commission “Storing High-Level Radioactive Waste” is responsible for the actual site selection process as part of the implementation of the Site Selection Act. It has taken up its work this summer and is made up of scientists, representatives of society, members of the German Bundestag and members of the Länder governments. The Commission’s task is to address fundamental aspects of the disposal of high-level radioactive waste and to review the existing requirements of the Site Selection Act. In seeking to fulfil this task, the Commission will draw on the work of expert institutions. In this context, major importance will be placed on international experiences. In addition to the analysis of expert reports and expert opinions and judgments, the Commission will also address international projects and visit them. The Commission is required to submit its findings in a report to the German Bundestag by mid-2016.

This report will be decisive for the long-term orientation of the disposal strategy for high-level radioactive waste in Germany.

In addition to these future tasks, and in the context of the search for a site for a High Level Waste repository and the completion of the Konrad final repository, the low and medium-level radioactive waste stored in the Asse II mine takes on special importance. There is the political will to retrieve this waste and store it in an appropriate final repository.

As you know, the Asse mine is a former salt mine which the Federal Government used as a research mine and a pilot final storage facility from 1967 to 1978. Approx. 126,000 barrels of low and medium-level radioactive waste were stored there for research purposes. During the preparations for the closure of the mine according to mining law, the rules were changed in 2009 in favour of a closure under nuclear law. Also, the operator of the mine changed. Since 2009, the Federal Office for Radiation Protection has been the new operator of the mine and after comparing various options in January 2010 it presented the recovery of the stored waste as the favoured option. First drillings have since been made both underground in the storage chambers for fact-finding purposes and above ground for the exploration of a new shaft which is necessary for the retrieval of nuclear waste. However, it continues to be unclear whether the retrieval is technically feasible, especially with regard to the radiation protection measures, and how or where the retrieved waste will be stored. According to the operator, the Federal Office for Radiation Protection, a retrieval of the waste is not to be expected before 2033.

After this digression on the three final storage projects for low and medium-level radioactive waste, I would now like to speak about the Gorleben project and address the implications resulting from the implementation of the Site Selection Act.

In the 1980s, the Gorleben salt dome was selected for exploration to see if it would be suitable as a final repository. As a result of political changes, non-saline rock formations and alternative options have increasingly been considered, particularly in recent times. The Site Selection Act stipulates that such alternative options must be considered, which ultimately led to the exploration work in Gorleben being abandoned in November 2012. The Site Selection Act, which entered into force in summer 2013, also sets out the requirement for Gorleben to be included in the selection procedure and to be treated the same as any other possible site, that is in line with the rules and criteria set in out in the Act. For the Gorleben salt mine this means that operations there are to be brought down to what is “absolutely necessary”. Only parts of the infrastructure are to remain operational whereas the area in which explorations have so far been taken place is to be closed and visits stopped. The security fence above the ground is to be reduced to reflect the “normal industrial standard”.

I’m giving you this information on the Asse and Konrad projects for final repositories in Germany, on the Gorleben explorations and on the new initiative for searching a site for a final repository for High-Level Waste in Germany, to make it clear to you just how much we need additional support from science, particularly for the process of disposing of highly radioactive waste.

Page 51: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 40 January 30, 2015

Dr. Pape—Welcome Address (Continued)

The work that is being done as part of our US-German co-operation is important for us to gain detailed insights into the qualities of rock salt as a host rock and to bring older findings in line with the current state-of-the-art of science and technology. Our countries have similar salt formations, i.e. salt domes and bedded salt, and could use them in similar ways. This geological fact makes the US our most important international research partner on salt rock – and the fact, of course, that your country has excellent expertise in this area. As we address the challenges in hand, Germany will continue to add to its own long-standing expertise on salt rock and share it. Our co-operation makes it possible for both partners to create synergies in our work and thus advance our programmes. We can reap joint scientific and economic benefits and continue our joint research based on what we have already achieved. This of course includes the successful joint project on constitutive laws benchmark, the joint work on the FEP-catalogue (FEP = Features, Events, Processes) and on natural analogues. Safety in the operational phase will be another focal area for research. We will of course go more into detail on this on Wednesday, when we discuss our future plans.

Please take note that the fact that Germany is exploring other possible ways of disposing nuclear waste does not mean that we are turning our backs on salt as a host rock. Salt remains very much on the table as an option, as do non-saline rocks (clay and granite). We need more research in all these areas. This fact is reflected in the work that is currently being done by our ministry and the Project Management Agency in Karlsruhe to update our joint funding strategy.

Ladies and Gentlemen,

All that remains for me to say is that I very much hope that the fruitful co-operation that already exists between our countries will be continued with the same degree of intensity and commitment.

On this note, I wish us all a very successful event.

Page 52: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 41 January 30, 2015

APPENDIX C: LIST OF PARTICIPANTS AND OBSERVERS FROM 5th WORKSHOP

LAST NAME COMPANY EMAIL

Argüello, Jose SNL [email protected]

Bahr, Jean NWTRB [email protected]

Becker, Dirk GRS [email protected]

Bollingerfehr, Wilhelm

DBE TECHNOLOGY GmbH [email protected]

Bühler, Michael H. KIT [email protected]

Buchholz, Stuart RESPEC [email protected]

Bushman, Nancy DOE [email protected]

Camphouse, Chris SNL [email protected]

Davies, Peter SNL [email protected]

Düsterloh, Uwe TU Clausthal [email protected]

Economy, Kathleen

EPA economy,[email protected]

Fahland, Sandra BGR [email protected]

Freeze, Geoffrey SNL [email protected]

Glaubach, Uwe TU Freiberg [email protected]

Hammer, Jörg BGR [email protected]

Hammond, Glenn SNL [email protected]

Page 53: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 42 January 30, 2015

LAST NAME COMPANY EMAIL

Hansen, Frank SNL [email protected]

Hampel, Andreas Hampel Cons. [email protected]

Hardin, Ernest SNL [email protected]

Hart, Japp NRG [email protected]; [email protected]

Icenhower, Jonathan

SNL [email protected]

Kuhlman, Kristopher

SNL [email protected]

Leigh, Christi SNL [email protected]

Lux, Karl-Heinz TU Clausthal [email protected]

MacKinnon, Bob SNL [email protected]

Missal, Christian TU Braunschweig [email protected]

Mönig, Jörg GRS [email protected]

Müller-Hoeppe, Nina

DBE TECHNOLOGY GmbH [email protected]

Pape, Hans-Christoph BMWI

[email protected]

Plischke, Ingo BGR [email protected]

Popp, Till IfG [email protected]

Pusch, Maximilian BGR [email protected]

Rempe, Norbert ng(o)3 [email protected]

Reynolds, Tammy Nuclear Waste Partnership [email protected]

Rottler, Steve SNL [email protected]

Rutqvist, Jonny LBNL [email protected]

Schneider, Anke GRS [email protected]

Self, Stephen NRC [email protected]

Sevougian, David SNL [email protected]

Steininger, Walter KIT [email protected]

Van Luik, Abe DOE [email protected]

Von Berlepsch, Thilo

DBE TECHNOLOGY GmbH [email protected]

Wagner, Steve SNL [email protected]

Wieczorek, Klaus GRS [email protected]

Wolf, Jens GRS [email protected]

Wolters, Ralf TU Clausthal [email protected]

Casey, Shannon SNL [email protected]

Howell, V Dina SNL [email protected]

Mays, Leann SNL [email protected]

Page 54: Reduced size m3 ft 15sn08180210 hansen

Proceedings of 5th US/German Workshop 43 January 30, 2015

APPENDIX D: PRESENTATIONS

Page 55: Reduced size m3 ft 15sn08180210 hansen

Highlights of US German Salt Repository Collaborations 5th US/German Workshop on

Salt Repository Research, Design and Operations Santa Fe, New Mexico, USA

September 7-11, 2014

Frank Hansen--Sandia National Laboratories, Albuquerque New Mexico USA

Walter Steininger-- Karlsruhe Institute of Technology, Project Management Agency

Abstract

This presentation summarizes some of the highlights from more than 40 years of collaboration between Germany and the United States (US) involving salt repository science and engineering. The US/German collaborations have never before been as productive over such a wide range of topics as they have been over that last five years. The excellent collaborations are due in part to historical developments in the US and Germany and in part to long-standing collaborations of a few key researchers. Today German rock salt repository activities and US waste management programs face challenges that may adversely affect current and future core capabilities in rock salt repository science and technology. We are using these annual workshops on salt repository research, design and operation to address this recognized need.

Topics addressed by the US/German salt repository collaborations align well with the findings and recommendations summarized by the US Blue Ribbon Commission on America’s Nuclear Future and are consistent with the aspirations of the key topics of the Strategic Research Agenda of the Implementing Geological Disposal of Radioactive Waste Technology Platform, and BMWi´s R&D concept as well. These workshops revived joint efforts in salt repository investigations after some years of hibernation by leveraging collective efforts for the benefit of respective programs. These efforts form a basis for providing attractive, cost-effective insurance against the premature loss of virtually irreplaceable scientific expertise and institutional memory.

During the last 40-50 years extensive research, development and demonstration activities have contributed to the profound knowledge available concerning rock salt. These achievements were manifested in laboratory and in situ experiments, as well as in large-scale demonstration activities. In recent years noteworthy progress was made in the US and Germany on safety assessment exercises, geomechanical benchmark modeling, and technological developments, such as waste emplacement techniques. Because of this work, comprehensive knowledge and sound expertise in various fields of salt repository science and engineering have been developed.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DEAC04-94AL85000. SAND2014-16139A.

44Proceedings of 5th US/German Workshop

January 30, 2015

Page 56: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

D20

14-1

6140

PE

Highlights o

f US German

 Salt R

eposito

ry 

Collabo

ratio

ns

5thUS/German

 Worksho

p on

 Salt Re

pository Re

search, D

esign and Ope

ratio

n

Santa Fe, N

ew M

exico, USA

Septem

ber 7

‐11, 2014

Wal

ter S

tein

inge

r--P

TKA

Fran

k H

anse

n--S

andi

a N

atio

nal L

abs

Perspe

ctives αto Ω

On

Mar

ch 1

6 19

43 J

. Rob

ert O

ppen

heim

er m

et D

orot

hyS

carr

ittM

cKib

bin

in th

e La

Fon

da a

nd h

ired

her t

o ru

n a

disc

reet

offi

ce th

at w

ould

bec

ome

Los

Ala

mos

.

Wel

com

e to

the

cont

inua

tion

of h

isto

ry

Gen

eral Chron

ology of Salt R

eposito

ry Research 

BMT

TSD

E /B

AMBU

S

AS

SE

1960

2014

US/

Ger

man

Col

labo

ratio

n Sa

lt R

epos

itory

Sci

ence

Pro

ject

Sal

t Vau

lt

WIP

P U

nder

grou

nd R

esea

rch

Labo

rato

ry•

Techniqu

es fo

r waste emplacem

ent w

ere de

velope

d (Dire

ct Dispo

sal = re

ference repo

sitory co

ncep

t)•

Feasibility of v

ertical boreh

ole em

placem

ent  of 

spen

t fue

l & HLW

 (BSK

‐3 can

ister) was sh

own 

•Instrumen

ts, too

ls, and

 metho

dologies fo

r mod

eling 

and safety ana

lysis w

ere substantially fu

rthe

r de

velope

d an

d ha

ve been ap

plied in se

veral 

exercises (e.g. vSG

)•

In German

y un

dergroun

d disposal facilities for 

chem

ical‐toxic wastes a

re licensed

 and

 are 

operationa

l for years

•A lot o

f experience in ro

ck salt a

vailable from

 practical app

lication an

d excellent RD&D

4

German

 Accum

ulation of Expertise in th

e Past Decades

45P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 57: Reduced size m3 ft 15sn08180210 hansen

•Sand

ia, as S

cien

ce Advisor, 

develope

d much of th

e salt 

expe

rtise for the

 Waste Isolation 

Pilot P

lant.

•WIPP was a su

ccessful ope

ratio

n 19

99‐201

4.•

Solutio

n Mining Re

search, Strategic 

Petroleu

m Reserve, A

merican

 Rock 

Mecha

nics Assoc., Salt Mecha

nics 

Sympo

sia

•Salt mining is a world‐w

ide, proven 

and reliable techno

logy

•Ro

ck sa

lt is highly suita

ble for 

hosting  a repo

sitory fo

r heat‐

gene

ratin

g nu

clear w

aste

5

USA

 Accum

ulation of Expertise in th

e Past Decades

Hansen

, F.D. and

 C.D. Leigh.  2

011. Salt D

isposal of H

eat‐Ge

neratin

g Nuclear Waste. SAN

D2011‐0161, 

Sand

ia National Laboratories A

lbuquerque

 New

 Mexico

.  

•Co

llabo

ratio

n hibe

rnated

 for m

ore than

 10 years (diffe

rent 

priorities in Germany and US)

•Re

‐start of collabo

ratio

n in 2010 with

 a com

mon

 US‐German

 Worksho

p in M

ississ

ippi (o

rganize

d by PT‐KA

, Sandia NL, DBE

 TEC)

•Be

nefits

•To exchange expe

riences and

 kno

w‐how

, get external 

expe

rtise

 and

 feed

back 

•Expe

rtise

 and

 kno

wledge to m

ake science‐based 

recommen

datio

ns on the pros and

 con

s of d

ifferen

t host rocks

•Mutual add

ed value

, the

 app

ropriate investmen

t of m

oney, 

cost sh

aring and the gain of con

fiden

ce•

Internationally accep

ted is th

e op

inion to coo

perate with

 foreign partne

rs because of the

 impo

rtance fo

r any national 

program

•Topics emph

asize

d•

Safety Case

•Salt repo

sitory concep

ts & designs

•Mod

eling of groun

dwater flow

 and

 radion

uclide transport

•Geo

technical barrie

rs•

Site characteriza

tion & host rock characterization

Bene

fits o

f the

 Strategic Partnership in National and

 International Coo

peratio

n

6

US/German

 Salt R

eposito

ry Research

Co

llabo

ratio

ns between the US and West G

ermany be

gan in th

e 19

70′s (Asse: Tem

p.Tests)

Technical evaluations fo

r salt d

ispo

sal of h

eat‐gene

ratin

g waste experienced

 a ra

ther long

 hiatus because of “priority changes” in both coun

tries

Salt repo

sitory research in Germany slo

wed

 dow

n somew

hat since 200

0 (political decision

s, 

moratorium), bu

t increased

 in 201

0. 

R e

presen

tativ

es of instituti ons in both coun

tries w

ished

 to re

new collabo

ratio

ns and

 coop

eration on

 overall salt repo

sitory science, to

 coo

rdinate a po

tential research agen

da of 

mutual interest, and to leverage collective efforts for th

e be

nefit of the

ir respectiv

e programs. 

By

 the first US/German

 Worksho

ps on Salt Re

pository Re

search, D

esign and Ope

ratio

n collabo

ratio

n wa s re

‐initiated

.

A coordinated res earch agend

a has b

een pu

rsue

d to m

axim

ize mutual ben

efit. 

Th

e fifth worksho

p will highlight Rep

osito

ry Design an

d Ope

ratio

nsand this to

pic will be the 

focus o

f the

 first d

ay. The

 focus o

f the

 second

 day will be the Th

ermom

echa

nicalBeh

avior 

Of Salt, Plug

ging

 And

 Sea

ling, And

 The

 Safety Ca

se.Spe

cial to

pics will be addressed on

 the 

third

 day.

•Fi

ve c

onse

cutiv

e w

orks

hops

(inf

orm

atio

n:

http

://en

ergy

.san

dia.

gov/

page

_id=

1725

8, in

clud

es w

orks

hop

proc

eedi

ngs

and

all

pres

enta

tions

)•

Mem

oran

dum

of U

nder

stan

ding

bet

wee

n th

e G

erm

an M

inis

try o

f Eco

nom

ic

Affa

irs a

nd E

nerg

y an

d th

e U

S-D

epar

tmen

t of E

nerg

y [E

nviro

nmen

t M

anag

emen

t (E

M) a

nd N

ucle

ar E

nerg

y (N

E)]

•Fo

undi

ng o

f the

OE

CD

/NE

A “S

alt C

lub”

(Par

ticip

ants

: Ger

man

y, U

S, T

he

Net

herla

nds,

Pol

and)

•N

atur

al a

nalo

gues

wor

ksho

p fo

r roc

k sa

lt•

Feat

ures

, Eve

nts,

and

Pro

cedu

res

(FE

P) c

atal

ogue

for r

ock

salt

•S

tate

-of-t

he-a

rt re

port

on s

alt r

econ

solid

atio

n•

Sal

t kno

wle

dge

arch

ive

•W

orks

hops

on

actin

ide

brin

e ch

emis

try (A

BC

) with

Los

Ala

mos

Nat

iona

l La

bora

tory

8

Accomplish

ments and

 Ongoing

 Activities

Kuhlman, K. L., S. W

agne

r, D. Kicker,  R. Kirk

es, C. Herrick, D. Gue

rin. 2012. Review an

d Evaluatio

n of Salt R&D Da

ta fo

r Dispo

sal of N

uclear Waste in Sa

lt. Fu

el Cycle Research & Develop

ment.  

FCRD

‐UFD

‐2012‐000380. SA

ND2

012‐8808P 

46P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 58: Reduced size m3 ft 15sn08180210 hansen

•C

olla

bora

tion

in th

e Jo

int P

roje

ct o

n “b

ench

mar

king

con

stitu

tive

mod

els

for r

ock

salt”

(San

dia

& G

erm

an o

rgan

izat

ions

) (fu

ndin

g by

BM

Wia

nd

US-

DO

E)•

Con

tribu

tions

to

conf

eren

ces

and

wor

ksho

ps (A

mer

ican

Roc

k M

echa

nics

Ass

ocia

tion,

Mec

hani

cal B

ehav

ior o

f Sal

t Sym

posi

a, W

aste

M

anag

emen

t)•

Not

ably

the

AR

MA

conf

eren

ce h

ad fi

ve s

essi

ons

on “s

alt”

with

man

y co

ntrib

utio

ns m

ade

by U

S/G

erm

an c

olla

bora

tors

•C

olla

bora

tive

effo

rts w

ere

also

com

plet

ed in

the

EC

(Eur

atom

)-P

roje

ct

(7th

Fra

mew

ork

Pro

gram

) “M

onito

ring

Dev

elop

men

ts fo

r Saf

e R

epos

itory

O

pera

tion

and

Sta

ged

Clo

sure

” (M

oDeR

n)

•C

olla

bora

tion/

info

rmat

ion

exch

ange

in th

e ar

ea o

f saf

ety

case

•C

omm

on “j

oint

act

ivity

on

Han

dlin

g of

Unc

erta

intie

s” in

the

fram

ewor

k of

th

e IG

D-T

P (Im

plem

entin

g G

eolo

gica

l Dis

posa

l -Te

chno

logy

Pla

tform

)

Accomplish

ments and

 Ongoing

 Activities

9

Steininger, W

., F.D. Hansen, E. Biurrun

 and W. Bollin

gerfehr. 2013. U

S/Ge

rman

 Collabo

ratio

n in Salt 

Repo

sitory R

esearch, Design an

d Operatio

n. WM2013 Con

ference, Fe

bruary 24

‐28, 20

13, P

hoen

ix,  

Arizon

a, USA

Activity

 Overview 5th US/German

 Worksho

p

•O

ngoi

ng c

olla

bora

tions

•O

pera

tiona

l Saf

ety—

Key

Not

e R

ottle

r/Ken

nedy

/v. B

erle

psch

/Har

din

pres

enta

tions

•R

etrie

vabi

lity

and

Rep

osito

ry D

esig

n—W

agne

r/Bol

linge

rfehr

/UR

L•

Ben

chm

ark

mod

elin

g (J

oint

Pro

ject

III)—

Ham

pel/A

rgue

llo p

rese

ntat

ions

•La

bora

tory

test

ing

of W

IPP

salt—

Düs

terlo

h/P

opp/

Plis

chke

/Pus

ch

pres

enta

tions

•P

lugg

ing

and

seal

ing-

-Mül

ler-H

oepp

e/G

laub

ach/

Han

sen

Pre

sent

atio

ns•

Saf

ety

case

and

per

form

ance

ass

essm

ent—

Mön

ig/H

amm

ond/

Wie

czor

ek/F

reez

e/W

olf/B

ecke

r/Sal

labe

rry/R

empe

pres

enta

tions

•N

ucle

ar E

nerg

y A

genc

y S

alt C

lub—

Mön

igpr

esen

tatio

n•

Spe

cial

topi

cs--

Res

earc

her-

to-re

sear

cher

col

labo

ratio

ns

•N

ext s

teps

•P

ropo

sals

for j

oint

colla

bora

tion—

wra

p-up

sess

ion

•S

ALT

ME

CH

VIII

•Fi

eld-

scal

e na

tura

l ana

logu

e ob

serv

atio

ns•

Und

ergr

ound

labo

rato

ry in

the

cont

ext o

f sal

t res

earc

h an

d de

velo

pmen

t

German

 Testing of W

IPP Salt 

Percep

tions‐‐F

uture Work 

•U

S an

d G

erm

an p

ropo

sals

/idea

s fo

r fut

ure

colla

bora

tion

•R

econ

solid

atio

n of

gra

nula

r sal

t

Final porosity

 

Additiv

es fo

r con

struction and sealing prop

ertie

s

Num

erical m

odeling verification

Furthe

r analogue expe

rience

•U

nder

grou

nd re

sear

ch la

b in

the

cont

ext o

f sal

t R&

D

Viability of salt formations fo

r rep

osito

ry is establishe

d

Need a Fram

ework for U

RL im

plem

entatio

n

Justificatio

n requ

ired in con

text of all salt repo

sitory R&

D

•Th

e SA

LT P

rimer

Re

ference for college classroom

Ba

sics, experim

ental techn

ique

s, isocho

ric deformation, dam

age and 

healing

Mod

eling 

Ap

plications, cavities, boreh

oles, rep

osito

ry

47P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 59: Reduced size m3 ft 15sn08180210 hansen

Sand

ia N

atio

nal L

abor

ator

ies

is a

mul

ti-pr

ogra

m la

bora

tory

man

aged

and

ope

rate

d by

San

dia

Cor

pora

tion,

a w

holly

ow

ned

subs

idia

ryof

Loc

khee

d M

artin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-AC

04-9

4AL8

5000

.

Pho

tos

plac

ed in

hor

izon

tal p

ositi

on

with

eve

n am

ount

of w

hite

spa

cebe

twee

n ph

otos

and

hea

der

Engine

ered

 Safety 

at Sandia National Laboratories

Septem

ber 8

, 2014

J. Step

hen Ro

ttler

Vice Presid

ent, California Labo

ratory

Vice Presid

ent, Energy & Clim

ate Programs

SA

ND

201

4-17

166

PE

2

•July 194

5: Los Alamos 

creates Z Divisio

n

•Non

nuclear c

ompo

nent 

engine

ering

•Novem

ber 1

, 194

9: 

Sand

ia Laboratory 

establish

ed 

Sand

ia’s History

3

Albu

querqu

e, New

 Mexico

Liverm

ore, Califo

rnia

Waste Isolation Pilot P

lant,

Carlsba

d, New

 Mexico

Pantex Plant,

Amarillo, Texas

Tono

pah,

Nevad

a

Kaua

i, Haw

aii

Sand

ia’s Site

sSand

ia’s Role at th

e Waste Isolation 

Power Plant (W

IPP)

Nuclear waste dispo

sal is a

 long

‐term 

challenge of great nationa

l impo

rtan

ce

Sand

ia has been the Science Ad

visor o

n WIPP since its

 inception

Sand

ia was lead

 labo

ratory fo

r the

 Yucca 

Mou

ntain Re

pository license ap

plication

Geo

logic disposal has dire

ct ties to

 San

dia’s 

Nationa

l Security

 mission

Sand

ia has a long

 history, and

 con

tinue

s to 

lead

 the way, in salt repo

sitory re

search

4

48P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 60: Reduced size m3 ft 15sn08180210 hansen

Visio

n and Mission Statem

ents

On be

half of our nation, we an

ticipate an

d solve the most cha

llenging 

prob

lems tha

t threaten security in th

e 21

st cen

tury

Our uniqu

e mission

 respon

sibilities in the nu

clear w

eapo

ns program

 create 

a foun

datio

n from

 which we leverage cap

abilitie

s ena

bling us to

 solve 

complex nationa

l security

 problem

s

56

NW produ

ction 

engine

ering & 

manufacturin

g en

gine

ering

Cold W

arEn

ergy crisis

Vietnam con

flict

Missile defen

se 

work 

Post−C

old War

transition 

Expand

ed national 

security role

post  9/11

Developm

ent 

engine

ering 

Multip

rogram

 labo

ratory 

1950s

1960s

1970s

1980s

1990s

2000s

LEPs

Cybe

r, Biosecurity

Prolife

ratio

n

2010s

Stockpile 

stew

ardship

Evolving

 national

security challenges 

Sand

ia’s M

ission Work Re

flects 

National Security

 Challenges

7

Sand

ia’s National Security

 Mission Areas

NNSA

 Weapo

nsNNSA

 Non

prolife

ratio

nOther DOE 

DoD

Other

FY 2013 Total Bud

get: $2.5B

Sand

ia’s Fou

ndation

8

49P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 61: Reduced size m3 ft 15sn08180210 hansen

Sand

ia’s Peo

ple

Highly ed

ucated

 workforce

Strategically m

anaged

 workforce 

of diverse sk

ills a

nd com

petencies

Mod

ern bu

sine

ss practices and

 op

erations in

 supp

ort o

f our 

mission

s

Che

mis

try

5%

Mat

hem

atic

s2%

9

R&

D s

taff

by d

isci

plin

e

10

Sand

ia’s Disc

ipline‐Ba

sed 

Research Fou

ndations

Materials

Engine

ering

sciences

Microelectron

ics

High en

ergy den

sity physics

Compu

ting science

Bioscien

ce

Geo

science

Sand

ia’s Capabilitie

s

High‐reliability en

gine

ering

Sensors a

nd sen

sing

 system

sCybe

r techn

ology

Re

verse en

gine

ering

Micro‐&

 nan

o‐electron

ics a

nd systems

Mod

eling & sim

ulation an

d expe

rimen

t Natural and

 eng

ineered materials

Pa

thfin

ders

Safety, risk, and

 vulne

rability an

alysis

1112

Major Facilitie

s and

 Too

ls

Inertia

l Test Lab

Ab

norm

al The

rmal 

Environm

ent Lab

Clim

atic Lab

An

nular C

ore Re

search Reactor 

(ACR

R)

Blast T

ube

Inertia

l Test Lab

Ce

ntrifuge Co

mplex

Weapo

ns Evaluation Test

Cross‐Flow

 Test F

ire Facility

Ae

rial Cable Facility

Drop

 Tow

er Facility

Light Initia

ted High Explosive 

Facility 

Electrom

agne

tics Test Facility 

(TEM

PEST)

Clim

atic Lab

 (TEM

PEST)

Environm

ental Lab

 (TEM

PEST)

Explosive Machining

 Facilit y 

(TEM

PEST)

FA

RM (Facility fo

r Anten

na and

 RC

S Measuremen

ts)

Thermal Test C

omplex Burn 

Facility

Tono

pah Test Range Flight

Tono

pah Test Range Groun

d Pe

netration

Weapo

ns Evaluation Test

Flight Test A

ssem

bly

Gam

ma Irradiatio

n Facility

Mob

ile Gun

 Com

plex

Shock Thermod

ynam

ics 

Applied Re

search Lab

Mod

al/Vibe/Shock Vibration 

Lab

Water Im

pact Facility

Normal The

rmal Enviro

nmen

t Lab

Ae

rospace labo

ratorie

s (High 

Altitud

e Ch

ambe

r, Ion Be

am Lab, 

Lightning Effects Facility, M

ass 

Prop

ertie

s Lab, M

odal and

 Structural 

Dynamics, Structural M

echanics 

Lab …)

Ra

diant H

eat Test C

ell

Ra

diation Metrology

Non

 Destructive Evaluatio

n Lab

RF

 and

 Optics M

icrosystem

Z Pu

lsed Po

wer Facility

Hermes‐III G

amma‐Ray Facility

Saturn

SPHINX

Solid

 Mechanics Lab

Mechanics of M

aterials

Term

inal Ballistic

 Facility

Ce

ntrifuge Co

mplex Vibratio

n Lab

50P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 62: Reduced size m3 ft 15sn08180210 hansen

Ope

ratio

ns at Sandia

Ope

ratio

ns sp

an re

search, 

design, develop

men

t, prototype, 

qualificatio

n an

d prod

uctio

n activ

ities

Breadth of work en

compa

sses 

micro‐to macro‐scale efforts

Va

rying levels of com

plexity

Typically involves m

ultip

le 

hazards in combina

tion  

Z Machine

Annu

lar C

ore 

Research Reactor 

(ACR

R)

Rocket Sled Track

Lightning Test 

Facility

13

Thermal Test C

omplex

CEN

TRIV

UG

EC

ENTR

IVU

GE

Ope

ratio

ns “by

 the Num

bers”

Th

ere are 45

 major te

st fa

cilities at San

dia

We ha

ve 2,718

 labs (N

M and

 CA on

ly), utilizing

 1,827,151

 sf(39%

 of San

dia's N

et Squ

are Feet)

We ha

ve 1,958

 light lab

s (NM and

 CA on

ly)u

tilizing

1,038,248 sf

Cen

trifu

ge

Sled

Tra

ck

Bur

n Po

ol

14

15

Type

s of H

azards

Mecha

nical

Electrical

Ch

emicals

Fire Protection/Th

ermal 

Hazards

Pressure/V

acuu

mRa

dioa

ctive/Fissile/

Nuclear

Biological

Ozone

 Dep

letio

nDrin

king

 Water

Be

ryllium

Noise

Lasers/N

on‐Io

nizing

 Ra

diation

X‐Ra

y Devices

Explosives & 

Ammun

ition

Co

nfined

 Spa

ceWorking

 at H

eights

Heavy Object 

Ergono

mics &

 Lifting

Why

 Engineered Safety at Sandia?

Previous work plan

ning

 and

 con

trol (W

P&C) practices were 

driving a focus o

n effective cond

uct o

f ope

ratio

ns

Th

e un

derly

ing technical basis fo

r “de

sign

 safety fe

atures” of 

an activity

 cou

ld be taken for g

ranted

 or receive

 inad

equa

te 

technical review

WP&

C practices m

ay not have de

tected

 technical design fla

ws 

affecting the safety of a

n activ

ity

Safety neede

d to be considered

 in a sy

stem

 eng

ineerin

g context a

ppropriate fo

r an R&

D labo

ratory

WP&

C program was m

odified

 to incorporate en

gine

ered

 safety prin

ciples

16

51P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 63: Reduced size m3 ft 15sn08180210 hansen

What is E

ngineered Safety?

A principle‐ba

sed ap

proa

ch fo

r designing

 safe “op

erationa

l system

s”

Safety is an attribute of an op

erationa

l system achieved by

 intent

Ope

ratio

nal systems are system

atically and

 critically ana

lyzed 

to iden

tify ways in which th

ey can

 fail to perform

 as inten

ded

Ope

ratio

nal systems are de

signed

 and

 validated

 to prevent 

iden

tified failu

re m

odes and

 to m

itigate th

e conseq

uences of 

a failu

re sh

ould one

 occur

17

The “O

peratio

nal System”

Ope

ratio

nal

Syst

emO

pera

tiona

l Sy

stem

Tech

nica

l Bas

isTe

chni

cal B

asis

Test

or

Expe

rimen

t A

rtic

le

Test

or

Expe

rimen

t A

rtic

le

Tool

s an

d Eq

uipm

ent a

nd

Ope

ratio

nal

Layo

ut

Tool

s an

d Eq

uipm

ent a

nd

Ope

ratio

nal

Layo

ut

Faci

lity

Feat

ures

and

C

hara

cter

istic

s

Faci

lity

Feat

ures

and

C

hara

cter

istic

sPe

rson

nel

Pers

onne

l

Proc

edur

esPr

oced

ures

Posi

tive

Verif

icat

ion

Posi

tive

Verif

icat

ion

18

19

SNL Engine

ered

Safety Framew

ork

Engine

ered

 Safety in Six Que

stions

Wha

t is the

 system

?

Who

 is th

e de

cision

 maker?

Wha

t are th

e un

acceptab

le 

outcom

es?

How

 can

 the system

 fail to 

perform as inten

ded an

d ho

can I p

revent su

ch fa

ilures?

Wha

t if the

 system

 fails anyway?

How

 do you kn

ow it will work as intend

ed?

20

52P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 64: Reduced size m3 ft 15sn08180210 hansen

Safety Case: A M

anagem

ent N

arrativ

e Explaining

 how

 the Crite

ria are Add

ressed

Clearly

 explains the

 critical th

inking

 and

 reason

ing in re

gard to

 man

aging the safety risk 

Includ

es plann

ing for o

ff‐normal events

Dem

onstrates techn

ical “du

e diligen

ce” ap

parent to

 others 

technically kno

wledgeable an

d familiar with

 the ha

zards 

involved

Always c

omes dow

n to a ju

dgmen

t as to whe

ther th

e controls 

actually im

plem

ented are commen

surate with

 the safety risk

Is app

roved at m

anagem

ent levels a

ppropriate to

 the real or 

perceived risk of th

e ha

zardou

s activity

21

Engine

ered

 Safety: Examples

Biorem

ediatio

n project

Po

lymer R&D labo

ratory

Z accelerator con

tainmen

t system

22

Engine

ered

 Safety Mod

el App

lied to 

Biorem

ediatio

n Project

Objectiv

e: Cha

racterize de

grad

ation of enviro

nmen

tal 

contam

inan

ts (b

oth en

ergetic

 and

 inert), u

sing

 microbial 

processes

Descriptio

n of work

Sm

all qua

ntities of e

nergetic m

aterials dissolved

 in acetone

 form

ing a 

“stock so

lutio

n” 

Samples created

, stored an

d an

alyzed

 in biology labo

ratory

Major hazards

En

ergetic

 materials

Microorganism

s and

/or b

iological toxins

Mecha

nical hazards (cen

trifu

ges)

Th

ermal/pressure ha

zards (au

toclave)

Ch

emicals

23

Elim

ination of a Hazard through 

Application of Critical Thinking 

Determined

 maxim

um cred

ible event: Ina

dvertent initiation 

of ene

rgetic com

poun

ds during ha

ndlin

g, m

ixing, or testin

g

Iden

tified un

acceptab

le co

nseq

uences

Individu

al illness, injury

Mission

 impa

ct greater th

an 6 weeks

Ad

verse effect on the commun

ity

Iden

tified an

d im

plem

ented solutio

ns

Requ

ired explosives training

 for lab

 workers, con

sulte

d with

 SME

Weighed

/pre‐m

ixed

 ene

rgetic m

aterials in

 sepa

rate labo

ratory

Re

duced vo

lume of m

aterial sam

ples

24

“By applying

 critical th

inking, w

e rede

signe

d ou

r experim

ents su

ch th

at 

through dilutio

n, we elim

inated

 the ha

zard associated with

 the proced

ure in a 

manne

r that still ena

bled

 us to meet o

ur experim

ental objectiv

es.”

53P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 65: Reduced size m3 ft 15sn08180210 hansen

Engine

ered

 Safety Mod

el App

lied to 

Polymer R&D Labo

ratorie

s

Applied materials re

search and

 prototyping

 labo

ratorie

s pe

rform activities includ

ing surface prep

aration, coa

ting, 

encapsulation, castin

g, bon

ding, curing an

d po

lymer 

form

ulation in m

ultip

le labo

ratorie

s

Multip

le labo

ratorie

s located

 in se

veral b

uildings su

pport b

read

th of 

work

25

Larg

e M

ixes

Mai

n La

b Che

mSt

orag

e Sh

eds

Cur

ing

Ove

nsH

igh

Bay

Critical Review of M

ultip

le 

Ope

ratio

ns Enh

anced Lab Safety

Iden

tified un

acceptab

le con

sequ

ences

Ac

ute or chron

ic injury/illn

ess from exposure to to

xic 

chem

icals

Injury from

 mecha

nical hazards (m

achine

 tools, han

d tools, lifting he

avy ob

jects)

Re

view

ed possible sources o

f con

cern

Ch

emicalspills(po

uring, tran

sport o

r storage)

Spill or splatterd

uringmixing

Und

erestim

ationof exotherms

Uncertaineq

uipm

entfailure

mod

es

Im

plem

entedsolutio

ns

Verifiedthat

equipm

ent"fails

safe"

Incorporated

second

arycontainm

ent

system

s

Usedmod

elingto determineprop

erqu

antities

26

Be

ak

er

1s

t&

pro

toty

pe

LA

ST

Mo

vin

g a

nd

po

uri

ng

to

ols

As

su

re p

rop

er

ve

nti

lati

on

& s

tora

ge

Engine

ered

 Safety Mod

el App

lied to 

Pluton

ium Experim

ents in th

e Z facility

Earth’s most p

owerful pulsed‐

power fa

cility an

d X‐ray 

gene

rator (26

MA)

Essential to nu

clear w

eapo

n stockp

ile stew

ardship

Used to m

easure prope

rties o

f pluton

ium at e

xtreme pressures 

and tempe

ratures 

27

System

 Designe

d and Fielde

d to 

Assure Safe and Successful Experim

ents

Iden

tified un

acceptab

le co

nseq

uences

Ra

diation do

se to

 a worker

En

vironm

ental con

tamination

> 6 mon

th pau

se in

 ope

ratio

Co

nducted failu

re m

ode effects a

nd fa

ult 

tree

 ana

lyses 

Iden

tifiedan

d im

plem

entedsolutio

ns

Elim

inated

failu

remod

es

Provided

 positive assuran

ce th

rough 18

 form

al app

rovals fo

r critical su

bsystems 

prior to key activ

ities in

 the shot se

tup 

timeline

Designe

da second

arysystem

 to m

anage a 

containm

entb

reachsafely

28

54P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 66: Reduced size m3 ft 15sn08180210 hansen

“Every Day Safe” with

 a Critical 

Thinking

 Mindset

Broa

dens app

lication of eng

ineered safety prin

ciples to

 be

yond

 the labo

ratory or test facility, i.e., in “everyday life”

Ba

sed on

 three simple qu

estio

ns:

Wha

t cou

ld go wrong?

How

 can

 I preven

t it?

How

 can

 I prep

are for the

 une

xpected?

By

 using

 these three qu

estio

ns ro

utinely to th

ink critically 

abou

t day‐to‐da

y activ

ities, w

e can elim

inate cond

ition

s or 

situations th

at lead

 to acciden

ts

With

 a little practice, th

is critical th

inking

 mindset will becom

e a ha

bit

29

Closing Re

marks Abo

ut 

Engine

ered

 Safety at Sandia

Integrates sa

fe designs with

 effectiv

e cond

uct o

f ope

ratio

ns

Establishe

s a cred

ible te

chnical basis fo

r safety in work

Easier to

 und

erstan

d an

d use by

 an R&

D organ

ization

Creates increased

 and

 more effective man

agem

ent 

engagemen

t

Furthe

r matures and

 improves th

e Labo

ratorie

s’ sa

fety culture

Expa

nds to en

courage critical think

ing in daily life

30

55P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 67: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

011-

XXXX

P

Ope

ratio

nal Safety Activ

ities 

in Germany

Thilo

 v. B

erlepsch

DBE TECH

NOLO

GY GmbH

Eschen

straße

55, D

31224 Pe

ine/Germany

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Lead

ing

Que

stio

n:H

ow is

ope

ratio

nal s

afet

y en

sure

d in

pra

ctic

e?

Man

agin

g O

pera

tiona

l Saf

ety

Bas

is fo

r Ope

ratio

nal S

afet

yAr

chite

ctur

e fo

r Ope

ratio

nal S

afet

y

Man

agin

g Pr

e-cl

osur

e H

azar

dsM

itiga

ting

the

Con

sequ

ence

s of

Haz

ards

Prot

ectin

g Pe

ople

in C

ase

of H

azar

ds

Sum

mar

y

Out

line

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014Te

chni

cal a

nd O

pera

tiona

l Req

uire

men

ts

for t

he O

pera

tion

of a

Rep

osito

ry

Nuc

lear

R

egul

atio

n•e

. g. R

adia

tion

Prot

ectio

n O

rdin

ance

re

quire

s R

adia

tion

Prot

ectio

n O

ffice

r

Nuc

lear

R

egul

atio

n•e

. g. R

adia

tion

Prot

ectio

n O

rdin

ance

re

quire

s R

adia

tion

Prot

ectio

n O

ffice

r

Min

ing

Reg

ulat

ion

•e. g

. Fed

eral

M

inin

g Ac

t re

quire

s M

ine

Man

ager

Min

ing

Reg

ulat

ion

•e. g

. Fed

eral

M

inin

g Ac

t re

quire

s M

ine

Man

ager

Pub

lic L

aw•e

.g. c

onst

ruct

ion

ordi

nanc

e re

quire

s Sa

fety

C

oord

inat

or

Pub

lic L

aw•e

.g. c

onst

ruct

ion

ordi

nanc

e re

quire

s Sa

fety

C

oord

inat

or

Man

agin

g O

pera

tiona

l Saf

ety:

Leg

al B

asis

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Saf

ety

Arc

hite

ctur

eS

afet

ycu

lture

Saf

ety

min

dset

radi

atio

nsa

fety

occu

patio

nal

safe

typl

ant

safe

ty

hard

war

e

softw

are

Cle

arly

def

ined

role

s &

resp

onsi

bilit

ies

Cle

arly

def

ined

and

des

crib

ed p

roce

sses

Hig

h qu

ality

des

ign

Ade

quat

e m

aint

enan

ce

Bas

ic C

onsi

dera

tions

for R

epos

itory

Ope

ratio

n

56P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 68: Reduced size m3 ft 15sn08180210 hansen

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Safe

ty H

ardw

are

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Plant 

Manager

Physical 

Protectio

nHe

alth & 

Safety

Appo

intm

ents 

according to 

Mining Law 

Licensing 

inspectio

n bo

dy

Ope

ratio

ns 

Manager

Radioactive 

Waste

Radiation 

Protectio

nMine 

Ope

ratio

n

Abovegroun

d op

eration & 

mainten

ance

Central Q

A

(ext

ract

from

ER

AM

org

anis

atio

nal c

hart)

Safe

ty S

oftw

are:

Org

anis

atio

n

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Safe

ty S

oftw

are:

Del

egat

ion

Del

egat

ion

of ta

sks

and

(to a

cer

tain

ext

ent)

resp

onsi

bilit

ies

Del

egat

or h

as to

ens

ure

that

Del

egat

eeha

s:Ad

equa

te p

hysi

cal c

apab

ility

;O

btai

ned

adeq

uate

trai

ning

;Su

ffici

ent r

esou

rces

and

equ

ipm

ent;

and

Adeq

uate

em

pow

erm

ent.

Del

egat

or h

as to

ens

ure

that

task

is p

erfo

rmed

pr

oper

ly b

y:R

epor

ting

requ

irem

ents

; and

Suffi

cien

tly fr

eque

nt c

ontr

ollin

g of

Del

egat

ee.

In c

ase

of in

cide

nts

auth

oriti

es in

vest

igat

e at

firs

t if

oblig

ator

y su

perv

isio

n by

Del

egat

or w

as s

uffic

ient

.

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Plant 

Manager

Physical 

Protectio

nHe

alth & 

Safety

Appo

intm

ents 

according to 

Mining Law 

Licensing 

inspectio

n bo

dy

Ope

ratio

ns 

Manager

Radioactive 

Waste

Radiation 

Protectio

nMine 

Ope

ratio

n

Abovegroun

d op

eration & 

mainten

ance

Central Q

A

(ext

ract

from

ER

AM

org

anis

atio

nal c

hart)

Safe

ty S

oftw

are:

Org

anis

atio

n

Health & 

Safety

Appo

intm

ents 

according to 

Mining Law 

Licensing 

inspectio

n bo

dy

Radiation 

Protectio

n

57P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 69: Reduced size m3 ft 15sn08180210 hansen

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Safe

ty H

ousi

ng: E

nsur

ing

Safe

ty C

ultu

re a

nd M

inds

etA

dequ

ate

info

rmat

ion

on a

ll le

vels

by

jour

fixe

s, e

g.:

05.3

0 am

:S

ub-fo

rem

en fr

om a

ll di

visi

ons

07.0

0 am

:Fo

rem

en, P

lant

man

ager

, Geo

logi

st, S

urve

yor

01.0

0 pm

:A

ll di

visi

ons

(incl

. eg.

PR

)

Del

egat

ors

visi

t all

wor

kpla

ces

in h

er/h

is re

spon

sibi

lity

adeq

uate

ly fr

eque

ntly

Lear

ning

abo

ut is

sues

, nee

ds, …

Car

ing

abou

t sta

ffA

ssur

ing

perfo

rman

ce o

f del

egee

s

Sta

ff an

d m

anag

emen

t at e

ye le

vel

E

qual

ity a

nd tr

ust

ensu

res

iden

tific

atio

n w

ith c

ompa

nyen

sure

s sa

fety

cul

ture

and

min

dset

Reg

ular

inst

ruct

ions

in to

ols

and

pers

onal

saf

ety

equi

pmen

t:ne

cess

ary

abilit

ies

to p

erfo

rm w

ork

nece

ssar

y ab

ilitie

s to

use

em

erge

ncy

equi

pmen

tad

equa

te ri

sk a

war

enes

s

Trai

ning

to o

btai

n an

d m

aint

ain

nece

ssar

y sk

ills

Trai

ning

pla

n is

sub

mitt

ed to

(but

nei

ther

app

rove

d no

r che

cked

by)

aut

horit

ies

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Man

agin

g Pr

e-cl

osur

e H

azar

ds

Des

pite

pla

nnin

g fo

r and

real

isat

ion

of a

saf

e op

erat

ion

(eve

n w

hen

proo

fed

with

an

outs

tand

ing

safe

ty re

cord

), ha

zard

s ca

n‘t b

e ex

clud

ed

Dom

inat

ing

haza

rds

to c

onsi

der:

Rad

iolo

gica

l eve

nts;

Fire

haz

ards

.

Fund

amen

tal m

itiga

ting

mea

nsPr

otec

ting

peop

le;

Miti

gatin

g th

e co

nseq

uenc

es o

f haz

ards

.

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Prot

ectin

g Pe

ople

in C

ase

of H

azar

ds

Adeq

uate

trai

ning

and

inst

ruct

ion

Adeq

uate

des

ign

of e

mer

genc

y pl

ans

and

mea

sure

sLi

mite

d tim

e to

resc

ue p

eopl

e;If

nece

ssar

y, p

rovi

sion

of r

efug

e ch

ambe

rs;

Reg

ular

test

ing

and

mai

nten

ance

of e

quip

men

t.

Ensu

ring

fast

inte

rven

tion

resc

ue b

rigad

eLe

ader

is a

ssig

ned

acco

rdin

g to

min

ing

law

;R

epor

ts d

irect

ly to

pla

nt m

anag

er;

Volu

ntar

y br

igad

e re

ceiv

ing

spec

ific

trai

ning

;Su

rvey

ed a

nd tr

aine

d by

Min

ing

Asso

ciat

ion.

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Enab

le e

arly

det

ectio

n of

haz

ards

eg. u

se o

f sni

ffers

.

Early

miti

gatio

n of

risk

seg

. mob

ile fi

re e

xtin

guis

hers

.

Kee

p ha

zard

s lo

cally

con

fined

Elec

tron

ic o

n-tim

e ve

ntila

tion

guid

ing

syst

em fo

r map

ping

flow

rate

s,

pres

sure

s, a

nd te

mpe

ratu

res

in th

e en

tire

min

e;Pl

acem

ent o

f ven

tilat

ion

barr

iers

at p

reca

lcul

ated

posi

tions

;R

educ

tion

of fr

esh

air s

uppl

y.

Prev

entio

n of

acc

ess

to h

azar

d so

urce

In c

ase

of ra

diol

ogic

al h

azar

d ris

k of

con

tam

inat

ion;

In c

ase

of fi

re d

ange

r to

suffo

cate

or ‘

boil‘

.

Miti

gatin

g th

e C

onse

quen

ces

of H

azar

ds

58P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 70: Reduced size m3 ft 15sn08180210 hansen

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Sum

mar

y

Safe

ope

ratio

n of

a p

lant

has

to b

e co

nsid

ered

hol

istic

ally

Hig

h qu

ality

equ

ipm

ent a

s ‘h

ardw

are’

;Su

ffici

ent p

roce

sses

as

‘sof

twar

e’;a

ndR

ight

min

dset

as ‘h

ousi

ng’ f

or s

afet

y.

How

ever

, haz

ards

can

’t be

exc

lude

d, b

ut m

itiga

ted

byEn

surin

g th

e sa

fety

of p

eopl

e;En

ablin

g M

eans

to m

itiga

te th

e co

nseq

uenc

es o

f haz

ards

.

T. v

. Ber

leps

chU

S/G

erm

an W

orks

hop

2014

Than

k Yo

ufo

r You

r Atte

ntio

n!

59P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 71: Reduced size m3 ft 15sn08180210 hansen

Operational Safety at U.S. Repositories Ernest Hardin

Sandia National Laboratories, Albuquerque, NM USA Gerald Nieder-Westermann

DBE TEC GmbH, Peine, Germany

Abstract

Operational safety analysis for geologic repositories has been in transition over the past decade, with respect to the assessment of hazards and initiating events, to rely more on probabilistic methods. Nuclear power plants have traditionally been analyzed and licensed by compiling hazards and initiating events, analyzing the hazards and consequences of events, and emphasizing feedback into the “safety basis” including design, operation, and administrative controls. Efforts have been made to consider event likelihood and consequences together in a risk context, but without probabilistic aggregation for direct comparison to regulatory dose standards. A shift to a probabilistic approach is incorporated in the U.S. safety regulation specific to a Yucca Mountain repository (10 CFR Part 63). The approach is evolutionary in that event compilation, sequence development, and hazard analysis are performed using traditional methods, combined with probability estimation under uncertainty, and explicit simulation of dose consequences for comparison to quantitative, regulatory screening criteria. The different approaches are compared using examples from U.S. Department of Energy nuclear facility safety analysis (e.g., WIPP Documented Safety Analysis) and the Yucca Mountain License Application. In Germany deterministic methods also have a long history in safety case scenario analysis, but probabilistic methods are increasingly used as a complementary tool for screening events and hazards. This review with examples shows that operational safety analysis is changing, at the same time that safety experience is accumulating at existing facilities. There are significant opportunities to benefit from international cooperation in methodology development and demonstration, and in safety analysis implementation with feedback to system design and operational controls. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-17181A

60Proceedings of 5th US/German Workshop

January 30, 2015

Page 72: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

014-

1718

2PE

Ope

ratio

nal Safety at US 

Repo

sitories

Prob

abilistic and

 deterministic

 ap

proa

ches, and

 technical vulne

rabilities

E.L. Hardin, Sandia National Laboratories

G.‐H

. Niede

r‐Westerm

ann, DBE

 TEC

 GmbH

 

Ope

ratio

nal Safety at U.S. R

eposito

ries

Outlin

e

Deterministic

 vs. Proba

bilistic

 (finding

 balan

ce)

Deterministic

 Safety An

alysis at U

.S. D

epartm

ent o

f Ene

rgy 

(DOE) Facilitie

s (e.g., W

aste Isolation Pilot P

lant, W

IPP)

Overview of Y

ucca M

ountain Preclosure

Safety Ana

lysis (PC

SA)

Cu

rren

t German

 App

roach for Licen

sing

 of R

eposito

ries

Technical/Re

gulatory Vulne

rabilities

Summary an

d Outlook

2

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E)

Prob

abilistic vs. Deterministic

Find

ing Ba

lance for O

peratio

nal Safety An

alaysis

U.S. R

eposito

ries for HLW

/SNF (deterministic

 ↔ proba

bilistic)

–Dispo

sal of H

igh‐Level R

adioactiv

e Wastes in a Geo

logic Re

pository at 

Yucca Mou

ntain, Nevad

a (10 CFR Pa

rt 63, U.S. N

uclear Regulatory 

Commission

)•Ag

gregated

 repo

sitory worker d

ose (10 CFR Part 20, U.S. N

RC)

•Do

se at o

r beyon

d site bo

undary (1

0 CFR Part 63, U.S. N

RC)

German

 Rep

osito

ries (de

term

inistic

 ↔ proba

bilistic)

–Safety Req

uiremen

ts Governing

 the Fina

l Dispo

sal of H

eat‐Gen

erating 

Radioa

ctive Waste (Siche

rheitsan

forderun

gen)

•Re

quire

s both de

term

inistic and

 probabilistic

 assessm

ent 

•Re

quire

s implem

entatio

n of nuclear pow

er plant re

quire

men

ts fo

r op

erational safety

3

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Deterministic

 Safety An

alysis

U.S. D

OE Nuclear Facilitie

s (1/4)

Hazards to

 workers, the

 pub

lic, and

 the en

vironm

ent

Tran

suranic Waste (D

OE, not NRC

 regulated)

Deterministic

 (DOE Order 548

0.23

 ‐SA

R)–

Similar to civilian po

wer plant licensing (NRC

 10C

FR Part 5

0)–

Design ba

sis (no

rmal, acciden

ts, events)

Facility Nuclear Hazard Ca

tego

ry (com

plexity

 and

 inventory)

–Risk Category 1:

Potentially significant off‐site

 con

sequ

ences

(e.g., reactor)

–Risk Category 2:

Potentially significant on‐site con

sequ

ences

(e.g., WIPP with

 >80

 Ci Pu‐23

9 pe

r con

tainer)

–Risk Category 3:

Localized

 (facility) con

sequ

ences

(e.g., accelerator)

4

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

61P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 73: Reduced size m3 ft 15sn08180210 hansen

Deterministic

 Safety An

alysis

U.S. D

OE Nuclear Facilitie

s (2/4)

5

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Con

sequ

ence

Le

vel

Bey

ond

Extr

emel

y U

nlik

ely

<10-

6 /yrA

Extr

emel

y U

nlik

ely

10-4

to 1

0-6 /y

rU

nlik

ely

10-2

to 1

0-4 /y

rAn

ticip

ated

10

-1to

10-

2 /yr

Hig

hIII

III

IM

oder

ate

IVIII

IIII

Low

IVIV

IIIIII

A Pr

obab

ility

of 1

0-6

calc

ulat

ed c

onse

rvat

ivel

y, o

r 10-

7ca

lcul

ated

real

istic

ally

.

ACC

IDEN

T/EV

ENT

RIS

K C

LASS

*

Con

sequ

ence

Le

vel

Max

imal

ly E

xpos

ed

Offs

ite In

divi

dual

Co-

Loca

ted

Wor

ker

(at 1

00 m

)Fa

cilit

y W

orke

r

Hig

hAp

proa

chin

g 25

rem

>100

rem

Safe

ty S

igni

fican

t (D

OE

STD

300

9)M

oder

ate

1 re

m2

5 re

mQ

ualit

ativ

e;no

thre

shol

dLo

w<1

rem

<25

rem

Qua

litat

ive;

no th

resh

old

ACC

IDEN

T/EV

ENT

DO

SE C

ON

SEQ

UEN

CE

GU

IDEL

INES

*

Grade

d Ap

proa

ch fo

r Each Cred

ible Hazard Iden

tified (DOE STD 

5506

‐2007)

–Magnitude

 of h

azards, com

plexity

 of facilitie

s, life‐cycle state

–Exam

ple: W

IPP Docum

ented Safety Ana

lysis

* N

ot to

be

cons

trued

as

regu

lato

ry a

ccep

tanc

e cr

iteria

, per

DO

E ST

D 5

506-

2007

.

Hazard/Ac

cide

nt Ana

lysis →

Material‐a

t‐Risk →

Hazard Evalua

tion (prevention, m

itigatio

n) →

 Design Ba

sis

“H

azard Evalua

tion” →

Techn

ical Safety Re

quire

men

ts–Iden

tify Safety‐Significan

t systems, structures and

 com

pone

nts 

–Ad

ministrative controls

Develop

 Prevention/Mitigatio

n Co

ntrols

–Exam

ples: w

aste lo

ading, waste tran

sport, etc.

Iden

tify Re

presen

tativ

e Hazards fo

r Further Ana

lysis a

s Design 

Basis Even

ts (D

BEs)

An

alyze Be

yond

‐Design‐Ba

sis E

vents

–Low‐proba

bility, high c onseq

uence

6

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Deterministic

 Safety An

alysis

U.S. D

OE Nuclear Facilitie

s (3/4)

Deterministic

 Safety An

alysis

U.S. D

OENuclear

Facilities (4/4)

7

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Exam

ple:  W

IPP Risk Ran

king

–Co

ntact‐ha

ndled waste, u

ndergrou

nd events

A M

OI =

Max

imal

ly E

xpos

ed O

ff-Si

te In

divi

dual

B

Ris

k cl

ass

of I

may

be

unac

cept

able

and

II m

ay b

e m

argi

nally

ac

cept

able

, for

the

MO

I. S

ourc

e: W

IPP

Doc

umen

ted

Safe

ty A

naly

sis,

DO

E/W

IPP

07-3

372

Rev

. 4

Even

t #D

escr

iptio

nFr

eque

ncy

(miti

gate

d)

Con

sequ

ence

(miti

gate

d)R

isk

Cla

ss

MO

IAC

o-Lo

cate

d W

orke

rFa

cilit

y W

orke

rM

OIA

Co-

Loca

ted

Wor

ker

Faci

lity

Wor

ker

CH

-UG

-1-

001a

Sing

le-v

ehic

le fi

re

unde

rgro

und

durin

g w

aste

tran

spor

t

10-4

to10

-6/y

rM

ML

IIIIII

IV

CH

-UG

-1-

002a

Col

lisio

n of

2 v

ehic

les

and

fire

unde

rgro

und

durin

g w

aste

tran

spor

t

10-4

to10

-6/y

rL

ML

IVIII

IV

CH

-UG

-1-

003a

Sing

le-v

ehic

le

colli

sion

,fire

und

er-

grou

nd a

t was

te fa

ce

10-4

to10

-6/y

rH

HL

IIB

IIIV

CH

-UG

-6-

001a

Inte

rnal

def

lagr

atio

n in

C

H w

aste

con

tain

er

unde

rgro

und

10-2

to10

-4/y

rL

LH

IIIIII

I

Overview of Y

M PCSA (1/4)

Prob

abilistic App

roach (YM, Part 6

3)

“W

hat can

 go wrong?”

–A set o

f scena

rios o

r event se

quen

ces

“H

ow likely is it?”

–Co

mpile available eviden

ce includ

ing historical re

cords, 

engine

ering an

alysis (e

.g. fragility, re

liability) and

 expert 

judg

men

tUse event se

quen

ce diagram

s to estim

ate the prob

ability of 

unlikely scen

arios, with

 uncertainty

“W

hat a

re th

e conseq

uences?”

PCSA

 Con

sequ

ences: Dire

ctly calculate dose to off‐site

 pub

lic, 

dose to

 on‐site workers and

 pub

lic, criticality

Explicit do

se limits

 are defined

 by de

cision

‐makers (e.g., U

.S. 

NRC

 regulatio

ns: 10 CFR Pa

rt 63 for Y

M)

8

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

62P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 74: Reduced size m3 ft 15sn08180210 hansen

Overview of Y

M PCSA (2/4)

Some Differen

ces U

sing

 10 CFR 63

 Com

pared to Previou

s, 

Deterministic

 Nuclear Pow

er Plant Licen

sing:

Ca

tego

ry 1 (e

xpect 

1 ov

er ~10

0 years) dose lim

its fo

r pub

lic–

Aggregated

 over n

ormal ope

ratio

ns and

 all Ca

tegory 1 events*

–Onsite

 dose:  100

 mrem/yr (5 rem/yr for workers; see

 10 CFR Pa

rt 20)

–At site bou

ndary:  15 mrem/yr* or 2

 mrem/hr

–Be

yond

 site bou

ndary:  100

 mrem/yr o

r 2 m

rem/hr

Ca

tego

ry 2 (e

xpect <

 1 but 10

‐4ov

er ~10

0 years) 

–Even

t seq

uences categorized

 individu

allyon

 proba

bility on

ly, not risk*

–At or b

eyon

d site bou

ndary, fo

r each sequ

ence: 5

 rem (w

orkers or p

ublic*)

–Onsite

 dose: Not re

gulated*

No criticality allowab

le fo

r Category 1 an

d 2 even

t seq

uences

No conseq

uence an

alysis neede

d for “Be

yond

 Category 2“

9

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Overview of Y

M PCSA (3/4)

10

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Initiating Even

ts–

Internal (p

rocess diagram

s, hazard/op

erab

ility)

–External (e

xperiential)

Even

t Seq

uences

–Screen

 on prob

ability of initia

ting even

ts–

Logic diagrams, hazard an

alysis, fau

lt trees

–Simulate ha

zards, fragilitie

s, etc.

–Qua

ntify

 event seq

uences (SAP

HIRE)

–Ca

tegorize (1, 2

 and

/or Impo

rtan

t to Criticality)

Dose Co

nseq

uence An

alysis 

–Normal + Category 1, aggregated (w

orkers and

 pub

lic)

–Ca

tegory 2, ind

ividua

l events p

> 10

‐4in ~10

0 years (pub

lic)

Design Interface

–Iden

tify ite

ms “

Impo

rtan

t to Safety” (“Q‐List”)

–Develop

 as‐low‐as‐reason

ably achievable (ALA

RA) req

uiremen

ts fo

r no

rmal ope

ratio

ns and

 Category 1

–Develop

 design ba

sis (ite

rate on de

sign

)

Overview of Y

M PCSA (4/4)

Preclosure Dose Summary for Y

M PCSA

–Ag

gregated

 for n

ormal ope

ratio

ns + Category 1 (expect 

1 in ~10

0 years)

–Each Category 2 even

t seq

uence an

alyzed

 individu

ally

11

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Cat

egor

ySt

anda

rdLi

mits

Res

ults

Publ

ic o

nsite

Nor

mal

ope

ratio

ns +

Cat

egor

y 1

100

mre

m/y

r TE

DA

78 m

rem

/yr

Publ

ic a

t site

bou

ndar

yN

orm

al o

pera

tions

+ C

ateg

ory

1 15

mre

m/y

r TE

D0.

05 m

rem

/yr

Publ

ic b

eyon

d si

te b

ound

ary

Nor

mal

ope

ratio

ns +

Cat

egor

y 1

100

mre

m/y

r TE

D0.

11 m

rem

/yr

Rad

iatio

n w

orke

rsN

orm

al o

pera

tions

+ C

ateg

ory

1 5

rem

/yr T

ED

1.3

rem

/yr

Publ

ic a

t site

bou

ndar

yA

ny C

ateg

ory

2 ev

ent s

eque

nce

5 re

m T

ED

0.01

rem

Publ

ic b

eyon

d si

te b

ound

ary

Any

Cat

egor

y 2

even

t seq

uenc

e5

rem

TE

D0.

03 re

m

A TE

D =

Tot

al E

ffect

ive

Dos

e Eq

uiva

lent

(see

Par

ts 2

0 an

d 63

for i

ndiv

idua

l org

ans.

Pea

k do

se ra

te li

mits

or r

esul

ts,

and

airb

orne

em

issi

ons

of ra

dioa

ctiv

e m

ater

ial t

o th

e en

viro

nmen

t, ar

e no

t sho

wn.

Sour

ce: Y

ucca

Mou

ntai

n R

epos

itory

Saf

ety

Ana

lysi

s R

epor

t, D

OE/

RW

057

3 R

ev. 1

. Tab

le 1

.8-3

6.

Curren

t German

 App

roach to Rep

osito

ry 

Ope

ratio

nal Safety An

alysis

Prob

abilistic Safety An

alysis is Used in German

y to Id

entify/ 

Qua

ntify

 Event Seq

uences

–Initiating even

ts th

at can

not b

e controlled by

 design

–Supp

lemen

t deterministic

 safety assessm

ents

–An

alyze high

‐con

sequ

ence events

–Sensitivity ana

lysis; effectiv

eness of prevention/mitigatio

n measures

PSA is Req

uired for R

eposito

ry Licen

sing

 to Sup

plem

ent 

Deterministic

 Assessm

ents, B

ut Lim

its Have Not Been Defined

Guide

lines fo

r Implem

entin

g PSA in Nuclear Pow

er Plant 

Ope

ratio

nal R

eviews W

ere Develop

ed in

 2005 (BfS)

Similar P

SA Provision

s Spe

cific

 to a HLW

 Rep

osito

ry W

ill Likely 

Be In

corporated

 After Cod

ificatio

n of th

e Site Selectio

n Decision (by 2031, per th

e Site Selectio

n Ac

t of July, 201

3).

12

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

63P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 75: Reduced size m3 ft 15sn08180210 hansen

Regulatory Vulne

rablities

Larger Rep

osito

ries

–Factor of 2

 to 3 ra

nge in waste inventory is possible

Longer‐Ope

ratin

g Re

positorie

s–50

 years ope

raon

 vs. →

 150

 years

More Waste Packages

–YM

 (~11

,000

) vs. all U.S. SNF (up to 90,000)

Co

mpleten

ess o

f Initia

ting Even

ts/Seq

uences

Feed

back to

 Design & Ope

ratio

nsMetho

dological

–Disaggregation

–Re

presen

tatio

nal A

ccuracy

13

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Disaggregation Dilemma Ca

used

 by 

Prob

abilistic App

roach (10 CFR 63)

Level of A

ggregatio

n (resolution) of Initia

ting an

d Pivotal 

Even

ts Rep

resented

 in a Seq

uence Ca

n Determine 

Categorization Prob

ability, esp. Interna

l Events

More Ag

gregation → Highe

r Proba

bility Even

t Seq

uence

More Re

solu

on (less aggrega

on) →

 Low

er Proba

bilities →

 More An

alysis/Licen

sing

 Effort 

Exam

ple: Im

pact and

 Breach of Can

ister

–Shou

ld a single even

t seq

uence includ

e all drops of a

ll type

s of 

canisters from all po

ssible so

urces in all facilitie

s? 

Im

portan

t for Risk Man

agem

ent (feed

back into design & 

operations):

–Hardw

are reliability requ

iremen

ts 

–Ope

ratio

ns/procedu

res

14

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Represen

tatio

nal A

ccuracy

Crite

rion for level of a

ggregatio

n is re

presen

tatio

nal accuracy

Sepa

ratio

n into differen

t event se

quen

ces w

arranted

 becau

se 

of variatio

ns of:

–Facility configuration an

d op

erations (leading

 to differen

t cha

llenges, 

e.g. lift heights, num

ber o

f lifts, re

side

nce tim

e)–

Equipm

ent (althou

gh so

me eq

uipm

ent is s

imilar a

cross facilities,the 

complem

ent o

f equ

ipmen

t is d

ifferen

t for each facility)

–Waste fo

rms a

nd con

tainers (varia

tion in ro

bustne

ss over d

ifferen

t casks 

and canisters a

nd variatio

n in so

urce te

rms b

ecau

se of d

iffe ren

t fuel/form of fue

l)

Disaggregation shou

ld re

presen

t differen

t waste processing 

functio

ns, w

aste fo

rms, con

tainers a

nd fa

cilities

–For e

xample: re

ceipt, prep

aration, tran

sfer, w

elding, loa

d‐ou

t, tran

sport, 

and em

placem

ent

15

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

Summary an

d Outlook

Deterministic

 vs. Proba

bilistic, in Tran

sitio

n (finding

 balan

ce)

Ac

cumulating Expe

rience with

 Nuclear Safety An

alyses

Pe

riodic Upd

ates fo

r Ope

ratin

g Facilities

Re

gulatory Develop

men

ts are Im

inen

t in German

y & th

e U.S.

–Sitin

g process, con

ceptua

l design an

d suita

bility de

term

ination

–Re

‐promulgatio

n of gen

eric re

pository re

gulatio

ns

New

 Systems Impo

rtan

t to Nuclear Safety, and

 Sup

porting 

Analyses

–Co

nveyan

ces, packaging, etc.

Internationa

l Coo

peratio

n is Vita

l to Co

nfiden

ce Building

–Even

ts/seq

uences

–Feed

back to

 design & effectiv

e op

erations

–Metho

dology

16

U.S.‐German

 Worksho

p on

 Salt R

eposito

ries

Ope

ratio

nal Safety (SAN

D2014‐17182P

E) 

64P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 76: Reduced size m3 ft 15sn08180210 hansen

WIP

P R

ec

ove

ry S

tatu

sA

bra

ha

m V

an

Lu

ik, C

arl

sba

d F

ield

Off

ice

(C

BF

O)

5th US‐German

 Worksho

p on

 Salt R

eposito

ry 

Research, D

esign, and

 Ope

ratio

nS

an

ta F

e, N

M, S

ep

tem

be

r 7

-10

, 20

14

WIP

P’s

15

-ye

ar

His

tory

of

Su

cc

ess

11

,89

4sh

ipm

en

ts r

ec

eiv

ed

33

,00

0ty

pe

B p

ack

ag

es

un

loa

de

d

91

,00

0c

ub

ic m

ete

rs o

f T

RU

wa

ste

dis

po

sed

14

,20

0,0

00

loa

de

d m

iles

22

sto

rag

e s

ite

s d

e-i

nve

nto

rie

d o

f le

ga

cy

TR

U w

ast

e

Feb

rua

ry 5

, 20

14

U/G

Sta

tus

Feb

rua

ry 5

, 20

14

P

an

els

1-5

fill

ed

an

d s

ea

led

P

an

el 6

fill

ed

an

d s

ea

ling

in p

roc

ess

C

H w

ast

e e

mp

lac

em

en

t in

Ro

om

7

RH

wa

ste

em

pla

ce

me

nt

in R

oo

m 6

A

cti

ve m

inin

g P

an

el 8

24

ro

ws

of

CH

wa

ste

in

Ro

om

7 o

f P

an

el 7

Sa

lt T

ruck

Fir

e

65P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 77: Reduced size m3 ft 15sn08180210 hansen

Fro

m A

ir

Inta

ke S

ha

ftD

ec

rep

itat

ed

S

alt

Ac

cid

en

t S

ce

ne

Nin

e d

ays

late

r -

firs

t re

-en

try

(Feb

rua

ry 1

4)

un

de

r A

IB c

on

tro

l

M

ain

ten

an

ce

pro

gra

m

wa

s in

eff

ec

tive

F

ire

pro

tec

tio

n p

rog

ram

w

as

less

th

an

ad

eq

uat

e

N

ucl

ea

r fa

cili

ty v

ers

us

min

e c

ult

ure

AIB

Re

po

rt F

ind

ing

s

Hyd

rau

lic L

ea

k u

nd

er

Sis

ter

Ve

hic

le

Air

lock

Do

ors

Wir

ed

Op

en

Co

mb

ust

ible

Lo

ad

ing

in U

/G

AIB

Re

po

rt F

ind

ing

s

E

me

rge

ncy

ma

na

ge

me

nt &

p

rep

are

dn

ess

an

d r

esp

on

se

pro

gra

m w

ere

ine

ffe

cti

ve (

seve

ral

rep

eat

issu

es

fro

m e

xte

rna

l rev

iew

s)

C

MR

re

spo

nse

(ev

alu

atio

n a

nd

p

rote

cti

ve a

cti

on

s) w

ere

less

th

an

a

de

qu

ate

D

iffe

ren

t tr

eat

me

nt

of

wa

ste

vs.

no

n-

wa

ste

ha

nd

ling

eq

uip

me

nt,

e.g

.,

co

mb

ust

ible

bu

ildu

p, m

an

ua

l ve

rsu

s a

uto

mat

ic fi

re s

up

pre

ssio

n s

yste

m,

fire

re

sist

an

t h

ydra

ulic

oil,

etc

.

Ab

an

do

ne

d a

nd

Dis

use

d S

elf

Re

scu

ers

CH

Wa

ste

Fa

ce

: Ro

om

7 o

f P

an

el 7

, Mid

-day

Feb

rua

ry 1

4

Nin

e d

ays

aft

er

the

fir

e -

Sin

gle

re

-en

try

on

Feb

. 14

un

de

r A

IB c

on

tro

l

Gro

un

d c

on

dit

ion

s ap

pa

ren

tly

no

min

al

66P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 78: Reduced size m3 ft 15sn08180210 hansen

1

4 F

eb

rua

ry, 1

1:3

0 P

M

CA

M a

larm

sw

itch

ed

exh

au

st t

o f

iltra

tio

n

No

Ra

dc

on

resp

on

se u

nti

l 6:3

0 a

m

Sat

urd

ay

CA

Mfa

ilure

Sta

tio

n B

sa

mp

ling

Re

sult

s

Q ~

1 m

Ci

NM

SU

Hi-

Vo

l

Po

ten

tia

l Do

se R

ec

on

stru

cti

on

>1

mR

em

>1

0 m

Re

m

16

sq

mile

bo

un

da

ry

~

15

0 e

mp

loye

es

rep

ort

S

eq

ue

ste

r in

pla

ce

~0

83

0

EO

C n

ot

ac

tiva

ted

O

E n

eve

r d

ecl

are

d

Fris

k a

nd

re

lea

se ~

17

30

Sat

urd

ay,

Fe

bru

ary

15

, 20

14

Ae

ria

l Vie

w o

f W

IPP

Su

rfa

ce

Fa

cili

ty

Do

se e

stim

ate

s c

on

serv

ativ

ely

c

alc

ula

ted

for

exp

osu

re t

o

dir

ec

t S

tati

on

B e

xha

ust

If W

IPP

’s fi

ltra

tio

n s

yste

m e

ng

ag

ed

, w

hy

wa

s th

ere

an

y re

lea

se?

67P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 79: Reduced size m3 ft 15sn08180210 hansen

•P

ha

se 1

foc

use

d o

n t

he

re

lea

se o

f ra

dio

ac

tive

mat

eri

al f

rom

un

de

rgro

un

d t

o t

he

en

viro

nm

en

t,a

nd

th

e fo

llow

-on

re

spo

nse

to

th

e r

ele

ase

:

B

oa

rd r

evie

we

d t

he

ad

eq

ua

cie

s o

f th

e s

afe

tym

an

ag

em

en

t p

rog

ram

s a

nd

sys

tem

s.

Imp

ort

an

t to

re

po

rt o

n P

ha

se 1

to

ma

inta

intr

an

spa

ren

cy a

nd

mo

ve q

uic

kly

on

th

ec

orr

ec

tive

ac

tio

ns.

•P

ha

se 2

will

foc

us

on

th

e d

ire

ct

ca

use

of

the

re

lea

se o

f th

e

mat

eri

al a

nd

th

e im

pa

ct

on

wo

rke

r p

rote

cti

on

in t

he

u

nd

erg

rou

nd

.

AIB

issu

es

Ph

ase

1 r

ep

ort

on

th

e r

ad

iati

on

re

lea

se e

ven

t A

pri

l 24

,20

14

Nu

cle

ar

Sa

fety

Pro

gra

m: I

ne

ffe

cti

ve

Mis

cla

ssif

ied

sa

fety

cla

ss o

f th

e v

en

tila

tio

n s

yste

m a

nd

CA

Ms

N

on

-co

nse

rvat

ive

DS

A a

nd

TS

R c

on

tro

ls

Ma

inte

na

nc

e P

rog

ram

: In

eff

ec

tive

K

ey c

om

po

ne

nts

an

d s

yste

ms

ino

pe

rab

le o

r u

nre

liab

le

Ra

dia

tio

n P

rote

cti

on

Pro

gra

m: I

ne

ffe

cti

ve

De

laye

d r

esp

on

se, c

on

tam

inat

ion

co

ntr

ol,

su

rvey

s, a

nd

tra

inin

g

Em

erg

en

cy M

an

ag

em

en

t P

rog

ram

: In

eff

ec

tive

N

ot

eff

ec

tive

in p

rom

pt

cat

ego

riza

tio

n, i

mp

lem

en

tati

on

, re

qu

ire

d

no

tifi

cat

ion

s

Co

nd

uc

t o

f O

pe

rati

on

s:K

ey e

lem

en

ts in

eff

ec

tive

Sa

fety

Cu

ltu

re a

nd

Ove

rsig

ht:

N

ucl

ea

r fa

cili

ty v

ers

us

min

ing

cu

ltu

re: D

iffe

ren

ce

in e

xpe

cta

tio

ns

N

WP

sa

fety

cu

ltu

re d

oe

s n

ot

em

bra

ce

ISM

S

NW

P c

on

tra

cto

r a

ssu

ran

ce

sys

tem

an

d C

BF

O o

vers

igh

t in

eff

ec

tive

E

M H

Q li

ne

ma

nag

em

en

t o

wn

ers

hip

an

d o

vers

igh

t w

ere

ine

ffe

cti

ve

Phase I  AIB Re

port 

Inta

ct

Mg

Ob

ag

Me

lte

d M

gO

ba

g

Me

lte

d H

DP

E s

he

et

Mat

eri

al`

De

scri

pti

on

M.P

. (°C

)

Dru

m G

ask

ets

bu

tad

ien

e r

ub

be

r1

00

SW

B G

ask

ets

ne

op

ren

e r

ub

be

r1

20

Sh

rin

k w

rap

LD

PE

11

0

Slip

Sh

ee

tsH

DP

E1

40

Mg

Ob

agp

oly

pro

pyl

en

e1

60

Vie

wp

oin

t fo

r n

ext

slid

es

Be

gin

to

foc

us

on

wa

ste

str

ea

m

MIN

02

fro

m L

AN

L (

nit

rate

sa

lts

wit

h u

nc

ert

ain

pH

an

d o

rga

nic

a

dso

rbe

nt

ad

de

d)

Ap

pa

ren

t are

a

of

gre

ate

st

dis

turb

an

ce

Evi

de

nc

e o

f H

eat

Eve

nt

68P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 80: Reduced size m3 ft 15sn08180210 hansen

Ma

y 1

5 E

ntr

y

Release Ca

use Investigation Co

ntinue

s•Ph

ase 2 Accide

nt Investigation Bo

ard repo

rt on 

cause of th

e release no

t yet com

pleted

–What is k

nown from

 und

ergrou

nd air particulate 

and sw

ipe sample analyses:

•The material that w

as re

leased

 app

ears to

 be gene

rated 

by a com

bustion (rapid che

mical oxidatio

n) process

•Its che

mical and

 radiological signatures are similar to the 

waste stream

 in th

e breached

 waste con

tainer th

at 

containe

d nitrate salts and

 organics in a very acidic matrix

•Am

 to Puratio

s were abou

t 10:1, which is a distinctly 

diffe

r ent ra

tio from

 the bu

lk of the

 waste in th

e repo

sitory

•Suspect w

aste has been re‐classified

 as ignita

ble

18

Recovery is In

 Progress

•Each of the

 Accident Investig

ation Bo

ard 

conclusio

ns and

 recommen

datio

ns fo

r cultural 

and technical changes is being

 implem

ented

•The un

dergroun

d facility is be

ing rehabilitated

:–De

contam

ination whe

re neede

d and feasible to

 allow 

unde

rgroun

d work to re

sume in stages

–Ad

ditio

nal clean

 air supp

ly and

 exit a

ir filtration 

capacity is being

 implem

ented

–Areas w

ith su

spect w

aste are plann

ed to

 be iso

lated 

from

 the working

 repo

sitory as so

on as p

racticable

•A draft d

etailed Re

covery Plan is un

der review

19

Ac

tivi

tie

s R

eq

uir

ed

for

WIP

P R

est

art

Near term:

Upgrade

 Docum

ented Safety Ana

lysis, fire and

 safety sy

stem

s

Uncon

taminated

 and

 contam

inated

 areas estab

lishe

d;

Groun

d control fully fu

nctio

ning

 (roo

f boltin

g catch‐up

);

Procure tempo

rary filte

red ventilatio

n capa

city using

 skid HEPA filters;

Design activ

ity: p

erman

ent v

entilation chan

ges, new

 exhau

st sh

aft;

Mine characterization an

d de

contam

ination;

Mid te

rm:

Install/op

erate skid fans/H

EPA filters;

Design/Pe

rmit pe

rman

ent ven

tilation system

 and

 new

 exhau

st sh

aft;

Be

gin initial ope

ratio

ns/emplacem

ent u

sing

 existing pa

nels;

Supp

lemen

tal ven

tilation on

 air intake sh

aft;

Th

ree shifts to op

timize

 use of a

vailable ventilatio

n capa

city;

Furthe

r upgrade

 abo

ve and

 below

 groun

d utility/safety system

s;

Long

 term

:

Constructio

n of perman

ent ven

tilation system

 and

 new

 exhau

st sh

aft;

New

 salt shaft a

nd ven

tilation system

 ope

ratio

nal;

Ope

ratio

nal Readine

ss Reviews;

Be

gin full op

erations/w

aste‐emplacem

ent;

Po

tential shift to

 utilize

 some electric m

ining eq

uipm

ent

69P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 81: Reduced size m3 ft 15sn08180210 hansen

21

Hig

h-l

eve

l De

pa

rtm

en

t o

f E

ne

rgy

Su

pp

ort

21

Str

on

g H

ea

dq

ua

rte

rs

Su

pp

ort

for

Re

co

very

Se

cre

tary

of

En

erg

y E

rne

st

Mo

niz

at

a T

ow

n H

all

me

eti

ng

in

Ca

rlsb

ad

, NM

, Au

gu

st 1

2,

20

14

“We

are

ab

solu

tely

c

om

mit

ted

to

th

is fa

cili

ty.

We

are

, of

co

urs

e,

co

mm

itte

d t

o b

rin

gin

g it

b

ack

to

init

ial o

pe

rati

on

s a

nd

th

en

eve

ntu

ally

to

fu

ll o

pe

rati

on

s, w

ith

sa

fety

fu

lly in

min

d."

22

Perm

anen

t Iso

latio

n in

Dee

p Ge

olog

ic Sa

ltA

Natio

nal S

olut

ion

and

Inte

rnat

iona

l Mod

el

70P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 82: Reduced size m3 ft 15sn08180210 hansen

WasteIsolationPilotPlant

RoadtoRecovery

US/German

 Worksho

p on

 Salt R

eposito

ry Research, 

Design an

d Ope

ratio

n

Tammy Re

ynolds, N

WP De

puty Recovery Manager

Septem

ber 8

, 201

41

WIPP

2

Quick Facts: 

•Ope

ned:  M

arch 26, 1999

•11,894

 shipments re

ceived

•90,983

 cub

ic m

eters of waste disp

osed

•171,064 containe

rs disp

osed

 in th

e un

dergroun

d

WIPPHaulTruckFireEvent

3

AIBSaltHaulTruckFireFindings

Positiv

e Observatio

ns•

Supe

rvisors a

nd employees in the 

unde

rgroun

d proactively alerted 

othe

r workers of the

 fire and

 need to 

evacuate before the evacuatio

n alarm 

was so

unde

d. 

•Workers assisted

 each othe

r during 

the evacuatio

n, includ

ing he

lping 

them

 to don

 self‐rescue

rs and

 SCSRs. 

•Person

nel in the un

dergroun

d exhibited de

tailed know

ledge of th

e un

dergroun

d and v entilatio

n splits. 

•NWP on

‐site

 med

ical re

spon

se was 

effective in treatin

g pe

rson

nel. 

Repo

rt Finding

s•

Mainten

ance program

 was ineffective. 

•Fire protection program was less th

an 

adeq

uate.

•CM

R respon

se (evaluation and protective 

actio

ns) w

as less th

an ade

quate. 

•Em

ergency managem

ent/ preparedn

ess 

and respon

se program

s were ineffective.

•Diffe

rent treatm

ent o

f waste versus n

on‐

waste handling eq

uipm

ent. (Nuclear 

facility versus mine cultu

re) 

•Inadeq

uate oversight from

 governm

ent 

agen

cies

4

Feb. 7, D

OE EM

 Deputy Assistant Secretary app

ointed

 an Accident Investigation Bo

ard 

(AIB) to cond

uct a

n evalua

tion of event and

 respon

se.

71P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 83: Reduced size m3 ft 15sn08180210 hansen

WIPPUndergroundand

VentilationSystem

5

Exha

ust S

haft

AIBRadiologicalReleaseFindings

•Ph

ase 1 of th

e AIB investigation focused on

 the radiological 

release and the follow‐on respon

se to

 the release:

•Ineffective compo

nents o

f the

 following WIPP programs w

ere 

iden

tified: 

•Nuclear sa

fety program

•Mainten

ance program

•Ra

diation protectio

n program

•Em

ergency managem

ent p

rogram

•Co

nduct o

f ope

ratio

ns•Safety culture and

 oversight

•Ph

ase 2 is focused on

 determining the direct cause of the

 release of m

aterial

6

Feb. 27, Accident Investig

ation Bo

ard ap

pointed to evaluate radiolog

ical re

lease an

d respon

se.

Initia

l Res

pons

e: P

lant is

safe

and s

table

•D

evel

oped

Nuc

lear

Saf

ety

Doc

umen

tatio

n to

su

ppor

t rec

over

y ac

tiviti

es•

Col

lect

ion

and

anal

ysis

of e

nviro

nmen

tal

sam

ples

•C

ompl

etio

n of

the

even

t bio

assa

y pr

ogra

m•

Sea

ling

of th

e by

pass

dam

pers

•Fa

ns b

alan

ced

and

prev

entiv

e m

aint

enan

ce

com

plet

ed to

rest

ore

relia

ble

oper

atio

n•

Con

tinuo

us A

ir M

onito

r ins

talle

d at

Sta

tion

B•

Filte

rs lo

aded

with

fire

com

bust

ion

prod

ucts

re

plac

ed a

nd H

EPA

filte

rs e

ffici

ency

test

ed•

Cle

anin

g of

the

Was

te H

oist

Tow

er a

nd W

aste

H

oist

com

pone

nts

•S

afet

y M

anag

emen

t Pro

gram

com

pens

ator

y m

easu

res

impl

emen

ted

•S

igni

fican

t nuc

lear

ope

ratio

ns e

xper

ienc

e ad

ded

to N

WP

lead

ersh

ip te

am7

Phase2AIBInvestigation–

RadiologicalRelease

8

•Du

ring the May 22 entry, Recovery Team

 mem

bers 

obtained

 evide

nce of a dam

aged

 waste co

ntaine

r

•Discoloration du

e to a heat p

rodu

cing

 event was visible

72P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 84: Reduced size m3 ft 15sn08180210 hansen

Room

7,Panel7

9

SupporttotheAccidentInvestigationBoard

•Ad

ditio

nal sam

ples from

 Pane

l 7, Roo

m 7 were taken 

on 8/15.

•Project R

EACH

•Ope

rator training 

•Shipmen

t to WIPP 

•Install und

ergrou

nd 

•Ope

ratio

n•Extend

able com

posite 90

‐foot 

boom

, suspe

nded

 by 

moveable cradle atop a 

supp

ort structure

10

WIPPRecoveryRoadm

ap

11

Resume Ope

ratio

ns

Ope

ratin

g on

 Full V

entilation

ResumeOperations‐KeySteps

12

•Nuclear Safety Do

cumen

t Revision

s (continuing)

•Safety M

anagem

ent P

rogram

 Revita

lization (con

tinuing)

•Und

ergrou

nd re

storation (in

itiated

) •

Radiological Roll‐b

ack, Re‐Establish

 Safety System

s,   

Cleanu

p, Habita

bility, Fire

 Protection, M

ainten

ance and

 Groun

d Co

ntrol

•Expe

dited Pane

l 6 and

 Roo

m 7, Panel 7 Closure

•Interim

 Ven

tilation Mod

ificatio

ns (p

rocuremen

t un

derw

ay) 

•Expe

dite mine stability (resum

e bo

lting)

•Supp

lemental Ven

tilation Mod

ificatio

ns (initia

ted)

•Re

adiness A

ctivities

•Limite

d Ope

ratio

ns 

•On‐site waste

•Off‐site waste gen

erators

73P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 85: Reduced size m3 ft 15sn08180210 hansen

OperatingonFullVentilation‐

KeySteps

13

•Nuclear Safety Do

cumen

t revision

s to supp

ort

new ven

tilation system

 

•Co

ntinue

d grou

nd con

trol activities 

•Re

placem

ent o

f outdated safety, m

ining and 

waste handling eq

uipm

ent

•New

 Ven

tilation System

•Capital Project

•New

 shaft and

 drifts 

(req

uires e

xten

sive mining)

•New

 abo

ve groun

d ventilatio

n system

 com

pone

nts (fans, filters)

•Re

adiness A

ctivities

RecoveringtheUnderground

14

RadiologicalAreaRollback

15

GeotechnicalMeasurements

16

74P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 86: Reduced size m3 ft 15sn08180210 hansen

Nucle

ar Sa

fety C

ulture

–Dr

iving

W

IPP’s

Futur

e•

Imm

edia

te e

mph

asis

on

stop

wor

k an

d ve

rbat

im p

roce

dure

com

plia

nce

•G

ood

Cat

ch re

cogn

ition

•R

einf

orce

men

t by

PM

in A

ll-H

ands

m

eetin

gs a

nd S

traig

ht T

alk

•C

ontin

uing

em

phas

is o

n W

ork

Con

trol

•In

tera

ctiv

e Te

am R

evie

ws

•S

MR

B R

evie

w•

Freq

uent

rew

ork

to e

stab

lish

new

ex

pect

atio

ns•

Rev

italiz

atio

n of

NS

C a

s fo

unda

tion

•S

easo

ned

advi

sors

•Im

prov

emen

t Pla

n•

Lead

ersh

ip W

orks

hops

•M

anag

emen

t tim

e in

fiel

d•

Rep

ortin

g of

mis

take

s/er

rors

•W

IPP

NS

C W

orke

r Ref

eren

ce G

uide

1718

75P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 87: Reduced size m3 ft 15sn08180210 hansen

A Perspective on Removal, Retrieval and Reversibility as they relate to the Waste Isolation Pilot Plant

Steve Wagner

Abstract

With respect to waste removal, retrieval or reversibility (RR&R) within the WIPP project, the overall concept can be addressed by answering general questions about what is required, what the project said they would do, and what was actually done. The following answer these and other questions as they apply to RR&R and the Waste Isolation Pilot Plant (WIPP) radioactive waste disposal project.

What is Required: The radioactive waste disposal concept in the United States (U.S.) included “retrieval” from the start. The U.S. Government is legally responsible for radioactive waste disposal. The first geologic disposal concepts were based on recommendations in a 1957 National Academy of Science report on radioactive waste disposal. All attempts at siting disposal facilities used the “Pilot Project” concept. Eventually the U.S. government started investigating the bedded salt formation in the Delaware Basin of New Mexico. To gain acceptance at that time from the State of New Mexico and Local Municipalities, the disposal concept would first have a “test period” where all waste would be retrievable should the concept not meet disposal objectives. In 1976, the Environmental Protection Agency (EPA) was given the responsibility to develop generic radioactive waste disposal regulations that eventually included waste retrieval and removal requirements. At that time the ability to retrieve or remove waste became necessary past the “test period”. The EPA’s rationale for waste removal was not to make recovery of the waste easy or cheap but to make it possible in case some future discovery or insight made it clear that the waste needed to be relocated. Additional requirements imposed on the WIPP by the U.S. Congress and the State of New Mexico required a retrieval demonstration prior to actual waste emplacement.

Additionally the WIPP project defines “disposal” as permanent isolation of radioactive waste from the accessible environment with no intent of recovery. Disposal occurs in a mined geologic repository when all of the shafts to the repository are backfilled and sealed. Where the WIPP project includes the concepts of waste removal and retrieval, the project does not intend to ever do so.

What they said they would do: As stated earlier, the WIPP is a pilot project that included the concept requiring the ability for waste retrieval before closure. The disposal regulations also required that it be feasible to remove waste after operations ceased and the repository was sealed. A waste removal after closure feasibility analysis was included in the Compliance Certification Application to the EPA and a remote retrieval demonstration was performed under conditions simulating a roof fall in the underground on simulated waste containers.

International Perspective: Most international disposal concepts are similar to what was developed in the U.S. in that most include the requirement for waste retrieval during the repositories operational period. Recent attention has been given to the concept of reversibility.

76Proceedings of 5th US/German Workshop

January 30, 2015

Page 88: Reduced size m3 ft 15sn08180210 hansen

The intent is to include reversibility in the disposal system design. Whereas the U.S. concept only requires it to be feasible to remove waste after closure, reversibility requires a repository design that allows for waste retrieval during any phase of a disposal program.

What has been done – Actual retrieval: DOE has retrieved a few of the emplaced containers from the underground. The State of New Mexico required DOE to retrieve a waste container in August, 2007 when it was learned that the wrong container had been shipped to WIPP. The DOE decided to retrieve another waste container in June, 2008. These drums were returned to the generator sites for remediation because they did not fully meet the waste acceptance criteria, not for health and safety reasons.

Lessons Learned - Risk vs benefits: One element that has been overlooked by the WIPP regulators and stakeholders is risk. The regulations associated with waste retrieval/removal do not address risk or benefit and are silent as to the conditions that warrant retrieval/removal. The project therefore has no recourse when regulators require retrieval of waste containers that may be deficient but can be shown to not have any impact on overall repository performance. Lessons learned regarding removal/retrieval requirements recommend that other disposal program’s regulations outline specific risk vs. benefit elements in decisions that lead to waste retrieval. The actual risk of retrieval, in many cases, have associated risks relating to occupational health, dose and transportation/accident risks that are real and may be greater than the risks associated with the newly discovered condition of the waste or repository.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy. SAND2014-16394A

77Proceedings of 5th US/German Workshop

January 30, 2015

Page 89: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

014-

1657

1PE

This

rese

arch

is fu

nded

by

WIP

P p

rogr

ams

adm

inis

tere

d by

the

Offi

ce o

f Env

ironm

enta

l Man

agem

ent (

EM

) of t

he U

.S D

epar

tmen

t ofE

nerg

y.

A Pe

rspe

ctive on

 Rem

oval, 

Retrieval and

 Reversib

ility as 

they re

late to

 the Waste 

Isolation Pilot P

lant

Steve Wagne

r –John

 Hart a

nd Associates

Outline

With

 respect to waste re

moval, retrie

val or reversib

ility 

with

in th

e WIPP project, the overall con

cept can

 be addressed 

by answering gene

ral que

stions:

What is req

uired

What d

id th

e project said they wou

ld do

What h

as th

e project a

ctually don

e

This presen

tatio

n will answer th

ese and othe

r que

stions as 

they app

ly to

 the Waste Isolation Pilot P

lant (W

IPP) 

radioactive waste disp

osal project.

2

Waste Isolation Pilot P

lant Facts

WIPP is geologic disp

osal facility de

signe

d to disp

ose 

~176

,000

 m3of transuranic waste from

 defen

se‐related

 activ

ities

Waste area is mined

 in a bed

ded salt form

ation, ~ 2,150

 ft(655

 m) B

elow

 the Groun

d Surface

Pluton

ium & Americium are m

ajor ra

dion

uclides in th

e waste

US Co

ngress establishe

d the Environm

ental Protection 

Agen

cy (EPA

) as the

 radioactive waste disp

osal re

gulatin

g authority

; the

 Dep

artm

ent o

f Ene

rgy is the site de

velope

r

Early

 disp

osal con

cepts o

f “Pilot P

roject” includ

ed 

RetrievabilityRe

quire

men

t (1970’s)

3

RR&R –What is R

equired?

US Governm

ent’s first radioactiv

e waste geo

logic disposal 

concep

t was a “Pilot P

roject” based on

 National A

cade

my of 

Science recommen

datio

ns (1957)

Orig

inally Self‐R

egulated

 –Atom

ic Ene

rgy Co

mmission

To

 gain acceptance from

 State and

 Local M

unicipalities, the

 disposal con

cept wou

ld first h

ave a “test p

eriod” whe

re all 

waste wou

ld be retrievable shou

ld th

e concep

t not m

eet 

disposal objectiv

es

4

78P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 90: Reduced size m3 ft 15sn08180210 hansen

RR&R –What is R

equired?

In 1976 the EPA was given

 the respon

sibility to

 develop

 gene

ral radioactiv

e waste disp

osal re

gulatio

ns

Retrieval req

uiremen

ts were includ

ed in th

e fin

al re

gulatio

n

Retrieval con

cept becam

e ne

cessary past “test period”

Ad

ditio

nally, the

 U.S. Con

gress a

nd th

e State of New

 Mexico 

requ

ired test‐phase Retrie

val dem

onstratio

ns (LWA, 

Consultatio

n and Co

operation Ag

reem

ent)

5

RR&R –What is R

equired?

6

RR&R –What is R

equired

EPA RR

&R Pe

rspe

ctive

EPA Ce

rtificatio

n Crite

ria (4

0 CFR 194.46)

“Any

 com

pliance application shall include

 docum

entatio

n which 

demon

strates that rem

oval of w

aste from

 the disposal sy

stem

 is 

feasible fo

r a re

ason

able period of time after d

isposal.  Such 

documen

tatio

n shall include

 an analysis of th

e techno

logical feasib

ility 

of mining the sealed

 disp

osal sy

stem

, given

 techno

logy levels at th

e tim

e a compliance application is prep

ared

7

What W

e Said W

e Wou

ld Do

For U

S Co

ngress and

 State of N

ew M

exico Re

quire

men

ts

DOE do

cumen

ted a mock test waste re

trieval dem

onstratio

n on

 April 

27, 199

2 using remote controlled de

vices (vide

o available)

For E

PA Disp

osal Req

uiremen

ts

DOE do

cumen

t the

 results of a

 feasibility of w

aste re

moval after 

closure in App

endix WRA

C of th

e EPA compliance application

DO

E acknow

ledges th

at EPA

 requ

ires w

aste re

trieval if the

 certificatio

n were to be revoked.

“If the

 Adm

inistrator revokes th

e certificatio

n, th

e De

partmen

t shall 

retrieve, as soo

n as practicable and

 to th

e extent practicable, any waste 

emplaced

 in th

e disposal sy

stem

.“ 40 CFR 194.4(b)(1)

8

79P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 91: Reduced size m3 ft 15sn08180210 hansen

What W

e Actually Have Do

ne

DO

E has retrie

ved em

placed

 con

tainers from th

e un

dergroun

d

The State of New

 Mexico requ

ired DO

E to re

trieve a waste con

tainer 

in August, 20

07

DOE de

cide

d to re

trieve a waste con

tainer in Ju

ne, 200

8

Drum

s were returned

 to th

e gene

rator site

s for re

med

iatio

n be

cause they did not fu

lly m

eet the

 waste accep

tance crite

ria, 

they were no

t returne

d for h

ealth

/safety reason

s

9

International Perspectiv

e

Most internatio

nal disp

osal con

cepts a

re similar to what w

as 

develope

d in th

e U.S.

most p

rogram

s include

 the requ

iremen

t for waste re

trieval during the 

repo

sitories o

peratio

nal period.

Re

cent atten

tion has b

een given to th

e concep

t of 

reversibility.

The intent is to

 includ

e reversibility in th

e disposal sy

stem

 design.  

Whe

reas th

e U.S. con

cept only requ

ires it to be

 feasible to

 remove 

waste after closure, reversib

ility re

quire

s a re

pository de

sign that 

allows for waste re

moval during any ph

ase of a disp

osal program

.

10

Lesson

s Learned

RISK The WIPP regulatio

ns associated with

 waste re

trieval/rem

oval do no

t address risk

 or b

enefit and are silen

t as to the cond

ition

s that w

arrant 

retrieval/rem

oval.

The project h

as no recourse whe

n regulators re

quire

 retrieval of 

waste con

tainers that m

ay be de

ficient but can

 be show

n to not have 

any im

pact on overall rep

osito

ry perform

ance, the

 enviro

nmen

t or 

public sa

fety.

Re

commen

datio

n

Recommen

d that disp

osal program

’s re

gulatio

ns outline specific risk 

vs. ben

efit elem

ents in decision

s that lead to waste re

trieval.

The actual risk of retrie

val, in m

any cases, have associated

 risks 

relatin

g to occup

ational health

, dose and transportatio

n/accide

nt risks 

that are re

al and

 may be greater than the risks associated with

 the 

newly disc

overed

 co n

ditio

n of th

e waste or rep

osito

ry. 

11

80P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 92: Reduced size m3 ft 15sn08180210 hansen

Sand

ia N

atio

nal L

abor

ator

ies

is a

mul

ti-pr

ogra

m la

bora

tory

man

aged

and

ope

rate

d by

San

dia

Cor

pora

tion,

a w

holly

ow

ned

subs

idia

ry o

f Loc

khee

d M

artin

C

orpo

ratio

n, fo

r the

U.S

. Dep

artm

ent o

f Ene

rgy’

s N

atio

nal N

ucle

ar S

ecur

ity A

dmin

istra

tion

unde

r con

tract

DE

-AC

04-9

4AL8

5000

. SAN

D N

O. 2

011-

XXXX

P

Retr

ieva

bilit

y as

Des

ign

Requ

irem

ent f

or a

Re

posit

ory

for H

LW a

nd S

F W

ilhel

m B

ollin

gerf

ehr

DBE

TECH

NO

LOGY

Gm

bH

Esch

enst

raße

55,

D31

224

Pein

e/Ge

rman

y

Bol

linge

rfehr

09/

2014

2

Out

line

•W

hy R

etrie

vabi

lity?

Def

initi

ons

and

legi

slat

ion

on re

trie

vabi

ltiy

Def

initi

ons

Legi

slat

ion

•Im

plic

atio

ns o

f ret

rieva

bilit

y re

quire

men

ts o

n re

posi

tory

des

igns

D

rift d

ispo

sal c

once

pt

Bor

ehol

e di

spos

al c

once

pt

•Su

mm

ary

and

conc

lusi

ons

Bol

linge

rfehr

09/

2014

3

Why

Ret

rieva

bilit

y?

EC-C

once

rted

Act

ion

on R

etrie

vabi

lity

(200

0)

The

mos

t fre

quen

tly u

sed

argu

men

ts li

sted

are

: 1.

Saf

ety

and

oper

atio

nal a

rgum

ents

Dis

posa

l sho

uld

be re

vers

ible

in c

ase

som

ethi

ng g

oes

wro

ng w

ith

the

empl

acem

ent o

f a p

acka

ge

•R

etrie

val o

f a w

aste

pac

kage

may

be

nece

ssar

y in

cas

e a

was

te

pack

age

mal

func

tions

dur

ing

or a

fter e

mpl

acem

ent

•R

etrie

val o

f was

te p

acka

ges

may

be

nece

ssar

y if

the

repo

sito

ry

appe

ars

to b

e m

alfu

nctio

ning

at a

late

r sta

ge

2. L

icen

sing

arg

umen

ts

•R

etrie

vabi

lity

shou

ld b

e in

clud

ed in

ord

er to

faci

litat

e a

stag

ed

deci

sion

and

lice

nsin

g pr

oces

s

Bol

linge

rfehr

09/

2014

4

Why

Ret

rieva

bilit

y?

3. S

ocie

tal a

rgum

ents

•R

adio

activ

e w

aste

may

con

tain

pot

entia

lly u

sefu

l mat

eria

ls, w

hich

m

ay b

ecom

e va

luab

le in

the

futu

re. I

t cou

ld b

e th

e w

ish

of a

futu

re

soci

ety

to u

tilis

e su

ch a

reso

urce

. •

Dis

posa

l dec

isio

ns s

houl

d no

t be

irrev

ocab

le, i

n or

der t

o pr

ovid

e fu

ture

gen

erat

ions

with

the

optio

n to

mak

e th

eir o

wn

deci

sion

s.

•Fr

om a

sus

tain

able

soc

iety

vie

wpo

int,

high

prio

rity

is g

iven

to th

e re

use

of m

ater

ials

and

to a

min

imis

atio

n of

the

quan

tity

of w

aste

th

at n

eeds

to b

e di

spos

ed o

f. V

iew

s an

d/or

tech

nolo

gy fo

r reu

se o

f m

ater

ials

may

be

diffe

rent

in th

e fu

ture

The

prec

autio

nary

app

roac

h an

d th

e re

cogn

ition

of u

ncer

tain

ty

spea

k in

favo

ur o

f ret

rieva

bilit

y

81P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 93: Reduced size m3 ft 15sn08180210 hansen

Bol

linge

rfehr

09/

2014

5

Why

Ret

rieva

bilit

y?

4. W

aste

man

agem

ent a

rgum

ents

•Fu

ture

new

tech

nolo

gy o

r sci

entif

ic k

now

ledg

e co

uld

– ba

sed

on

re-e

valu

atio

n of

the

cost

/ben

efit

bala

nce

– m

otiv

ate

mod

ifica

tions

in

ear

lier d

ispo

sal,

or re

triev

al o

f dis

pose

d w

aste

pac

kage

s.

•A

repo

sito

ry th

at in

clud

es d

esig

n fe

atur

es to

kee

p th

e w

aste

pa

ckag

es re

triev

able

cou

ld o

ffer b

ette

r pos

sibi

litie

s fo

r con

trol a

nd

surv

eilla

nce

of th

e w

aste

afte

r dis

posa

l.

5. P

ublic

acc

epta

nce

argu

men

ts

•A

dis

posa

l con

cept

may

be

bette

r app

reci

ated

, whe

n ke

y de

cisi

ons

are

reve

rsib

le. I

nclu

ding

retri

evab

ility

may

enh

ance

the

acce

ptan

ce

of g

eolo

gica

l dis

posa

l.

Bol

linge

rfehr

09/

2014

6

Def

initi

ons

Rev

ersi

bilit

y „R

ever

sibi

lity

desc

ribes

the

abili

ty in

prin

cipl

e to

cha

nge

or re

vers

e de

cisi

ons

take

n du

ring

the

prog

ress

ive

impl

emen

tatio

n of

a d

ispo

sal

syst

em” /

NEA

201

1/.

Ret

rieva

bilit

y „R

etrie

vabi

lity,

in w

aste

dis

posa

l, is

the

abili

ty in

prin

cipl

e to

reco

ver

was

te o

r ent

ire w

aste

pac

kage

s on

ce th

ey h

ave

been

em

plac

ed in

a

repo

sito

ry” /

NEA

201

1/.

“Ret

rieva

bilit

y is

the

plan

ned

tech

nica

l opt

ion

for r

emov

ing

empl

aced

ra

dioa

ctiv

e w

aste

con

tain

ers

from

the

repo

sito

ry m

ine

“/BM

U 2

010/

. op

erat

iona

l pha

se o

f rep

osito

ry u

ntil

clos

ure

of s

hafts

and

/or r

amps

Rec

over

y “R

ecov

erin

g is

the

retri

eval

of r

adio

activ

e w

aste

from

a fi

nal r

epos

itory

as

an e

mer

genc

y m

easu

re” /

BM

U 2

010/

. up

to 5

00 y

ears

afte

r rep

osito

ry c

losu

re

Bol

linge

rfehr

09/

2014

7

Ret

rieva

bilit

y-Sc

ale

(NEA

201

1)

Ret

rieva

bilit

y R

ecov

ery

Bol

linge

rfehr

09/

2014

8

Ger

man

Leg

isla

tion

Ret

rieva

l req

uire

men

ts:

“8 .6

:

Was

te c

onta

iner

s m

ust f

ulfil

the

follo

win

g sa

fety

func

tions

, with

due

re

gard

for t

he w

aste

pro

duct

s pa

ckag

ed th

erei

n an

d th

e ba

ckfil

l su

rroun

ding

them

: •

For p

roba

ble

deve

lopm

ents

, han

dlea

bilit

y of

the

was

te c

onta

iner

s m

ust b

e gu

aran

teed

for a

per

iod

of 5

00 y

ears

in c

ase

of

reco

very

from

the

deco

mm

issi

oned

and

sea

led

final

repo

sito

ry.

Car

e sh

ould

be

take

n to

avo

id th

e re

leas

e of

radi

oact

ive

aero

sols

. •

Dur

ing

the

oper

atin

g ph

ase

up u

ntil

seal

ing

of th

e sh

afts

or

ram

ps, r

etrie

val o

f the

was

te c

onta

iner

s m

ust b

e po

ssib

le.

Mea

sure

s ta

ken

to s

ecur

e th

e op

tions

of r

ecov

erin

g or

retri

eval

mus

t not

im

pair

the

pass

ive

safe

ty b

arrie

rs a

nd th

us th

e lo

ng-te

rm s

afet

y.”

(acc

ordi

ng to

: “S

afet

y R

equi

rem

ents

Gov

erni

ng th

e Fi

nal D

ispo

sal o

f Hea

t-Gen

erat

ing

Rad

ioac

tive

Was

te” a

s at

30

Sep

tem

ber 2

010)

82P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 94: Reduced size m3 ft 15sn08180210 hansen

Bol

linge

rfehr

09/

2014

9

Impl

icat

ion

on R

epos

itory

Des

ign

(Sou

rce:

VS

G)

site

-spe

cific

de

sign

of

repo

sito

ry

was

te

pack

age

for

HLW

and

SF

: PO

LLU

cask

verif

icat

ion

of

safe

ty a

nd

relia

bilit

y of

tr

ansp

ort a

nd

empl

acem

ent

tech

niqu

e by

mea

ns o

f 1:

1 sc

ale

de

mon

stra

tion

test

s

Drif

t Dis

posa

l Con

cept

Bol

linge

rfehr

09/

2014

10

Impl

icat

ion

on R

epos

itory

Des

ign

final

ste

p:

exca

vatio

n of

rem

aini

ng

com

pact

ed b

ackf

ill m

ater

ial

surr

ound

ing

POLL

UX®

cas

k

step

1 a

nd s

tep

2:

exca

vatio

n of

drif

ts

para

llel t

o th

e em

plac

ed

POLL

UX®

cas

k

Step

wis

e Pr

oces

s fo

r Exc

avat

ion

of D

rifts

Bol

linge

rfehr

09/

2014

11

Impl

icat

ion

on R

epos

itory

Des

ign

Sche

mat

ic v

iew

of a

ste

el fr

ame

cons

truc

tion

as a

lifti

ng d

evic

e fo

r PO

LLU

X® c

asks

Mod

ifica

tion

for P

OLL

UX®

cas

k Li

fting

Empl

acem

ent d

evic

e fo

r PO

LLU

X® c

asks

Bol

linge

rfehr

09/

2014

12

Impl

icat

ion

on R

epos

itory

Des

ign

Det

aille

d pl

anni

ng o

f ret

rieva

l act

ions

(bas

is: V

SG

des

ign)

gree

n: re

triev

al d

rifts

, •

red:

retri

eval

drif

ts n

ot c

onne

cted

with

a s

econ

d cr

ossc

ut,

•ye

llow

retri

eval

drif

ts c

onne

cted

with

mai

n tra

nspo

rt dr

ift N

orth

, •

yello

w fr

ame:

prio

r to

exca

vatio

n st

art n

eed

for g

eom

echa

nica

l pro

of o

f pill

ar s

tabi

lity)

83P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 95: Reduced size m3 ft 15sn08180210 hansen

Bol

linge

rfehr

09/

2014

13

Impl

icat

ion

on R

epos

itory

Des

ign

site

-spe

cific

de

sign

of

repo

sito

ry

was

te p

acka

ge

for H

LW a

nd

SF:B

SK 3

verif

icat

ion

of

safe

ty a

nd

relia

bilit

y of

tr

ansp

ort a

nd

empl

acem

ent

tech

niqu

e by

mea

ns o

f 1:

1 sc

ale

de

mon

stra

tion

test

s (S

ourc

e: V

SG

)

Bor

ehol

e D

ispo

sal C

once

pt

Bol

linge

rfehr

09/

2014

14

new

: co

nica

l B

SK c

anis

ter

new

: ste

el li

ner

desi

gned

aga

inst

ho

st ro

ck s

tres

s

Bor

ehol

e D

ispo

sal C

once

pt

Impl

icat

ion

on R

epos

itory

Des

ign

Bol

linge

rfehr

09/

2014

15

Impl

icat

ion

on R

epos

itory

Des

ign

Tim

e af

ter E

mpl

acem

ent

[a]

Temperature [°C]

Det

aile

d pl

anni

ng o

f ven

tilat

ion/

cool

ing

need

ed!

Exam

ple:

B

oreh

ole

D

ispo

sal

Con

cept

Bol

linge

rfehr

09/

2014

16

Sum

mar

y an

d co

nclu

sion

s

For d

rift d

ispo

sal c

once

pt

Ret

rieva

l of e

mpl

aced

PO

LLU

X ®

cas

ks is

tech

nica

lly fe

asib

le

durin

g re

posi

tory

ope

ratio

nal p

erio

d (s

ever

al d

ecad

es)

For b

oreh

ole

disp

osal

con

cept

: R

etrie

val o

f em

plac

ed B

SK

con

tain

ers

is te

chni

cal f

easi

ble

assu

min

g:

the

bore

hole

is li

ned

the

new

BS

K c

onta

iner

mee

ts d

esig

n ex

pect

atio

ns

For b

oth

conc

epts

: D

etai

lled

vent

ilatio

n an

d co

olin

g sy

stem

s ha

ve to

be

desi

gned

In

terim

sto

rage

faci

litie

s an

d ca

sks

are

requ

ired

(p

rior t

o re

posi

tory

lice

nsin

g)

A c

ondi

tioni

ng p

lant

may

be

requ

ired

(dep

endi

ng o

n di

spos

al c

once

pt)

84P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 96: Reduced size m3 ft 15sn08180210 hansen

Bol

linge

rfehr

09/

2014

17

Ack

now

ledg

emen

ts

Man

y th

anks

•to

my

colle

ague

s:

Wol

fgan

g Fi

lber

t Ph

illip

Her

old

Sabi

ne D

örr

for t

heir

cont

ribut

ions

to th

e D

BET

EC re

port

on

retr

ieva

bilit

y

•to

the

Fede

ral M

inis

try

for E

cono

mic

Affa

irs a

nd

Ener

gy (B

MW

i) an

d th

e Pr

ojec

t Man

agem

ent A

genc

y K

arls

ruhe

(PTK

A) o

f the

Kar

lsru

he In

stitu

t of

Tech

nolo

gy (K

IT) f

or fu

ndin

g th

e R

&D

pro

ject

on

retr

ieva

bilit

y

Bol

linge

rfehr

09/

2014

18

Than

k Yo

u fo

r You

r Atte

ntio

n!

85P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 97: Reduced size m3 ft 15sn08180210 hansen

Salt Disposal Research, Development, and Demonstration

5th US/German Workshop on Salt Repository Research, Design and Operations

Santa Fe, New Mexico, USA September 7-11, 2014

Robert J. MacKinnon--Sandia National Laboratories, Albuquerque New Mexico USA

Abstract

The United States Department of Energy (US DOE) is conducting research and development (R&D) activities within the Used Fuel Disposition (UFD) Campaign to support disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. Disposal R&D focuses on identifying geologic disposal options and addressing technical challenges for generic disposal concepts in mined repositories in salt, clay/shale, and granitic rocks, and deep borehole disposal. This talk will first give an overview of the DOE UFD Campaign and its mission and then describe the R&D investigations that are being implemented to support a generic safety case for a geologic repository in salt host rock. These R&D investigations range from laboratory-scale investigations and modeling studies to the design of larger-scale field testing that would be beneficial for specific safety case objectives. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DEAC04-94AL85000. SAND2014-16796A.

86Proceedings of 5th US/German Workshop

January 30, 2015

Page 98: Reduced size m3 ft 15sn08180210 hansen

Sand

ia N

atio

nal L

abor

ator

ies

is a

mul

ti-pr

ogra

m la

bora

tory

man

aged

and

ope

rate

d by

San

dia

Cor

pora

tion,

a w

holly

ow

ned

subs

idia

ryof

Loc

khee

d M

artin

C

orpo

ratio

n, fo

r the

U.S

. Dep

artm

ent o

f Ene

rgy’

s N

atio

nal N

ucle

ar S

ecur

ity A

dmin

istra

tion

unde

r con

tract

DE-

AC04

-94A

L850

00..

SAN

D20

14-1

6858

PE.

Salt Dispo

sal R

esearch, 

Develop

men

t, an

d Dem

onstratio

n (RD&D)

Robe

rt J. M

acKinn

onSand

ia National Laboratories

5thUS/German

 Worksho

p on

 Salt Re

pository Research, Design and Ope

ratio

n

Santa Fe, N

ew M

exico, USA

Septem

ber 7

‐11, 201

4

His

toric

al a

nd P

roje

cted

Com

mer

cial

SN

F D

isch

arge

s in

the

Uni

ted

Sta

tes

Projectio

ns of Future SN

F an

d HLW P

roje

cted

Vol

umes

of S

NF

and

HLW

in 2

048

Vol

umes

sho

wn

in m

3 , as

sum

ing

cons

tant

rate

of n

ucle

ar p

ower

ge

nera

tion

2S

wift

-Mac

Kin

non

Cur

rent

Sta

tus

of U

S P

rogr

am

Summary of th

e Ad

ministration’s S

trategy for U

sed 

Nuclear Fue

l and

 High‐Level R

adioactiv

e Waste

Strategy fo

r the

 Man

agem

ent a

nd Disp

osal of U

sed Nuclear Fuel and

 High‐Level 

Radioa

ctive Waste

issue

d Janu

ary 2013.

The Strategy outlin

es a 10‐year program

:

Site, design, license, co

nstruct a

nd begin ope

ratio

n of a pilot 

interim

 storage facility (ope

ratin

g 20

21)

Ad

vance toward siting and licen

sing of a larger interim

 storage facility (ope

ratin

g 20

25)

Make de

mon

strable progress on siting and characterization 

for g

eologic disposal (site

d 20

26, ope

ratin

g 20

48)

3S

wift

-Mac

Kin

non

Cur

rent

Sta

tus

of U

S P

rogr

am

Dispo

sal R

&D with

in th

e DOE

Th

e Nuclear W

aste Policy Ac

t and

 Con

gression

al 

Approp

riatio

ns preclud

e site‐spe

cific

 repo

sitory investigations

All dispo

sal research must b

e gene

ric at this s

tage

Wha

t can

 gen

eric R&D accom

plish?

Provide a soun

d technical basis for the

 assertio

n that th

e US has m

ultip

le viable 

disposal options th

at will be available whe

n natio

nal policy is ready

Iden

tify and research th

e gene

ric sou

rces of u

ncertainty th

at will challenge the 

viability of d

isposal con

cepts

Increase con

fiden

ce in

 the robu

stne

ss of gen

eric disp

osal con

cepts to re

duce th

e im

pact of u

navoidable site

‐spe

cific com

plexity

De

velop the science and en

gine

ering tools req

uired to add

ress th

e goals a

bove, 

through collabo

ratio

ns with

in NE and DO

E, and

 with

 universities, ind

ustry, and

 international program

s

4S

wift

-Mac

Kin

non

Cur

rent

Sta

tus

of U

S P

rogr

am

87P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 99: Reduced size m3 ft 15sn08180210 hansen

DOE Office of Nuclear Ene

rgy Organ

ization Ch

art

Sour

ce:

http

://en

ergy

.gov

/ne/

orga

niza

tion

5S

wift

-Mac

Kin

non

Cur

rent

Sta

tus

of U

S P

rogr

am

Assistan

t Secretary fo

r Nuclear Ene

rgy

Principa

l Dep

uty Assistan

t Secretary

NE‐1 & 2

Office of U

ranium

 Managem

ent a

nd Policy

David Hen

derson

NE‐54

Dep

uty Assistan

t Secretary 

for F

uel Cycle Techn

ologies

John

 Herczeg

NE‐5

Office of Systems 

Engine

ering & Integration

Patricia Paviet

Office of Fue

l Cycle 

Research & Develop

men

tAn

drew

 Griffith

NE‐52

Office of U

sed 

Nuclear Fue

l Disp

osition

 Re

search & Develop

men

tWilliam Boyle

•Develop

 Techn

ical Basis for E

xten

ded

Storage

•Develop

 Techn

ical Basis for     

transportatio

n of high bu

rn‐up fuel

•Evaluate Re

pository Alternatives

DOE Office of Nuclear Ene

rgy

Office of Fue

l Cycle Techn

ologies (NE‐5)

NE‐51

NE‐53

Nuclear Fue

lsStorage and Transportatio

n Planning

 Project (N

FST)

Jeffrey W

illiams

•Develop

 design concep

ts fo

r consolidated

 storage facility

•Prepare fo

r large sc

ale shipping

 campaign to cen

tralized

 storage 

facility

•Evaluate System

 Architecture 

Alternatives

R&

D F

ocus

Impl

emen

ts S

trat

egy

for

Stor

age

and

Tran

spor

tatio

n

6S

wift

-Mac

Kin

non

Cur

rent

Sta

tus

of U

S P

rogr

am

DOE’s R

&D Program

 for U

sed 

Nuclear Fue

l Dispo

sitio

n

Campa

ign Mission

:  to iden

tify 

alternatives and

 con

duct sc

ientific 

research and

 techno

logy 

developm

ent to en

able storage, 

transportatio

n and disposal of u

sed 

nuclear fue

l and

 wastes g

enerated

 by 

existing and future nuclear fu

el cycles

Nin

e na

tiona

l lab

orat

orie

s pa

rtici

pate

in

the

DO

E O

ffice

of N

ucle

ar E

nerg

y’s

“Use

d Fu

el D

ispo

sitio

n C

ampa

ign”

(UFD

C)

7S

wift

-Mac

Kin

non

Cur

rent

Sta

tus

of U

S P

rogr

am

Campa

ign Structure

8

Pet

er S

wift

, SN

L

88P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 100: Reduced size m3 ft 15sn08180210 hansen

UFD

 R&D Cam

paign 2009

‐Present

FY09

 Plann

ing meetin

g at Argon

ne National Laboratory, Ju

ne 200

9

FY10

 R&D fund

ing at $7.1 M

oDisposal R&D, m

odest level of effo

rt on Storage R&

D, no Transportatio

n R&

D

FY11

 R&D fund

ing at $23

.8 M

oNine natio

nal laboratories p

articipating in UFD

oSignificant R&D program in Storage, including

 Transpo

rtation

oDisposal R&D no

t site

 specific

FY12

 R&D bu

dget baseline at $22

.8 M

, end

‐of‐y

ear a

ctual ~$3

7 M (Salt R

&D ‐$

4.5 Mill)

oSome elem

ents of FY12 work scop

e no

t establishe

d un

til fo

urth quarter

FY13

 R&D $2

3.5 M (Salt R

&D ‐$

2.06

 Mill)

oNuclear Fue

l Storage and

 Transpo

rtation Planning

 Project initiated

oStorage de

mon

stratio

n R&

D initiated

 external to UFD

 R&D campaign

FY14

 R&D en

d‐of‐year b

aseline at $22

.5 M

 (Salt R

&D ‐$

2.25

 Mill)

oSignificant re

direction of sc

ope with

in cam

paign in initial plann

ing

oStorage and transportatio

n at 54%

 of b

udget

oDisposal re

search at 3

7% of b

udget

oManagem

ent a

nd integration at 8%

oWork through February 2014 lim

ited to ann

ual total of $

15.4 M

FY15

 Salt R

&D projected to be $1

.25 Mill ($

750K

 lab, $50

0K Field)

Summary of UFD

 R&D  Cam

paign

9

Sche

matic of Features o

f a Backfilled

 Re

pository Roo

m

10

Brine

Vapo

r

Salt RD

&D

Many of th

ese activities are docum

ented in te

chnical rep

orts and

 will be discussed in th

is 5

thUS/German

 Worksho

p  11

EXIS

TIN

G S

ALT

DAT

A C

OM

PILA

TIO

N A

ND

ASS

ESSM

ENT

THER

MAL

, MEC

HAN

ICAL

, HYD

RO

LOG

IC, A

ND

CH

EMIC

AL L

ABO

RAT

ORY

STU

DIE

S R

ELAT

ED T

O S

ALT

•Hot

Gra

nula

r Sal

t Con

solid

atio

n, C

onst

itutiv

e M

odel

and

Mic

rom

echa

nics

•The

rmal

Con

duct

ivity

as

a Fu

nctio

n of

Por

osity

and

Tem

pera

ture

•Lab

orat

ory

Ther

mom

echa

nica

lTes

ting

•Brin

e M

igra

tion

Expe

rimen

tal S

tudi

es•M

ater

ial I

nter

actio

ns In

Hea

ted

Salt

•The

rmod

ynam

ic P

rope

rtie

s of

Brin

es, M

iner

als

and

Cor

rosi

on P

rodu

cts

In H

igh

Tem

pera

ture

Sys

tem

s•R

adio

nucl

ide

Solu

bilit

y M

easu

rem

ents

MO

DEL

ING

STU

DIE

S R

ELAT

ED T

O S

ALT

•Saf

ety

Fram

ewor

k D

evel

opm

ent

•Tot

al S

yste

m P

erfo

rman

ce A

sses

smen

t (TS

PA) M

odel

Dev

elop

men

t•G

ener

ic S

alt R

epos

itory

Ben

chm

arki

ng•T

herm

omec

hani

cal-H

ydro

logi

cal a

nd C

hem

ical

(TM

HC

) Mod

el D

evel

opm

ent/B

rine

Mig

ratio

n

INTE

RN

ATIO

NAL

CO

LLAB

OR

ATIO

N

Salt RD

&D Deliverab

les

Summary Re

sults fo

r Brin

e Migratio

n Mod

eling Performed

 by LANL, LBN

L and SN

L for the

 Used Fuel Disp

osition

 Program

 (9/25/2014) –

SNL, LBN

L, LAN

L

Salt R&

D Brine migratio

n expe

rimen

tal studies in salt 2

014 (08/24/2014) ‐LANL

Re

port on Mod

eling Co

upled TH

MC Processes a

nd Brin

e Migratio

n in Salt a

t High 

Tempe

ratures (9/13/2014) ‐

LBNL

An

alysis of Data from

 Salt R

econ

solidation Expe

rimen

ts at S

andia National 

Labo

ratorie

s in FY12

 and

 FY13 (3/13/2014) ‐

SNL

Thermal Con

ductivity

 of Salt a

s a Fun

ction of Porosity

 (3/12/2014) ‐

SNL

Mod

ified

 Test P

lan For S

alt R

econ

solidation Expe

rimen

ts at S

andia National 

Labo

ratorie

s (6/26/2014) ‐SN

L

Thermom

echanicalTestin

g of Intact Salt R

esults fo

r FY14 (6/16/2014) ‐

SNL

Thermod

ynam

ics of Brin

es, M

inerals a

nd Corrosio

n Prod

ucts at H

igh 

Tempe

ratures: FY14 Re

sults (9

/30/2014

 ) ‐SNL

Re

sults from

 the US‐German

 Ben

chmark Initiative for F

Y14 (9/30/2014

 ) ‐SNL

Re

sults from

 The

 4th US German

 Worksho

p on

 Salt (12/23/2013) ‐

SNL

12

89P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 101: Reduced size m3 ft 15sn08180210 hansen

Salt RD

&D: Field Studies 

Gen

eral Objectiv

es•Develop

 techno

logy

 and

 metho

dology

 for rock characterization an

d testing

•Be

tter und

erstan

d, mod

el and

 test re

levant processes

•Be

tter und

erstan

d vario

us co

mpo

nents o

f eng

ineerin

g ba

rrier system

•Provide qu

antitative da

ta fo

r safety assessmen

t calculatio

ns•Test and

 optim

ize full‐size re

pository co

mpo

nents a

nd ope

ratin

g proced

ures (d

emon

stratio

n)•Optim

ize repo

sitory co

nstructio

n techniqu

es 

•Training

 and

 ben

chmarking

•Prom

ote internationa

l co‐op

eration

•Bu

ild co

nfiden

ce in

 scientific a

nd te

chnical com

mun

ity 

•Co

ntrib

ute to pub

lic trust a

nd co

nfiden

ce

After IAE

A‐TECD

OC‐12

43, 200

113

Salt RD

&D: Field Studies

Upcom

ing Deliverab

les

Fram

ework for U

ndergrou

nd Resea

rch—

impo

rtan

t protocol 

for U

RL activity

 evaluation

Draft re

port‐‐T

est P

lan for M

echa

nical and

 Hydrological 

Beha

vior of the

 Nea

r‐fie

ld Host R

ock Surrou

nding 

Excavatio

ns

Draft re

port‐‐T

est P

lan for P

hased Large‐Scale Th

ermal 

Testing

14

Que

stions?

15

90P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 102: Reduced size m3 ft 15sn08180210 hansen

Practical Analogues for Postulated Releases from Geologic Repositories - Natural Background Radiation

N. Rempe

Abstract

Background radiation emanating from geologic and other natural sources is an obvious, yet routinely overlooked and neglected, analogue for theoretical, postulated, and calculated radiological releases from geologic repositories. Natural releases have varied through Earth’s history and vary in terrestrial space by two orders of magnitude or more, with negligible to no deleterious effects (and significant indications of beneficial effects at low dose rates) on living organisms. Physical and geological evidence, rather than gratuitously imposed and enforced regulatory standards, should determine the outer bounds that scientists and engineers support and defend for hypothetical and real radiological releases from engineered geologic repositories.

91Proceedings of 5th US/German Workshop

January 30, 2015

Page 103: Reduced size m3 ft 15sn08180210 hansen

92P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 104: Reduced size m3 ft 15sn08180210 hansen

93P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 105: Reduced size m3 ft 15sn08180210 hansen

94P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 106: Reduced size m3 ft 15sn08180210 hansen

95P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 107: Reduced size m3 ft 15sn08180210 hansen

Dut

ch S

alt S

afet

y C

ase

and

Res

earc

h Pr

ogra

m

Jaap

Har

t, Ja

n P

rij

NR

G R

adia

tion

& E

nviro

nmen

t

Pet

ten,

Net

herla

nds

Ack

now

ledg

ed:

Dirk

-Ale

xand

er B

ecke

r, Je

ns W

olf,

Ullr

ich

Nos

eck

(GR

S)

Gee

rt-Ja

n Vi

s (T

NO

)

Sep

tem

ber 2

014

Con

tent

s

•D

utch

Nat

iona

l pro

gram

s–

ICK

( <

1979

)–

OPL

A-1

(198

4 –

1989

)–

OPL

A-1A

(198

9-19

93)

–C

OR

A (1

995

–20

01)

•Pr

ogra

m R

evat

ilisa

tion

–O

PE

RA

–S

afet

y C

ase

–Th

e “S

alt S

afet

y C

ase”

•C

oncl

udin

g re

mar

ks•

Res

earc

h pe

rfor

med

at U

trec

ht U

nive

rsity

2

ICK

Inte

rdep

arte

men

tale

Com

mis

sie

Ker

nene

rgie

Inte

rdep

artm

enta

l Com

mis

sion

Nuc

lear

Ene

rgy

•B

efor

e 19

79•

Type

s an

d am

ount

s of

radi

oact

ive

was

te•

Was

te m

anag

emen

t met

hods

•D

esig

n co

nsid

erat

ions

for d

eep

disp

osal

•Te

mpe

ratu

re c

alcu

latio

ns -

TAS

TE

•C

riter

ia fo

r site

sel

ectio

n

3

Alternative

boreho

le plug

Cast steel plug

TASTE: Three‐dim

ensio

nal A

nalysis

 of Salt 

Dome Temperatures

Cen

tral

them

e: ra

diat

ion

safe

ty•

1984

-198

9•

Geo

logy

/ ge

ohyd

rolo

gy•

Hos

t roc

k m

echa

nics

•R

adia

tion

dam

age

in ro

ck s

alt

•M

inin

g en

gine

erin

g•

In s

itu e

xper

imen

ts in

Ass

e sa

lt m

ine

•26

Rep

orts

-Fi

nal R

epor

t (19

89) a

vaila

ble

at

ww

w.co

vra.

nl

4

OPL

A-1

Com

mis

sie

Opb

ergi

ng te

Lan

dC

omm

issi

on D

ispo

sal o

n La

nd

96P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 108: Reduced size m3 ft 15sn08180210 hansen

OPL

A-1

A

Follo

w-u

p of

OPL

A-1

•19

89-1

993

•S

yste

mat

ic s

cena

rio d

evel

opm

ent

•D

evel

opm

ent a

nd a

pplic

atio

n of

pro

babi

listic

met

hods

fo

r con

sequ

ence

ana

lysi

s (P

RO

SA)

•In

situ

rese

arch

in A

sse

(dem

onst

ratio

n te

chni

ques

, he

ater

exp

erim

ents

)•

Rad

iatio

n da

mag

e in

rock

sal

t•

Fina

l PR

OS

A R

epor

t: 19

93Ja

n P

rij, e

t al.,

PR

Oba

bilis

tic S

afet

y A

sses

smen

t, Fi

nal R

epor

t, 19

93 5

Cap

rock

Shaf

t 2

Roc

k sa

lt

800

m

200

m

Sec

onda

ry o

rdi

spos

al g

alle

ries

horiz

onta

l dis

posa

l cel

ls;

inte

rval

s of

10

m;

one

cont

aine

r of

radi

oact

ive

was

tepe

r cel

l

4 m

5 m

40 m

Mai

n ga

llery

Sha

ft 1

Sec

onda

ry g

alle

ry

Sal

t blo

cks

Was

te c

onta

iner

Dis

posa

l cel

l0.

5 m4.

3 m

CO

RA

Com

mis

sie

Opb

ergi

ng R

adio

actie

f Afv

alC

omm

issi

on o

n R

adio

activ

e W

aste

Dis

posa

l

•19

96-2

001

•R

etrie

vabl

e di

spos

al in

sal

t and

cla

y•

Geo

logy

/geo

hydr

olog

y; a

dditi

onal

rese

arch

•M

inin

g en

gine

erin

g: c

osts

and

bac

kfill

•R

adia

tion

dam

age

in ro

ck s

alt

•S

ocie

tal e

ffect

s an

d et

hics

•21

Rep

orts

(a

vaila

ble

at w

ww.

covr

a.nl

)

6

OPE

RA

Ond

erzo

eks

Prog

ram

ma

Eind

berg

ing

Rad

ioac

tief A

fval

Res

earc

h Pr

ogra

mm

e in

to G

eolo

gica

l Dis

posa

l of R

adio

activ

e W

aste

•20

11-2

016

•R

evita

lizat

ion

of th

e D

utch

rese

arch

on

geol

ogic

al

disp

osal

•R

esol

ving

out

stan

ding

issu

es fr

om p

revi

ous

prog

ram

mes

•D

evel

op a

nd p

rese

rve

expe

rtise

and

kno

wle

dge

•Fo

cus

on B

oom

Cla

y (b

ut ro

ck s

alt i

s no

t for

gotte

n)•

Res

ult o

f OPE

RA

: D

etai

ling

a fir

st ro

adm

ap fo

r the

long

-term

re

sear

ch o

n ge

olog

ical

dis

posa

l of r

adio

activ

e w

aste

in th

e N

ethe

rland

s7

OPE

RA

Prog

ram

me

Org

aniz

atio

n

O

rgan

izat

ion

of th

e O

PE

RA

rese

arch

pro

gram

me

7

Wor

k P

acka

ges

P

rogr

amm

e is

fina

nced

by th

e go

vern

men

t (M

inis

try o

f E

cono

mic

Affa

irs) a

nd th

e en

ergy

sec

tor,

and

coor

dina

ted

by C

OV

RA

, the

Dut

ch W

M o

rgan

izat

ion

8

97P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 109: Reduced size m3 ft 15sn08180210 hansen

OPE

RA

WP2

: Saf

ety

Cas

e

W

P2: S

et-u

p an

d de

finiti

on o

f Saf

ety

Cas

es fo

r dis

posa

l in

Zech

stei

nro

ck s

alt a

nd B

oom

Cla

y

Proj

ect O

SSC

–O

PE

RA

Sal

t Saf

ety

Cas

e

Ev

alua

te th

e pr

esen

t kno

wle

dge

abou

t the

saf

ety

and

feas

ibili

ty o

f a fi

nal d

ispo

sal f

acili

ty in

rock

sal

t in

the

Net

herla

nds

Av

aila

ble

natio

nal (

ICK,

OPL

A, C

OR

A), a

nd in

tern

atio

nal

(Ger

man

and

US)

info

rmat

ion

abou

t the

fina

l dis

posa

l in

rock

sa

lt

Pu

t the

info

rmat

ion

in th

e fra

mew

ork

of a

Saf

ety

Cas

e

Proj

ect P

artn

ers:

GR

S, T

NO

, NR

G

9

Stru

ctur

ing

the

Info

rmat

ion

M

etho

dolo

gy a

dopt

ed fr

om IA

EA

SS

G-2

3 (2

012)

, as

furth

er

deve

lope

d in

IAE

A pr

ojec

t PR

ISM

C

ompo

nent

sof

the

Saf

ety

Cas

e

PRISM: P

Ractical Im

plem

entatio

n of Safety assessment 

Metho

dologies in a con

text of Safety Ca

se (IAE

A, 2009‐2012)

10

A. Safety Ca

se Con

text

B. Safety Strategy

C. System Descriptio

n

D. Safety Assessmen

t

G. Lim

its, Con

trols a

nd Con

ditio

ns

H. Integration of Safety Argumen

ts

E. Iteration and Design Optimization

F. Management of Uncertainty

Safety Case Co

mpo

nent: System Descriptio

n

Objective and Scop

e

Waste Characteristics

•Cu

rrent inventory of the

 OPERA

 reference database

•Inventory for a

lternative waste sc

enarios in NL

Facility De

signs

•Early

 design stud

ies

•De

signs con

sidered

 in OPLA

•De

signs con

sidered

 in CORA

•De

signs con

sidered

 in Germany

•De

signs con

sidered

 in USA

Salt form

ations in th

e Nethe

rland

s•Gen

eral inform

ation

•Maps

•Salt do

mes

•Aq

uifers su

rrou

nding rock sa

lt•Kn

owledge gaps

Biosph

ere Ch

aracteristics

Evaluatio

n

Stru

ctur

ing

the

Info

rmat

ion

-Exa

mpl

e

A. Safety Ca

se Con

text

B. Safety Strategy

C. System Descriptio

n

D. Safety Assessmen

t

G. Lim

its, Con

trols a

nd Con

ditio

ns

H. Integration of Safety Argumen

ts

E. Iteration and Design Optimization

F. Management of Uncertainty

Conv

erge

nce

(2.1

.07.

01)

Shor

t de

scri

ptio

n FE

P re

late

s to

the

cro

ss-s

ecti

onal

red

ucti

on o

f un

derg

roun

d ca

vitie

s an

d op

enin

gs, s

tarti

ng a

fter t

he e

xcav

atio

n du

e to

stre

ss re

dist

ribut

ion

VSG

45

Kon

verg

enz

WIP

P W

20 S

alt

Cre

ep

W21

Cha

nge

in t

he S

tres

s Fi

eld

Inde

x

PRO

SA

3.3.

3 C

onve

rgen

ce o

f O

peni

ngs

Judg

emen

t

C

onve

rgen

ce l

eads

to

re-

seal

ing

of

exca

vati

on-i

nduc

ed o

peni

ngs,

an

d th

ereb

y to

isol

atio

n of

the

was

te

C

onve

rgen

ce

and

com

pact

ion

are

impo

rtan

t pr

oces

ses

beca

use

conv

erge

nce

is

the

driv

ing

forc

e fo

r an

y (c

onta

min

ated

) br

ine

extr

usio

n fr

om a

flo

oded

rep

osit

ory

C

onve

rgen

ce is

wel

l und

erst

ood

Ope

n qu

esti

ons

Th

e pr

oces

s of

he

alin

g an

d se

alin

g is

ye

t no

t w

ell

unde

rsto

od,

espe

cial

ly

the

effe

cts

of

moi

stur

e-in

duce

d pr

oces

ses

(moi

stur

e cr

eep,

flu

id p

ress

ure)

OSS

C -

Eval

uatio

n of

FEP

sExam

ple ‐C

onvergen

ce

98P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 110: Reduced size m3 ft 15sn08180210 hansen

Con

clus

ions

(Pre

limin

ary)

O

SSC

pro

vide

s an

eva

luat

ion

of c

urre

nt k

now

ledg

e fo

r bu

ildin

g th

e Sa

fety

Cas

e fo

r sal

t bas

ed re

posi

torie

s in

the

Dut

ch c

onte

xt

For s

truct

urin

g th

e ab

unda

nt in

form

atio

n th

e m

etho

dolo

gy

has

been

ado

pted

as

outli

ned

in IA

EA S

SG-2

3 (2

012)

, as

furth

er d

evel

oped

in IA

EA p

roje

ct P

RIS

M

The

mai

n re

com

men

datio

n to

pro

ceed

furth

er w

ith th

e de

velo

pmen

t of t

he S

alt S

afet

y C

ase

in th

e N

ethe

rland

s is

to

est

ablis

h an

d fix

a fi

nal d

ispo

sal f

acili

ty in

rock

salt.

Su

bseq

uent

ly, a

ll Sa

fety

Cas

e re

late

d as

pect

s ne

ed to

be

revi

site

d

Afte

r app

rova

l by

CO

VRA,

the

repo

rts w

ill m

ade

avai

labl

e at

ww

w.co

vra.

nl

13

Res

earc

h pe

rfor

med

at U

trec

ht U

nive

rsity

Lo

ng te

rm m

echa

nica

l and

tran

spor

t pro

perti

es o

f sal

t ro

cks

–ex

perim

ents

and

mod

el d

evel

opm

ent

N

awaz

Muh

amm

ad (P

hD),

Chr

is S

pier

s

Mic

roph

ysic

al m

echa

nism

s go

vern

ing

plas

tic fl

ow o

f na

tura

l roc

ksal

t

Pres

sure

sol

utio

n cr

eep

occu

ring

in n

atur

al s

alt u

nder

in-

situ

con

ditio

ns

Com

petit

ion

betw

een

mic

rocr

ack

grow

th a

nd h

ealin

g af

fect

ing

the

evol

utio

n of

por

osity

and

per

mea

bilit

y

Feed

back

effe

cts

of b

rine

pene

tratio

n on

mec

hani

cal

beha

viou

r and

on-

goin

g di

lata

tion

and

perm

eabi

lity

evol

utio

n

14

Utrecht University

 –Some Results

Relaxatio

n test sh

ows c

hang

e in behaviour of w

et sa

ltWet sy

nthetic

 salt (29 pp

m), grain size 200‐400 µm

Triaxial deformation

Co

nfining pressure 50 MPa

 Temperature (1

25 o C

)De

form

ation strain ra

te 5×10‐

7   s‐

1

Power law stress expon

ent 

n‐valuedecreases d

uring 

relaxatio

n, from

 > 5 to

 1Ra

te con

trolling mecha

nism

 for 

wet sa

lt at low stress and

 strain 

rate is pressure solutio

n creep  

close o real in‐sity

 con

ditio

ns)

Tren

d line du

ring relaxatio

n

Dislo

catio

n creep to pressure 

solutio

n creep??

Projected slo

pe n= 1

Projected slo

pe n= 5

Ack

now

legd

emen

t

M

essr

s. J

acqu

es G

rupa

, Arje

n P

oley

and

oth

er

colle

ague

s fro

m N

RG

for t

heir

supp

ort,

inpu

t and

re

view

effo

rts

The

Ger

man

col

leag

ues

from

GR

S fo

r pro

vidi

ng

valu

able

feed

back

and

rele

vant

inpu

t

Mes

srs

Naw

az M

uham

mad

and

Chr

is S

pier

s fo

r pr

ovid

ing

the

UU

inpu

t

The

rese

arch

lead

ing

to th

ese

resu

lts h

as re

ceiv

ed

fund

ing

from

the

Dut

ch re

sear

ch p

rogr

amm

e on

ge

olog

ical

dis

posa

l OP

ER

A

16

99P

roce

edin

gs o

f 5th

US

/Ger

man

Wor

ksho

p Ja

nuar

y 30

, 201

5

Page 111: Reduced size m3 ft 15sn08180210 hansen

Status of the US-German Joint Project on the Comparison of Constitutive Models for Rock Salt

5th US-German Workshop on Salt Repository Research, Design and Operation

September 7-11, 2014, Santa Fe, NM, USA

Andreas Hampel, Scientific Consultant, Mainz, Germany

Abstract

In 2004, six German institutions started a joint project series on the comparison of constitutive models for the thermo-mechanical behavior of rock salt. General aims are 1) to investigate and check the abilities of the advanced models of the participants to describe correctly and reliably the relevant thermo-mechanical deformation phenomena in rock salt and their dependencies on boundary conditions, 2) to check and compare their procedures for the determination of salt type-specific model parameter values, and 3) to compare their procedures for the performance of numerical calculations of rock salt around underground openings. Reliable and well-tested models and procedures are required for numerical simulations performed e.g. for the design, stability analysis, and evaluation of the long-term behavior of underground repositories for radioactive wastes in rock salt. The current third project (2010-2016) is a US-German collaboration of the following partners: From Germany:

− Dr. Andreas Hampel (AH), Scientific Consultant, Mainz − Institut für Gebirgsmechanik GmbH (IfG), Leipzig − Karlsruher Institut für Technologie (KIT), Karlsruhe − Leibniz Universität Hannover (LUH), Hannover − Technische Universität Braunschweig (TUBS), Braunschweig − Technische Universität Clausthal (TUC), Clausthal-Zellerfeld

From the United States: − Sandia National Laboratories (SNL), Albuquerque, NM

In this project, selected benchmark calculations are carried out in order to check the ability of the involved models to describe correctly 1) the temperature influence on deformation and 2) the damage and dilatancy reduction and healing of rock salt. This contribution focuses on the second part. At first, a unique set of model parameter values for the salt type around the subsequently calculated in-situ structure was determined with back-calculations of an extensive and systematic series of laboratory creep, strength, and healing tests. Then, several 3-D simulations of an old bulkhead structure in the Asse II salt mine in Germany were performed. The corresponding drift was excavated in 1911. After three years, a 25 m long section was lined with a cast steel tube, the residual gap between the tube and the salt contour was filled with concrete. Each partner calculated the structure with his constitutive model for a period of 88 years after the excavation. For comparison, he also calculated the open drift without the bulkhead for the same period of time. In the presentation, a brief general overview of the project series, a summary of the calculations, some comparisons of results of the partners, and proposals for future collaborations are given.

100Proceedings of 5th US/German Workshop

January 30, 2015

Page 112: Reduced size m3 ft 15sn08180210 hansen

101

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 113: Reduced size m3 ft 15sn08180210 hansen

102

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 114: Reduced size m3 ft 15sn08180210 hansen

103

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 115: Reduced size m3 ft 15sn08180210 hansen

Modeling WIPP Rooms B/D 5th International US-German Workshop on Salt Repository Research, Design and

Operation to be held in Santa Fe, NM Sept. 7-12, 2014

J. Guadalupe Argüello Sandia National Laboratories

Albuquerque, NM, USA

Abstract

The US-German “Joint Project on Comparison of Current Constitutive Models and Simulation Procedures on the Basis of Model Calculations of the Thermo-Mechanical Behavior and Healing of Rock Salt,” hereafter known as “Joint Project III,” has been extended from its original scope to include two additional benchmarking problems based on full-scale in-situ tests conducted in the early 1980’s at the Waste Isolation Pilot Plant (WIPP), located in Southeastern New Mexico, USA. The isothermal “Mining Development Test,” WIPP Room D, and the heated “Overtest for Simulated Defense High-Level Waste,” WIPP Room B are the two test rooms that are being modeled. Both of these rooms are among a series of excavations at the WIPP that have been modeled in the past by Sandia, prior to WIPP licensing, using legacy numerical codes and techniques of the time [1].

Approximately thirty years of hardware and software advances have occurred since that time and those advancements have yielded a new generation of massively parallel multi-physics computational capabilities, embodied in the SIERRA Mechanics code suite, to support the Sandia engineering sciences mission. With SIERRA Mechanics, an unprecedented level of fidelity can be incorporated into the models of the room. Heretofore Sandia’s recent efforts on WIPP Rooms D & B [2, 3] had been aimed at duplicating the legacy calculations of those rooms using roughly the same level of mesh discretization that was available at the time, and we were able to show that comparable results to the legacy ones could be obtained with SIERRA Mechanics for the thermo-mechanical response of the rooms. In this work we extend the previous work and show some of the results from Sandia’s latest efforts as we have attempted to model these rooms, exercising the SIERRA code suite on models at levels of fidelity unobtainable in the 1980’s, and compare simulation results to the data obtained from these full-scale tests. This has been done in an effort to arrive at an updated definition of the two benchmark problems that will be exercised under the US-German Joint Project III. The results from these efforts are important and pertinent to arriving at a set of agreed-to benchmark problems that will be analyzed by all participants.

References

1. Munson, D. E. 1997. Constitutive Model of Creep in Rock Salt Applied to Underground Room Closure. Int. J. Rock Mech. Min. Sci. 34:2 233-247.

2. Argüello, J.G. and J.S. Rath. 2012. SIERRA Mechanics for Coupled Multi-Physics Modeling of Salt Repositories. In Proceedings of the 7th Conference on the Mechanical Behavior of Salt, Paris, France, 16-19, April 2012, eds. P. Bérest et al, 413-423. London: Taylor & Francis Group.

3. Argüello, J.G. and J.S. Rath. 2013. Revisiting the 1980’s WIPP Room D and B In-Situ Experiments: Performing Thermo-Mechanical Simulations of Rock Salt Using a State-of-the-Art Code Suite. In Proceedings of the 47th US Rock Mechanics/ Geomechanics Symposium, San Francisco, June 23-26 2013, ARMA 13-370. :ARMA.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-16885A.

104Proceedings of 5th US/German Workshop

January 30, 2015

Page 116: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

014-

1688

6PE

Mod

eling WIPP Ro

oms D

 and B

J. Guadalupe

 Argüe

llo5t

hInternational U

S‐German

 Worksho

p on

 Salt Re

pository Re

search, D

esign and 

Ope

ratio

nSanta Fe, N

M   Septem

ber 2

014

Benchm

arking

 WIPP Ro

oms for JP

III

2

“Joint Project III” was exten

ded to includ

e tw

o additio

nal ben

chmarking

 problem

s based on

 in‐situ

 full‐scale tests c

ondu

cted

 in th

e early

 198

0’s a

t the

 Waste Isolation 

Pilot P

lant (W

IPP), located

 in Sou

theastern 

New

 Mexico, USA

Th

e iso

thermal M

ining De

velopm

ent T

est –

WIPP Ro

om D

Th

e he

ated

 Overtest for Sim

ulated

 Defen

se 

High‐Level W

aste –WIPP Ro

om B

Work on

 WIPP salt (lab tests a

nd Roo

ms D

 & B) is a

gain re

lated to te

mpe

rature 

depe

nden

ce and

 is th

us an extension of th

e first ben

chmarking

 problem

Larger ro

oms

Quadrilateral cross‐sectio

n

More im

portance of d

amage (at least at 

corners a

nd possib

ly ro

of)

At differen

t tem

peratures than in IFC & HFCP 

tests

Roo

m D

WIPP Expe

rimen

ts of E

arly 80’s

3

Several The

rmal‐Structural Interactio

ns (T

SI) Experim

ental R

ooms 

Fielde

d at th

e Waste Isolation Pilot P

lant (W

IPP) in

 the early

 80’s

Expe

rimen

tal W

IPP

Roo

ms

D &

B a

re o

f sp

ecia

l int

eres

t &

wel

l-sui

ted

for

benc

hmar

king

Why

 are W

IPP Ro

oms D

 & B W

ell‐

Suite

d for B

enchmarking?

4

Except fo

r the

 heat loa

d in Roo

m B, 

both ro

oms a

re essen

tially iden

tical

Located in th

e same gene

ral area of W

IPP

Re

lativ

ely “isolated” from

 other workings

5.5 X 5.5 m in

 cross‐sectio

n (~10

0 m long)

At th

e same ho

rizon

 and

 thus in

 the same 

vertical stratig

raph

ic locatio

n

Tests c

ondu

cted

 und

er rigorous Quality 

Assurance

Gages calibrated to NIST standards

Were extensively instrumen

ted and data 

were taken for a

pproximately 3.5 years 

(1300‐14

00 days) after excavation

Co

mpreh

ensiv

e datasets archived and 

available for b

enchmarking

 effo

rts

Roo

m D

/B

Hea

ters

in

floor

of

Roo

m B

105

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 117: Reduced size m3 ft 15sn08180210 hansen

WIPP Ro

om D Coarse Mesh

5

Coarse

FEM m

eshused

originallywith

Sierra 

Mecha

nics

tran

smitted

to German

partne

rs:

50

32 nod

es& 218

4 hexahe

dralelem

ents

4 elem

entb

locks –

halite, argillaceo

ushalite, anh

ydrite, & 

polyhalite

9 clay se

ams n

earest ro

om includ

ed as sliding surfaces

Tractio

ns of 1

3.57

 MPa

 at top

 & 15.97

 MPa

 at b

ottom of 

mod

el

RolleredB.C.s o

n bo

th side

s and

 Fixed

 B.C. near top

 right

Mechanical M

odeling Parameters

forU

se in W

IPP Ro

om D/B Calculatio

ns

6

Para

met

ers

Uni

tsSa

lt

Salt

Elas

tic

Prop

ertie

s

Shea

r mod

ulus

GM

Pa12

,400

You

ng’s

mod

ulus

EM

Pa31

,000

Pois

son’

s rat

io

–0.

25

Salt

Cre

ep

Prop

ertie

s

Stru

ctur

e Fa

ctor

s

A 1

s-1

8.38

6×10

22

(1.4

07×1

023)

B 16.

086×

106

(8.9

98×1

06 )

A 29.

672×

1012

(1.3

14×1

013)

B 23.

034×

10-2

(4.2

89×1

0-2)

Act

ivat

ion

ener

gies

Q1

cal/m

ole

25,0

00Q

2ca

l/mol

e10

,000

Uni

vers

al g

as c

onst

ant

Rca

l/mol

-o K1.

987

Abs

olut

e te

mpe

ratu

reT

o K30

0

Stre

ss e

xpon

ents

n 1–

5.5

n 25.

0St

ress

lim

it of

the

dis-

loca

tion

slip

mec

hani

smσ 0

MPa

20.5

7

Stre

ss c

onst

ant

q–

5,33

5

Tran

sien

t stra

in li

mit

cons

tant

s

M–

3.0

K0

–6.

275×

105

(1.7

83×1

06 )c

o K-1

9.19

8×10

-3

Con

stan

ts fo

r wor

k-ha

rden

ing

para

met

erα

–-1

7.37

(-14.

96)

β–

-7.7

38R

ecov

ery

para

met

erδ

–0.

58

Not

e: M

odel

s ba

sed

on d

etai

ls p

rovi

ded

in

Mun

son,

199

7, I

nt. J

. Roc

k M

ech.

Min

. Sci

.34:

2 23

3-24

7 (&

sup

plem

enta

l inf

orm

atio

n no

t pro

vide

d th

ere)

C

lean

sal

t and

Arg

illac

eous

Sal

t mod

eled

with

MD

cre

ep

mod

el w

ith p

aram

eter

s sh

own

here

Mechanical M

odeling Parameters 

(Con

t’d)

7

Mat

eria

lE

(MPa

)

aC

(MPa

)

Anhy

drite

75,1

000.

350.

450

1.35

Poly

halit

e55

,300

0.36

0.47

31.

42

A

nhyd

rite

and

Pol

yhal

ite m

odel

ed w

ith a

n el

astic

/per

fect

ly-p

last

ic D

ruck

er-

Pra

ger c

riter

ion:

whe

re

,materialconstants

with

par

amet

ers

as s

how

n in

tabl

e be

low.

C

lay

seam

s m

odel

ed a

s sl

idin

g su

rface

s w

ith M

-C b

ehav

ior:

with

=0

.2

Initi

al s

tress

set

to li

thos

tatic

stre

ss v

aryi

ng li

near

ly w

ith d

epth

Thermal M

odeling Parameters for

Use in

 WIPP Ro

om B Calculatio

ns

8

A

ll bo

unda

ries

in “r

ed” a

ssum

ed to

be

adia

batic

B

ound

arie

s su

ffici

ently

rem

ote

to p

recl

ude

affe

ctin

g ro

om re

spon

se fo

r dur

atio

n of

sim

ulat

ion

E

ntire

form

atio

n pr

escr

ibed

to h

ave

an in

itial

te

mpe

ratu

re o

f 300

K

The

drift

are

a (in

“pur

ple”

) ass

umed

to c

onsi

st o

f an

“equ

ival

ent t

herm

al m

ater

ial”

(ETM

)

ETM

has

a c

onst

ant h

igh

cond

uctiv

ity o

f 50

W/(m

-K)

& a

hig

h th

erm

al d

iffus

ivity

[CP

of 1

,000

J/(k

g-K

) and

a

dens

ity o

f 1 k

g/m

3 ]

This

pre

sum

ably

sim

ulat

es ra

diat

ive

heat

tran

sfer

in

the

room

by

an e

quiv

alen

t con

duct

ion

C

lay

seam

s to

be

negl

ecte

d in

ther

mal

ana

lyse

s

ETM

Hea

t Sou

rce

Adia

batic

B.C

.s

106

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 118: Reduced size m3 ft 15sn08180210 hansen

Thermal M

odeling Parameters 

(Con

t’d.)

9

Hea

t tra

nsfe

r thr

ough

sal

t, an

hydr

ite, a

nd p

olyh

alite

mod

eled

with

a n

onlin

ear

ther

mal

con

duct

ivity

of t

he fo

rm:

300⁄

whe

re

is th

e th

erm

al c

ondu

ctiv

ity,

is th

e ab

solu

te te

mpe

ratu

re in

Kel

vin,

and

&

ar

e m

ater

ial c

onst

ants

.

The

vario

us p

aram

eter

s ar

e gi

ven

in ta

ble

belo

w a

nd in

clud

e:

CP

–th

e sp

ecifi

c he

at;

the

coef

ficie

nt o

f lin

ear t

herm

al e

xpan

sion

; and

the

mat

eria

l den

sity

.

Mat

eria

lC

PJ/

(kg-

K)

W/(m

-K)

kg/m

3

Salt

862

45×1

0-65.

41.

142,

300

Anhy

drite

733

20×1

0-64.

71.

152,

300

Poly

halit

e89

024

×10-6

1.4

0.35

2,30

0

Room

 D M

odel M

atching Capability 

Available in M

id‐80s to

 early 90s

10O

rigin

al M

esh

O

rigin

al m

esh

coar

se b

y to

day’

s st

anda

rds,

but

si

mila

r to

wha

t was

pos

sibl

e in

the

mid

-198

0s to

ea

rly 1

990s

, in

term

s of

com

puta

tiona

l cap

abili

ty

With

this

mes

h, c

ompu

ted

verti

cal c

losu

re

com

para

ble

to m

easu

red

valu

es (u

sing

all-

salt

stra

tigra

phy,

as

appa

rent

ly d

one

in p

ast)

W

ith th

is m

esh

and

the

com

plet

e st

ratig

raph

y,

com

pute

d ve

rtica

l clo

sure

is le

ss th

an th

e m

easu

red

clos

ure

Refin

ing the Ro

om D M

odel in

 Line 

with

 Current Gen

eration Capability

11R

efin

ed M

esh

N

ew g

ener

atio

n of

com

puta

tiona

l too

ls a

llow

s m

ore

refin

ed m

esh,

in li

ne w

ith c

urre

nt p

ract

ice/

st

anda

rds,

to b

ette

r-ca

ptur

e st

ress

gra

dien

ts

Mes

h sh

own

here

incl

udes

~8X

the

num

ber o

f el

emen

ts a

s th

e co

arse

mes

h (n

ot p

ossi

ble

with

m

achi

nes

of m

id-8

0s to

ear

ly 9

0s)

W

ith re

fined

mes

h, c

ompu

ted

verti

cal c

losu

re is

gr

eate

r tha

n th

at c

ompu

ted

with

coa

rse

mes

h, fo

r ei

ther

the

all-s

alt o

r with

com

plet

e st

ratig

raph

y ca

ses

C

ompu

ted

resu

lts b

rack

et th

e m

easu

rem

ents

Summary & Con

clusions

Initial effo

rts o

n WIPP Ro

om D und

erway

Orig

inal coarse mesh with

 various details transm

itted

 to German

 partners

Ad

ditio

nal information ne

eded

 for the

 ben

chmarking

 effo

rt has been 

iden

tified and will be transm

itted

Usin

g original m

esh with

 all‐salt idealization, th

e compu

ted Ro

om D 

vertical closure with

 SIERR

A Mechanics agrees reasonably well w

ith th

e measuremen

ts

Refin

emen

t of R

oom D m

odel to

 con

form

 with

 mod

ern standards/ 

practice leads to greater v

ertical closure th

an m

easuremen

ts fo

r the

 all‐

salt idealization bu

t less than measuremen

ts fo

r the

 full stratig

raph

y

Appe

ars that in

 legacy m

odel, M

D parameters (& other fe

atures, e.g., 

for clay seam

s) were calibrated to m

atch th

e tests u

sing a relativ

ely coarse 

mesh acceptable at the

 time

This remains an op

en que

stion that we ho

pe to

 answer und

er JP

III

Implies that a

 com

mon

 refin

emen

t of the

 room

 mod

el amon

g the 

partne

rs m

ay be ne

eded

 to m

ake approp

riate com

parison

s amon

g the 

results of the

 various partners p

articipating in th

e be

nchm

ark

12

107

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 119: Reduced size m3 ft 15sn08180210 hansen

Laboratory Tests on WIPP Salt Argillaceous Salt update

U. Düsterloh, K. Herrchen, K.-H. Lux

Lehrstuhl für Deponietechnik und Geomechanik, TU Clausthal, 38678 Clausthal, Germany

In cooperation with T. Popp, K. Salzer

Institut für Gebirgsmechanik GmbH (IfG), 02479 Leipzig, Germany

1. Objective A joint project on the comparison of constitutive models for rock salt funded by BMWi started in 2004. The joint project includes procedures for the determination of characteristic salt type-specific model parameter values and for the performance of numerical calculations of underground openings in rock salt. Within the current project selected benchmark calcula-tions for room D and room B of WIPP site are planed in order to check the ability of the in-volved models to describe correctly the in situ load bearing behavior.

Based on investigations in the 80´s to 90´s a comprehensive data base regarding the stress-strain and creep behavior of WIPP salt exists. But, due to the development of new constitu-tive laws considering damage processes, specific material parameters are missing. There-fore a laboratory program was planed and realized to determine the load bearing capacity of rock salt from WIPP taken into account demands from different constitutive laws used by the partners of the joint project. To realize the laboratory program 5.5 tons of core material from WIPP was drilled and shipped by Sandia to Germany. Based on this core material IfG has prepared more than 150 cylindrical samples of clean salt as well as argillaceous salt. Clean salt in general was investigated by IfG, argillaceous salt in general was investigated by TUC. The test program, the test procedure and the results observed from triaxial short term tests to determine failure and dilation strength and triaxial long term tests to determine damage free and damage induced creep parameters are summarized in the following chapters.

2. Overview test program argillaceous salt To enable a determination of strength, creep and damage parameter for argillaceous salt from WIPP taken into account different constitutive laws a lab program was evaluated by the project partners. The laboratory program planed for argillaceous salt from WIPP consists of 61 triaxial short term tests to determine failure strength as well as dilation strength depending on minimum principal stress, temperature and strain rate. 3. Test procedure and physical parameter Prior to the lab tests in each case (a) sample length and sample diameter were measured half way up the height of the

specimen and along the central axis of the confining specimen using a slide calliper gauge,

(b) sample mass were measured using a balance, (c) the rock densities were calculated from the masses and volumes of the specimens

using Eq. (3.1):

ghd

m

0

20

4

(3.1)

108Proceedings of 5th US/German Workshop

January 30, 2015

Page 120: Reduced size m3 ft 15sn08180210 hansen

rock density (N/m3)

m specimen mass (kg)

d0 diameter of unstressed specimen (m)

h0 height of unstressed specimen (m)

g gravity (m/s2) (d) an unloaded ultrasonic wave velocity measurement was done using a dilational

wave analyser. The measured ultrasonic wave velocities of the P or longitudinal waves (vp) and the S or transverse waves (vs) were entered into Eqs. (3.2) and (3.3) to calculate the dynamic elasticity modulus Edyn and the dynamic Poisson’s number dyn:

22

222 43vsvp

vsvpvsEdyn

(3.2)

22

22

22

vsvpvsvp

dyn

(3.3)

where

Edyn dynamic elasticity modulus (kPa)

dyn dynamic Poisson’s number (-)

rock density(t/m3)

vp longitudinal wave velocity (m/s)

vs transverse wave velocity (m/s)

(e) a digital photography was taken. (f) At the end of the procedure characterized by (a) to (e) the specimens have been posi-

tioned in the triaxial cell and undergoes in each case an approx. 24-hour recompaction and tempering phase under an isotropic stress level of iso = 20MPa and a preset tem-perature level of 27°C, 60°C, 100°C respectively.

At the end of the recompaction phase, the specimens were subjected to an axial stress 1 at constant confining pressure 2 = 3 under a constant strain rate of 1 . The next phase of the test involves maintaining constant confining load during a stress-controlled stress release and stress build-up cycle to determine the Young´s modulus. The axial stress was then in-creased under constant compression rate until the failure load is reached or above. Meas-urement contains recordings of

a) axial deformation by inductive transducers, b) the hydraulic pressure measured in the test cylinder by an absolute pressure trans-

ducer which has to been converted to determine the axial pressure acting on the specimen,

c) the confining pressure by an absolute pressure transducer, d) the oil temperature within the annulus of the triaxial cell, e) the volume change of the specimen and f) the change in ultrasonic wave velocity.

109Proceedings of 5th US/German Workshop

January 30, 2015

Page 121: Reduced size m3 ft 15sn08180210 hansen

The volume change was determined from the inductive readings of axial specimen deforma-tion l and the volumetric change in the oil volume in the triaxial cell. The oil volume ±V displaced from the triaxial cell during the test was fed into a twin-chamber cylinder. The damage strength 1dil-vol was determined on the basis of the volume change character-ises. The axial stress which is corresponding to a minimum volumetric specimen deformation was identified as damage strength 1dil-vol (primarily damage deformation after exceeding minvol). Ultrasonic transmitter and receiver are integrated within the cover and base pressure plates to determine the damage strength more precisely. The continuous transmission of the sam-ples during the test to record the ultrasonic velocity enables the damage strength to be de-termined independently of the volume measurement on the basis of the stress level ob-served. This is done by detecting a reduction in ultrasonic travel times as a result of the de-velopment of physical damage (microfissures). Damage strength 1dil-vp was defined as the axial stress at which the ratio vp/vp0 reaches a maximum. Based on test results it could be stated, that argillaceous salt from WIPP is characterized by typical average values of MPaEE EWdyn 28000 and 278,0dyn . A dependency be-tween density and Young´s modulus respectively Poisson´s ratio is not observed. It must be pointed out, that core material excavated in 2010 obviously is different from core material excavated in 2013. A reduced density can be observed for core material taken in 2010 in comparison to core material taken in 2013. May be this is caused by a drying effect during storage. 4. Results of short term tests to determine failure and dilation strength Short term tests were performed at different temperatures of 27°C, 60°C, 100°C respectively and at different strain rates of 1 = 0,6%/min, 1 = 0,06%/min, 1 = 0,006%/min respectively. Depending on the preset strain rate and the total strain realized during the tests, the duration of the short term tests varied between some 170 minutes at minimum and 4.6d at maximum adding 1 day recompaction and tempering phase. In case of a testing temperature of 100°C additionally 1 day cooling phase must be considered prior to a dismounting of the sample. The failure and dilation strength taken from tests is evaluated separately with respect to minimum principle stress, strain rate and temperature. As a result a different between failure strength determined at core material excavated in 2010 and core material excavated in 2013 was observed. As mentioned above, the signifi-cant scattering of core material excavated in 2010 is assumed to be caused by drying during storage. Referring to the observed dilation strength it must be pointed out, that due to the different between core material excavated in 2010 and core material excavated in 2013 some addi-tionally tests are needed to evaluate an acceptably correlation between dilation strength and minimum principle stress. 5. Results of long term tests to determine damage free and damage induced creep

rate Lab tests to determine the damage free and damage induced creep behaviour are in general similar to classical creep tests. Simply the additionally online measurement of volume change and ultrasonic wave velocity enables to differ between damage free and damage induced parts of the observed total creep rate. The idea to differ between damage free and damage induced parts of the total creep rate is based on the knowledge of damage strength. Multi-level creep tests taken into account two load levels below damage strength to deter-mine the damage free creep behaviour and one or two load levels above damage strength to determine the damage induced creep behaviour have been conducted. The damage induced part of the total creep rate at least can be calculated by a subtraction of the calculated dam-age free part of the total creep rate regarding to stress level three from the observed total creep rate during stress level three. Because the quantity of the damage induced creep rate

110Proceedings of 5th US/German Workshop

January 30, 2015

Page 122: Reduced size m3 ft 15sn08180210 hansen

depends on the intensity of exceeding damage strength and - due to a time dependent ac-cumulation of damage - additionally to the duration of exceeding damage strength, an online measuring of the damage process is required. In case the preset stress level is below dilation strength, no damage occurs and therefore no measure of dilatancy and ultrasonic wave ve-locity is needed. Based on these measurements a first raw estimation of stationary and transient creep pa-rameters corresponding to the constitutive model Lux/Wolters has been done. A typical cor-relation between creep rate and equivalent stress can be observed for argillaceous salt from WIPP. Determination of parameter to determine the damage induced creep rate is in pro-gress. 6. Summary A comprehensive data set for argillaceous salt from WIPP site has been prepared which in general allows determination of constitutive model parameters to carry out the planned benchmark calculations for room D and B. At now it is estimated that merely a few future tests will be needed to clarify questions regarding determination of model parameter.

111Proceedings of 5th US/German Workshop

January 30, 2015

Page 123: Reduced size m3 ft 15sn08180210 hansen

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

5th

US/

Ger

man

Wor

ksho

p -A

lbuq

uerq

ue

Sa

lt R

epos

itory

Res

earc

h, D

esig

n an

d O

pera

tions

Labo

rato

ry T

ests

on

WIP

P Sa

ltar

gilla

ceou

ssa

lt

fund

edby

fede

ralm

inis

try

of e

cono

mic

affa

irsan

d en

ergy

5th

US

/Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ryR

esea

rch,

Des

ign

and

Ope

ratio

nsS

anta

Fe

–9t

h S

epte

mbe

r 201

4ap

l. P

rof.

Dr.-

Ing.

hab

il. U

. Düs

terlo

h –

Cla

usth

al U

nive

rsity

of T

echn

olog

y -C

hair

for W

aste

Dis

posa

lTe

chno

logi

es a

nd G

eom

echa

nics

1.O

bjec

tive

2.O

verv

iew

test

pro

gram

3.R

esul

tsof

sho

rtte

rmte

sts

to d

eter

min

efa

ilure

and

dila

tion

stre

ngth

4.R

esul

tsof

long

term

test

sto

det

erm

ine

dam

age

free

and

dam

age

indu

ced

cree

p be

havi

or5.

Cha

ract

eriz

atio

nof

mat

eria

l pro

perti

esba

sed

on la

b te

sts

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

5th

US/

Ger

man

Wor

ksho

p -A

lbuq

uerq

ue

Sa

lt R

epos

itory

Res

earc

h, D

esig

n an

d O

pera

tions

Inst

itut f

ür G

ebirg

smec

hani

kG

mbH

Lei

pzig

13

. Wor

ksho

p “J

oint

Pro

ject

III:

Com

pari

son

of C

onst

itut

ive

Mod

els

“ M

ay 2

8. -

29

. 20

14

-S

andi

aN

atio

nal L

abor

ator

ies,

Alb

uque

rque

1

Obj

ectiv

e

G

eom

echa

nica

lcha

rakt

eriz

atio

nof

the

W

IPP

-roc

k sa

lt :

“c

lean

sal

t” o

r “H

alite

“arg

illac

eous

sal

t”

Tem

pera

ture

effe

ct

S

tren

gth

test

ing

C

reep

test

sR

oom

B –

Ove

rtes

tfo

r Si

mul

ated

Def

ense

Hig

h-Le

vel W

aste

Roo

m D

–M

inin

g D

evel

opm

ent

Test

B

ench

mar

k ca

lcul

atio

ns o

f Roo

m B

and

Roo

m D

A

com

preh

ensi

veda

taba

sefo

rW

IPP

-sal

texi

sts

from

inve

stig

atio

nsin

the

80

–9

0‘s

, but

D

ue to

the

deve

lopm

ent

ofex

istin

gan

dne

wm

ater

ial l

aws

tailo

red

test

seri

esfa

cilit

atin

gsp

ecifi

cm

ater

ial p

aram

eter

sar

em

issi

ng.

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

5th

US/

Ger

man

Wor

ksho

p -A

lbuq

uerq

ue

Sa

lt R

epos

itory

Res

earc

h, D

esig

n an

d O

pera

tions

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

5th

US/

Ger

man

Wor

ksho

p -A

lbuq

uerq

ue

Sa

lt R

epos

itory

Res

earc

h, D

esig

n an

d O

pera

tions

112

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 124: Reduced size m3 ft 15sn08180210 hansen

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

5th

US/

Ger

man

Wor

ksho

p -A

lbuq

uerq

ue

Sa

lt R

epos

itory

Res

earc

h, D

esig

n an

d O

pera

tions

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

65t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

Labo

rato

ry p

rogr

amon

arg

illac

eous

salt

from

WIP

P to

det

erm

ine

failu

rest

reng

than

d di

latio

nst

reng

th-

0,8

0,850,

9

0,951

1,05

05

1015

2025

30

axia

l stra

in (%

)

vp/vp0 (-)

010203040506070

axial stress (MPa)

vp/v

p0si

g1uc

-0,0

050

0,00

5

0,01

0,01

5

0,02

05

1015

2025

30

axia

l stra

in (%

)

dilatancy (-)

010203040506070

stress (MPa)

epsv

olsi

g1uc

sig3

failu

rest

reng

th

dila

tion

stre

ngth

failu

rest

reng

th

dila

tion

stre

ngth

3st

rain

rate

Tpl

anne

dca

rrie

d ou

tin

pro

gres

sM

Pa1/

s°C

--

-0,

2 - 2

01,

00E-

0527

1410

00,

2 - 2

01,

00E-

0560

1419

00,

2 - 2

01,

00E-

0510

014

140

0,2

- 20

1,00

E-04

275

05

0,2

- 20

1,00

E-06

2714

140

61

575

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

75t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

test

ing

proc

edur

ean

d de

term

inat

ion

of p

hysi

calp

aram

eter

s

(1)m

easu

reof

leng

th, d

iam

eter

, mas

sin

eac

hca

se

(2)m

easu

reof

unl

oade

dul

tras

onic

wav

eve

loci

tyin

eac

hca

se

(3)d

igita

l pho

togr

aphy

of e

ach

sam

ple

prio

rto

test

(4)o

neda

yis

otro

pic

reco

mpa

ctio

n at

is

o=

20M

Pa a

nd h

eatin

gat

27

°C, 6

0°C

, 100

°C re

spec

tivel

ypr

iort

o ea

chte

st

(5)i

nclu

ding

an u

nloa

d-re

load

cycl

eto

eac

hte

st b

yre

achi

ng 1

= 1,

5% (i

n ca

seof

3≥

1MPa

) res

pect

ivel

y 1

= 1,

0% (i

n ca

seof

3

< 1M

Pa)

(6)d

igita

l pho

togr

aphy

of e

ach

sam

ple

afte

rtes

t was

fini

shed

(7)o

ven

dryi

ngof

sel

ecte

dsa

mpl

es

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

85t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

phys

ical

para

met

erar

gilla

ceou

ssa

ltW

IPP

0

5000

1000

0

1500

0

2000

0

2500

0

3000

0

3500

0

4000

0

010

2030

4050

6070

8090

100

sam

ple

no.

Edyn (MPa)

00,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

ndyn (-)

corin

g 20

10co

ring

2013

Aver

age

valu

es:

278

,02834

9

dyn

dyn

MPa

E

22

22

24

3vs

vpvs

vpvs

Edy

n

22

22

22

vsvp

vsvp

dyn

113

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 125: Reduced size m3 ft 15sn08180210 hansen

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

95t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

phys

ical

para

met

erar

gilla

ceou

ssa

ltW

IPP

0

5000

1000

0

1500

0

2000

0

2500

0

3000

0

3500

0

4000

0 2,08

2,09

2,1

2,11

2,12

2,13

2,14

2,15

2,16

2,17

dens

ity (g

/cm

3 ).

Edyn (MPa)

00,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

ndyn (-)

corin

g 20

10

44

corin

g 20

13

Aver

age

valu

es:

278

,02834

9

dyn

dyn

MPa

E

22

22

24

3vs

vpvs

vpvs

Edy

n

22

22

22

vsvp

vsvp

dyn

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

105t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

phys

ical

para

met

erar

gilla

ceou

ssa

ltW

IPP

0

1000

0

2000

0

3000

0

4000

0

5000

0

6000

0

010

2030

4050

6070

8090

100

sam

ple

no.

EEW (MPa)

2,09

2,1

2,11

2,12

2,13

2,14

2,15

2,16

2,17

density (g/cm3)

corin

g 20

10co

ring

2013

Aver

age

valu

es:

3/

1375

1,2

2857

6

cmgM

PaE E

W

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

115t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

phys

ical

para

met

erar

gilla

ceou

ssa

ltW

IPP

0

0,050,1

0,150,2

0,250,3

2022

2426

2830

3234

36sa

mpl

e no

.

water content (%)

corin

g 20

10

corin

g 20

13

100

d

dh m

mm

w

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

125t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

0,00

5,00

10,0

0

15,0

0

20,0

0

25,0

0

30,0

0

35,0

0

40,0

0 0,00

5,00

10,0

015

,00

20,0

025

,00

30,0

035

,00

40,0

0

axia

l stra

in [%

]

differential stress [MPa]

2,0

MPa

2,0

MPa

3,0

MPa

3,0

MPa

5,0

MPa

5,0

MPa

10,0

MPa

10,0

MPa

0,2

MPa

0,5

MPa

stre

ngth

test

sar

gilla

ceou

ssa

ltW

IPP

0,00

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0 0,00

5,00

10,0

015

,00

20,0

025

,00

30,0

0

axia

l stra

in [%

]

differential stress [MPa]

1,0

MPa

1,0

MPa

1,0

MPa

2,0

MPa

2,0

MPa

2,0

MPa

2,0

MPa

3,0

MPa

3,0

MPa

3,0

MPa

5,0

MPa

5,0

MPa

5,0

MPa

0,2

MPa

0,2

MPa

0,5

MPa

0,5

MPa

10,0

MPa

20,0

MPa

0,00

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

05

1015

2025

3035

40

axia

l stra

in [%

]

differential stress [MPa]

1,0

MPa

1,0

MPa

2,0

MPa

2,0

MPa

3,0

MPa

3,0

MPa

5,0

MPa

5,0

MPa

10,0

MPa

20,0

MPa

27°C

/ 0,

006%

/min

60°C

100°

C

0,00

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0

05

1015

2025

30ax

ial s

train

[%]

differential stress [MPa]

1,0

MPa

2,0

MPa

3,0

MPa

5,0

MPa

7,0

MPa

10,0

MPa

0,2

MPa

0,2

MPa

0,5

MPa

0,5

MPa

27°C

6700

min

utes

670

min

utes

170

min

utes

114

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 126: Reduced size m3 ft 15sn08180210 hansen

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

135t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

0,00

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0 0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

3 (M

Pa)

TC

(MPa)

argi

llace

ous-

2010

-27°

C-0

,06%

/min

argi

llace

ous-

2013

-27°

C-0

,06%

/min

enve

lope

Failu

rest

reng

thar

gilla

ceou

ssa

ltW

IPP

)

exp(

38

76

3

a

aa

TC

a 6:

55 M

Paa 7

:30

MPa

a 8:

0,20

MPa

-1

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

145t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

0,00

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0 0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

3 (M

Pa)

TC

(MPa)

argi

llace

ous-

2013

-60°

C-0

,06%

/min

enve

lope

Failu

rest

reng

thar

gilla

ceou

ssa

ltW

IPP

)

exp(

38

76

3

a

aa

TC

a 6:

50 M

Paa 7

:27

MPa

a 8:

0,17

MPa

-1

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

155t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

0,00

5,00

10,0

0

15,0

0

20,0

0

25,0

0

30,0

0

35,0

0 0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

3 (M

Pa)

TC

(MPa)

argi

llace

ous-

2013

-100

°C-0

,06%

/min

enve

lope

Failu

rest

reng

thar

gilla

ceou

ssa

ltW

IPP

)ex

p(3

87

63

aa

aTC

a 6:

32 M

Paa 7

:15

MPa

a 8:

0,35

MPa

-1

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

165t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

0102030405060

02

46

810

1214

1618

20

3 (M

Pa)

TC

(MPa)

enve

lope

- 10

0°C

enve

lope

- 60

°Cen

velo

pe -

27°C

Failu

rest

reng

thar

gilla

ceou

ssa

ltW

IPP

)ex

p(3

87

63

aa

aTC

a 6:

55 M

Paa 7

:30

MPa

a 8:

0,20

MPa

-1

a 6:

50 M

Paa 7

:27

MPa

a 8:

0,17

MPa

-1

a 6:

32 M

Paa 7

:15

MPa

a 8:

0,35

MPa

-1

115

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 127: Reduced size m3 ft 15sn08180210 hansen

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

175t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

0,00

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0 0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

3 (M

Pa)

TC

(MPa)

argi

llace

ous-

2013

-27°

C-0

,06%

/min

enve

lope

-0,0

6%/m

inar

gilla

ceou

s-20

13-2

7-0,

006%

/min

argi

llace

ous-

27°C

-0,6

%/m

inen

velo

pe-0

,006

%/m

in

Failu

rest

reng

thar

gilla

ceou

ssa

ltW

IPP

a 6:

55 M

Paa 7

:30

MPa

a 8:

0,20

MPa

-1

a 6:

50 M

Paa 7

:33

MPa

a 8:

0,25

MPa

-1

a 6:

?? M

Paa 7

:??

MPa

a 8:

?? M

Pa-1

)

exp(

38

76

3

a

aa

TC

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

185t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

Dila

tion

stre

ngth

argi

llace

ous

salt

WIP

P

0,00

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0 0,0

5,0

10,0

15,0

20,0

25,0

3 (M

Pa)

dilTC

(MPa)

argi

llace

ous-

2013

-27°

C-0

,06%

/min

enve

lope

))

exp(

1(3

54

33

a

aTC

TCD

il

a 4:

0,4

a 5:

0,06

MPa

-1

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

195t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

Dila

tion

stre

ngth

argi

llace

ous

salt

WIP

P

0,00

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0 0,0

5,0

10,0

15,0

20,0

25,0

3 (M

Pa)

dilTC

(MPa)

argi

llace

ous-

2013

-60°

Cen

velo

pe

a 4:

0,5

a 5:

0,1

MPa

-1

))

exp(

1(3

54

33

a

aTC

TCD

il

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

205t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

0,00

5,00

10,0

0

15,0

0

20,0

0

25,0

0

30,0

0

35,0

0 0,0

5,0

10,0

15,0

20,0

25,0

3 (M

Pa)

dilTC

(MPa)

argi

llace

ous-

2013

-100

°Cen

velo

pe

Dila

tion

stre

ngth

argi

llace

ous

salt

WIP

P

a 4:

0,45

a 5:

0,5

MPa

-1

))

exp(

1(3

54

33

a

aTC

TCD

il

116

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 128: Reduced size m3 ft 15sn08180210 hansen

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

215t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

0102030405060

02

46

810

1214

1618

20

3 (M

Pa)

dilTC

(MPa)

enve

lope

-100

°Cen

velo

pe-6

0°C

enve

lope

-27°

C

Dila

tion

stre

ngth

argi

llace

ous

salt

WIP

P

a 4:

0,45

a 5:

0,5

MPa

-1a 4

:0,

5a 5

:0,

1 M

Pa-1

a 4:

0,4

a 5:

0,06

MPa

-1

))ex

p(1(

)ex

p(3

54

38

76

3

a

aa

aa

TCD

il

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

225t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

0,00

10,0

0

20,0

0

30,0

0

40,0

0

50,0

0

60,0

0 0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

20,0

3 (M

Pa)

dilTC

(MPa)

argi

llace

ous-

2013

-27°

C-0

,06%

/min

enve

lope

-0,0

6%/m

inar

gilla

ceou

s-20

13-2

7-0,

006%

/min

argi

llace

ous-

27°C

-0,6

%/m

inen

velo

pe-0

,006

%/m

infit

ting

Dila

tion

stre

ngth

argi

llace

ous

salt

WIP

P

a 4:

0,45

a 5:

0,5

MPa

-1a 4

:0,

63a 5

:0,

0001

MPa

-1a 4

:0,

4a 5

:0,

06 M

Pa-1

))ex

p(1(

)ex

p(3

54

38

76

3

a

aa

aa

TCD

il

Diff

icul

tto

fit b

ecau

sefa

ilure

stre

ngth

and

dila

tion

stre

ngth

are

linke

dto

geth

er

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

235t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

Labo

rato

ry p

rogr

amon

arg

illac

eous

salt

from

WIP

P to

det

erm

ine

cree

pbe

havi

our

00,

511,

522,

533,

544,

55

050

100

150

200

time(

d)

axial strain (%)

05101520253035

050

100

150

200

time

(d)

stress(MPa)

00,00

10,

002

0,00

30,

004

0,00

50,

006

0,00

70,

008

0,00

9

dilatancy (-)

eq

Tlo

ad le

vel

dura

tion

load

ing

/ab

ove/

belo

wpl

anne

dca

rrie

d ou

tin

pro

gres

sM

PaM

Pa°C

-d

u nlo

adin

gdi

latio

n st

reng

th-

--

20>1

027

260

/60

L/U

b/b

36

020

>10

602

60/6

0L/

Ub/

b5

80

20>1

080

260

/60

L/U

b/b

22

020

<10

601

120

Lb

20

020

27/6

0/80

360

/60/

60L/

L/L

b2

00

diffe

rent

diffe

rent

274

60/6

0/30

/30

L/L/

L/L

b/b/

a/a

34

0?

??

??

??

30

0

= 2

0

= 20

=

0

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

245t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

Cre

ep te

sts

argi

llace

ous

salt

WIP

P

02468101214161820

020

4060

8010

012

014

016

018

0

time

(d)

axial strain (%)

WIP

P-4

1W

IPP

-3W

IPP

-9W

IPP

-42

00,

020,

040,

060,

080,1

0,12

0,14

0,16

0,180,

2

050

100

150

200

250

300

time

(d)

axial strain (%)

05101520253035

050

100

150

200

250

300

time

(d)

stress (MPa)

sigv

sig1

sig3

05101520253035

020

4060

8010

012

014

016

018

0tim

e (d

)

stress (MPa)

sig1

ucsi

g3

117

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 129: Reduced size m3 ft 15sn08180210 hansen

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

255t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

1,00

E-0

9

1,00

E-0

8

1,00

E-0

7

1,00

E-0

6

1,00

E-0

5

1,00

E-0

4

1,00

E-0

3

1,00

E-0

2

1,00

E-0

1

1,00

E+0

0

1,00

E+0

1

110

100

v (M

Pa)

s (1/d)

Reg

-Arg

illace

ous-

27°C

Arg

illac

eous

-27°

CA

rgill

aceo

us-2

7°C

Arg

illac

eous

-60°

CA

rgill

aceo

us-8

0°C

Reg

-Arg

illace

ous-

60°C

Reg

-Arg

illace

ous-

100°

C

Stat

iona

rycr

eep

para

met

erar

gilla

ceou

ssa

ltW

IPP

)ex

p()

exp(

*T

lm

vm

vs

1

1

14*

05,045,0

104

Kl

MPa

m

dM

Pam

apl.

Prof

. Dr.-

Ing.

hab

il. U

. Düs

terlo

hC

hair

for W

aste

Dis

posa

lTec

hnol

ogie

s an

d G

eom

echa

nics

265t

h U

S/G

erm

an W

orks

hop

–Sa

nta

Fe 2

014

Tran

sien

tcre

ep p

aram

eter

argi

llace

ous

salt

WIP

P

1,00

E-0

6

1,00

E-0

5

1,00

E-0

4

1,00

E-0

3

1,00

E-0

2

1,00

E-0

1

1,00

E+0

0

010

2030

v (M

Pa)

1endless (-)

Arg

illac

eous

-27°

CR

eg-A

rgill

aceo

us

vT

Mv

kt

v

k

sttr

vG

,

,1

11

11

11

12

5*

11

4*

20,0

105,1

21,0

103

MPa

k

dM

Pa

MPa

k

MPa

G kk

118

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 130: Reduced size m3 ft 15sn08180210 hansen

Laboratory Tests on WIPP Salt Clean Salt update

K. Salzer, D. Naumann, Rölke, C., R.-M. Günther,T. Popp

Institut für Gebirgsmechanik GmbH (IfG), 02479 Leipzig, Germany

In cooperation with U. Düsterloh, K. Herchen Lehrstuhl für Deponietechnik und Geomechanik, TU Clausthal, 38678

Clausthal, Germany

Abstract: In the frame work of the Joint Project on the Comparison of Constitutive Models for the Thermo-Mechanical Behaviour of Rock Salt (Part 3) benchmark calculations are planned for the WIPP-site, simulating the in situ-tests performed in room D and B. Although a compre-hensive mechanical data base for WIPP-salt already exists from investigations in the 80 - 90’s, due to the development of existing and new material laws tailored test series facilitating the derivation of specific material parameters are missing. Thus a comprehensive investiga-tion program on WIPP-salt has been executed. In the scope of work the tests are not only designed to derive material-law specific parameters but also to act itself as a base to perform benchmark calculations.

As a bedded salt repository, the idealized stratigraphy for the WIPP underground is com-posed of mainly argillaceous salt with a clean salt layer above the disposal room between Clay G and Clay I, anhydrite MB 139, and a thin anhydrite layer located in the clean salt lay-er, identified as anhydrite A. Thus, the main focus was on argillaceous salt and, subsequent, clean salt. As a representative material suite 60 12’’-diameter cores (∅ ≈ 30.48 cm, length: 0.6 m; weight: 90 kg) were sampled at the WIPP site, i.e. 5.5 t, and delivered to IfG in three shipments. The preparation of the cylindrical samples (∅ = 100 mm x l = 200 mm respective-ly 40 mm x 80 mm) is a special task of IfG.

Laboratory studies allow generic or site-specific salt properties (mechanical, thermal and transport) to be measured in a controlled environment of loading and material conditions. A specific request, therefore, is to conduct a suite of triaxial strength tests on intact salt com-prising a triplet of triaxial strength test series (at 3 = 0.2, 0.5, 1.0, 2.0, 3.0, 5.0 and 20 MPa) with a standard deformation rate of 10-5 1/s at each of three temperatures: 27°C, 60°C, 100°C) and, in addition, with two different deformation rates (10-4 1/s, 10-6 1/s) at 27°C, all with simultaneous measurements of dilatancy.

Fortunately in the long term the response of salt masses is governed by its steady state creep behaviour. Thus, in addition, a series of creep tests has been performed at loading conditions in the non-dilatant stress zone for a wide range of differential stresses. However, because in experiments the time necessary to reach true steady creep rates can last time periods of some few days to years, depending mainly on temperature, an innovative but sim-ple creep testing approach is suggested. A series of multi-step tests with loading and un-loading cycles allow a more reliable estimate of stationary creep rates in a reasonable time schedule.

Two index tests with permeability measurements with gas were performed indicating tight-ness of the salt (kGas < 10-20 m2) in the undisturbed state, as well, the capability of the rock for efficient crack closure after significant damage, i.e. a permeability decrease from 10-16 m2 to <10-20 m2 was observed within some few weeks at hydrostatic pressures of 3 = 1 = 20 MPa.

119Proceedings of 5th US/German Workshop

January 30, 2015

Page 131: Reduced size m3 ft 15sn08180210 hansen

109 strength and 37 creep tests were carried out in close cooperation between the rock me-chanical labs of IfG and TUC. Most of lab tests on “clean salt” were carried out at IfG. The results will be presented in relation to data from “argillaceous salt”, which were obtained at Clausthal University, IfG and additional test at the BGR and the Technical University of Braunschweig.

The outcome can be summarized as follows:

• The investigated “Wipp salt” is generally of excellent quality, i.e. undisturbed (intact) and largely homogeneous.

• The moisture contents of the "clean salt" (CS) are in the order of 0.15 wt. -%, respec-tively, for the "argillaceous salt" (AS) in a data range: 0.2 - 0.4 - 1.0 wt. -%. The measured humidity content is lower than average values from the literature. However, they are therefore generally higher than those of domal rock salt.

• The strength tests on "clean salt" are already completed. A very consistent set of data and parameters could be obtained:

o Temperature-increase results in significant strength decrease

o Referred to in situ deformation rates <10-10 1/s the strength will be reduced

o The onset of dilatancy, i.e. described by the dilatancy boundary, is nearly in-dependent from temperature and the deformation rates but shows significant data scattering.

o The comparison with the present strength data for the Asse salt shows gener-ally slightly lower strength values, but is overall in the known properties field of pure rock salt.

• The creep test on “clean salt” and mostly on "argillaceous salt" are now also finished:

o Unique creep data sets of high quality were obtained for room temperature, 60°C and 80°C, applying the new creep test approach, both for CS and AS. However, differences to older data sets are obvious (SAND92-7291), espe-cially at higher temperature. This may be due to the higher water content of the tested salt specimens.

o AS creeps slightly faster (2x) than CS, but both show slightly higher creep rates as they have been identified for Asse salt

o At stresses < 10 MPa the creep behavior deviates from a simple power law re-lationship which may be referred to a mechanism change from dislocation creep to additional effects of fluid-assisted creep.

• Gas tightness of the WIPP-salt is demonstrated, as well its efficient sealing capability.

With these investigations, a comprehensive data fundus for the WIPP-salt has been set which allows an extrapolation to the expected underground conditions and to carry out the planned benchmark calculations for room D and B.

120Proceedings of 5th US/German Workshop

January 30, 2015

Page 132: Reduced size m3 ft 15sn08180210 hansen

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

BM

Wi–

Join

t Pro

ject

III:

Com

paris

on o

f cur

rent

co

nstit

utiv

e m

odel

s sa

lt

Labo

rato

ry T

ests

on

WIP

P-S

alt (

Cle

an s

alt)

K. S

alze

r, D

. Nau

man

n,R

. -M

. Gün

ther

, C. R

oelk

e &

T. P

opp

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

,Le

ipzi

g, G

erm

any

Pe

trop

hyic

alch

arac

teris

atio

n

Stre

ngth

and

dila

tanc

y

test

ing

C

onfin

ing

pres

sure

D

efor

mat

ion

rate

Te

mpe

ratu

re

C

reep

test

s

Cre

epte

stpr

oced

ures

R

esul

ts

Pe

rmea

bilit

y-te

stin

g

Sum

mar

y

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Petro

-phy

sica

l cha

ract

eriz

atio

n

2

VE

LOC

ITY-

PO

RO

SIT

Y R

ELAT

ION

SHIP

afte

r Wyl

lieet

al.,

195

6

Pore

spa

ce:

air

Mat

rix:

halit

e(2

,16

g/cm

3 ) +

Anhy

drite

(2,9

6 g/

cm3 )

v p-a

ir (k

m/s

) =

0,33

v p-a

nydr

ite(k

m/s

) =

6,05

v p-h

alite

(km

/s) =

4,

52

C

lean

sal

tar

gilla

ceou

ssa

lt, b

ut s

light

lydi

ffere

nt

topu

re „A

sse-

Spe

ises

alz“

:• W

IPP

-CS≤

A

sse-

Sal

z

•Th

e am

ount

ofim

purit

ies

isve

rylo

w(<

5%

)•

Initi

al p

oros

ityis

low

(<0.

5%) ,

i.e.

und

istu

rbed

salt

Exc

elle

ntm

ater

ial!

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Wat

er c

onte

nt -

dryi

ng 2

4 h

105°

C

3

Moi

stur

e co

nten

ts:

•"c

lean

sal

t“: a

roun

d 0.

15 w

t. -%

•"a

rgilla

ceou

s sa

lt“:

0.2

-0.4

-1.0

wt.

-%

mea

n va

lues

afte

r Per

ry, 2

013

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Tria

xial

stre

ngth

/ on

seto

fdila

tanc

y

4

1 >

3

= f (

)

V/V

= f

()

Stra

in-ra

te-c

ontro

lled

devi

ator

ic d

efor

mat

ion

in a

tria

xial

Kár

mán

-cel

l

1

3

Ax

V o

il

TEp

s-ra

te 3

(MPa

)

CS

25°C

10-5

1/s

0,2

0,5

1,0

2,0

3,0

5,0

20,0

760

°C10

-51/

s0,

20,

51,

02,

03,

05,

020

,07

100°

C10

-51/

s0,

20,

51,

02,

03,

05,

020

,07

25°C

10-6

1/s

0,2

0,5

1,0

2,0

3,0

5,0

20,0

725

°C10

-41/

s0,

2-

1,0

2,0

-5,

020

,05

St

anda

rd te

sts

33

Fact

ors

influ

enci

ng re

leva

nt fa

ilure

stre

ngth

and

dila

tanc

y st

reng

th

C

onfin

ing

pres

sure

D

efor

mat

ion

rate

Te

mpe

ratu

re

Tria

xial

str

engt

h te

stin

g–

stat

eof

art

121

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 133: Reduced size m3 ft 15sn08180210 hansen

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Tria

xial

stre

ngth

test

s (1

·10-

5 s-1

, 25°

C)

5

britt

le

sem

i-br

ittle

du

ctile

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Tria

xial

stre

ngth

test

s (1

·10-

5 s-1

, 25°

C)

6

0.2

MPa

0.5

MPa

1.0

MPa

2.0

MPa

3.0

MPa

5.0

MPa

20.0

MPa

britt

le

sem

i-br

ittle

du

ctile

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Stre

ngth

test

ing

-rel

iabi

lity

ofte

stre

sults

-Ref

eren

ce A

sse-

Spe

ises

alz

7

clea

n sa

lt-l

arge

cor

es(If

G)

clea

n sa

lt-s

mal

lcor

es(T

UC

)ar

gilla

ceou

ssa

lt-s

mal

lcor

es(T

UC

)A

sse-

Sal

z

-(Jo

int P

roje

ct II

I)

33

DM

AX

Dm

ax,

Diff

D M

AX

2865

2,5

2560

,33

740

7

R

elia

bilit

yof

stre

ngth

resu

ltsde

pend

son

cor

equ

ality

S

treng

th: s

light

lylo

wer

than

for

Ass

e sa

lt

Arg

illac

eous

salt

(AS

) hig

her

scat

terin

gbu

t com

para

ble

toC

S

Dila

tanc

y bo

unda

rysi

mila

r

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Fact

ors

influ

enci

ngre

leva

nt s

altp

rope

rties

-Te

mpe

ratu

re/ d

efor

mat

ion

rate

Strength Dilatancy

Sig

nific

antT

-effe

ct!

At i

n-si

tu d

efor

mat

ion

rate

sst

reng

th w

ill b

ere

duce

d!

The

effe

ctof

T an

dde

f.-ra

te o

n on

seto

fdila

tanc

y is

smal

l

8

122

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 134: Reduced size m3 ft 15sn08180210 hansen

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Cre

ep b

ehav

iour

The challeng

e…,

howde

form

sthe

saltin th

elong

term

?Bo

unda

rycond

ition

s:Fore

castpe

riod:  

103< tim

e (years)  < 10

6

Deform

ations: 

0.1 < < 1

Tempe

ratures:

20°C  ‐

200°C

Def. Ra

tes: 

3∙10

‐14< (1/s) <

 3∙10‐

11

Creepmecha

nism

s:Pressure so

lutio

ncreepvs. dislocationcreep

Test durationisusua

llylim

ited!

mod

ified

afte

r Ura

i, 20

12

Def

orm

atio

n-m

echa

nism

map

0.1

Dis

loca

tion

cree

p

Pres

sure

Solu

tion

Cre

ep In s

itu

lab

n =

1

n =

5

9In

stitu

t für

Geb

irgsm

echa

nik

Gm

bH L

eipz

igR

esea

rch

Test

ing

Con

sulti

ng

Expe

rtise

di

ff=

16 M

Pa

14 M

Pa

Impr

oved

cree

pte

stpr

oced

ures

IfG a

ppro

ach

1.R

aise

tem

pera

ture

to e

.g.

333

K (6

0°C

) to

spee

d up

pr

oces

s an

d to

invo

lve

reco

very

pro

cess

es.

2.U

se s

erie

s of

two-

step

test

s w

ith u

nloa

ding

, e.g

.

(I.)

diff

= 16

MPa

14

MPa

, (II

.)

diff

= 18

MPa

16

MPa

tra

nsie

nt a

nd in

vers

e tra

nsie

nt c

reep

at 1

6 M

Pa

uppe

r and

low

er b

ound

on

stea

dy-s

tate

cre

ep ra

te3.

Tem

pera

ture

ste

ppin

g te

sts

for t

he a

ctiv

atio

n en

ergy

Det

ails

: Gün

ther

, R.-M

., S

alze

r, K

., P

opp,

T. a

nd L

üdel

ing,

C.,

2014

. Ste

ady

stat

e-cr

eep

of

rock

sal

t -Im

prov

ed A

ppro

ache

s fo

r Lab

Det

erm

inat

ion

and

Mod

elin

g to

des

crib

e tra

nsie

nt,

stat

iona

ry a

nd a

ccel

erat

ed c

reep

, dila

tanc

y an

d he

alin

g. 4

8th

U.S

. Roc

k M

echa

nics

Sym

posi

um,

Min

neap

olis

, Uta

h, U

SA

, Jun

e 1

-4, 2

014.

AR

MA

14-

7051

.10

di

ff=

18 M

Pa

16 M

Pa

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

•C

onsi

sten

tdat

ase

ts, b

ut d

iffer

ence

sto

earli

erm

easu

rem

ents

(SA

ND

92-7

291)

are

obvi

ous

•M

echa

nism

chan

gede

pend

ing

on s

tress

sta

te

Cre

epbe

havi

ouro

fcle

an s

alt–

25°C

, 60°

C, 8

0°C IfG

-Cre

epda

tase

ts(C

S) 11

Cre

ep

test

1

3

Dur

atio

nT

cree

p ra

te

no.

(MP

a)(M

Pa)

(MP

a)(d

)(°

C)

(1/d

)

Exp

erim

enta

l dat

a1

TCC

130

2010

5024

2,04

E-0

528

208

5024

1,81

E-0

61a

TC

C3

3020

1050

241,

43E

-05

2820

850

243,

39E

-06

2 TC

C5

3220

1250

242,

16E

-05

3020

1050

243,

12E

-06

3 TC

C15

2420

450

603,

68E

-06

2220

250

602,

43E

-07

4 TC

C13

2620

650

601,

37E

-05

2420

450

601,

26E

-06

5 TC

C6

2820

850

601,

94E

-05

2620

650

603,

31E

-06

6 TC

C2

3020

1050

604,

05E

-05

2820

850

606,

80E

-06

6a T

CC

430

2010

5060

1,67

E-0

428

208

5060

5,63

E-0

57

TCC

732

2012

5060

7,42

E-0

530

2010

5060

1,70

E-0

58

TCC

934

2014

5060

1,86

E-0

432

2012

5060

4,92

E-0

59

TCC

1136

2016

5060

3,29

E-0

434

2014

5060

6,85

E-0

510

TC

C12

3820

1850

607,

50E

-04

3620

1650

603,

62E

-04

11 T

CC

1630

2010

5080

2,41

E-0

428

208

5080

7,74

E-0

512

TC

C19

3220

1250

803,

76E

-04

3020

1050

801,

09E

-04

SAN

D92

-729

1

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Cre

epbe

havi

ouro

farg

illac

eous

salt

–25

°C, 6

0°C

, 80°

C

IfG-C

reep

data

sets

(AS)

SAN

D92

-729

1

12

Cree

p te

st 1

3

Dura

tion

Tcr

eep

rate

no.

(MP

a)(M

Pa)

(MP

a)(d

)(°

C)

(1/d

)

Exp

erim

enta

l dat

aTC

C9

3020

1050

251,

75E

-05

2820

850

254,

98E

-06

TCC

1032

2012

5025

2,61

E-0

530

2010

5025

4,49

E-0

6TC

C1

2420

450

607,

08E

-06

2220

250

608,

52E

-07

TCC

226

206

5060

5,87

E-0

624

204

5060

1,94

E-0

6TC

C3

2820

850

602,

57E

-05

2620

650

604,

77E

-06

TCC

430

2010

5060

7,45

E-0

528

208

5060

2,00

E-0

5TC

C5

3220

1250

602,

00E

-04

3020

1050

604,

10E

-05

TCC

634

2014

5060

5,39

E-0

532

2012

5060

1,64

E-0

4TC

C7

3620

1650

608,

82E

-04

3420

1450

605,

95E

-04

TCC

838

2018

5060

1,40

E-0

336

2016

5060

9,24

E-0

4TC

C11

3020

1050

802,

79E

-04

2820

850

801,

14E

-04

TCC

1232

2012

5080

6,78

E-0

430

2010

5080

1,84

E-0

4

•A

rgill

aceo

ussa

ltcr

eeps

slig

htly

fast

er(2

x) th

anC

lean

Sal

t•

Gen

eral

ly W

IPP-

salt

cree

psfa

ster

than

Ass

e S

alt

123

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 135: Reduced size m3 ft 15sn08180210 hansen

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Tigh

tnes

sof

the

geol

ogic

alba

rrie

r–pe

rmea

bilit

yte

stin

g

Expe

rimen

tal s

etup

pres

sure

cell

Sam

ple

l=80

mm

;=

40m

m

3 1

poro

uspl

ates

)(

22 2

2 1

00

pp

Al

qp

k

Sam

ple

527/

36

13

The

perm

eabi

lity

ofth

ein

tact

salt

isve

rylo

w!

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Rec

over

yof

tight

ness

afte

r dam

age

–cr

ack

clos

ure

/ hea

ling

Pre-

dam

age

befo

reda

mag

e

afte

r dam

age

14

ca. 7

0% o

fm

ax

Afte

r dam

age

tight

ness

isre

stor

edw

ithin

som

efe

ww

eeks

…Sa

mpl

e 52

7/39

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Sum

mar

y la

bora

tory

inve

stig

atio

nson

WIP

P sa

lt

•Th

e “W

IPP

salt”

is o

f exc

elle

nt q

ualit

y, i.

e. u

ndis

turb

ed a

nd h

omog

eneo

us.

•M

oist

ure

cont

ents

:o

"cle

an s

alt“:

aro

und

0.15

wt.

-%o

"arg

illac

eous

sal

t“: 0

.2-0

.4 -

1.0

wt.

-%

Low

er th

an re

porte

d bu

t gen

eral

ly h

ighe

r tha

n fo

r dom

al ro

ck s

alt

•Th

e tr

iaxi

al te

sts

on "

clea

n sa

lt" a

re c

ompl

eted

, res

ultin

g in

a v

ery

cons

iste

nt s

et o

f dat

a(s

treng

th a

nd d

ilata

ncy)

:o

Tem

pera

ture

-incr

ease

resu

lts in

a s

igni

fican

t stre

ngth

dec

reas

eo

Ref

erre

dto

in s

itu d

efor

mat

ion

rate

s(<

10-1

01/

s) s

treng

th w

ill b

ere

duce

do

Ons

etof

dila

tanc

y de

pend

sno

t on

tem

pera

ture

and

the

defo

rmat

ion

rate

C

ompa

rison

with

the

refe

renc

e A

sse

salt

show

s ge

nera

lly s

omew

hat l

ower

st

reng

ths,

but

it fi

ts in

to th

e kn

own

prop

ertie

s fie

ld o

f pur

e ro

ck s

alt.

•C

reep

test

s on

“cl

ean

salt”

and

“ar

gilla

ceou

s sa

lt” a

re n

ow a

lso

finis

hed

oU

niqu

e da

ta s

ets

of h

igh

qual

ity d

ue to

the

new

cre

ep te

st a

ppro

ach,

but

di

ffere

nces

tool

derr

esul

tsar

eob

viou

s, e

spec

ially

at in

crea

sed

tem

pera

ture

oA

S c

reep

s sl

ight

ly (2

x) fa

ster

than

CS

, and

bot

h cr

eep

fast

er th

an A

sse

salt

A

cre

ep m

echa

nism

cha

nge

at lo

wer

stre

sses

is o

bvio

us, i

.e. n

o si

mpl

e po

wer

law

•G

as ti

ghtn

ess

ofth

esa

ltis

dem

onst

rate

d, a

sw

elli

st e

ffici

ents

ealin

gca

pabi

lity

15In

stitu

t für

Geb

irgsm

echa

nik

Gm

bH L

eipz

igR

esea

rch

Test

ing

Con

sulti

ng

Expe

rtise

16

than

k yo

ufo

r you

r atte

ntio

n!

124

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 136: Reduced size m3 ft 15sn08180210 hansen

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

•C

onsi

sten

tdat

ase

ts•

Mec

hani

smch

ange

depe

ndin

gon

stre

ss s

tate

a si

mpl

e po

wer

law

isno

t suf

ficie

nt!

Cre

epbe

havi

ouro

fcle

an s

alt–

25°C

, 60°

C, 8

0°C IfG

-Cre

epda

tase

ts(C

S)As

se S

peis

esal

z

18

Cree

p te

st

1 3

Dura

tion

Tcr

eep

rate

no.

(MP

a)(M

Pa)

(MP

a)(d

)(°

C)

(1/d

)

Exp

erim

enta

l dat

a1

TCC

130

2010

5024

2,04

E-0

528

208

5024

1,81

E-0

61a

TC

C3

3020

1050

241,

43E

-05

2820

850

243,

39E

-06

2 TC

C5

3220

1250

242,

16E

-05

3020

1050

243,

12E

-06

3 TC

C15

2420

450

603,

68E

-06

2220

250

602,

43E

-07

4 TC

C13

2620

650

601,

37E

-05

2420

450

601,

26E

-06

5 TC

C6

2820

850

601,

94E

-05

2620

650

603,

31E

-06

6 TC

C2

3020

1050

604,

05E

-05

2820

850

606,

80E

-06

6a T

CC

430

2010

5060

1,67

E-0

428

208

5060

5,63

E-0

57

TCC

732

2012

5060

7,42

E-0

530

2010

5060

1,70

E-0

58

TCC

934

2014

5060

1,86

E-0

432

2012

5060

4,92

E-0

59

TCC

1136

2016

5060

3,29

E-0

434

2014

5060

6,85

E-0

510

TC

C12

3820

1850

607,

50E

-04

3620

1650

603,

62E

-04

11 T

CC

1630

2010

5080

2,41

E-0

428

208

5080

7,74

E-0

512

TC

C19

3220

1250

803,

76E

-04

3020

1050

801,

09E

-04

Asse

Sp

eise

salz

Inst

itut f

ür G

ebirg

smec

hani

k G

mbH

Lei

pzig

Res

earc

h

Test

ing

Con

sulti

ng

Expe

rtise

Cre

epbe

havi

ouro

farg

illac

eous

salt

–25

°C, 6

0°C

, 80°

C

IfG-C

reep

data

sets

(AS)

Asse

Sp

eise

salz

19

Cree

p te

st 1

3

Dura

tion

Tcr

eep

rate

no.

(MP

a)(M

Pa)

(MP

a)(d

)(°

C)

(1/d

)

Exp

erim

enta

l dat

aTC

C9

3020

1050

251,

75E

-05

2820

850

254,

98E

-06

TCC

1032

2012

5025

2,61

E-0

530

2010

5025

4,49

E-0

6TC

C1

2420

450

607,

08E

-06

2220

250

608,

52E

-07

TCC

226

206

5060

5,87

E-0

624

204

5060

1,94

E-0

6TC

C3

2820

850

602,

57E

-05

2620

650

604,

77E

-06

TCC

430

2010

5060

7,45

E-0

528

208

5060

2,00

E-0

5TC

C5

3220

1250

602,

00E

-04

3020

1050

604,

10E

-05

TCC

634

2014

5060

5,39

E-0

532

2012

5060

1,64

E-0

4TC

C7

3620

1650

608,

82E

-04

3420

1450

605,

95E

-04

TCC

838

2018

5060

1,40

E-0

336

2016

5060

9,24

E-0

4TC

C11

3020

1050

802,

79E

-04

2820

850

801,

14E

-04

TCC

1232

2012

5080

6,78

E-0

430

2010

5080

1,84

E-0

4

•A

rgill

aceo

ussa

ltcr

eeps

slig

htly

fast

er(2

x) th

anC

lean

Sal

t•

Gen

eral

ly W

IPP-

salt

cree

psfa

ster

than

Ass

e S

alt

125

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 137: Reduced size m3 ft 15sn08180210 hansen

Complementary laboratory tests on WIPP salt at normal and higher temperatures Ingo Plischke

Abstract

It has been confirmed that differences in mineralogy, microstructure, cristallography

and water content have an influence on long term deformation behaviour of rocksalt.

Therefore two different facies types (clean and argillaceous salt) of WIPP rocksalt

were and will be tested on its creep behavior. Hence 16 creep tests were carried out

during the last year on rocksalt from the WIPP site of which 9 tests were uniaxial

tests at normal temperature (22°C) and 7 tests were conducted at higher

temperatures of up to 140°C, thereof two under triaxial conditions. In addition, two

tests on the same facies types were already carried out in 2001 in the rock mechanic

laboratory of BGR. All test contained a change of temperature or stress.

The test series is not finished and will still be ongoing until 2015, to be completed by

more triaxial and uniaxial creep tests at higher temperatures. The results will then be

compared with results from creep tests of flat bedded rocksalt from the northern

German basin, which runs in the past in the rock mechanic laboratory of BGR.

A comparison of the first existing results from WIPP rocksalt with flat bedded rocksalt

from the northern German basin offers no greater deviation in creep behaviour.

However, the database is still small due to the time-based length of the creep tests at

BGR.

126Proceedings of 5th US/German Workshop

January 30, 2015

Page 138: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

011-

XXXX

P

Labo

ratory Tests at h

ighe

r Tempe

rature on diffe

rent 

Facies

type

s of W

IPP Salt

Ingo

 Plischke 

BGR Ha

nnover, G

ermany 

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

Aim of the

 investigations

complem

entatio

n of th

e tests o

f other com

panion

Creep tests a

t highe

r tem

perature on diffe

rent facies

type

s

Overview of the

 test program

m

Results

Cu

rren

t and

 future works

Pe

trop

hysic

alinvestigations

Mineralogy

Re

sults

Future works

2

Labo

ratory

Tests a

t highe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

An

alyzed

Material

3

File

130

84 c

lean

sal

tFi

le 1

3085

cle

an s

alt

File

130

79 a

rg. s

alt

File

140

08 a

rg. s

alt

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

Clean salt(m

ineralogy)

Water

conten

t≈ 2.5 w.‐%

 (after Rietveld)!!

Mineralogy(after Rietveld)

4

Prob

eH

alit

Poly

halit

Anhy

drit

Kie

serit

Qz/

Illit/

Mag

.

2.01

990.

50.

52.

2999

0.7

0.5

102-

5 ro

t96

3≤1

≤1

102-

5 gr

au99

≤1

104

rot

99≤1

104

grau

100

105-

5 ro

t99

1

105-

5 gr

au99

≤1≤1

127

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 139: Reduced size m3 ft 15sn08180210 hansen

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

Whath

avewedo

ne?

9 un

iaxialcreeptestsw

ithtw

ostress step

s(14

 and

16 M

Pa)

each

step

70 days

4 un

iaxialcreeptestsa

t highe

rtem

perature

(100

 and

120 °C)

All testsha

ppened

at argillaceous

salt

3 triaxialcreeptestsa

t highe

rtem

perature

(40 and140°

C)

Tests h

appenedon

 clean an

dargillaceou

ssalt(pa

rtlyperformed

in 200

1)

5

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

Data se

tscreeptests

File

Ver

such

σ 3

∆σTe

mp.

Krie

chra

teK

lass

eG

eset

zV

erfo

rmun

gFa

zies

Bem

erku

ngen

MP

AM

PA

°C1/

dB

GR

%14

002

Krie

ch1

014

224.

20E

-05

5a

1.97

argi

llace

ous

1400

2K

riech

10

1622

1.10

E-0

46

a1.

49ar

gilla

ceou

s14

003

Krie

ch1

014

224.

40E

-05

5a

1.94

argi

llace

ous

1400

3K

riech

10

1622

1.20

E-0

46

a1.

59ar

gilla

ceou

s14

004

Krie

ch1

014

228.

00E

-05

6a

2.09

argi

llace

ous

1400

4K

riech

10

1622

1.60

E-0

46

a2.

21ar

gilla

ceou

s14

005

Krie

ch1

014

224.

90E

-05

5a

2.28

argi

llace

ous

1400

5K

riech

10

1622

1.50

E-0

46

a1.

73ar

gilla

ceou

s14

006

Krie

ch1

014

225.

90E

-05

6a

1.88

argi

llace

ous

1400

6K

riech

10

1622

1.50

E-0

46

a1.

93ar

gilla

ceou

s13

076

Krie

ch1

013

.922

9.00

E-0

56

a2.

61ar

gilla

ceou

s13

076

Krie

ch1

015

.622

6.00

E-0

48

a3.

11ar

gilla

ceou

s13

078

Krie

ch1

013

.922

1.00

E-0

46

a2.

55ar

gilla

ceou

s13

078

Krie

ch1

015

.122

Bru

cha

argi

llace

ous

1307

9K

riech

10

14.2

225.

20E

-06

2a

0.29

argi

llace

ous

1307

9K

riech

10

16.4

222.

00E

-05

3a

0.05

argi

llace

ous

1308

0K

riech

10

14.1

224.

00E

-05

5a

2.75

argi

llace

ous

1308

0K

riech

10

16.1

221.

40E

-04

6a

1.42

argi

llace

ous

1400

8TK

riech

10

610

01.

70E

-04

10b

2.1

argi

llace

ous

1400

9TK

riech

10

5.9

120

4.90

E-0

49

b3.

68ar

gilla

ceou

s14

010

TKrie

ch1

012

0b

argi

llace

ous

1401

1TK

riech

10

6.1

120

4.10

E-0

49

b3.

19ar

gilla

ceou

s14

012

TKrie

ch1

06

100

1.40

E-0

49

b1.

7ar

gilla

ceou

s

1308

4Tk

riech

312

0b

clea

n13

085

Tkrie

ch3

204

140

2.00

E-0

49

bcl

ean

1308

5Tk

riech

320

214

03.

00E

-06

7b

clea

n10

96Tk

riech

312

1440

2.30

E-0

49

bar

gilla

ceou

spe

rform

ed 2

001

1096

Tkrie

ch3

2014

401.

70E

-04

5b

argi

llace

ous

perfo

rmed

200

110

96Tk

riech

32

1440

4.30

E-0

410

bar

gilla

ceou

spe

rform

ed 2

001

1096

Tkrie

ch3

114

401.

30E

-04

11b

argi

llace

ous

perfo

rmed

200

110

96Tk

riech

320

1440

2.50

E-0

49

bar

gilla

ceou

spe

rform

ed 2

001

1097

Tkrie

ch3

1214

407.

30E

-05

7b

clea

npe

rform

ed 2

001

1097

Tkrie

ch3

2014

407.

10E

-05

7b

clea

npe

rform

ed20

0110

97Tk

riech

32

1440

1.30

E-0

48

bcl

ean

perfo

rmed

200

110

97Tk

riech

31

1440

1.70

E-0

48

bcl

ean

perfo

rmed

200

110

97Tk

riech

320

1440

5.20

E-0

57

bcl

ean

perfo

rmed

200

1pe

rform

ed 2

001

169

FKrie

ch1

014

222.

50E

-05

4a

argi

llace

ous

perfo

rmed

200

1

170

FKrie

ch1

014

222.

70E

-05

5a

clea

npe

rform

ed20

016

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

UniaxialCreep

teston

 argillaceo

ussaltfrom

theWIPP‐site at 100

  °C 

7

-0.5

-0.4

-0.3

-0.2

-0.10

0.1

0.2

010

2030

4050

60

Verformung [%]

Lauf

zeit

[d]

H2A

4062

4/14

008A

/140

12A

H2A

/1-1

4008

A-Ve

rform

ung

H2A

/3--

Verfo

rmun

g

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

TriaxialCreepteston

 argillaceo

ussaltfrom

theWIPP‐site at 140

  °C 

(sigma3 = 20

 MPa)  stress step

1 Δσ

= 4 MPa, stress step2 Δσ

= 2 MPa

8

-0.50

0.51

1.52

2.5

020

4060

8010

012

014

0

Verformung [%]

Lauf

zeit

[d]

Z4A1

4012

8_13

085A

/130

85A

Z4-Z

4A14

0128

-Ver

form

ung

ἐ=

3E-6

1/d

Asse

ἐ =

3.8

E-7

1/d

ἐ =

2E-4

1/d

Asse

ἐ =

1.2

E-5

1/d

128

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 140: Reduced size m3 ft 15sn08180210 hansen

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

9

1 E-

08

1 E-

07

1 E-

06

1 E-

05

1 E-

04

1 E-

03

1 E-

02

1 E-

01

1 E+

00

1 E+

01

110

100

Creep rate [1/d]

eff

[MPa

]

WIP

P c

lean

80°

C 1

.lo

adst

epW

IPP

cle

an 8

0°C

2.

load

step

WIP

P c

lean

60°

C 1

.lo

adst

epW

IPP

cle

an 6

0°C

2.

load

step

WIP

P c

lean

25°

C 1

.lo

adst

epW

IPP

cle

an 2

5°C

2.

load

step

WIP

P c

lean

140

°C

250°

C20

0°C

150°

C 100°

C 50°C

80°C

60°C

25°C

1 2 3 5

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

Summary:

Argillaceou

ssaltcreep

sslightly

faster

than

„Asse Speisesalz“ at normal 

tempe

rature

Itcreeps

upto

twoorde

rsof

magnitude

faster

than

„Asse Speisesalz“ at highe

rtempe

ratures

Clean saltcreeps

upto

oneorde

rofm

agnitude

faster

than

„Asse Speisesalz“ at 

higher

tempe

ratures

Water

conten

tmeasuredafter R

ietveldisfivetim

eshigher

than

measuredat 

baking

out

10

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

Future works:

Co

mplem

entarytriaxialtestsa

t highe

rtem

peratura

t bothfacies

type

s

Investigations

tode

term

inetheinflu

ence

ofthemicrostructure

Be

tter

determ

inationof

themoistureconten

t(freeze

desalination?) 

(perform

edby

grou

pof

Mr. Ha

mmer)

Whatw

ene

ed:

More material from

theWIPP‐site!

Isthispo

ssible?

11

Labo

ratory Tests at h

ighe

r Tem

perature on diffe

rent facies

type

s of W

IPP Salt

Thankyoufory

oura

tten

tion

12

129

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 141: Reduced size m3 ft 15sn08180210 hansen

Petrography, fluid distribution, geochemistry and microstructures of halite rocks from WIPP-Site (and Gorleben) Maximilian Pusch1, Jörg Hammer1, Christian Ostertag-Henning1

1 Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover, Germany

In view of expected differences according to petrography, fluid distribution, geochemistry and

microstructures of halite rocks from flat bedding salt formations (WIPP; USA) and salt domes

(Gorleben, Germany), several salt samples from WIPP have been analyzed at BGR

Hannover, Germany.

WIPP drilling SNLCV302 which contains Marker Bed 139 (MB139) at 2.46 ft - 6.15 ft was

used for thin sections and geochemical studies in order to analyze an exemplary profile

crossing a salt cycle in North American Permian Salt Basin (Delaware-Basin). The results

were compared with the data we gained from Gorleben exploration mine. For studies of

hydrocarbon distribution and origin samples from drillings QGU 12, 14, 36, 38 and 39 were

used.

The microscopic analyzes of the samples show distinct differences between salt rocks from

WIPP and Gorleben. The halitic matrix at the bottom of MB139 (top of the previous salt

cycle) is dominated by numerous inclusions of columnar, idiomorphic crystals of polyhalite. In

addition intercalations of idiomorphic, columnar anhydrite as well as accessory idiomorphic,

columnar crystal of celestine and intersections of clay are visible at the grain boundaries of

halite crystals. At the base of MB139 we have an 0,59” thin layer of clay followed by vertical

orientated anhydrite with intersections of halite and clay streaks up to 5’ 9.09”. Until 4.9 ft the

cores are dominated by layers of lenticular spiked aggregates and idiomorphic columnar

crystals of polyhalite within an anhydritic matrix changing with layers of matted lenticular

aggregates of polyhalite with magnesite at the boundaries of the aggregates. Both shapes

show intersections of halite-filled pores with large, idiomorphic anhydrite crystals. In the

upper part of MB139 up to 2.46 ft anhydrite crystals dominate the rock (sometime with

pseudomorphic relics of former gypsum crystals ) intersecting with halite and occasionally

polyhalite, magnesite or clay. Typical are idiomorphic crystals of celestine all over the

anhydritic zone. The halite in the top of MB139 is dominated by halite with intersected cluster

of polyhalite. Noticeable are macroscopical visible fluid inclusions up to 0.2” containing brine,

brine and gas or brine and crystals of polyhalite, anhydrite or sometimes clay. The content of

hydrocarbons within samples from drillings QGU 12, 14, 36, 38 and 39 ranges between 0.2

and 2.4 mg/kg [C10-C40] with a maximum of 4.1 mg/kg [C10-C40]. The concentration of short-

chained hydrocarbons (<C10) is below detection limit. In comparison, samples from Gorleben

exploration mine (crosscut 1 west and 1 east) have an larger range of dispersion with an

130Proceedings of 5th US/German Workshop

January 30, 2015

Page 142: Reduced size m3 ft 15sn08180210 hansen

hydrocarbon content between 0.006 and 6.88 mg/kg [C1-C40] and 11 samples with >

6.881mg/kg [C10-C40] up to a maximum of 442 mg/kg [C10-C40].

However, the rock salt from Gorleben salt dome shows a nearly homogeneous texture. It

consists of halite with clews of anhydrite and accessory crystals of carbonate and sometimes

pyrite, celestine or authigenic quartz.

131Proceedings of 5th US/German Workshop

January 30, 2015

Page 143: Reduced size m3 ft 15sn08180210 hansen

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Petrog

raph

y, fluid distrib

ution, geo

chem

istry an

d microstructures of h

alite

 rocks from

 WIPP‐Site (a

nd Gorlebe

n)Maxim

ilian

 Pusch, JörgHa

mmer, Christian Ostertag‐He

nning

5th US/German

 Worksho

p on

 Salt R

eposito

ry Research, Design, and

 Ope

ratio

nSeptem

ber 7

 –11, 2014 | Santa Fe, N

ew M

exico

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Perm

iansaltform

ations

of W

IPP (flat b

edding; D

elaw

are ba

sin) & 

Gorlebe

n (saltd

ome; North German

 basin) in compa

rison

(BGR)

-328

0 ft

-656

1 ft

-984

2 ft

(SNL, m

odified

from

Lapp

in, 198

8)

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Perm

iansaltform

ations

of W

IPP (flat b

edding; D

elaw

are ba

sin) & 

Gorlebe

n (saltd

ome; North German

 basin) in compa

rison

‐moisture, com

positionand distrib

utionof fluids

‐con

centratio

nand compo

sitionof hydrocarbon

swith

inthe ho

strocks

‐differen

cesin geo

chem

icalcompo

sition

‐petrography, m

ineralogicalcompo

sitionand microstructures

Comparison

of halite

rocksfrom

flat b

edding

vs. saltd

ome

(BGR)

‐328

0 ft

‐656

1 ft

‐984

2 ft

(SNL, mod

ified

from

Lapp

in, 19

88)

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Locatio

n of W

IPP (Delaw

are ba

sin) & Gorlebe

n (North German

 basin)

132

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 144: Reduced size m3 ft 15sn08180210 hansen

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Locatio

n of W

IPP (Delaw

are ba

sin) & Gorlebe

n (North German

 basin)

Saltstructures

(permian)

Saltdo

me

Saltpillo

w

Kilometer

020

4060

8010

0

Gorlebe

n

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Locatio

n of W

IPP (Delaw

are ba

sin) & Gorlebe

n (North German

 basin)

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Drill coresegm

entsused

for sam

plingof W

IPP salt

SNLCV302

1´4.73“ 

2´3.04“

WIPP‐Site

Salado

‐Formation5´2.99“ 

5´6.14“

7´2.02“ 

7´10.09“

SNLCV302SNLCV302

MB 139

3´4.55“

4´1.01“

SNLCV302

MB 139

Source:

The Waste Isolation Pilot Plant:

A Po

tential Solutio

n for the

 Dispo

sal of TransuranicWaste

Committee on the Waste Isolation Pilot Plant, National R

esearch Co

uncil (199

6)

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Bisected

drill coreshow

pieces

of Zechstein z2

 and

 z3 from

Gorlebe

n

Zechstein 2

z2HS1

z2HS2

z2HS3

Gorlebe

n Sh

aft1

Exploration 

Area

  EB1

Infrastructure

Area

Level

133

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 145: Reduced size m3 ft 15sn08180210 hansen

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Bisected

drill coreshow

pieces

of z2

 and

 z3 from

Gorlebe

n

Zechstein 3

Exploration 

Area

  EB1

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

SNLCV302

1´4.73“ 

2´3.04“

Halite, light o

range 

to light g

ray

(bottom

of M

B 139)5´2.99“ 

5´6.14“

7´2.02“ 

7´10.09“

SNLCV302SNLCV302

MB 139

3´4.55“

4´1.01“

SNLCV302

MB 139

Petrograph

y, m

ineralogyan

d microstructures

of W

IPP salt

Source:

The Waste Isolation Pilot Plant:

A Po

tential Solutio

n for the

 Dispo

sal of TransuranicWaste

Committee on the Waste Isolation Pilot Plant, National R

esearch Co

uncil (199

6)

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Characteristicso

f Halite

 (Bottom

of M

B 139)

Thinsections

from

depth7´2.61“ to 7´9.30“

100

µm

100

µm

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Source:

The Waste Isolation Pilot Plant:

A Po

tential Solutio

n for the

 Dispo

sal of TransuranicWaste

Committee on the Waste Isolation Pilot Plant, National R

esearch Co

uncil (199

6)

SNLCV302

1´4.73“ 

2´3.04“

Polyhalitize

dzone

(MB 139)

5´2.99“ 

5´6.14“

7´2.02“ 

7´10.09“

SNLCV302SNLCV302

MB 139

3´4.55“

4´1.01“

SNLCV302

MB 139

Drill coresegm

entsused

for sam

plingof W

IPP salt

134

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 146: Reduced size m3 ft 15sn08180210 hansen

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Characteristicso

f Polyhalite

 zone

(MB 139)

Thinsections

from

depth5´2.99“ to 5´9.09“

100

µm

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Source:

The Waste Isolation Pilot Plant:

A Po

tential Solutio

n for the

 Dispo

sal of TransuranicWaste

Committee on the Waste Isolation Pilot Plant, National R

esearch Co

uncil (199

6)

SNLCV302

1´4.73“ 

2´3.04“

Anhydrite

 zone

(MB 139)

5´2.99“ 

5´6.14“

7´2.02“ 

7´10.09“

SNLCV302SNLCV302

MB 139

3´4.55“

4´1.01“

SNLCV302

MB 139

Drill coresegm

entsused

for sam

plingof W

IPP salt

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Characteristicso

f Anh

ydrite zone

(MB 139)

Thinsections

from

depth1´9.26“ to 4´5.94“

100

µm10

0 µm

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

SNLCV302

1´4.73“ 

2´3.04“

Halite, clear

with

plebs

of polyhalite

(top of M

B 139)5´

2.99“ 

5´6.14“

7´2.02“ 

7´10.09“

SNLCV302SNLCV302

MB 139

3´4.55“

4´1.01“

SNLCV302

MB 139

Drill coresegm

entsused

for sam

plingof W

IPP salt

Source:

The Waste Isolation Pilot Plant:

A Po

tential Solutio

n for the

 Dispo

sal of TransuranicWaste

Committee on the Waste Isolation Pilot Plant, National R

esearch Co

uncil (199

6)

135

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 147: Reduced size m3 ft 15sn08180210 hansen

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Characteristicso

f Halite

 at the

 top of Anh

ydrite (M

B 139)

Thinsections

from

depth1´2.57“ to 1´9.26“

Z = 30

0 µm

20 µm

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Gorlebe

n explorationmine

mainrock sa

ltz2HS

1“Knäue

lsalz“

Stratig

raph

icpo

sitio

nan

d drill coresegm

entsof Gorlebe

n salt 8´

5.57“ 

9´1.65“

02YEQ02\RB655

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Characteristicso

f Halite

 (z2H

S1 –“Knä

uelsalz“) from

Gorlebe

nCrosscut

1 West ‐

Thinsections

beyond

Excavatio

nDa

maged

Zone

 (depth

9´11.29“ to

 18´1.71“)

100

µm

100

µm10

0 µm

100

µm

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Mineralogicalcompo

sitio

nof th

e z2HS (“Hau

ptsalz“) hostrocks

Halite

 wt.‐%

Anhydrite

 wt.‐%

"Rest" wt.‐%

µgB

r/g

Hal

ite

z2HS1

 –mineralogicalcompo

sitio

nmin

71,7

0,4

0,0

55,2

max

99,9

22,2

0,1

90,0

mean

93,3

6,0

0,0

66,7

z2HS2

 –mineralogicalcompo

sitio

nmin

77,3

0,2

0,0

53,3

max

100,1

20,4

0,1

100,4

mean

94,4

4,8

0,0

79,7

z2HS3

 –mineralogicalcompo

sitio

nmin

95,3

0,0

0,0

93,0

max

99,7

5,2

0,1

173,4

mean

97,6

2,0

0,0

136,9

136

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 148: Reduced size m3 ft 15sn08180210 hansen

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

100

µm

100

µm

Z = 480µ

m

Z = 400µ

mZ = 115µ

m

Hydrocarbon

s at g

rainbo

unda

riesw

ithinz2HS1 (“Kn

äuelsalz“)

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Fluid inclusions

in Halite

 from

WIPP (Top

 of M

B 139)

Observedin sa

ltchun

ksused

for thinsections

from

depth1´7.29“ to 2´2.37“

Z = 90

0 µm

Water

conten

tGorlebe

n: app

rox.  ~ 0,02

 wt.‐%

Water

conten

tWIPP: app

rox. 1‐(2

 wt.‐%)

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Hydrocarbon

 conten

tin Gorlebe

n mainrock sa

ltan

d WIPP‐Halite

0.00

1

0.010.1110100

1000

Gor ‐Q1W/Q1E: C1‐C40[mg/kg]WIPP: C10‐C40[mg/kg]

Gor ‐ Q1W

Gor ‐ Q1E

WIPP

QGU 12

QGU 14

QGU 36

QGU 38

QGU 39

Prob

ablycontam

ination

dueto drillin

gprocess

QGU 12

QGU 14

QGU 36

QGU 38

QGU 39

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Brom

ide‐Stan

dard‐Profileof Zechstein 2 (G

orlebe

n)

137

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 149: Reduced size m3 ft 15sn08180210 hansen

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Br‐ ‐cocen

trationof sa

mples

from

drillingSN

LCV3

02

020406080100

120

00.5

11.5

22.5

33.5

44.5

55.5

66.5

77.5

88.5

9

µgBr/g Halitede

pth[ft]

µgBr/g Halite

Halite

 (Top

 MB 139)

Anhydrite

 zon

e

Samples for rock mechanic

Samples for rock mechanic

Zone

 bou

ndaries

by Pow

ers2

013

Polyha

litized

zone

Halite

 (Bottom

MB 13

9)

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Compo

sitio

n(m

ainminerals) of sam

ples

from

drillingSN

LCV3

02

020406080100

120

00.5

11.5

22.5

33.5

44.5

55.5

66.5

77.5

88.5

9

wt.‐% of mineralphases

depth [ft]

Brom

ide

Halite

 (Top

 MB 139)

Anhydrite

 zon

ePo

lyha

litized

zone

Halite

 (Bottom

MB 13

9)

Samples for rock mechanic

Samples for rock mechanic

Zone

 bou

ndaries

by Pow

ers2

013

Halite

Anhydrite

Polyha

lite

Brom

ide

Bromide                                                      content10

0

120 80 60 40 20 0

B 3.1 –Geo

logical‐geo

technical Exploratio

nFede

ral Institute for 

Geo

sciences

and 

Natural Resou

rces

Summary ‐D

ifferen

cesbe

tweenWIPP an

d Gorlebe

n

WIPP‐Site (flat b

edding)

Large litho

logicalvariatio

ns

Gorlebe

n (saltd

ome)

‐Halite

 (NaCl)

‐Anh

ydrite (CaSO4)

‐Carbo

nate

(CaCO3; CaMg(CO

3)2; M

gCO3)

‐(Pyrite; FeS

2)

Large ho

mogen

eous

areas

Main minerals:

Small amou

ntof hydrocarbon

swith

a max. up to 443

 mg/kg (C

1to C

40); 

matured

oil

Small fluid inclusions

alon

gfissures/

 grain

boun

darie

s& re

licso

f prim

aryinclusions

Lower

water

content; approx.  ~

 0,02 wt.‐%

Main minerals:

‐Halite

 (NaCl)

‐Polyhalite

 (K2Ca 2Mg(SO

) 4. 2H 2O)

‐Celestin

e(SrSO4)

‐(Pyrite; FeS

2)

Hydrocarbo

n concentration(C

1to C

10) 

belowrespon

selevel; contento

f(C

10to C

40) u

p to 4,1 m

g/kg; 

immatured

organicmatter (rooted

plants)

Lots of large fluid inclusions

with

gases, 

solid

 crystalof evapo

ritemineralso

rclay

Higher

water

content; approx. 1‐(2

 wt.‐%)

Br  ‐content: seem

sto be

 the resultof an

synsed

imentary

ordiagen

eticalteratio

n

Br  ‐content: isthe resultof increm

ental

progressive evaporationwith

some

metam

orph

iczone

s

‐‐

138

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 150: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

011-

XXXX

P

Shaft seal systems o

f VSG

Nina Müller‐Ho

eppe

DBE TECH

NOLO

GY GmbH

Eschen

straße

55, D

‐31224

 Peine

/Germany

Mül

ler-H

oepp

e 0

9/20

142

Out

line

Status at U

S‐German

 Worksho

ps 2010 & 2011

Technical design proced

ure

Selected

 step

s of d

esign proced

ure

Re

sults

Co

nclusio

ns & outlook

Mül

ler-H

oepp

e 0

9/20

143

Stat

us a

t US-

Ger

man

Wor

ksho

ps 2

010

& 2

011

De

cisio

n to use Europ

ean Standards in civil engineerin

g (Eurocod

e) as d

esign basis

 for the

 VSG

 sealing system

 on a trial 

basis

to derive and apply approp

riate te

chnical spe

cifications and

 procedu

res

to link

 “long

‐term SA”

 and

 the proo

f of safety functio

n of se

aling system

s

to assess the

 con

sequ

ences o

f differen

t working

 lives for se

aling system

s requ

ired in “long

‐term SA”

 and

 Eurocod

eby

 decou

pling actio

ns and

 resistances in

 “short‐term

” and “lon

g‐term

” processes a

s a first 

appro ach

As a re

sult, corrosio

n du

e to geo

chem

ical con

ditio

ns was 

iden

tified as a “long

‐term” actin

g process o

n sealing system

s causing de

gradation that is not su

fficien

tly covered

 by Eurocode

Mül

ler-H

oepp

e 0

9/20

144

Stat

us a

t US-

Ger

man

Wor

ksho

ps 2

010

& 2

011

The concep

tual VSG

 sealing system

 (shaft & drift seals) is based

 on

 prototype

s

availability of data for techn

ical sp

ecificatio

ns (m

inim

ize expert 

judgmen

t)

constructability is guaranteed

 (proof of con

structability)

The sealing system

 is con

structible and

 the proo

f of safety 

functio

n show

s a high de

gree

 of reliability

Bu

t as a

 draft not yet optim

ized

139

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 151: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

145

Tech

nica

l Des

ign

Proc

edur

e

(1)Co

ncep

tual design

(2)Prelim

inary dimen

sioning

(3)Ba

sic Design

(4)Dimen

sioning

(5)De

tailed De

sign

As a re

sult, geo

chem

ical actions (corrosio

n) were analysed

first due

 to lack of kno

wledge on

 quantita

tive effects o

f a 

long

‐term im

pact

Des

ign

wor

king

life

(func

tiona

llife

time)

Act

ions

(im

pact

s)R

esis

tanc

es(d

epen

ding

on d

esig

n)D

esig

n si

tuat

ions

Focu

s on

sel

ecte

dac

tions

(impa

cts)

w

ithhi

gh ri

skfo

rsig

nific

antd

esig

n m

odifi

catio

nsre

gard

ing

the

„unk

owns

Mül

ler-H

oepp

e 0

9/20

146

(1) C

once

ptua

l des

ign

–sh

aft s

eal (

VSG

)Ca

p ro

ck so

lutio

n

GS +

stan

dard

conc

rete

= G1

G1 +

saltt

op =

G2

G2 +

bento

nite=

G3

Brine

sequ

ence

sand

seali

ngma

terial

sar

ecom

patib

le. D

ue to

limite

d amo

unto

fMg

Cl2,

only

small

amou

ntsof

salt

conc

rete

mayb

ecor

rode

d.

G3 +

saltc

oncre

te=

G4

G4 +

tech

nical

bisch

ofite

= G5

G5 +

Sor

el co

ncre

te=

G6

(2) P

relim

inarydimen

sioning

basic

desig

n

Mül

ler-H

oepp

e 0

9/20

147

(3) B

asic

des

ign

–sh

aft s

eal (

VSG

)

seism

icev

ent(

earth

quak

e)

Chem

ical im

pact

(corro

sion)

Brine

pres

sure

from

over

burd

en

Basic

desig

n inc

ludes

ne

cess

aryd

esign

mod

ificati

ons

dim

ensio

ns

Mül

ler-H

oepp

e 0

9/20

148

(4) D

imen

sion

ing

Ba

sic design is a highly back coup

led “inp

ut structure”  for 

system

s analysis

 with

in th

e safety case

Significant basic design mod

ificatio

ns are possib

le in prin

ciple

Bu

t the

 structure of th

e safety case may significantly be 

affected

 

“Goo

d” basic design is essential

140

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 152: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

149

(4a)

Str

uctu

re o

f saf

ety

case

-VS

G

Basics

Repo

sitory design

System

s ana

lysis

Synthe

sis

LEGA

L DE

MAND

SNE

A-FE

P-DA

TABA

SE

Site-

spec

ificsa

fety

conc

ept

Amou

ntsan

dtyp

esof

waste

Geolo

g. co

nditio

nsan

dlon

g-ter

m ev

olutio

nofs

ite

Preli

mina

ryre

posit

oryd

esign

Oper

ation

al sa

fety

Optim

izatio

nof

repo

sitor

ylay

out

Comp

ilatio

nand

evalu

ation

ofre

sults

Reco

mmen

datio

ns

FEP-

Catal

ogue

Radio

logica

l Co

nseq

uenc

es

Asse

ssm

ent

Hu

man

intru

sion

Scen

ario

deve

lopme

nt

Integ

rityve

rifica

tion

•Ge

ologic

al ba

rrier

•Ge

otec

hn. b

arrie

rs

Mül

ler-H

oepp

e 0

9/20

1410

(4b)

Sch

eme

of te

chni

cal f

unct

iona

l pro

of -

VSG E d

<R

d

Ed:

Des

ign

valu

esof

effe

cts

ofac

tions

Rd:

Des

ign

valu

esof

resi

stan

ces

Unu

sual

desi

gn w

orki

nglif

e:50

,000

yea

rsun

tilne

xtic

eag

e

Mül

ler-H

oepp

e 0

9/20

1411

(4c)

FEP

s af

fect

ing

geot

echn

ical

bar

riers

-VS

G

System

s ana

lysis

FEP-

Catal

ogue

Scen

ario

deve

lopme

nt

Integ

rityve

rifica

tion

•Ge

ologic

al ba

rrier

•Ge

otec

hn. b

arrie

rs

Radio

logica

l Co

nseq

uenc

es

FEP-

No.

FEP-

Nam

eA

ffect

edge

otec

hnic

alba

rrie

r1.

2.03

.01

Earth

quak

eSh

afts

eal,

drift

seal

1.2.

09.0

1D

iapi

rism

Shaf

tsea

l,dr

ift1.

2.09

.02

Subr

osio

nSh

afts

eal

1.3.

05.0

3Fo

rmat

ion

ofgl

acia

lcha

nnel

sSh

afts

eal

2.1.

05.0

4A

ltera

tion

ofdr

iftan

dsh

afts

eals

Shaf

tsea

l,dr

iftse

al2.

1.07

.01

Con

verg

ence

Shaf

tsea

l,dr

iftse

al2.

1.07

.02

Flui

dpr

essu

reSh

afts

eal,

drift

seal

2.1.

07.0

4Vo

lum

ech

ange

sin

mat

eria

ls–

nott

herm

ally

indu

ced

Shaf

tsea

l,dr

iftse

al

2.1.

07.0

7D

ispl

acem

ento

fsha

ftse

alSh

afts

eal

2.1.

08.0

8Sw

ellin

gof

bent

onite

Shaf

tsea

l2.

1.09

.02

Solu

tion

and

prec

ipita

tion

Shaf

tsea

l,dr

iftse

al2.

1.09

.06

Cor

rosi

onof

mat

eria

lsw

ithce

men

tor

mag

nesi

umox

ychl

orid

eph

ases

Shaf

tsea

l,dr

iftse

al

2.2.

01.0

1Ex

cavt

ion

dam

aged

zone

Shaf

tsea

l,dr

iftse

al2.

2.06

.01

Cha

nge

ofst

ress

esSh

afts

eal,

drift

seal

Less

likel

yFE

Ps

Initi

al F

EP

s

FEP-

No.

FEP-

Nam

eA

ffect

edge

otec

hnic

alba

rrie

r2.

1.07

.05

Early

failu

reof

ash

afts

eal*

Shaf

tsea

l2.

1.07

.06

Early

failu

reof

adr

iftse

al*

Drif

tsea

l2.

1.08

.05

Pipi

ngin

seal

sSh

afts

eal,

drift

seal

*inc

l. m

alfu

nctio

n ca

used

by

insu

ffici

ent c

onst

ruct

ion

proc

ess

Mül

ler-H

oepp

e 0

9/20

1412

(4d)

Act

ions

& d

esig

n si

tuat

ions

-VS

G

DIN

EN

199

0, D

IN E

N 1

997

Des

ign

situ

atio

nC

hara

cter

istic

cond

ition

sTr

ansi

ents

ituat

ions

*Te

mpo

rary

,nor

mal

situ

atio

ns,e

.g.c

onst

ruct

ion

proc

ess

Pers

iste

ntsi

tuat

ions

*N

orm

alsi

tuat

ions

acco

rdin

gto

norm

alfu

nctio

nan

dus

eA

bnor

mal

(acc

iden

tal)

situ

atio

ns**

Rar

e,m

ostly

extra

ordi

nary

situ

atio

ns,e

.g.a

ccid

enta

lsitu

atio

nsas

impa

ctso

rexp

losi

ons

Seis

mic

situ

atio

ns(e

arth

quak

es)*

**Sh

ort,

limite

din

time,

desi

gn-d

efin

ing

earth

quak

esra

re*

will

occu

r**

will

prob

ably

noto

ccur

***r

egio

nald

iffer

ence

sin

occu

rren

ce

No.

Nam

eof

actio

nC

hem

ical

actio

ns1.

Che

mic

alac

tions

indu

ced

byso

lutio

nsan

dga

ses

2.C

hem

ical

actio

nsin

duce

dby

tem

pera

ture

chan

geM

echa

nica

lact

ions

1.Ef

fect

sdue

tofo

rces

and

stre

sses

1.1

Dea

dlo

ad1.

2R

ock

pres

sure

1.3

Flui

dpr

essu

re1.

4Fl

owfo

rces

1.5

Res

train

tstre

sses

1.6

Mas

sfor

ces(

earth

quak

es)

2.Ef

fect

sdue

toim

pres

sed

stra

ins

2.1

Ther

mal

expa

nsio

n/co

ntra

ctio

n2.

2Sw

ellin

g/sh

rinki

ng2.

3C

reep

/rela

xatio

n2.

4R

estra

ints

train

s(de

form

atio

nco

nstra

ints

,set

tling

)

141

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 153: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

1413

(4e)

Lin

kage

of F

EPs,

act

ions

& d

esig

n si

tuat

ions

FEP-

No.

FEP-

Nam

eC

lass

ifica

tion

with

inth

efu

nctio

nalp

roof

*1.

2.03

.01

Earth

quak

eD

S, se

ism

ic D

S; A

, mas

s fo

rces

1.2.

09.0

1D

iapi

rism

A, r

estra

int s

train

s1.

2.09

.02

Subr

osio

nEx

clud

ed, b

ecau

se si

gnifi

canc

e st

arts

with

nex

t gl

acia

tion

(afte

r sel

ecte

d pe

rfor

man

ce p

erio

d)1.

3.05

.03

Form

atio

n of

gla

cial

cha

nnel

sEx

clud

ed, b

ecau

se si

gnifi

canc

e st

arts

with

nex

t gl

acia

tion

(afte

r sel

ecte

d pe

rfor

man

ce p

erio

d)2.

1.05

.04

Alte

ratio

n of

drif

t and

shaf

t sea

lsA

, con

sequ

ence

of c

hem

ical

act

ion

incl

. te

mpe

ratu

re2.

1.07

.01

Con

verg

ence

A, e

quiv

alen

t to

rock

pre

ssur

e du

e to

co

nstit

utiv

e eq

uatio

n 2.

1.07

.02

Flui

d pr

essu

reA

, flu

id p

ress

ure

2.1.

07.0

4Vo

lum

e ch

ange

s in

mat

eria

ls –

not

ther

mal

ly in

duce

dA

, sw

ellin

g/sh

rinki

ng

2.1.

07.0

7D

ispl

acem

ent o

f sha

ft se

alA

, res

train

t stra

ins o

r a c

onse

quen

ce o

f fo

rces

/stre

sses

2.1.

08.0

8Sw

ellin

g of

ben

toni

teA

, sw

ellin

g2.

1.09

.02

Solu

tion

and

prec

ipita

tion

A, c

onse

quen

ce o

f che

mic

al a

ctio

n in

cl.

tem

pera

ture

2.

1.09

.06

Cor

rosi

on o

f mat

eria

ls w

ith c

emen

t or

mag

nesi

um o

xych

lorid

eph

ases

A, c

onse

quen

ce o

f che

mic

al a

ctio

n in

cl.

tem

pera

ture

2.2.

01.0

1Ex

cava

tion

dam

aged

zon

eN

eith

er D

S, A

nor

R b

ut c

ompo

nent

of t

he se

al

2.2.

06.0

1C

hang

e of

stre

sses

A, d

ead

load

, roc

k pr

essu

re, f

luid

pre

ssur

e, fl

ow

forc

es, r

estra

int s

tress

es

* If

clas

sific

atio

n is

impo

ssib

le o

r mea

ning

less

, a c

omm

ent i

s giv

en

FEP-

No.

FEP-

Nam

eC

lass

ifica

tion

with

inth

efu

nctio

nalp

roof

2.1.

07.0

5Ea

rlyfa

ilure

ofa

shaf

tsea

lD

S,ab

norm

alsi

tuat

ion

2.1.

07.0

6Ea

rlyfa

ilure

ofa

drift

seal

DS,

abno

rmal

situ

atio

n2.

1.08

.05

Pipi

ngin

seal

sA

,con

sequ

ence

ofch

emic

alac

tions

orflo

wfo

rces

Clas

sifica

tion o

f FEP

s with

in the

tech

nical

functi

onal

proo

f

DS =

desig

n situ

ation

A

= ac

tion

R =

resis

tance

Mül

ler-H

oepp

e 0

9/20

1414

(4f)

Cal

cula

tions

-VSG

BGR

subm

odel

ling

tech

niqu

e

Mül

ler-H

oepp

e 0

9/20

1415

(5) D

etai

led

desi

gn

Insig

nificant m

odificatio

ns of b

asic design

Re

ady to start con

struction process 

Mül

ler-H

oepp

e 0

9/20

1416

Res

ults

–In

tegr

ity o

f Sha

ft Se

al

Individu

al proofs to guarantee integrity

 were successful 

regarding relevant com

binatio

ns of the

rmal, m

echanical, and 

chem

ical actions

Thus, the

 prognosis that hydraulic re

sistance as plann

ed will 

really be achieved

 show

s high level of reliability

Pre‐cond

ition

: Highly qu

alified

 con

struction process

“As b

uilt”

 and

 “as plann

ed” may be diffe

rent!

142

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 154: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

1417

Con

clus

ions

& O

utlo

ok

Re

garding VS

G sh

aft seal linkage of safety case & te

chnical 

functio

nal proof was su

ccessfully put into practice

Progress has been made

Individu

al te

chnical proofs forged ahead

Technical spe

cifications are available form

ing the basis

 for suitability 

tests

Technical basis to establish qu

ality

 assurance procedu

res is a

vailable

Ope

n qu

estio

ns

Assessing the influ

ence of con

tact zo

nes/interfaces

Espe

cially experim

ental data is still ra

re

Mül

ler-H

oepp

e 0

9/20

1418

Ack

now

ledg

emen

ts Man

y th

anks

-to

my

colle

ague

s M

icha

el B

reus

tedt

, Die

ter B

uhm

ann,

Oliv

er

Cza

ikow

ski,

Han

s-Jo

achi

mEn

gelh

ardt

, Hor

st J

ürge

n H

erbe

rt,

Chr

istia

n Le

rch,

Mic

hael

Lin

kam

p, K

laus

Wie

czor

ek, J

ohan

na

Wol

f, M

ingl

iang

Xie

for t

heir

cont

ribut

ions

to V

SG w

ork

pack

age

9.2

-In

tegr

ity o

f geo

tech

nica

l bar

riers

-

-to

my

colle

gues

from

BG

R, B

fS, D

BE,

GR

S, If

G, A

sse–

Gm

bH

(form

erH

MG

U&

GSF

), IB

eWa,

TU

Cla

usth

alfo

r the

ir co

llabo

ratio

n

-to

the

Fede

ral M

inis

try

for t

he E

nviro

nmen

t, N

atur

e C

onse

rvat

ion,

Bui

ldin

g, a

nd N

ucle

ar S

afet

y (B

MU

B) f

or

fund

ing

the

proj

ect

Mül

ler-H

oepp

e 0

9/20

1419

DB

E TE

CH

NO

LOG

Y G

mbH

Than

k yo

ufo

r you

r atte

ntio

n!

143

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 155: Reduced size m3 ft 15sn08180210 hansen

ELSA – shaft seal project “Phase 2”

Uwe Glaubach TU Bergakademie Freiberg (TUBAF), Institute of Mining and Special Civil Engineering, Saxony / Germany

Abstract Salt and clay formations are potential regions for future HLW-repositories in Germany. To fulfill the principle of a geological barrier, the shaft seals are the most important elements in the geotechnical barrier system for underground repositories. The isolation potential of shaft seals has to be as close as possible to the geological barrier.

While approved shaft seal concepts for HLW‐ repositories universal suitable for salt and clay formations are actual not available, the emphasis of the ELSA project is to design and construct functional components of a long-term stable sealing system for a shaft seal and demonstrate the constructability and functionality.

The ELSA project is a joint research project between TUBAF and DBE-TEC and is portioned into 3 phases, while the phase 1 “Compilation of boundary conditions and design requirements” is finished with an available report (02E10921). At present, the phase 2 “Concept development for shaft seals and demonstration of functional components” is in progress.

The general aims of the ELSA project are:

Development of a modular and non‐site specific shaft sealing concept for salt and clay formations and

Test of functional components in laboratory scale and half scale.

Specific investigations are carried out in phase 2 on the following topics:

producibility of backfill columns from compacted crushed salt (<0.9 0) calottes from Basalt blocks to support a low‐settling gravel column abutments and seals from long‐term stable (3‐1‐8) MgO concrete grouting technologies to seal DRZ and contact between host rock and sealing elements emplacement technologies for bitumen / asphalt sealing elements bentonite sealing elements in argillaceous host rock model‐theoretical analysis on different states of construction, as well as loading and flow

processes

The first results showing, that a crushed salt with an optimized grain size distribution gets a better compaction behavior than straight mine‐run salt. Investigations on the compaction of an optimized crushed salt with added clay suggests that this material mix has an instant sealing potential.

The MgO‐concrete with a 3‐1‐8 phase is an additional material option for long-term stable abutments and seals in shaft‐sealing systems for HLW‐repositories.

The generation of a CPA based particle model to analyze the behavior of a gravel column is nearly finished. After calibration of the particle model, the behavior of gravel columns during emplacement and operation can be assessed by simulations.

As before, bitumen / asphalt are still a good option as diverse redundant sealing material. Especially since the wetting of the bituminous binder with the host rock (salt and clay) can be improved with a patented primer (no. DE 102008050211). A “cast in place” bitumen / gravel element is an additional option for a combined abutment / sealing element.

144Proceedings of 5th US/German Workshop

January 30, 2015

Page 156: Reduced size m3 ft 15sn08180210 hansen

145

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 157: Reduced size m3 ft 15sn08180210 hansen

146

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 158: Reduced size m3 ft 15sn08180210 hansen

147

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 159: Reduced size m3 ft 15sn08180210 hansen

148

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 160: Reduced size m3 ft 15sn08180210 hansen

149

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 161: Reduced size m3 ft 15sn08180210 hansen

150

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 162: Reduced size m3 ft 15sn08180210 hansen

151

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 163: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

011-

XXXX

P

Shaft seal systems o

f VSG

Nina Müller‐Ho

eppe

DBE TECH

NOLO

GY GmbH

Eschen

straße

55, D

‐31224

 Peine

/Germany

Mül

ler-H

oepp

e 0

9/20

142

Out

line

Status at U

S‐German

 Worksho

ps 2010 & 2011

Technical design proced

ure

Selected

 step

s of d

esign proced

ure

Re

sults

Co

nclusio

ns & outlook

Mül

ler-H

oepp

e 0

9/20

143

Stat

us a

t US-

Ger

man

Wor

ksho

ps 2

010

& 2

011

De

cisio

n to use Europ

ean Standards in civil engineerin

g (Eurocod

e) as d

esign basis

 for the

 VSG

 sealing system

 on a trial 

basis

to derive and apply approp

riate te

chnical spe

cifications and

 procedu

res

to link

 “long

‐term SA”

 and

 the proo

f of safety functio

n of se

aling system

s

to assess the

 con

sequ

ences o

f differen

t working

 lives for se

aling system

s requ

ired in “long

‐term SA”

 and

 Eurocod

eby

 decou

pling actio

ns and

 resistances in

 “short‐term

” and “lon

g‐term

” processes a

s a first 

appro ach

As a re

sult, corrosio

n du

e to geo

chem

ical con

ditio

ns was 

iden

tified as a “long

‐term” actin

g process o

n sealing system

s causing de

gradation that is not su

fficien

tly covered

 by Eurocode

Mül

ler-H

oepp

e 0

9/20

144

Stat

us a

t US-

Ger

man

Wor

ksho

ps 2

010

& 2

011

The concep

tual VSG

 sealing system

 (shaft & drift seals) is based

 on

 prototype

s

availability of data for techn

ical sp

ecificatio

ns (m

inim

ize expert 

judgmen

t)

constructability is guaranteed

 (proof of con

structability)

The sealing system

 is con

structible and

 the proo

f of safety 

functio

n show

s a high de

gree

 of reliability

Bu

t as a

 draft not yet optim

ized

152

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 164: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

145

Tech

nica

l Des

ign

Proc

edur

e

(1)Co

ncep

tual design

(2)Prelim

inary dimen

sioning

(3)Ba

sic Design

(4)Dimen

sioning

(5)De

tailed De

sign

As a re

sult, geo

chem

ical actions (corrosio

n) were analysed

first due

 to lack of kno

wledge on

 quantita

tive effects o

f a 

long

‐term im

pact

Des

ign

wor

king

life

(func

tiona

llife

time)

Act

ions

(im

pact

s)R

esis

tanc

es(d

epen

ding

on d

esig

n)D

esig

n si

tuat

ions

Focu

s on

sel

ecte

dac

tions

(impa

cts)

w

ithhi

gh ri

skfo

rsig

nific

antd

esig

n m

odifi

catio

nsre

gard

ing

the

„unk

owns

Mül

ler-H

oepp

e 0

9/20

146

(1) C

once

ptua

l des

ign

–sh

aft s

eal (

VSG

)Ca

p ro

ck so

lutio

n

GS +

stan

dard

conc

rete

= G1

G1 +

saltt

op =

G2

G2 +

bento

nite=

G3

Brine

sequ

ence

sand

seali

ngma

terial

sar

ecom

patib

le. D

ue to

limite

d amo

unto

fMg

Cl2,

only

small

amou

ntsof

salt

conc

rete

mayb

ecor

rode

d.

G3 +

saltc

oncre

te=

G4

G4 +

tech

nical

bisch

ofite

= G5

G5 +

Sor

el co

ncre

te=

G6

(2) P

relim

inarydimen

sioning

basic

desig

n

Mül

ler-H

oepp

e 0

9/20

147

(3) B

asic

des

ign

–sh

aft s

eal (

VSG

)

seism

icev

ent(

earth

quak

e)

Chem

ical im

pact

(corro

sion)

Brine

pres

sure

from

over

burd

en

Basic

desig

n inc

ludes

ne

cess

aryd

esign

mod

ificati

ons

dim

ensio

ns

Mül

ler-H

oepp

e 0

9/20

148

(4) D

imen

sion

ing

Ba

sic design is a highly back coup

led “inp

ut structure”  for 

system

s analysis

 with

in th

e safety case

Significant basic design mod

ificatio

ns are possib

le in prin

ciple

Bu

t the

 structure of th

e safety case may significantly be 

affected

 

“Goo

d” basic design is essential

153

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 165: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

149

(4a)

Str

uctu

re o

f saf

ety

case

-VS

G

Basics

Repo

sitory design

System

s ana

lysis

Synthe

sis

LEGA

L DE

MAND

SNE

A-FE

P-DA

TABA

SE

Site-

spec

ificsa

fety

conc

ept

Amou

ntsan

dtyp

esof

waste

Geolo

g. co

nditio

nsan

dlon

g-ter

m ev

olutio

nofs

ite

Preli

mina

ryre

posit

oryd

esign

Oper

ation

al sa

fety

Optim

izatio

nof

repo

sitor

ylay

out

Comp

ilatio

nand

evalu

ation

ofre

sults

Reco

mmen

datio

ns

FEP-

Catal

ogue

Radio

logica

l Co

nseq

uenc

es

Asse

ssm

ent

Hu

man

intru

sion

Scen

ario

deve

lopme

nt

Integ

rityve

rifica

tion

•Ge

ologic

al ba

rrier

•Ge

otec

hn. b

arrie

rs

Mül

ler-H

oepp

e 0

9/20

1410

(4b)

Sch

eme

of te

chni

cal f

unct

iona

l pro

of -

VSG E d

<R

d

Ed:

Des

ign

valu

esof

effe

cts

ofac

tions

Rd:

Des

ign

valu

esof

resi

stan

ces

Unu

sual

desi

gn w

orki

nglif

e:50

,000

yea

rsun

tilne

xtic

eag

e

Mül

ler-H

oepp

e 0

9/20

1411

(4c)

FEP

s af

fect

ing

geot

echn

ical

bar

riers

-VS

G

System

s ana

lysis

FEP-

Catal

ogue

Scen

ario

deve

lopme

nt

Integ

rityve

rifica

tion

•Ge

ologic

al ba

rrier

•Ge

otec

hn. b

arrie

rs

Radio

logica

l Co

nseq

uenc

es

FEP-

No.

FEP-

Nam

eA

ffect

edge

otec

hnic

alba

rrie

r1.

2.03

.01

Earth

quak

eSh

afts

eal,

drift

seal

1.2.

09.0

1D

iapi

rism

Shaf

tsea

l,dr

ift1.

2.09

.02

Subr

osio

nSh

afts

eal

1.3.

05.0

3Fo

rmat

ion

ofgl

acia

lcha

nnel

sSh

afts

eal

2.1.

05.0

4A

ltera

tion

ofdr

iftan

dsh

afts

eals

Shaf

tsea

l,dr

iftse

al2.

1.07

.01

Con

verg

ence

Shaf

tsea

l,dr

iftse

al2.

1.07

.02

Flui

dpr

essu

reSh

afts

eal,

drift

seal

2.1.

07.0

4Vo

lum

ech

ange

sin

mat

eria

ls–

nott

herm

ally

indu

ced

Shaf

tsea

l,dr

iftse

al

2.1.

07.0

7D

ispl

acem

ento

fsha

ftse

alSh

afts

eal

2.1.

08.0

8Sw

ellin

gof

bent

onite

Shaf

tsea

l2.

1.09

.02

Solu

tion

and

prec

ipita

tion

Shaf

tsea

l,dr

iftse

al2.

1.09

.06

Cor

rosi

onof

mat

eria

lsw

ithce

men

tor

mag

nesi

umox

ychl

orid

eph

ases

Shaf

tsea

l,dr

iftse

al

2.2.

01.0

1Ex

cavt

ion

dam

aged

zone

Shaf

tsea

l,dr

iftse

al2.

2.06

.01

Cha

nge

ofst

ress

esSh

afts

eal,

drift

seal

Less

likel

yFE

Ps

Initi

al F

EP

s

FEP-

No.

FEP-

Nam

eA

ffect

edge

otec

hnic

alba

rrie

r2.

1.07

.05

Early

failu

reof

ash

afts

eal*

Shaf

tsea

l2.

1.07

.06

Early

failu

reof

adr

iftse

al*

Drif

tsea

l2.

1.08

.05

Pipi

ngin

seal

sSh

afts

eal,

drift

seal

*inc

l. m

alfu

nctio

n ca

used

by

insu

ffici

ent c

onst

ruct

ion

proc

ess

Mül

ler-H

oepp

e 0

9/20

1412

(4d)

Act

ions

& d

esig

n si

tuat

ions

-VS

G

DIN

EN

199

0, D

IN E

N 1

997

Des

ign

situ

atio

nC

hara

cter

istic

cond

ition

sTr

ansi

ents

ituat

ions

*Te

mpo

rary

,nor

mal

situ

atio

ns,e

.g.c

onst

ruct

ion

proc

ess

Pers

iste

ntsi

tuat

ions

*N

orm

alsi

tuat

ions

acco

rdin

gto

norm

alfu

nctio

nan

dus

eA

bnor

mal

(acc

iden

tal)

situ

atio

ns**

Rar

e,m

ostly

extra

ordi

nary

situ

atio

ns,e

.g.a

ccid

enta

lsitu

atio

nsas

impa

ctso

rexp

losi

ons

Seis

mic

situ

atio

ns(e

arth

quak

es)*

**Sh

ort,

limite

din

time,

desi

gn-d

efin

ing

earth

quak

esra

re*

will

occu

r**

will

prob

ably

noto

ccur

***r

egio

nald

iffer

ence

sin

occu

rren

ce

No.

Nam

eof

actio

nC

hem

ical

actio

ns1.

Che

mic

alac

tions

indu

ced

byso

lutio

nsan

dga

ses

2.C

hem

ical

actio

nsin

duce

dby

tem

pera

ture

chan

geM

echa

nica

lact

ions

1.Ef

fect

sdue

tofo

rces

and

stre

sses

1.1

Dea

dlo

ad1.

2R

ock

pres

sure

1.3

Flui

dpr

essu

re1.

4Fl

owfo

rces

1.5

Res

train

tstre

sses

1.6

Mas

sfor

ces(

earth

quak

es)

2.Ef

fect

sdue

toim

pres

sed

stra

ins

2.1

Ther

mal

expa

nsio

n/co

ntra

ctio

n2.

2Sw

ellin

g/sh

rinki

ng2.

3C

reep

/rela

xatio

n2.

4R

estra

ints

train

s(de

form

atio

nco

nstra

ints

,set

tling

)

154

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 166: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

1413

(4e)

Lin

kage

of F

EPs,

act

ions

& d

esig

n si

tuat

ions

FEP-

No.

FEP-

Nam

eC

lass

ifica

tion

with

inth

efu

nctio

nalp

roof

*1.

2.03

.01

Earth

quak

eD

S, se

ism

ic D

S; A

, mas

s fo

rces

1.2.

09.0

1D

iapi

rism

A, r

estra

int s

train

s1.

2.09

.02

Subr

osio

nEx

clud

ed, b

ecau

se si

gnifi

canc

e st

arts

with

nex

t gl

acia

tion

(afte

r sel

ecte

d pe

rfor

man

ce p

erio

d)1.

3.05

.03

Form

atio

n of

gla

cial

cha

nnel

sEx

clud

ed, b

ecau

se si

gnifi

canc

e st

arts

with

nex

t gl

acia

tion

(afte

r sel

ecte

d pe

rfor

man

ce p

erio

d)2.

1.05

.04

Alte

ratio

n of

drif

t and

shaf

t sea

lsA

, con

sequ

ence

of c

hem

ical

act

ion

incl

. te

mpe

ratu

re2.

1.07

.01

Con

verg

ence

A, e

quiv

alen

t to

rock

pre

ssur

e du

e to

co

nstit

utiv

e eq

uatio

n 2.

1.07

.02

Flui

d pr

essu

reA

, flu

id p

ress

ure

2.1.

07.0

4Vo

lum

e ch

ange

s in

mat

eria

ls –

not

ther

mal

ly in

duce

dA

, sw

ellin

g/sh

rinki

ng

2.1.

07.0

7D

ispl

acem

ent o

f sha

ft se

alA

, res

train

t stra

ins o

r a c

onse

quen

ce o

f fo

rces

/stre

sses

2.1.

08.0

8Sw

ellin

g of

ben

toni

teA

, sw

ellin

g2.

1.09

.02

Solu

tion

and

prec

ipita

tion

A, c

onse

quen

ce o

f che

mic

al a

ctio

n in

cl.

tem

pera

ture

2.

1.09

.06

Cor

rosi

on o

f mat

eria

ls w

ith c

emen

t or

mag

nesi

um o

xych

lorid

eph

ases

A, c

onse

quen

ce o

f che

mic

al a

ctio

n in

cl.

tem

pera

ture

2.2.

01.0

1Ex

cava

tion

dam

aged

zon

eN

eith

er D

S, A

nor

R b

ut c

ompo

nent

of t

he se

al

2.2.

06.0

1C

hang

e of

stre

sses

A, d

ead

load

, roc

k pr

essu

re, f

luid

pre

ssur

e, fl

ow

forc

es, r

estra

int s

tress

es

* If

clas

sific

atio

n is

impo

ssib

le o

r mea

ning

less

, a c

omm

ent i

s giv

en

FEP-

No.

FEP-

Nam

eC

lass

ifica

tion

with

inth

efu

nctio

nalp

roof

2.1.

07.0

5Ea

rlyfa

ilure

ofa

shaf

tsea

lD

S,ab

norm

alsi

tuat

ion

2.1.

07.0

6Ea

rlyfa

ilure

ofa

drift

seal

DS,

abno

rmal

situ

atio

n2.

1.08

.05

Pipi

ngin

seal

sA

,con

sequ

ence

ofch

emic

alac

tions

orflo

wfo

rces

Clas

sifica

tion o

f FEP

s with

in the

tech

nical

functi

onal

proo

f

DS =

desig

n situ

ation

A

= ac

tion

R =

resis

tance

Mül

ler-H

oepp

e 0

9/20

1414

(4f)

Cal

cula

tions

-VSG

BGR

subm

odel

ling

tech

niqu

e

Mül

ler-H

oepp

e 0

9/20

1415

(5) D

etai

led

desi

gn

Insig

nificant m

odificatio

ns of b

asic design

Re

ady to start con

struction process 

Mül

ler-H

oepp

e 0

9/20

1416

Res

ults

–In

tegr

ity o

f Sha

ft Se

al

Individu

al proofs to guarantee integrity

 were successful 

regarding relevant com

binatio

ns of the

rmal, m

echanical, and 

chem

ical actions

Thus, the

 prognosis that hydraulic re

sistance as plann

ed will 

really be achieved

 show

s high level of reliability

Pre‐cond

ition

: Highly qu

alified

 con

struction process

“As b

uilt”

 and

 “as plann

ed” may be diffe

rent!

155

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 167: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

1417

Con

clus

ions

& O

utlo

ok

Re

garding VS

G sh

aft seal linkage of safety case & te

chnical 

functio

nal proof was su

ccessfully put into practice

Progress has been made

Individu

al te

chnical proofs forged ahead

Technical spe

cifications are available form

ing the basis

 for suitability 

tests

Technical basis to establish qu

ality

 assurance procedu

res is a

vailable

Ope

n qu

estio

ns

Assessing the influ

ence of con

tact zo

nes/interfaces

Espe

cially experim

ental data is still ra

re

Mül

ler-H

oepp

e 0

9/20

1418

Ack

now

ledg

emen

ts Man

y th

anks

-to

my

colle

ague

s M

icha

el B

reus

tedt

, Die

ter B

uhm

ann,

Oliv

er

Cza

ikow

ski,

Han

s-Jo

achi

mEn

gelh

ardt

, Hor

st J

ürge

n H

erbe

rt,

Chr

istia

n Le

rch,

Mic

hael

Lin

kam

p, K

laus

Wie

czor

ek, J

ohan

na

Wol

f, M

ingl

iang

Xie

for t

heir

cont

ribut

ions

to V

SG w

ork

pack

age

9.2

-In

tegr

ity o

f geo

tech

nica

l bar

riers

-

-to

my

colle

gues

from

BG

R, B

fS, D

BE,

GR

S, If

G, A

sse–

Gm

bH

(form

erH

MG

U&

GSF

), IB

eWa,

TU

Cla

usth

alfo

r the

ir co

llabo

ratio

n

-to

the

Fede

ral M

inis

try

for t

he E

nviro

nmen

t, N

atur

e C

onse

rvat

ion,

Bui

ldin

g, a

nd N

ucle

ar S

afet

y (B

MU

B) f

or

fund

ing

the

proj

ect

Mül

ler-H

oepp

e 0

9/20

1419

DB

E TE

CH

NO

LOG

Y G

mbH

Than

k yo

ufo

r you

r atte

ntio

n!

156

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 168: Reduced size m3 ft 15sn08180210 hansen

Salt Reconsolidation Principles and Application 5th US/German Workshop on

Salt Repository Research, Design and Operations Santa Fe, New Mexico, USA

September 7-11, 2014

Frank Hansen--Sandia National Laboratories, Albuquerque New Mexico USA Till Popp--Institut für Gebirgsmechanik (IfG), Leipzig, Germany

Klaus Wieczorek--Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), Braunschweig, Germany

Dieter Stührenberg--Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Hannover, Germany

Abstract Mechanical and hydrological properties of reconsolidating salt are functions of porosity which decreases as the surrounding salt formation creeps inward and compresses granular salt within the rooms, drifts or shafts. Construction circumstances within a vertical shaft provide substantial advantage for dynamic compaction techniques capable of creating high emplacement density and low initial porosity. Placement of granular salt in a horizontal drift suffers from a less favorable construction orientation and may yield lower emplaced density and significant initial porosity for its evolutionary evaluation. Drift placement of granular salt is expected to function as a low-porosity, low-permeability structural element with vital repository performance expectations. The material covered in this presentation demonstrates collaboration on a key technical issue to establish the state-of-the-art for a Salt Club report. It provides a review of essential aspects of engineering barriers of low-porosity crushed salt, which will continue to consolidate and decrease permeability.

The current state of knowledge benefits from large amounts of pertinent information on granular salt reconsolidation ranging over a length scale from atomic spacing to tens of meters. However, repository applications are concerned with very long time periods and in some cases properties of reconsolidating salt are predicted to occur far into the future after initial placement. Extrapolation based on modeling is often invoked to estimate engineering performance beyond the human experience, which by its very nature introduces an element of uncertainty. Construction techniques capable of emplacing granular salt seals, perhaps with additives, to near final performance conditions greatly reduce the need for extrapolation. Much of the potential performance uncertainty can be removed by deepening the mechanistic understanding through continued research and additional validation garnered from analogues from industry practice and nature.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DEAC04-94AL85000. From SAND2014-4502P. SAND2014-16021A.

157Proceedings of 5th US/German Workshop

January 30, 2015

Page 169: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. A

ll sl

ides

wer

e ex

tract

ed fr

om

SA

ND

2014

-450

2P.

SA

ND

NO

. 201

4-16

020P

E.

Salt Re

consolidation Principles and

 Ap

plication 

5thUS/German

 Worksho

p on

 Salt Re

pository Re

search, D

esign and Ope

ratio

ns

Santa Fe, N

ew M

exico, USA

Septem

ber 7

‐11, 2014

Fran

k H

anse

n--S

andi

a N

atio

nal L

abor

ator

ies,

Alb

uque

rque

New

Mex

ico

USA

Till

Popp

--In

stitu

t für

Geb

irgsm

echa

nik

(IfG

), Le

ipzi

g, G

erm

any

Kla

us W

iecz

orek

--G

esel

lsch

aft f

ür A

nlag

en- u

nd R

eakt

orsi

cher

heit (G

RS)

, Bra

unsc

hwei

g,

Ger

man

y

Die

ter S

tühr

enbe

rg--

Bund

esan

stal

t für

Geo

wis

sens

chaf

ten

und

Roh

stof

fe (B

GR

), H

anno

ver,

Ger

man

y

Presen

tatio

n Co

nten

t

Ba

ckgrou

nd

Micromechanics‐‐h

ydro‐m

echanical interactio

ns

Expe

rimen

tal salt recon

solidation mechanics

Transport p

rope

rties o

f com

pacted

 crushed

 salt

Natural analogues‐‐F

ield‐scale observatio

ns‐‐A

pplications

Pe

rcep

tions‐‐F

uture work

2

Backgrou

nd—Ro

le of R

econ

solidated

 Salt

Act a

s a long

‐term barrie

r against inflo

wing brine or water 

and elim

inate release pathways v

ia drifts and

 shafts

Co

nduct h

eat g

enerated

 by radioactive de

cay from

 the waste 

to th

e ho

st ro

ck

Stabilize re

pository excavatio

ns

Provide low permeability and/or diffusivity

 and

/or lon

g‐term

 retardation

Ke

y qu

estio

ns involve ho

w, w

hen, and

 to what d

egree 

prop

ertie

s of recon

solidating granular sa

lt approach or a

ttain 

those of th

e nativ

e salt form

ation

3

Micromechanics

4N

ote/

Sour

ce: (

mod

ified

afte

rEllig

er, 2

004)

158

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 170: Reduced size m3 ft 15sn08180210 hansen

Granu

lar S

alt F

oren

sics

5

Plasticity

‐Cou

pled

 Pressure Mechanism

 

6

Afte

r Spi

ers

and

Brz

esow

sky

1993

SE

M M

icro

grap

h

Con

solid

atio

n A

roun

d Te

st H

eate

r

Expe

rimen

tal Recon

solidation Set‐Ups

7

Afte

r Bec

htho

ldet

al.

2004

)

Compaction –Expe

rimen

tal Procedu

res

8

Type

I C

onst

ant s

train

rate

Type

II C

onst

ant l

oad

cree

p

159

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 171: Reduced size m3 ft 15sn08180210 hansen

Consolidation un

der O

edom

eter

Test Con

ditio

ns

9

Impact of A

dditives o

n the Co

mpaction Be

havior 

10

Perm

eability‐Po

rosity Re

latio

ns of D

ilatin

g Ro

ck Salt 

and Re

consolidating Granu

lar S

alt

11

Perm

eability‐Po

rosity Da

ta Sets for Crushed

 Salt 

Aggregates

12

160

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 172: Reduced size m3 ft 15sn08180210 hansen

Summary of Analogues

13

Volumetric

 Strain and Brine Flow

 Measuremen

ts 

14

Evo

lutio

n of

su

bstru

ctur

e

Percep

tions‐‐F

uture Work

What final porosity

 of crushed

 salt is ne

cessary to achieve an 

efficient se

al and

 at w

hich time can it be

 reache

d?

Capability of add

itives such as m

oisture and clay can

 be 

optim

ized

 for con

struction and attainmen

t of sealing 

prop

ertie

s

The nature of testin

g flu

ids (brine or gas) and

 the resulta

nt 

perm

eability/po

rosity relatio

nships warrant fu

rthe

r exam

inati on

Num

erical mod

eling provides capabilitie

s but lacks low

 po

rosity verification

Furthe

r analogue expe

rience from

 und

ergrou

nd so

urces is 

impe

rativ

e15

Used Fuel Rep

ort

16

161

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 173: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

011-

XXXX

P

Discrepancy be

tween 

mod

eling and measuremen

t in th

e realiza

tion of se

als

N. M

üller‐Ho

eppe

, C. Lerch, H

. Schmidt

DBE TECH

NOLO

GY GmbH

Eschen

straße

55, D

‐31224

 Peine

/Germany

Mül

ler-H

oepp

e 0

9/20

142

Out

line

Pre‐cond

ition

s & pilot seals in Germany

Goals of th

e Asse

seal project

Test field & in

 situ investigations

Calculation proced

ure and results

Co

mparison

 of calculatedand measured stresses

Evaluatio

n and conclusio

ns 2008 & 2014

Mül

ler-H

oepp

e 0

9/20

143

Pre-

cond

ition

s

Pilot seal 

but v

ery few are re

alized

(1)Measurin

g data m

ust b

e available

(2)Calculation results su

itable for com

parison

 must b

e available

(3)Goo

d do

cumen

tatio

n status

(4)Ad

vantageo

us: Finish

ed project to

 avoid  change of 

interpretatio

n subseq

uently

(5)Measurin

g data as w

ell as c

alculatio

n results m

ust b

e pu

blicly 

available

(6)Ho

w to

 repo

rt abo

ut disc

repancies b

etween measuremen

ts 

and calculations? 

Mül

ler-H

oepp

e 0

9/20

144

Pilo

t sea

ls in

Ger

man

yProjects:

Shaft seal Salzdetfurth

Asse‐seal (Asse‐Vordamm)

Asse

pilot flow barrie

rs (P

SB A1 and PSB A2

)

ERAM

 plug

othe

r seal projects (CA

RLA, Son

dershausen

)

Asse‐seal is c

hosen for e

xample

All rep

orts were pu

blish

ed in th

e fram

ework of VSG

 thanks to

 BM

UB and BfS

162

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 174: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

145

Goa

ls o

f the

Ass

e-se

al P

roje

ct (2

001

-200

8)“I

nco

ntex

twith

the

clos

ure

ofth

eM

orsl

eben

repo

sito

ry(E

RA

M)

the

pote

ntia

lm

igra

tion

ofbr

ine

and

gas

pass

ing

salt-

conc

rete

seal

sha

sto

beev

alua

ted.

Acc

ordi

ngto

pres

entk

now

ledg

eth

eco

ntac

tzon

ebe

twee

nth

ese

alin

gbo

dyan

dth

esu

rrou

ndin

gro

ckis

anim

porta

ntm

igra

tion

path

and

thus

isde

cisi

vefo

rth

epe

rmea

bilit

yof

the

seal

.In

orde

rto

show

that

the

hydr

aulic

cond

uctiv

ityof

the

seal

issu

ffici

ently

smal

l,th

epe

rmea

bilit

yof

the

cont

act

zone

has

tobe

quan

tifie

d.R

espe

ctiv

ely,

itha

sto

besh

own

that

node

fect

sex

isti

nth

eco

ntac

tzo

nele

adin

gto

anin

tole

rabl

ede

gree

ofpe

rmea

bilit

yof

the

seal

,i.e

.exc

eedi

nga

perm

eabi

lity

of10

-18

m2

onav

erag

e.A

ccor

ding

tote

chni

cal

regu

latio

nsin

Ger

man

yin

vest

igat

ions

onco

mpa

rabl

est

ruct

ures

are

requ

ired

toas

sess

the

tight

ness

ofco

ntac

tzon

es.

For

this

purp

ose

a10

-yea

r-old

salt-

conc

rete

seal

inth

eA

sse

min

ein

Low

erSa

xony

hasb

een

inve

stig

ated

,who

sest

ruct

ure

isco

mpa

rabl

eto

the

seal

spla

nned

for

the

ERA

M.T

his

seal

had

been

built

with

inth

efra

mew

ork

ofan

aban

done

dre

sear

chpr

ojec

t.A

deta

iled

inve

stig

atio

nco

ncep

tco

mpr

isin

gin

-situ

mea

sure

men

tsan

dla

bora

tory

test

sw

asde

velo

ped

and

am

etho

dha

sbe

enes

tabl

ishe

dto

trans

fer

the

boun

dary

cond

ition

sof

the

Ass

em

ine

toth

eER

AM

,w

here

the

seal

swill

beco

nstru

cted

.“So

urce

/Con

tribu

tion

WM

-523

3,W

aste

Man

agem

entC

onf.

2005

/

Mül

ler-H

oepp

e 0

9/20

146

Pilo

t sea

l tes

t fie

ld

Boun

dary

cond

ition

sfor

in

situ

inve

stga

tions

•De

pth94

5 m•

Salt c

oncre

te(ce

ment,

Na

Cl-b

rine,

crush

edsa

lt)•

8 m in

leng

th, 5.

5 m in

wi

dth, 3

.4 in

heigh

t•

Built

in 19

92•

In sit

u inv

estig

ation

s200

2 –

2004

•La

bora

tory t

ests

until

2007

•Re

portin

g 20

08

Mül

ler-H

oepp

e 0

9/20

147

In s

itu in

vest

igat

ions

Perm

eability tests a

t rep

resentative measurin

g po

sitions (m

ainly 

contact zon

e)

Ultrason

ic measurements co

verin

g the who

le con

tact zo

ne to

 un

derpin re

presen

tativen

ess o

f permeability tests 

Hy

drofrac‐measurements to

 determine presen

t stress state to

 asses stress a

nd deformation history in order to

 transfer re

sults 

to ERA

M con

ditio

ns 

Ad

ditio

nally, lon

g‐term

 measuremen

ts (tem

perature, 

deform

ation, stress) at the

 pilot seal te st field were available 

because the test field was includ

ed into geo

technical 

surveillance of th

e Asse

mine

Mül

ler-H

oepp

e 0

9/20

148

Bor

ehol

epo

sitio

ns

Per

mea

bilit

y:al

l bor

ehol

es

Hyd

rofra

c:B

2, B

3, B

6,

B7,

B8,

B9,

B

11, B

38

163

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 175: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

149

Calibratio

n of th

e calculation mod

el of the

 test field using 

geotechn

ical su

rveillance measuremen

ts

Cal

ibra

tion

of c

alcu

latio

n m

odel

Mül

ler-H

oepp

e 0

9/20

1410

A large nu

mbe

r of variants w

ere calculated

 and

 ranked

 against 

each other

Cal

ibra

tion

of c

alcu

latio

n m

odel

Mül

ler-H

oepp

e 0

9/20

1411

The “best fit”

 was not uniqu

e

Three “best fits” show

ing a slight a

nisotrop

y

The influ

ence of b

ound

ary cond

ition

s was negligible (sf/uf)

Cal

ibra

tion

ofca

lcul

atio

nm

odel

Vari

ant

Bou

ndar

yco

nditi

ons

Stre

ssco

mpo

nent

[ MPa

]St

ress

inva

rian

ts[M

Pa]

stre

ssdi

spl.

σ xx

σ yy

σ zz

σ 0σ e

ff

M32

sfuf

-20

-20

-20

-20

0M

27sf

uf-1

8.0

-20.

0-2

0.0

-19.

32,

00M

41sf

uf-1

8.5

-19.

0-2

0.0

-19.

21.

32M

29sf

uf-1

7.0

-17.

5-1

9.6

-18.

02.

39M

35sf

--1

5.0

-17.

0-1

9.0

-17.

03.

46M

15-

uf-1

5.0

-16.

0-2

0.0

-17.

04.

58

Mül

ler-H

oepp

e 0

9/20

1412

Cal

cula

ted

vs. m

easu

red

stre

ss (h

ydro

frac

)

Normalizedtruelengthofcontactzone[-]

Dista

nce[

m] fr

omhe

ading

faceo

fAss

e sea

l

Cen

treflo

orIn

ters

ectio

nflo

or/s

outh

ern

wal

lC

entre

sout

hern

wal

lC

entre

roof

Cen

treno

rther

n w

all

Inte

rsec

tion

north

ern

wal

l/flo

or

Mea

surin

gpo

sitio

nsPo

s.Me

as.

valu

esCa

lculat

edva

riant

s

mean

max.

min.

B23.4

5-1

6,2-1

5.5-1

7.2B3

n. m.

-14.0

-13.5

-14.9

B62.5

3-1

7.3-1

6.9-1

8.2B7

6.93

-16.3

-15.8

-17.4

B813

.09-1

6.4-1

5.9-1

7.5B9

6.64

-18.1

-17.6

-19.1

B11

2.05

-17.5

-16.8

-18.3

B38

15.59

-15.7

-14.9

-16.6

164

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 176: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

1413

Cal

cula

ted

vs. m

easu

red

stre

sses

(hyd

rofr

ac)

Ap

proxim

ately comparable calculated

 stresses at sim

ilar 

positions, only slight d

eviatio

ns due

 to anisotrop

ic stress 

boun

dary con

ditio

ns

Wide range of m

easured stresses (h

ydrofrac) at com

parable 

positions

Large discrepancies b

etween calculated

 and

 measured stresses, 

good

 agreemen

t only at 2 (o

ut of 8

) position

s (B8

 and

 B38

)

Explanation?

Mül

ler-H

oepp

e 0

9/20

1414

Stre

ss m

easu

rem

ents

(pre

ssur

ece

lls) Pilot

seal

Pilot

stud

y

Meas

ured

stres

ses(

pres

sure

cells

) in co

ntact

zone

ofpil

otstu

dy

Mül

ler-H

oepp

e 0

9/20

1415

mea

sure

dM

27uf

-3D

min

. 3D

-Var

.m

ax. 3

D-V

ar.

Cal

cula

ted

vs. m

easu

red

stre

ss (p

ress

ure

cells

)

Goo

dag

reem

ent

ofca

lcul

ated

and

mea

sure

dst

ress

Exp

lana

tion:

The

dire

ctio

nof

leas

t prin

cipa

lstre

ss a

ndco

ntac

tstre

ss is

not i

dent

ical

!

Time [

a]

Contactstress [MPa]

Floo

r W

all

Roo

f

Mül

ler-H

oepp

e 0

9/20

1416

Eval

uatio

n &

con

clus

ion

2008

Thediscrepancy be

tween calculated

and measured stresses 

(hydrofrac) lead to

detailed investigations

Fortun

ately, add

ition

al stress m

easuremen

ts (p

ressure cells) 

were available

Ap

plying

pressure cells the direction of m

easured stress is fixed, th

e stress com

pone

nt with

in th

e stress te

nsor may vary

Ap

plying

hydraulic fracturin

g the least p

rincipal stress is m

easured, th

e direction may vary

Calculated

 stresses and

 measured stresses from

 pressure cells agree

 well 

Hy

draulic fracturin

g show

s wide range of least p

rincipalstresses a

nd 

varying directions in th

e contact zon

e

In 2008 pe

rmeability was assum

ed to

 be constant material 

prop

erty 

The goals o

f the

 Asseseal project were successfully 

achieved

 show

ing a sufficien

tly low permeability of th

e contact 

zone

165

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 177: Reduced size m3 ft 15sn08180210 hansen

Mül

ler-H

oepp

e 0

9/20

1417

Eval

uatio

n &

con

clus

ion

2014

Re

view

 of 2

008 results: The

 disc

repancy itself w

as explained

 but 

the origin of the

 wide range and varying directions hydrofrac

measuremen

ts is still an op

en que

stion

Re

sidualstresses from con

struction process ?

 

Restraint stresses d

ue to

 differen

t material prope

rties o

f salt 

concrete se

aling bo

dy and

 surrou

nding rock sa

lt?

From

 toda

ys kno

wledge this aspect n

eeds fu

rthe

r investigation as permeability of tight a

nd dam

aged

 rock sa

lt de

pend

s –du

e to strong

 hydromecha

nically

coup

ling ‐o

n the 

effective least p

rincipa

l stress 

Mül

ler-H

oepp

e 0

9/20

1418

Ack

now

ledg

emen

ts Man

y th

anks

-to

my

colle

ague

s F.

Glä

ß, R

. Mau

ke, G

. Eile

rs, J

. Pre

uss

from

B

fSfo

rthe

ir co

ntrib

utio

ns

-to

my

colle

ague

s fr

omAs

se–G

mbH

(for

mer

HM

GU

&G

SF),

IBeW

a, K

UTE

C, G

MuG

, DM

T, If

Gfo

r the

ir co

llabo

ratio

n

-to

the

BfS

for f

undi

ng th

e pr

ojec

t

Mül

ler-H

oepp

e 0

9/20

1419

DB

E TE

CH

NO

LOG

Y G

mbH

Than

k yo

ufo

r you

r atte

ntio

n!

166

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 178: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

011-

XXXX

P

Summary and op

en 

questio

ns of the

 VSG

Jörg M

önig

Gesellsc

haftfürA

nlagen

‐und

 Reaktorsic

herheit(GRS) m

bHTh

eodo

r‐Heu

ss‐Str. 4, 381

22 Braun

schw

eig, Germany 

Prel

imin

ary

Safe

tyA

naly

sis

ofth

eG

orle

ben

Site

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

2

Bas

ics

site

char

acte

risat

ion

and

long

-term

pre

dict

ion

was

tech

arac

teriz

atio

nan

dqu

antit

ysa

fety

conc

epta

ndde

mon

stra

tion

conc

ept

Rep

osito

ry

desi

gnre

posi

tory

conc

ept

repo

sito

ryde

sign

and

optim

isat

ion

Synt

hesi

sas

sess

men

tofr

esul

tsre

com

men

datio

ns

Syst

em

anal

yses

FEP

cata

logu

ean

dsc

enar

iode

velo

pmen

tin

tegr

ityas

sess

men

tgeo

l. /g

eote

chni

calb

arrie

ras

sess

men

tofR

N re

leas

esc

enar

ios

hum

an in

trus

ion

scen

ario

s

Safe

tyan

dD

emon

stra

tion

Con

cept

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

3

The

post

-clo

sure

safe

tyco

ncep

tfoc

usse

son

saf

eco

ntai

nmen

t

Sa

fe c

onta

inm

entd

escr

ibes

the

stat

usof

the

repo

sito

rysy

stem

in w

hich

ther

eis

at

the

mos

tan

insi

gnifi

cant

rele

ase

ofra

dion

uclid

esfro

mth

eco

ntai

nmen

t-pro

vidi

ngro

ck z

one

(CR

Z) d

urin

gth

ede

mon

stra

tion

perio

d

A

n in

sign

ifica

ntre

leas

efro

mth

eC

RZ

isa

rele

ase

who

sera

diol

ogic

alco

nseq

uenc

esca

lcul

ated

bya

bios

pher

em

odel

are

belo

wpe

rmis

sibl

elim

itsan

dth

uspo

seno

risk

tosu

bjec

tsof

prot

ectio

nbi

osph

ere

host

rock

over

burd

en

CR

Z

Safe

tyan

dD

emon

stra

tion

Con

cept

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

4

The

post

-clo

sure

safe

tyco

ncep

tfoc

usse

son

saf

eco

ntai

nmen

t

Sa

fe c

onta

inm

entd

escr

ibes

the

stat

usof

the

repo

sito

rysy

stem

in w

hich

ther

eis

at

the

mos

tan

insi

gnifi

cant

rele

ase

ofra

dion

uclid

esfro

mth

eco

ntai

nmen

t-pro

vidi

ngro

ck z

one

(CR

Z) d

urin

gth

ede

mon

stra

tion

perio

d

A

n in

sign

ifica

ntre

leas

efro

mth

eC

RZ

isa

rele

ase

who

sera

diol

ogic

alco

nseq

uenc

esca

lcul

ated

bya

bios

pher

em

odel

are

belo

wpe

rmis

sibl

elim

itsan

dth

uspo

seno

risk

tosu

bjec

tsof

prot

ectio

nbi

osph

ere

host

rock

over

burd

en

CR

Z

167

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 179: Reduced size m3 ft 15sn08180210 hansen

Syst

emat

icde

rivat

ion

ofth

eSa

fety

Con

cept

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

5

desi

gn

requ

irem

ent3

unde

rsta

ndin

gof

repo

sito

rypr

oces

ses

site

char

acte

risat

ion

data

Ger

man

saf

ety

requ

irem

ents

guid

ing

prin

cipl

es

desi

gn

requ

irem

ent2

desi

gn

requ

irem

ent1

safetyconceptfortheprojectVSG

spec

ific

obje

ctiv

esan

dsa

fety

mea

sure

s

spec

ific

obje

ctiv

esan

dsa

fety

mea

sure

s

spec

ific

obje

ctiv

esan

dsa

fety

mea

sure

s

Syst

em a

naly

sis

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

6

bios

pher

e

host

rock

over

burd

en

CR

Z

Mai

n qu

estio

ns a

ddre

ssed

•W

ill th

e in

tegr

ity o

f the

sal

t bar

rier

rem

ain

inta

ct u

nder

the

expe

cted

lo

ads

(ther

mal

impa

ct, g

laci

al

cycl

es, e

tc.)?

•W

ill si

gnifi

cant

am

ount

s of

brin

e re

ach

the

was

te e

mpl

acem

ent

area

s?•

Will

radi

onuc

lides

be

rele

ased

from

th

e w

aste

?

If ye

s, w

ill th

ey b

e re

leas

ed fr

om

the

CR

Z?

And

if s

o, w

hat r

adio

logi

cal

cons

eque

nces

hav

e to

be

expe

cted

?

•A

nsw

ers

need

ed fo

r all

prob

able

and

less

pro

babl

e sc

enar

ios

D

istin

ctio

n is

requ

ired

by

Ger

man

regu

latio

n

•S

cena

rios

are

syst

emat

ical

ly

iden

tifie

d an

d de

scrib

ed b

y us

ing

FEP

s

Som

eim

port

antr

esul

ts(I)

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

7

Inte

grity

of r

ock

salt

barri

er

Th

erm

o-m

echa

nica

l cal

cula

tion

show

that

dila

tanc

yan

d br

ine

pres

sure

crit

erio

n is

te

mpo

raril

y vi

olat

ed a

t top

of s

alt d

ome

due

to th

erm

al s

tress

es.

A

bove

the

repo

sito

ry, s

ever

al 1

00 m

of r

ock

rem

ain

with

out i

nteg

rity

viol

atio

n

E

DZ:

Loc

al v

iola

tions

of t

he d

ilata

ncy

crite

rion

(sev

eral

cm

–ap

prox

. 3 m

).

Te

mpe

ratu

re c

riter

ia fo

r car

nalli

tite

are

met

(no

ther

mal

dis

inte

grat

ion)

Flui

d-dy

nam

icsy

stem

evol

utio

n

S

igni

fican

tgas

rele

ase

from

was

tew

ithne

glig

ible

heat

evol

utio

n, a

ffect

ing

the

pres

sure

regi

me

in e

mpl

acem

enta

rea

forH

LW (→

opt

imiz

atio

n)

P

ore

volu

me

in a

num

bero

fem

plac

emen

tdrif

tsfo

rHLW

will

beco

me

solu

tion-

satu

rate

d, d

epen

ding

on b

ound

ary

assu

mpt

ions

form

odel

calc

ulat

ions

Som

eim

port

antr

esul

ts(II

)

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

8

Rad

ionu

clid

ere

leas

efro

mC

RZ

so

lutio

npa

thw

ay

•no

RN

rele

ase

from

CR

Z at

1%

fina

l por

osity

in c

rush

edsa

ltba

ckfil

l

•In

sign

ifica

ntre

leas

eat

2%

fina

l por

osity

2-

Pha

se m

odel

ling

(3D

)

•In

depe

nden

t off

inal

por

osity

rele

vant

C-1

4-re

leas

e in

the

gas

phas

evi

a dr

iftse

al

•G

as fo

rmat

ion

enha

nces

gas

flow

thro

ugh

com

pact

ion

•C

rush

edsa

ltre

cons

olid

atio

ndu

e to

salt

cree

pis

mai

ndr

ivin

gfo

rce

forg

as fl

ow

•R

esul

tsar

eaf

fect

edby

loca

tion

ofin

divi

dual

was

tefo

rms

(→ o

ptim

izat

ion)

Met

hodo

logi

cala

ppro

ache

s, in

gen

eral

, hav

ebe

enap

plie

dsu

cces

sful

ly&

ar

eco

nsid

ered

tobe

appl

icab

lefo

roth

ersi

tes

with

dom

al(b

edde

d) ro

ck s

alt

168

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 180: Reduced size m3 ft 15sn08180210 hansen

Impo

rtan

tsci

entif

icis

sues

tore

visi

t

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

9

Pro

cess

unde

rsta

ndin

g

R

e-co

nsol

idat

ion

ofcr

ushe

dsa

ltba

ckfil

l, tra

nspo

rtre

leva

nt p

rope

rties

at lo

wpo

rosi

ties

2-

phas

e-flo

w b

ehav

iour

(mod

elpa

ram

eter

s) in

con

solid

atin

gcr

ushe

dsa

ltba

ckfil

l

R

elea

se M

echa

nism

sof

vola

tile

radi

onuc

lides

from

was

tefo

rms

Saf

ety

sign

ifica

nce

of h

ydro

carb

ons

pres

ent i

n ro

ck s

alt

Sui

tabi

lity

ofm

etho

dolo

gica

lapp

roac

hto

scen

ario

deve

lopm

ent

Rel

evan

ce o

f pro

cess

es n

ot d

ealt

with

Prel

imin

ary

Safe

tyA

naly

sis

ofth

eG

orle

ben

Site

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

10

Bas

ics

site

char

acte

risat

ion

and

long

-term

pre

dict

ion

was

tech

arac

teriz

atio

nan

dqu

antit

ysa

fety

conc

epta

ndde

mon

stra

tion

conc

ept

Rep

osito

ry

desi

gnre

posi

tory

conc

ept

repo

sito

ryde

sign

and

optim

isat

ion

Synt

hesi

sas

sess

men

tofr

esul

tsre

com

men

datio

ns

Syst

em

anal

yses

FEP

cata

logu

ean

dsc

enar

iode

velo

pmen

tin

tegr

ityas

sess

men

tgeo

l. /g

eote

chni

calb

arrie

ras

sess

men

tofR

N re

leas

esc

enar

ios

hum

an in

trus

ion

scen

ario

s

GR

S-27

1G

RS-

277

GR

S-27

4G

RS-

278

GR

S-27

3G

RS-

275

GR

S-27

2G

RS-

279

GR

S-28

1 GR

S-28

2G

RS-

283

GR

S-28

4

GR

S-28

6G

RS-

288

GR

S-28

9

GR

S-28

0

GR

S-29

0

GR

S-30

4

VSG

Rep

orts

(I)

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

11

GR

S-2

71: G

rund

züge

des

Sic

herh

eits

-und

Nac

hwei

skon

zept

es

GR

S-2

72: E

ndla

gerk

onze

pte

GR

S-2

73: S

alzg

eolo

gisc

he U

nter

such

unge

n de

r Int

egrit

ät d

er g

eolo

gisc

hen

Bar

riere

des

Sal

zsto

cks

Gor

lebe

n (2

012)

GR

S-2

74: A

bfal

lspe

zifik

atio

n un

d M

enge

nger

üst:

Bas

is d

er

Lauf

zeitv

erlä

nger

ung

der K

ernk

raftw

erke

GR

S-2

75: G

eow

isse

nsch

aftli

che

Lang

zeitp

rogn

ose

GR

S-2

77: S

iche

rhei

ts-u

nd N

achw

eisk

onze

pt (r

epla

ces

GR

S-2

71)

GR

S-2

78: A

bfal

lspe

zifik

atio

n un

d M

enge

nger

üst:

Bas

is A

usst

ieg

aus

der

Kern

ener

gien

utzu

ng (u

pdat

e of

repo

rtG

RS

-273

afte

r Fuk

ushi

ma)

GR

S-2

79: E

insc

hätz

ung

betri

eblic

her M

achb

arke

it vo

n En

dlag

erko

nzep

ten

VSG

Rep

orts

(II)

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

12

GR

S-2

80: H

uman

Intru

sion

GR

S-28

1: E

ndla

gera

usle

gung

und

–op

timie

rung

GR

S-2

82: F

EP

-Kat

alog

für d

ie V

SG

: Kon

zept

und

Auf

bau

GR

S-2

83: F

EP

-Kat

alog

für d

ie V

SG

: Dok

umen

tatio

n

GR

S-2

84: S

zena

riene

ntw

ickl

ung

GR

S-2

85: B

erüc

ksic

htig

ung

der K

ohle

nwas

sers

toffv

orko

mm

en in

Gor

lebe

n

GR

S-2

86: I

nteg

rität

sana

lyse

der

geo

logi

sche

n B

arrie

re

GR

S-2

87: I

nteg

rität

sana

lyse

der

geo

tech

nisc

hen

Bar

riere

n –

Teil

1:

Vorb

emes

sung

169

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 181: Reduced size m3 ft 15sn08180210 hansen

VSG

Rep

orts

(III)

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

13

GR

S-2

88: I

nteg

rität

sana

lyse

der

geo

tech

nisc

hen

Bar

riere

n –

Teil

2: V

ertie

fte

Nac

hwei

sfüh

rung

GR

S-2

89: R

adio

logi

sche

Kon

sequ

enze

nana

lyse

GR

S-2

90: S

ynth

eseb

eric

ht

GR

S-3

04: F

orsc

hung

s-un

d E

ntw

ickl

ungs

beda

rf au

f Bas

is d

er E

rken

ntni

sse

aus

der V

SG

sow

ie E

mpf

ehlu

ngen

all r

epor

tsav

aila

ble

via:

ht

tp://

ww

w.gr

s.de

/ger

man

-pu

blic

atio

ns?p

age=

1&tit

le=V

SG

&fie

ld_a

utho

r_va

lue=

&fie

ld_y

ear_

valu

e=&

tid_1

=&tid

=All

170

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 182: Reduced size m3 ft 15sn08180210 hansen

† Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-16786A. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

Reflections on the ISIBEL Project and Perspectives on Modeling Salt Reconsolidation

R. Chris Camphouse

Sandia National Laboratories†, Carlsbad, NM, 88220

ABSTRACT

The thrusts of R&D project ISABEL were to summarize the state of the art in high level waste (HLW) disposal in salt and to determine if the demonstration of HLW disposal in salt is technically feasible. The repository concept envisioned in the ISABEL project took full advantage of the favorable properties associated with salt formations, and their benefits in regard to underground waste disposal. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. U.S. legacy TRU waste is transported to the WIPP facility and interred underground in a bedded salt formation. The bedrock upon which WIPP performance assessment (PA) sits is an understanding of the features, events, and processes (FEPs) that must be considered when quantifying repository performance. From these FEPs, scenarios are developed that represent the state of the repository for undisturbed and disturbed conditions. Numerical models provide responses of the repository over the set of scenarios, where epistemic and aleatory uncertainties are captured through sampling. Results are tabulated and assembled into curves that are then compared to regulatory compliance limits. The safety and demonstration concept developed as part of the ISIBEL project has many components in common with those used for the WIPP. As the ISIBEL concept provides a framework for a HLW repository in salt, many physical processes important to the ISIBEL project are those important to the WIPP project as well. Comparisons are made of the ISIBEL and WIPP projects, highlighting areas in which these projects are similar as well as ways they are different.

As part of the ISIBEL concept, void volume in emplacement areas and mine workings are to be filled with crushed salt, which will naturally compact due to creep closure of the surrounding salt rock. The ability of the reconsolidated crushed salt to provide sufficient sealing must be demonstrated. Recently, the temporal and physical characteristics of run-of-mine (ROM) salt reconsolidation were investigated as part of a proposed WIPP component design change. The 1998 rulemaking that certified WIPP to receive TRU waste placed conditions on the waste panel closure design to be implemented in the repository. The engineering of the panel closure has been re-assessed, and a revised design has been established that is simpler, cheaper, and easier to construct. It consists of 100 feet of ROM salt with barriers at each end. The ROM salt is generated from ongoing mining operations at the WIPP and may be compacted and/or moistened as it is emplaced in a panel entry. The representation of ROM salt reconsolidation in WIPP PA was a result of an iterative process with the federal regulator, the U.S. Environmental Protection Agency (EPA). The DOE has submitted a planned change request to the EPA, seeking regulatory approval to replace the currently mandated panel closure design with the ROM salt design. The modeling approach used for ROM salt reconsolidation, and insights gained from the regulatory change process, are discussed.

171Proceedings of 5th US/German Workshop

January 30, 2015

Page 183: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

014-

1692

7PE

This

rese

arch

is fu

nded

by

WIP

P p

rogr

ams

adm

inis

tere

d by

the

Offi

ce o

f Env

ironm

enta

l Man

agem

ent (

EM

) of t

he U

.S D

epar

tmen

t ofE

nerg

y.

Refle

ctions on the ISIBEL 

Project a

nd Perspectiv

es on 

Mod

eling Salt 

Reconsolidation

R. Chris Camph

ouse

Sand

ia National Laboratories

Outline

ISIBEL and

 WIPP Co

mmon

 Groun

Co

mpare/Con

trast the

 ISIBEL sa

fety dem

onstratio

n concep

t and WIPP PA

 –Metho

dologies, FEPs, Scenario

 Develop

men

t, Uncertainty

Discussio

n of th

e salt reconsolidation approach ta

ken for a

 recent W

IPP de

sign change –Processes M

odeled

, Tem

poral 

Behavior, Regulator Interactions

Co

nclusio

ns

2

Common

 Groun

d

The ISIBEL re

pository concep

t and

 the WIPP have m

any common

 aspe

cts.

Bo

th are und

ergrou

nd waste disp

osal facilities in salt

Bo

th re

positories h

ave be

en designe

d to ta

ke advantage of 

salt prop

ertie

s

Salt reconsolidation processes a

re im

portant in ISIBEL 

(backfilled

 mine workings) and

 the WIPP (panel closures) 

WIPP PA

 is establishe

d and in use.  ISIBEL sa

fety dem

onstratio

n capability is drafted with

 future work de

fined

3

WIPP Pe

rformance Assessm

ent

4

Reg

ulat

ory

Con

text

FEPs

Iden

tific

atio

nAn

d Sc

reen

ing

Site

Cha

ract

eris

tics

Faci

lity

Cha

ract

eris

tics

Was

teC

hara

cter

istic

s

Scen

ario

Dev

elop

men

t

Scen

ario

Prob

abili

ties

Para

met

erU

ncer

tain

ty

Unc

erta

inty

Ana

lysi

s,Lo

ng-te

rm P

erfo

rman

ceR

egul

ator

y St

anda

rd fo

r R

adio

activ

e R

elea

ses

(40

CFR

191

)

Syst

em D

escr

iptio

n

Cal

cula

tions

ove

r Man

y R

ealiz

atio

ns

172

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 184: Reduced size m3 ft 15sn08180210 hansen

ISIBEL Safety De

mon

stratio

n Co

ncep

t

5

Bedrock of W

IPP PA

 and

 ISIBEL

Fund

amen

tal to WIPP PA

 and

 the ISIBEL sa

fety dem

onstratio

n concep

t are:

6

•A

cata

log

of th

e fe

atur

es, e

vent

s, a

nd p

roce

sses

(FE

Ps)

that

mus

t be

cons

ider

ed-s

cree

ning

pro

cess

→ w

hat n

eeds

to b

e co

nsid

ered

and

wha

t doe

sn’t

•R

epos

itory

sce

nario

s, in

form

ed b

y th

e se

t of F

EP

s, th

at c

aptu

re fu

ture

sta

tes

of

the

repo

sito

ry-u

ndis

turb

ed a

nd d

istu

rbed

con

ditio

ns

•P

rope

r con

side

ratio

n of

unc

erta

inty

-par

amet

ers,

mod

els,

faci

lity

futu

res

ISIBEL FEPs

The Gorlebe

nsite was used to develop

 a gen

eric FEP

 catalog

for salt formations. 

Iterativ

e approach:

A comparison

 with

 the NEA

‐FEP

 database, with

 an em

phasis on

 salt as th

e ho

st ro

ck

A bo

ttom

‐up approach iden

tifying

 all FEPs re

levant to

 the future evolutio

n of th

e repo

sitory

A top‐do

wn approach iden

tifying

 FEPs that cou

ld play a role in con

ceivable 

scen

arios

FEPs add

ed to

 represen

t interde

pend

encies between FEPs f o

und above 

FEPs catalog

 evaluated

 in th

e course of a

 national peer review.  Catalog consists o

f92

 probable and 4 less probable FEPs.

7

FEPs Screening

 for W

IPP

WIPP FEPs are sc

reen

ed according

 to:

•Prob

ability:If a

 FEP

 has a probability of occurrin

g less th

an 10‐

4in 10,000 

years it d

oes n

ot have to be includ

ed in

 PA (e.g., meteo

rite im

pact)

•Co

nseq

uence:

If a FEP is be

neficial to pe

rformance, is n

ot re

levant to

 WIPP, 

or has a insig

nificant con

sequ

ence  to the disposal sy

stem

, it d

oes n

ot have 

to be includ

ed in

 PA (e.g. lakes, oceans, tide

s, floo

ds).If a FEP isrelated to 

the WIPP disposal sy

stem

 and

/or impacts the

 repo

sitory, it m

ust b

e accoun

ted for in PA

 (e.g., chem

ical effe

cts o

f corrosio

n).

•Re

gulatio

n:Ce

rtain FEPs are eith

er sc

reen

ed in

 or o

ut by regulatio

n (e.g., 

mining, re

source extraction following drilling). 

•245 FEPs were screen

ed in

 for the

 most recen

t WIPP compliance calculation.

8

173

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 185: Reduced size m3 ft 15sn08180210 hansen

ISIBEL/VSG

 Scenario

 Develop

men

t

Possible re

pository futures c

ategorized

 as p

robable, less 

prob

able, and

 improb

able.

Binn

ing of fu

tures results in one

 reference scen

ario and

 17 

alternative scen

arios

Re

ference scen

ario re

presen

ts probable repo

sitory futures

‐include

s clim

ate change (1

00,000

 year cycle), waste heat

gene

ratio

n, m

obilizatio

n and transport, initial barrie

r integrity

Alternative scen

arios d

iffer in

 only on

e aspe

ct from

 the 

reference scen

ario

‐improvise

d barrier fun

ctionality, less probable mob

ilizatio

nand transport, etc.

9

WIPP Scen

ario Develop

men

t

All retaine

d (screene

d‐in) FEPs m

ust b

e accoun

ted for in WIPP 

PA in at least one

 scen

ario.

FEPs can

 be includ

ed by explicit mod

eling or by parameter 

assig

nmen

t.

Expe

cted

 FEPs a

re includ

ed in all scen

arios

Creep closure

Brine flo

w, gas gen

eration

Disrup

tive FEPs are includ

ed in disturbe

d scen

arios.

Drilling, m

ining, brin

e po

cket

10

Uncertainty

Prop

er re

presen

tatio

n of uncertainty is vita

l to WIPP PA

 and

 the 

ISIBEL sa

fety dem

onstratio

n concep

t.

Uncertaintie

s red

uced

 by inform

ation gained

 via site 

characterization

Da

ta gen

erated

 by individu

al R&D programs c

an re

duce 

uncertainty and inform

 param

eter distrib

ution assig

nmen

ts

Uncertaintie

s with

 regard to

 future events m

ust b

e represen

ted

Uncertainty distrib

utions used for p

aram

eter sa

mpling may 

be iterated

 with

 or p

rescrib

ed by the site regulator

11

WIPP Pane

l Closure Red

esign

The waste panel closure im

plem

ented in W

IPP has recen

tly been 

rede

signe

d.

Cu

rren

t design based on

 Salado Mass C

oncrete was mandated 

by th

e EPA as part o

f the

ir 1998

 WIPP certificatio

n de

cisio

n

Rede

signe

d pane

l closure con

sists of 1

00 fe

et ru

n‐of‐m

ine 

(ROM) salt w

ith barrie

rs at e

ach en

d –term

ed th

e RO

MPC

S

Includ

ing the RO

MPC

S in W

IPP PA

 requ

ired spatial and

 tempo

ral m

odeling of ROM sa

lt reconsolidation

RO

MPC

S mod

eling in W

IPP PA

 was a negotiated process w

ith 

the EPA –fede

ral rulem

aking process

12

174

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 186: Reduced size m3 ft 15sn08180210 hansen

ROMPC

S Processes

13

The represen

tatio

n of th

e RO

MPC

S in W

IPP PA

 neede

d to 

accoun

t for se

veral physic

al processes.

Creep closure of th

e surrou

nding salt rock re

sulting

 in 

consolidation of ROM sa

lt placed

 in panel entrie

s

RO

M sa

lt comprising

 the closures app

roaching

 a con

ditio

n sim

ilar to intact sa

lt

Im

posed back stress on the surrou

nding rock re

sulting

 in 

even

tual healing of th

e surrou

nding salt rock

ROMPC

S Evolution

14

The RO

MPC

S is mod

eled

 as h

aving short‐term

 and

 long

‐term 

characteristics in WIPP PA

, with

  prope

rties b

ased

 on three tim

e pe

riods 

0 to 100

 years: Emplaced

 ROM sa

lt un

dergoe

s som

ere‐con

solidation with

 no im

pact on surrou

nding salt rock

100 to 200

 years: R

OMPC

S continue

s to re‐con

solidate with

 no

 impact on surrou

nding salt rock

200 to 10000

 years: R

OMPC

S is re‐con

solidated

 and

 the 

surrou

nding salt rock is healed

Regulator Interactio

n

The approval of the

 ROMPC

S de

sign by

 the EPA regulator is 

slated to app

ear in the Fede

ral Register so

on.

Fede

ral rulem

aking aspe

ct of d

esign change invoked a lengthy

and involved

 process fo

r the

 regulator

Goo

d commun

ication with

 the EPA was critical in gaining

 their 

approval of the

 new

 design

Re

presen

tatio

n of sp

atial and

 tempo

ral ROMPC

S be

haviors 

was an ite

rativ

e process –

consen

sus b

etween EPA and DO

E

Extensive supp

ort o

f EPA

 verificatio

n calculations increased 

regulator com

fort with

 the ne

w design

Re

gulatory com

fort in th

e ne

w design → stakeh

olde

r defen

se     15

Conclusio

ns

The ISIBEL re

pository concep

t and

 the WIPP have m

any aspe

cts 

in com

mon

.‐rep

osito

ries in salt rock, taking advantage of physic

al and

    

tempo

ral salt characteristics

FEPs, rep

osito

ry sc

enarios, and

 con

sideration of uncertainty are 

fund

amen

tal to the WIPP and ISIBEL sa

fety dem

onstratio

ns. 

The spatial and

 tempo

ral beh

aviors of “loose” sa

lt are 

impo

rtant to ISIBEL and

 the WIPP

‐Backfill of m

ine workings for ISIBEL

‐WIPP pane

l closures

Mod

eling of ROM sa

lt has recen

tly been un

dertaken

, with

 consen

sus b

y the EPA, fo

r a W

IPP de

sign change

16

175

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 187: Reduced size m3 ft 15sn08180210 hansen

PA Development (PFLOTRAN) and the Safety Case

Glenn Hammond

Sandia National Laboratories

Abstract:

This presentation introduces the massively-parallel, reactive multiphase flow and transport code PFLOTRAN and describes Sandia’s recent enhancements to the code that enable its use within nuclear waste repository performance assessment models. Code capability and infrastructure support are briefly outlined followed by a presentation of the conceptual model description and simulation results for a generic salt repository performance assessment model.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-17007A

176Proceedings of 5th US/German Workshop

January 30, 2015

Page 188: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

014-

1700

8PE

PA Develop

men

t (PFLOTR

AN) 

and the Safety Case

Glenn

 Ham

mon

dSand

ia National Laboratories

Pe

tascalereactiv

e multip

hase flow

 and

 transport cod

e

Ope

n source license (GNU LGPL 2.0)

Object‐oriented

 Fortran

 9X/20

03/200

8

Pointers to

 procedu

res

Classes (extend

able derived

 type

s with

 mem

ber p

rocedu

res)

Foun

ded up

on PETSc

parallel framew

ork

Parallel com

mun

ication through MPI

Parallel I/O

 through binary HDF

5

Unstructured do

main de

compo

sition through METIS/ParMETIS(Cmake)

De

mon

strated pe

rformance

Maxim

um # processor cores: 262,144

  (Jaguar su

percom

puter)

Maxim

um problem

 size 3.34 billion

 degrees of freed

om

Scales to

 over 1

0K cores

2

Role of P

FLOTR

AN in

 PA Metho

dology

3

PA M

etho

dolo

gy

4

Sour

ce T

erm

and

EB

S Ev

olut

ion

Mod

el

Inve

ntor

y

Hig

h re

solu

tion

of s

patia

l and

te

mpo

ral r

epre

sent

atio

n of

pr

oces

ses

and

coup

lings

:•

WF

Deg

rada

tion

•W

P D

egra

datio

n•

Rad

ionu

clid

e M

obili

zatio

n•

Solu

bilit

y Li

mits

•Th

erm

al E

ffect

s •

Gas

Gen

erat

ion

Flow

and

Tra

nspo

rt M

odel

Sp

atia

l and

tem

pora

l re

pres

enta

tion

of T

HC

pro

cess

es•

Adve

ctio

n•

Diff

usio

n/di

sper

sion

•So

rptio

n•

Col

loid

s•

Dec

ay a

nd in

grow

th•

Hom

ogen

eous

/het

erog

eneo

us

reac

tions

Bio

sphe

re M

odel

Ex

posu

re p

athw

ays

U

ptak

e/tr

ansf

er fa

ctor

s

Rad

ionu

clid

e C

once

ntra

tions

in

aqu

ifer

Inpu

t Par

amet

er D

istr

ibut

ions

Sens

itivi

ty A

naly

sis

and

Unc

erta

inty

Qua

ntifi

catio

n

Mul

ti-Ph

ysic

s Si

mul

atio

n an

d In

tegr

atio

n

Com

puta

tiona

l Sup

port

•M

esh

Gen

erat

ion

-Cub

it•

Visu

aliz

atio

n –

Para

View

, Vis

It•

Para

met

er D

atab

ase

Res

ults

177

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 189: Reduced size m3 ft 15sn08180210 hansen

PFLO

TRAN

 Multi‐Ph

ysics C

apabilitie

s

Flow Multip

hase gas‐liqu

id

Interchangeable constitutive mod

els a

nd 

equatio

ns of state

Energy

Thermal con

duction and convectio

n

Multi‐Co

mpo

nent Transpo

rt

Advection, hydrodynamic disp

ersio

n

Geo

chem

ical Reaction

Aq

ueou

s spe

ciation (io

n activ

ity m

odels)

Mineral precipitatio

n‐dissolution

Surface complexation, ion exchange, 

isotherm‐based

 sorptio

n

Radioactive de

cay with

 daughter p

rodu

cts

5

Ham

mon

d an

d Li

chtn

er, W

RR

, 201

0

PFLO

TRAN

 Com

putin

g Capabilities

High

‐Perform

ance Com

putin

g (HPC

)

Increasin

gly mechanistic process m

odels

Highly‐refined

 3D discretizations

Massiv

e prob

abilistic ru

ns

Ope

n Source Collabo

ratio

n

Leverages a

 diverse sc

ientific commun

ity

Sharing am

ong subject m

atter e

xperts and

 stakeh

olde

rs from

 labs/universities

Mod

ern Fortran (2003/2008)

Do

main scientists rem

ain en

gaged

Mod

ular fram

ework for customization

Leverages E

xisting Capabilities

Meshing, visu

aliza

tion, HPC

 solvers, etc.

Co

nfiguration managem

ent a

nd QA

6

Dat

a A

ssim

ilatio

n

Bui

ldbo

t

PFLO

TRAN

 Sup

port Infrastructure

Mercuria

l:distrib

uted

 source con

trol managem

ent too

l

Bitbucket:on

line PFLO

TRAN

 repo

sitory

hg

 clone

 https://bitb

ucket.o

rg/pflo

tran/pflo

tran

‐dev

Source tree

Co

mmit logs

Wiki

Installatio

n instructions

Quick guide

FA

Q (e

ntrie

s motivated

 by 

questio

ns on mailing list)

Ch

ange re

quests

Issue tracker

Goo

gle An

alytics:tracks beh

avior o

n Bitbucket

Bu

ildbo

t:automated

 building and testing (regression and un

it)

Goo

gle Group

s:pflotran

‐users and

 pflo

tran

‐dev

mailing lists

7

Hits

on

PFL

OTR

AN

Bitb

ucke

tsi

te o

ver p

ast y

ear

PFLO

TRAN

 Verificatio

n

Test cases fo

r WIPP code

s (BRA

GFLO and

 NUTS) set 

up and

 executed with

 PFLO

TRAN

E.g., B

RAGFLO Case #8

 “W

ell produ

ction at a 

specified

 bottom hole 

pressure”

8H

eeH

oP

ark,

SN

L 62

11, C

arls

bad,

NM

PFL

OTR

AN

resu

lts c

ompa

red

to

BR

AG

FLO

and

WIP

P ve

rsio

n of

TO

UG

H2

(TO

UG

H28

W)

178

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 190: Reduced size m3 ft 15sn08180210 hansen

Gen

eric Salt R

eposito

ry PA Mod

el –

Simulation Summary

DA

KOTA

 / PFLO

TRAN

 simulations:

De

term

inistic PA sim

ulation with

 mean 

values

10

0‐realiza

tion prob

abilistic simulation 

with

 10 sampled

 param

eters

De

term

inistic th

ermal simulation

Ru

n on

 SNL Re

d Sky HP

C cluster

Nested parallelism

Many concurrent re

aliza

tions

Each re

aliza

tion distrib

uted

 across m

any 

processors

9•T

otal

nod

es: 2

,816

nod

es/ 2

2,52

8 co

res

•505

Ter

aFlo

pspe

ak

Payt

on G

ardn

er, S

NL

6224

, Alb

uque

rque

NM

Stoc

hast

ic S

imul

atio

n

Unc

erta

inty

qua

ntifi

catio

n, L

HS

st

ratif

ied

sam

plin

g, s

ensi

tivity

ana

lysi

s

Det

erm

inis

tic S

imul

atio

n

Inte

grat

ed m

ulti-

phys

ics

sim

ulat

ions

for E

BS

& N

BS

Gen

eric Salt R

eposito

ry PA Mod

el –

3D M

odel Dom

ain

10

NX

=

4

55N

Y

=

5

NZ

=

92C

ells

= 2

09,3

00

1 of

2 d

rifts

sho

wn

8 of

160

was

te p

acka

ges

show

n

X

= 11

,618

mY

=

20

mZ

=

9

45 m

Simulation do

main

3D

 vertical slice

20

‐m wide pillar to pillar

1 drift pair (2 80

0‐m long

 drifts)

160 waste packages and backfill

Payt

on G

ardn

er, S

NL

6224

, Alb

uque

rque

NM

Gen

eric Salt R

eposito

ry PA Mod

el –

Determ

inistic Sim

ulation Re

sults

Ho

rizon

tal D

arcy velocity

 (m/yr) 

Diffu

sion through DR

Z, bed

ded salt, and

 shaft

Ad

vection (horizo

ntal) throu

gh aqu

ifer

Diffu

sion (vertical) a

nd advectio

n (horizo

ntal) throu

gh se

dimen

ts 

11

Shaft

Sedi

men

ts

Payt

on G

ardn

er, S

NL

6224

, Alb

uque

rque

NM

Payt

on G

ardn

er, S

NL

6224

, Alb

uque

rque

NM

Gen

eric Salt R

eposito

ry PA Mod

el –

Prob

abilistic Sim

ulations

Sensitivity analysis

 (partia

l rank correlation) at 1

0 locatio

ns 

12x

= 5,

821

m (m

id-p

oint

of d

rift p

air)

x =

6,20

0 m

(app

rox.

mid

-poi

nt o

f drif

t)x

= 7,

500

m (d

owns

trea

m fr

om d

rift)

“nea

r” lo

catio

n (5

)-

sedi

men

t-

aqui

fer

-ha

lite

-an

hydr

ite-

was

te p

acka

ge

“mid

x” lo

catio

n (4

)-

sedi

men

t-

aqui

fer

-ha

lite

-an

hydr

ite

“wel

l” lo

catio

n (1

)-

aqui

fer

Payt

on G

ardn

er, S

NL

6224

, Alb

uque

rque

NM

179

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 191: Reduced size m3 ft 15sn08180210 hansen

Gen

eric Salt R

eposito

ry PA Mod

el –

Multi‐Re

aliza

tion An

alysis

13

12

9 I di

ssol

ved

conc

entr

atio

n vs

. tim

e –

(DA

KO

TA p

roba

bilis

tic o

utpu

t of 1

00 re

aliz

atio

ns)

aqui

fer m

idx

aqui

fer n

ear

halit

e ne

ar

Payt

on G

ardn

er, S

NL

6224

, Alb

uque

rque

NM

Future Dire

ctions –Co

upled Ra

dion

uclide 

Mob

ilizatio

n and Transport P

rocesses

14

Waste Form Degrada

tion (IR

F an

d matrix

 dissolutio

n) 

Tran

sport (ad

vection, diffusion, line

ar so

rptio

n (K

d))

Decay and

 Ingrow

th

Precipita

tion/Dissolutio

n

Solutio

n Ch

emistry an

d Tempe

rature 

Tim

e-de

pend

ent p

roce

sses

Equi

libriu

m p

roce

sses

180

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 192: Reduced size m3 ft 15sn08180210 hansen

Visualization Tool VIRTUS

Klaus Wieczorek*, Steffen Masik**, Joachim Behlau***, Christian Mueller****

*Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Germany **Fraunhofer Institut fuer Fabrikbetrieb und –automatisierung, Germany

***Federal Institute for Geosciences and Natural Resources (BGR), Germany ****DBE TECHNOLOGY GmbH, Germany

VIRTUS is a “virtual underground laboratory” which can illustrate repository concepts, geologic situations and physical processes taking place in an underground lab or a repository. It centrally provides the necessary consolidated data (geologic models, mine structures, material data for numerical simulation) as well as means for the integrated visualization and evaluation of various types of information.

VIRTUS consists of a visualization software platform, material database and interfaces to CAD programs like BGR’s openGEO which provide geologic models and to process level codes (PLC) for numerical model simulations. A “hot spot” system allows easy access to all available information.

Geologic models are imported into VIRTUS, powerful editing functions allow the creation of mine structures. The resulting combined models can be exported to PLC pre-processors, where they are used as input for model calculations on the coupled thermal-hydraulic-mechanical be-havior of the system consisting of waste, technical components and rock formation. The simula-tion results can be visualized in VIRTUS in context with the underlying geology.

The above features have been implemented. Testing and improvement are continuously per-formed.

Three demonstration experiments have been defined for prototypical simulation by the partners using their individual PLCs:

· An isothermal mechanical simulation of a drift passing through different types of rock (BGR: JIFE)

· A thermal simulation of an array of emplacement boreholes (DBE TEC: FLAC3D)

· A coupled thermal-mechanical simulation of a heated drift in rock salt approaching a potash layer and anhydrite blocks (GRS: CODE_BRIGHT)

The geometrical models have been extracted from VIRTUS and the simulations are underway.

For a given repository or underground laboratory site, the capabilities of VIRTUS can help to fa-cilitate design of meaningful experiments, to prepare benchmark exercises or simulation vari-ants for optimization and compare their results, to evaluate simulation results to make sure that safety criteria are met, to design actual repository structures in a given geology, and to present repository research to the public.

VIRTUS has been developed in the frame of a joint project of the Gesellschaft für Anlagen- und Reaktorsicherheit (GRS), the Federal Institute for Geosciences and Natural Resources (BGR), the DBE TECHNOLOGY GmbH (DBE TEC), and the Fraunhofer Institut für Fabrikbetrieb und –automatisierung (IFF). The VIRTUS project is financed by the Federal Ministry of Economics and Technology (BMWi) under contract 02E10890. The current phase of VIRTUS is ending in October 2014.

181Proceedings of 5th US/German Workshop

January 30, 2015

Page 193: Reduced size m3 ft 15sn08180210 hansen

182

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 194: Reduced size m3 ft 15sn08180210 hansen

183

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 195: Reduced size m3 ft 15sn08180210 hansen

184

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 196: Reduced size m3 ft 15sn08180210 hansen

185

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 197: Reduced size m3 ft 15sn08180210 hansen

186

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 198: Reduced size m3 ft 15sn08180210 hansen

Features, Events, and Processes (FEPs) Development Activities Geoff Freeze1and Jens Wolf2

1Sandia National Laboratories, Albuquerque, NM, USA

2Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig, Germany

Abstract

Feature, event, and process (FEP) analysis and scenario development are an integral part of the iterative performance assessment (PA) process, and are used to inform the construction of post-closure PA models of SNF/HLW repositories. Uncertainty and sensitivity analyses of the results produced by those PA models indicate which FEPs are most important to post-closure repository performance. This information is then used in the next iteration to help refine the set of FEPs and scenarios, and their representation in the PA model.

FEPs have traditionally been organized using a classification scheme developed as part of Nuclear Energy Agency (NEA) International FEP Database. The NEA FEP database uses a hierarchical numbering and classification scheme that is based on two overlapping sets of categories: features (e.g., waste form, waste package, backfill, host rock, etc.) and multi-physics processes (e.g., thermal, chemical, mechanical, hydrologic). The categories are overlapping in the sense that a specific FEP (e.g., flow through the waste package) may be classified both by a feature category (e.g., waste package) and by a process category (e.g., hydrologic). As a result, related FEPs are not always mapped to the same category and it can be difficult to group and/or find all related FEPs within the FEP list. In addition, the overlapping categories sometimes lead to the creation of the same or similar FEPs under different headings.

To better inform PA modeling and safety case development, a new FEP organizational structure, the FEP classification matrix, has been developed that alleviates the issues associated with the overlapping categories and duplicative FEPs in the NEA-based classification scheme. The FEP classification matrix is based on the concept that a FEP is typically a process or event acting upon or within a feature. The FEP matrix provides a two-dimensional organizational structure consisting of a Features axis that defines the “rows” and a Processes/Events axis that defines the “columns”.

The FEP matrix approach is being applied to develop a comprehensive set of FEPs for a generic salt repository, based on the FEP experience and work carried out in the US and Germany. The ultimate goal is to populate an international FEP database for salt repositories that can promote easy searching for FEPs and pertinent information. The populated FEP matrix can be a useful tool for developing a PA model and a robust Safety Case in salt repositories.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-17016A

187Proceedings of 5th US/German Workshop

January 30, 2015

Page 199: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AND

2014

-170

15PE

Features, Events, and

 Processes (FEPs) 

Developm

ent A

ctivities

Geo

ff Freeze (SNL)

Jens W

olf (GRS)

Outline

2

Joint U

.S.‐G

erman

 Objectiv

es / Motivation

SN

L: Geo

ff Freeze, S. D

avid Sevou

gian, M

ichael Gross, Christi Leigh

DO

E Used Fuel Disp

osition

 (UFD

) Cam

paign 

GRS: Jen

s Wolf, Jörg

Mön

ig, D

ieter B

uhmann

Vo

rläufigeSicherhe

itsanalyseGorlebe

n (VSG

)

Co

llabo

rativ

e Re

sults to

 Date

FEP Matrix

 and

 Docum

entatio

n Template

New

 FEPs: bed

ded salt vs. dom

al sa

lt FEPs

Future W

ork

10

Objectiv

es / Motivation

3

U.S. –

German

 collabo

ratio

n to produ

ce a com

mon

 FEP

 list 

Iden

tify relevant FEPs for disp

osal of h

eat‐gene

ratin

g waste (SNF and 

HLW) in salt

Ap

plicable to

 all po

tential salt con

cepts and sites

Re

fine existing FEP iden

tification and screen

ing approaches

Salt Club

 

Prod

uce a FEP Catalogue for u

se by all N

EA Salt C

lub mem

bers

Co

untries w

ith poten

tial interest in salt repo

sitories

Do

cumen

tatio

n of sc

reen

ing de

cisio

ns

Inform

 the pe

nding up

date to

 the NEA

 International FEP

 database

FEP An

alysis

4

A FEPis a Process o

r Event acting 

upon

 or w

ithin Feature(s)

FEP Iden

tification

De

velop and classify a compreh

ensiv

e list o

f FEPs p

oten

tially re

levant to

 long

‐term

 repo

sitory pe

rformance

FEP Screen

ing

Specify

 a su

bset of impo

rtant F

EPs that 

individu

ally, or in combinatio

n, th

at 

contrib

ute to long

‐term re

pository 

performance

Scen

ario Develop

men

t and

 Screening

Iden

tify and screen

 scen

arios (i.e., 

combinatio

ns/seq

uences of FEPs)

Nom

inal/referen

ce, disrup

tive

188

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 200: Reduced size m3 ft 15sn08180210 hansen

Salt FEP Iden

tification

5

US: ~20

0 UFD

 Bed

ded Salt FEPs (Sevou

gian

 et a

l. 2012)

Mod

ified

 from

 gen

eric FEPs (Freeze et a

l. 20

11) to be

 more salt‐

specific

De

rived

 from

 NEA

 FEP

 Database (199

9, 200

6)

Cross‐checked against W

IPP FEP catalogue (DOE 20

09)

Germany: ~10

0 Gorlebe

n VS

G FEPs (Wolf e

t al. 20

12a,b)

De

rived

 from

 NEA

 FEP

 Database (199

9, 200

6)

Specific to a sa

lt do

me in Northern Germany

Co

mbine

d as part o

f “FEP Matrix” approach (Freeze et al. 

2014

a,b)

Initial US and German

 FEPs m

appe

d to FEP

 Matrix

 to elim

inate 

redu

ndancies

5 exam

ple matrix

‐based

 FEPs c

reated

 to te

st app

roach

FEP Matrix

6

Tw

o‐dimen

sional FEP

 organizatio

nal structure

Matrix

 Row

s = Feature (and

 compo

nent) C

ategories

Matrix

 Colum

ns = Process and

 Event 

Categorie

s

Matrix

 Cell con

tains a

ll FEPs 

related to th

e “Process/Event” 

actin

g up

on or w

ithin th

e “Feature”

Re

lated FEPs are group

ed by 

Matrix

 Cell (or by Ro

w or C

olum

n)

Not distrib

uted

 amon

g vario

us 

locatio

ns as in the NEA

‐based

 hierarchical list

Cou

pled

TH

CM

BR

Pro

cess

es a

nd

Even

ts

Feature Categories

FEP Matrix

7

All FEPs relevant to the Bu

ffer/Ba

ckfill “feature”

Some are broadly applicable to

 both

Some are specific to th

e Bu

ffer “compo

nent” or Backfill “compo

nent”

All The

rmal‐M

echanical FEPs relevant to Bu

ffer/Ba

ckfill and

 Em

placem

ent T

unne

ls/Drifts

FEP Matrix

8

Ch

aracteristic

 FEPs

FEPs con

taining prop

ertie

s and

 param

eter value

s that d

escribe a 

feature or com

pone

ntOnly on

e Ch

aracteristic

 FEP

 per fe

ature/compo

nent

No screen

ing for C

haracteristic FEPs

189

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 201: Reduced size m3 ft 15sn08180210 hansen

FEP Iden

tification Sche

me

9

De

velope

d a “num

berin

g” sc

heme consisten

t with

 FEP

 Matrix

 

Alph

a‐nu

meric iden

tifiers indicate whe

re a FEP

 is m

appe

d in th

e FEP 

matrix

 (e.g., row and

 colum

n)More de

scrip

tive than

 strictly

 num

eric iden

tifiers

Can still be mappe

d to NEA

 Database FEP Num

bers fo

r traceability   

FEP matrix

 iden

tifiers have the form

:FF.CC

.PE.nn

whe

re:

FF= Feature 

CC= Co

mpo

nent (sub

‐feature)

PE= Process o

r Event category

nn= sequ

entia

l tracking nu

mbe

FEP Iden

tification Sche

me

10

FF.CC.PE.nn

FF= Features: 

Waste Form:

WF

Waste Package:

WP

Bu

ffer/Ba

ckfill:

BB

Mine Workings: 

MW

Seals/Plugs: 

SP

Host Rock:

HR

Other Geo

logic Units: 

OU

Biosph

ere

BI

Repo

sitory System

RS

CC= Co

mpo

nents:

Feature‐level: 

00

Compo

nent‐le

vel (e.g. buffer, backfill, …):  01, 02, 03, ….

FEP Iden

tification Sche

me

11

FF.CC.PE.nn

PE= Process o

r Event category: 

Ch

aracteristics: 

CP

Mechanical and

 thermal‐m

echanical processes: 

TM 

Hy

drological and

 thermal‐hydrological processes:

TH

Chem

ical and

 thermal‐che

mical processes: 

TC

Biological and

 thermal‐biological processes: 

TB

Transport a

nd th

ermal‐transpo

rt processes: 

TT

Thermal: 

TR

Radiological: 

RA

Long

‐Term Geo

logic: 

LG

Clim

atic: 

CL

Human

 Activities (P

rocesses): 

HP

Other (P

rocesses): 

OP

Nuclear Criticality

: NC

Early

 Failure: 

EF

Seism

ic: 

SM

Ign e

ous:

IG

Human

 Activities (Events): 

HE

Other (E

vents): 

OE

Proc

esse

s

Even

ts

FEP Do

cumen

tatio

n Template

12

0. FEP

 Nam

e and Iden

tifier

1. Definition

2. Descriptio

n and Re

lated FEPs

FEP De

scrip

tion may su

bdivide into “sub‐parts” A, B

, C, etc.

2.1 Gen

eral 

2.2 Co

ncep

t Spe

cific (e

.g., be

dded

 salt vs. dom

al sa

lt)2.3 Prop

ertie

s and

 Param

eter Value

s2.4 Re

lated FEPs

3. Screening

 Decision

 (by sub‐part)

4. Screening

 Justificatio

n (by sub‐part)

5. Ope

n Issues

6. Referen

ces

190

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 202: Reduced size m3 ft 15sn08180210 hansen

FEP Do

cumen

tatio

n Template

13

0. FEP

 Nam

e and Iden

tifier

1. Definition

2. Descriptio

n and Re

lated FEPs

FEP De

scrip

tion may su

bdivide into “sub‐parts” A, B

, C, etc.

2.1 Gen

eral 

2.2 Co

ncep

t Spe

cific (e

.g., be

dded

 salt vs. dom

al sa

lt)2.3 Prop

ertie

s and

 Param

eter Value

s2.4 Re

lated FEPs

3. Screening

 Decision

 (by sub‐part)

4. Screening

 Justificatio

n (by sub‐part)

5. Ope

n Issues

6. Referen

ces

Matrix

‐Based

 FEPs –

Issues fo

r Bed

ded vs. D

omal Salt

14

Filling

 in th

e who

le matrix

 with

 fully described

 FEPs n

eeds a lot 

of re

sources

“Produ

ct” for S

alt C

lub

Bo

th cou

ntrie

s are in a site se

lection process

De

velop ne

w example matrix

‐based

 FEPs that h

ighlight areas 

whe

re th

ere are diffe

rences between be

dded

 salt and do

mal

salt

Im

prove template regarding screen

ing de

cisio

ns and

 screen

ing 

justificatio

ns

Exam

ple Matrix

‐Based

 FEP

15

BB

.02.TM

.01 –Mechanical effe

cts o

n Ba

ckfill or from Backfill

Screen

ing de

cisio

ns

16

Includ

ed –FEP is almost certain to

 be includ

ed, ind

epen

dent 

of th

e type

 of salt site

 or spe

cific site characteristics. 

Exclud

ed –FEP that is alm

ost certain to

 be screen

ed, 

inde

pend

ent o

f the

 specific salt site  

Site‐Spe

cific –FEP requ

ires a

 substantial amou

nt of d

etailed 

inform

ation for a

 specific site evaluatio

n

Desig

n‐Specific –

F EP requ

ires d

etailed inform

ation for a

 specific repo

sitory de

sign. 

Evaluate –FEPs are candidates for quantita

tive sensitivity 

analyses

191

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 203: Reduced size m3 ft 15sn08180210 hansen

Exam

ple Matrix

‐Based

 FEP

17

BB

.02.TM

.01 –Mechanical effe

cts o

n Ba

ckfill or from Backfill

IDD

escr

iptio

n of

Pro

cess

Scre

enin

g D

ecis

ion

Bed

ded

Salt

Dom

al S

alt

AC

ompa

ctio

n or

Rec

onso

lidat

ion

of B

ackf

ill

Incl

uded

(A1)

An

even

tual

moi

stur

e co

nten

t in

back

fill m

ay in

crea

se th

e co

nver

genc

e ra

tes

(A2)

Inte

rnal

pre

ssur

e in

a s

egm

ent i

nflu

ence

s th

e co

nver

genc

e pr

oces

s

Incl

uded

Incl

uded

BB

ack-

Stre

ss fr

om B

ackf

ill(B

1) T

he p

rese

nce

of b

ackf

ill w

ill g

ener

ate

mec

hani

cal l

oads

on

the

drift

wal

ls, s

low

ing

conv

erge

nce

of th

e dr

ifts.

(B

2) T

he p

rese

nce

of b

ackf

ill w

ill g

ener

ate

mec

hani

cal l

oads

on

drif

t and

bor

ehol

e lin

ers,

and

on

the

was

te p

acka

ges

if th

e pa

ckag

es a

re p

lace

d di

rect

ly o

n th

e flo

or o

f the

em

plac

emen

t dr

ifts

or(B

3) T

he p

rese

nce

of b

ackf

ill w

ill g

ener

ate

mec

hani

cal l

oads

on

the

tops

of w

aste

con

tain

ers

if th

e co

ntai

ners

are

pla

ced

in

shor

t bor

ehol

es in

the

floor

or r

ibs

of a

drif

t.

Incl

uded

Eva

luat

e

Like

ly E

xclu

ded

Incl

uded

Like

ly E

xclu

ded

Like

ly E

xclu

ded

CN

on-T

herm

ally

-Indu

ced

Volu

me

Cha

nges

(C

1) S

wel

ling

of c

orro

sion

pro

duct

s(C

2) C

rush

ing

of b

ackf

ill gr

ains

Like

ly E

xclu

ded

Eva

luat

eLi

kely

Incl

uded

Eva

luat

eD

Roo

f Col

laps

eLi

kely

Exc

lude

d Li

kely

Exc

lude

d

Matrix

‐Based

 FEPs –

Issues fo

r Bed

ded vs. D

omal Salt

18

Geo

logy

Reg

ulat

ions

Rep

osito

ry

Con

cept

/ Des

ign

WIP

PG

orle

ben

Matrix

‐Based

 FEPs –

Issues fo

r Bed

ded vs. D

omal Salt

19

13

 new

 example FEPs

HR

.01.CP

.01

Stratig

raph

y and Prop

ertie

s of B

edde

d and Do

mal Salt

HR

.02.CP

.01

Stratig

raph

y and Prop

ertie

s of D

isturbe

d Ro

ck Zon

e

HR.03.CP

.01

Stratig

raph

y and Prop

ertie

s of Interbe

ds and

 Seams 

RS.00.CP

.01

Repo

sitory De

sign

WP.00

.TC.01

Gas Gen

eration at W

aste Packages 

MW.00.TH

.01Gas Gen

eration in Emplacem

ent D

rifts 

MW.00.HE

.01Hu

man

 Intrusion into th

e Em

placem

ent D

rifts

SP.02.TM

.01

Mechanical Effe

cts o

n Shaft S

ealing 

HR

.02.TM

.01

Evolution of th

e DR

HR.00.OP.01

Alteratio

n and Evolution of Flow Pathw

ays in Ho

st Rock 

HR

.00.TM

.01

Mechanical Effe

cts o

n Ho

st Rock

HR

.00.TT.01

Advection of Diss

olved Ra

dion

uclides in

 Host R

ock

HR

.00.TT.02

Diffu

sion/Dispersio

n of Diss

olved Ra

dion

uclides in

 Host R

ock 

Exam

ple Matrix

‐Based

 FEP

20

HR

.00.TT.01 Ad

vection of Dissolved Ra

dion

uclides in Host  

Rock

IDD

escr

iptio

n of

Pro

cess

Scre

enin

g D

ecis

ion

Bed

ded

Salt

Dom

alSa

lt

AA

dvec

tion

of D

isso

lved

Rad

ionu

clid

esIn

clud

edE

valu

ate

BTr

ansp

ort T

hrou

gh F

ract

ures

Incl

uded

Eva

luat

e

CC

hann

elin

g Fl

owLi

kely

Exc

lude

dLi

kely

Exc

lude

d

DVi

scou

s Fi

nger

ing

Exc

lude

dE

xclu

ded

192

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 204: Reduced size m3 ft 15sn08180210 hansen

Future W

ork

21

Salt FEP Catalogue

FEP iden

tification and do

cumen

tatio

n on

going

Joint U

.S.‐G

erman

 collabo

ratio

nPreamble completed

Focus o

n FEPs whe

re th

ere are diffe

rences between be

dded

 and

 dom

alsalt 

Salt Club

 repo

rtSche

dule (???‐2015?)

FEP screen

ing process

FEPs vs. sc

enarios

Tw

o‐Dimen

sional FEP

 Matrix

 App

roach 

Group

s related

 FEPs in a sin

gle locatio

n (i.e., cell, row, or colum

n)

Provides an intuitive alpha

‐num

eric iden

tification sche

me

Supp

orts sa

fety assessm

ent a

nd sa

fety case de

velopm

ent b

y prom

oting easy se

arching of FEP

 Catalogue

 to find

 related iss

ues

Presen

t to NEA

 FEP

 Working

 Group

 in Oct 201

4

Electron

ic FEP

 Database

22

To

 be de

velope

d (fu

ture work?)

e.g. Qt(C+

+ GUI library) / PostgresS

QL / M

ySQL

Acknow

ledgem

ent

23

References

24

D

OE

(U.S

. Dep

artm

ent o

f Ene

rgy)

200

9. T

itle

40 C

FR P

art 1

91 S

ubpa

rts B

and

C C

ompl

ianc

e Re

cert

ifica

tion

Appl

icat

ion

for t

he W

aste

Isol

atio

n Pi

lot P

lant

, App

endi

x SC

R-20

09 F

eatu

re, E

vent

, and

Pro

cess

Scr

eeni

ng fo

r PA.

DO

E/W

IPP

09-3

424,

U

.S. D

epar

tmen

t of E

nerg

y, C

arls

bad

Are

a O

ffic

e, C

arls

bad,

New

Mex

ico.

Free

ze, G

., M

arin

er, P

., B

link,

J.A

., C

apor

usci

o, F

.A.,

Hou

sew

orth

, J.E

., an

d C

unna

ne, J

.C. 2

011.

Dis

posa

l Sys

tem

Fea

ture

s, Ev

ents

, and

Pro

cess

es (F

EPs)

: FY1

1 Pr

ogre

ss R

epor

t.SA

ND

2011

-605

9P, S

andi

a N

atio

nal L

abor

ator

ies,

Alb

uque

rque

, NM

.

Free

ze, G

., Se

voug

ian

S. D

., an

d G

ross

, M. 2

013.

Saf

ety

Fram

ewor

k fo

r Dis

posa

l of H

eat-G

ener

atin

g W

aste

in S

alt:

Feat

ures

, Eve

nts,

and

Proc

esse

s (FE

Ps) C

lass

ifica

tion.

FCR

D-U

FD-2

013-

0001

91, U

.S. D

epar

tmen

t of E

nerg

y, O

ffic

e of

N

ucle

ar E

nerg

y, U

sed

Fuel

Dis

posi

tion

Cam

paig

n, W

ashi

ngto

n, D

.C.

Fr

eeze

, G.,

Sevo

ugia

n S.

D.,

Leig

h, C

., G

ross

, M.,

Wol

f, J.,

Mön

ig, J

., an

d B

uhm

ann,

D.,

2014

a. A

New

App

roac

h fo

r Fe

atur

e, E

vent

, and

Pro

cess

(FEP

) Ana

lysi

s of U

NF/

HLW

Dis

posa

l.SA

ND

-201

3-10

493C

, WM

2014

Con

fere

nce,

Pho

enix

A

Z, M

arch

2-6

, 201

4.

Fr

eeze

, G.,

Sevo

ugia

n S.

D.,

Leig

h, C

., G

ross

, M.,

Wol

f, J.,

Mön

ig, J

., an

d B

uhm

ann,

D.,

2014

b. D

evel

opm

ent o

f a S

alt

Repo

sito

ry F

EP C

atal

ogue

.SA

ND

-201

4-24

23P,

San

dia

Nat

iona

l Lab

orat

orie

s, A

lbuq

uerq

ue, N

ew M

exic

o.

NEA

(Nuc

lear

Ene

rgy

Age

ncy)

199

9. A

n In

tern

atio

nal D

atab

ase

of F

eatu

res,

Even

ts a

nd P

roce

sses

.Par

is,

Fran

ce:

Org

anis

atio

nfo

r Eco

nom

ic C

o-op

erat

ion

and

Dev

elop

men

t.

NEA

(Nuc

lear

Ene

rgy

Age

ncy)

200

6. T

he N

EA In

tern

atio

nal F

EP D

atab

ase:

Ver

sion

2.1

. Par

is, F

ranc

e: O

rgan

isat

ion

for

Econ

omic

Co-

oper

atio

n an

d D

evel

opm

ent.

Se

voug

ian

S. D

., G

. A. F

reez

e, M

. B. G

ross

, Joo

n Le

e, C

. D. L

eigh

, P. E

. Mar

iner

, R. J

. Mac

Kin

non,

and

P. V

augh

n, 2

012.

TS

PA M

odel

Dev

elop

men

t and

Sen

sitiv

ity A

naly

sis o

f Pro

cess

es A

ffect

ing

Perf

orm

ance

of a

Sal

t Rep

osito

ry fo

r Dis

posa

l of

Hea

t-Gen

erat

ing

Nuc

lear

Was

te, F

CR

D-U

FD-2

012-

0003

20 R

ev 0

, U.S

. Dep

artm

ent o

f Ene

rgy,

Off

ice

of N

ucle

ar E

nerg

y,

Use

d Fu

el D

ispo

sitio

n C

ampa

ign,

Was

hing

ton,

D.C

.

Wol

f, J.,

Altm

aier

, M.,

Beh

lau,

J., B

euth

, T.,

Bra

cke,

G.,

Bub

e, C

., B

uhm

ann,

D.,

Dre

sbac

h, C

., H

amm

er, J

., K

elle

r, S.

, K

ienz

ler,

B.,

Klin

ge, H

., K

rone

, J.,

Lom

mer

zhei

m, A

., M

etz,

V.,

Mön

ig, J

., M

ruga

lla, S

., Po

pp, T

., R

übel

, A.,

Web

er, J

.R.,

2012

a: K

onze

ptun

d Au

fbau

des F

EP-K

atal

oges

. Ber

icht

zum

Arb

eits

pake

t7, V

orlä

ufig

eSi

cher

heits

anal

yse

fürd

en S

tand

ort

Gor

lebe

n, G

RS-

282,

Ges

ells

chaf

tfür

Anl

agen

-und

Rea

ktor

sich

erhe

it(G

RS)

mbH

, Köl

n, 2

012.

W

olf,

J., A

ltmai

er, M

., B

ehla

u, J.

, Beu

th, T

., B

rack

e, G

., B

ube,

C.,

Buh

man

n, D

., D

resb

ach,

C.,

Ham

mer

, J.,

Kel

ler,

S.,

Kie

nzle

r, B

., K

linge

, H.,

Kro

ne, J

., Lo

mm

erzh

eim

, A.,

Met

z, V

., M

önig

, J.,

Mru

galla

, S.,

Popp

, T.,

Rüb

el, A

., W

eber

, J.R

., 20

12b:

FEP

-Kat

alog

. Ber

icht

zum

Arb

eits

pake

t7, V

orlä

ufig

eSi

cher

heits

anal

yse

fürd

en S

tand

ortG

orle

ben,

GR

S-28

3,

Ges

ells

chaf

tfür

Anl

agen

-und

Rea

ktor

sich

erhe

it(G

RS)

mbH

, Köl

n.

193

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 205: Reduced size m3 ft 15sn08180210 hansen

IGD-TP Joint activity: Handling of uncertainties

US-German Workshop on Salt Repository Research September 7-12, 2014

Santa Fe, New Mexico, USA D.-A. Becker, U. Noseck

Gesellschaft fuer Anlagen- und Reaktorsicherheit, Braunschweig, Germany

Abstract

IGD-TP was founded as a technology platform for Implementing Geological Disposal of Radioactive Waste in Europe, in order to co-ordinate R&D activities, demonstrate technology and safety and underpin the development of a common European view on the related issues. Non-European countries are welcome to participate. The IGD-TP Strategic Research Agenda (SRA) defines several topics of specific interest; topic 1.3 specifically addresses sensitivity and uncertainty analysis. According to this demand, a Joint Activity (JA) was defined, titled “Handling of Uncertainties in the Safety Case for Deep Geological Repositories”. To work on this issue, a Technical/Scientific Working Group (TSWG) was founded, currently consisting of 14 organizations from 10 European countries and the USA; further participants are welcome. The work of the TSWG is expected to lead to an EC-co-ordinated international project. The presentation explains the goals of the Joint Activity and its current status.

194Proceedings of 5th US/German Workshop

January 30, 2015

Page 206: Reduced size m3 ft 15sn08180210 hansen

IGD

-TP

Join

t act

ivity

: H

andl

ing

of u

ncer

tain

ties

Dirk

-A. B

ecke

r, U

lrich

Nos

eck,

GR

SS

epte

mbe

r 9, 2

014

2014

US

/Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

D

esig

n, a

nd O

pera

tion

San

ta F

e

Bac

kgro

und:

IGD

-TP

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n2

Impl

emen

ting

Geo

logi

cal D

ispo

sal o

f Rad

ioac

tive

Was

te –

Tech

nolo

gy P

latfo

rmw

ww.

igdt

p.eu

“Our

vis

ion

is th

at b

y 20

25, t

he fi

rst g

eolo

gica

l dis

posa

l fac

ilitie

s fo

r spe

nt fu

el, h

igh-

leve

l w

aste

and

oth

er lo

ng-li

ved

radi

oact

ive

was

te w

ill be

ope

ratin

g sa

fely

in E

urop

e.”

Goa

ls•

impl

emen

tatio

n-or

ient

ed R

&D a

ctiv

ities

on

all r

emai

ning

key

asp

ects

of d

eep

geol

ogic

al

disp

osal

of s

pent

fuel

and

long

-live

d ra

dioa

ctiv

e w

aste

•de

mon

stra

tion

on th

e te

chno

logi

es a

nd s

afet

y•

unde

rpin

the

deve

lopm

ent o

f a c

omm

on E

urop

ean(

*)vi

ew o

n th

e m

ain

issu

es re

late

d to

th

e m

anag

emen

t and

dis

posa

l of w

aste

Foun

ded

as a

Eur

opea

n Te

chno

logy

Pla

tform

(ETP

) to

•pr

ovid

e a

fram

ewor

k [..

.] to

def

ine

rese

arch

and

dev

elop

men

t prio

ritie

s, ti

mef

ram

es a

nd

actio

n pl

ans

on a

num

ber o

f stra

tegi

cally

impo

rtant

issu

es•

play

a k

ey ro

le in

ens

urin

g an

ade

quat

e fo

cus

of re

sear

ch fu

ndin

g on

are

as w

ith a

hig

h de

gree

of i

ndus

trial

rele

vanc

e•

addr

ess

tech

nolo

gica

l cha

lleng

es th

at c

an p

oten

tially

con

tribu

te to

a n

umbe

r of k

ey

polic

y ob

ject

ives

(*) N

on-E

urop

ean

coun

tries

are

wel

com

eto

parti

cipa

te!

IGD

-TP

Stra

tegi

c R

esea

rch

Agen

da (S

RA)

: Key

Top

ics

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n3

1. S

afet

yca

se•

1.1

(HP

):In

crea

se th

e co

nfid

ence

in, t

estin

g an

d fu

rther

refin

emen

t of t

he to

ols

(con

cept

s, d

efin

ition

of s

cena

rios

and

com

pute

r cod

es) u

sed

in li

cens

ing

safe

ty

asse

ssm

ents

•1.

2 (H

P):

Impr

ovin

gsa

fety

case

com

mun

icat

ion

•1.

3 (M

P):

Incr

ease

the

conf

iden

ce in

and

furth

er re

finem

ent o

n ho

w to

mak

e se

nsiti

vity

and

unc

erta

inty

ana

lyse

s2.

Was

te fo

rms

and

thei

r beh

avio

ur3.

Tec

hnic

al fe

asib

ility

and

long

-term

per

form

ance

of r

epos

itory

com

pone

nts

4. D

evel

opm

ent s

trate

gy o

f the

repo

sito

ry5.

Ope

ratio

nal S

afet

y6.

Mon

itorin

g7.

Gov

erna

nce

and

Sta

keho

lder

invo

lvm

ent

IGD

-TP

Dep

loym

entP

lan

(DP)

: Joi

nt A

ctiv

ities

(JA)

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n4

JA ty

pes

•O

rgan

izat

iona

l Wor

king

Gro

up (O

RW

G)

•Te

chni

cal/S

cien

tific

Wor

king

Gro

up (T

SW

G)

•de

velo

ping

a s

cien

tific

alor

tech

nica

l Top

ic•

prep

arat

ory

wor

k to

gen

erat

e a

poss

ible

tech

nica

l pro

ject

(TE

P)

•to

be

initi

ated

whe

n th

e To

pic'

s su

bjec

t nee

ds to

be

anal

yzed

by

a gr

oup

of

expe

rts p

rior t

o be

ing

turn

ed in

to a

Tec

hnic

al P

roje

ct (T

EP

)•

mem

bers

cov

er th

eir o

wn

cost

s•

Info

rmat

ion

Exc

hang

e P

latfo

rm (I

EP

) •

Tech

nica

l Pro

ject

(TE

P)

•ac

tivity

that

cov

ers

tech

nica

l or s

cien

tific

wor

k on

a s

peci

fic S

RA

Topi

c•

clea

r RD

&D

prob

lem

def

initi

on n

eces

sary

•di

ffere

nt fu

ndin

g m

odel

s•

Tech

nolo

gica

l Tra

nsfe

r (TT

)

Bot

h S

RA

and

DP

are

bein

g be

ing

revi

sed

and

not y

et a

vaila

ble

in fi

nal f

orm

!

195

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 207: Reduced size m3 ft 15sn08180210 hansen

IGD

-TP

Join

t Act

ivity

8

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n5

Han

dlin

g of

Unc

erta

intie

s in

the

Saf

ety

Cas

e fo

r Dee

p G

eolo

gica

l Rep

osito

ries

(For

mer

title

: “B

ench

mar

king

” for

con

fiden

ce in

long

term

safe

ty in

Saf

ety

Cas

es)

•A

dres

ses

mai

nly

SR

A to

pic

1.3

•C

ontri

butio

n to

SR

A to

pics

1.1

and

1.2

•TS

WG

foun

ded

•TE

Ppl

anne

d to

be

laun

ched

in 2

015/

2016

AND

RA

(FR

)N

RG

(NL)

EN

RE

SA

(ES

)N

WM

O(C

A)

Gal

son

Ltd.

(UK)

Posi

vaO

y(F

I)

GR

S(D

E)S

andi

aLa

bs (U

SA)

JAE

A(J

P)

SK

B(S

E)

NAG

RA

(CH

)SU

RAO

(CZ)

ND

A(U

K)TU

-Cla

usth

al (D

E)

NIR

AS/O

ND

RAF

(BE)

UJV

(CZ)

His

tory

of J

A8in

IGD

-TP

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n6

June

201

2: IG

D-T

PD

eplo

ymen

t Pla

n•

Def

initi

on o

f JA

8:

•„B

ench

mar

king

“ for

con

fiden

ce in

Lon

g Te

rm S

afet

y in

Saf

ety

Cas

es: T

SW

G•

Topi

c 1.

3: In

crea

se c

onfid

ence

and

furth

er re

finem

ent o

f met

hods

to m

ake

sens

itivi

ty a

nd u

ncer

tain

ty a

naly

ses

May

201

3: 1

stM

eetin

g of

inte

rest

ed o

rgan

izat

ions

•Fo

unda

tion

of a

TS

WG

•AN

DR

A, E

NR

ESA,

Gal

son,

GR

S, J

AEA?

, NAG

RA,

ND

A, N

IRAS

-ON

DR

AF?,

N

RG

, NW

MO

?, P

OS

IVA

, SA

ND

IA, S

KB

, SU

RA

O, T

U-C

l, U

JV•

Def

initi

on o

f pro

ject

con

tent

s•

Ela

bora

tion

of a

n ou

tline

pro

ject

stru

ctur

e

His

tory

of J

A8in

IGD

-TP

(con

t.)

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n7

July

201

3: F

irst d

raft

outli

ne p

ropo

sal (

Dan

Gal

son)

8 ta

sks

Aug

ust 2

013:

Sec

ond

draf

t out

line

prop

osal

(GR

S)

•4

WP

sw

ith 1

3 ta

sks,

alto

geth

er

Sep

tem

ber 2

013:

2nd

Mee

ting

of in

tere

sted

org

aniz

atio

ns•

Pla

nnin

g of

act

iviti

es o

f the

TS

WG

•N

ew ti

tle o

f act

ivity

: “H

andl

ing

of U

ncer

tain

ties

in th

e S

afet

y C

ase

for D

eep

Geo

logi

cal R

epos

itorie

s”

Mot

ivat

ion:

Unc

erta

intie

s in

the

Safe

ty C

ase

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n8

•A

re w

e in

vest

igat

ing

the

right

sce

nario

s?

•A

re w

e us

ing

the

right

FE

Ps?

•A

re o

ur F

EP

desc

riptio

ns c

orre

ct?

•D

o w

e as

sign

the

right

pro

babi

litie

s to

the

FEP

s?

•A

re w

e us

ing

adeq

uate

mod

els?

•D

o w

e m

odel

all

rele

vant

effe

cts?

•A

re o

ur m

odel

s su

itabl

e fo

r des

crib

ing

thes

e ef

fect

s?•

Are

the

mod

els

suffi

cien

tly a

ccur

ate?

•W

ill th

e da

taw

e us

e le

ad to

relia

ble

resu

lts?

•Is

our

kno

wle

dge

of n

atur

e go

od e

noug

h to

just

ify th

e ut

ilize

d da

ta?

•C

an p

hysi

cally

unc

erta

in e

ffect

s ha

ve a

n in

fluen

ce?

P

rope

r han

dlin

g of

unc

erta

intie

s is

an

esse

ntia

l par

t of t

he S

afet

y C

ase

196

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 208: Reduced size m3 ft 15sn08180210 hansen

Han

dlin

g of

Unc

erta

intie

s

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n9

•S

cena

rio u

ncer

tain

ties

•Id

entif

icat

ion

of p

ossi

ble

influ

ence

s•

Pro

per s

cena

rio a

naly

sis

•M

odel

unc

erta

intie

s•

Iden

tific

atio

n of

pos

sibl

e m

odel

unc

erta

intie

s•

App

licat

ion

of d

iffer

ent m

odel

opt

ions

•D

ata

unce

rtain

ties

•Q

uant

ifica

tion

of d

ata

unce

rtain

ties

•D

eter

min

istic

par

amet

er v

aria

tions

•P

roba

bilis

tic a

naly

sis

•un

certa

inty

ana

lysi

s•

sens

itivi

ty a

naly

sis

Out

com

e an

d R

ecom

men

datio

nsfr

om F

orm

er P

roje

cts

PAM

INA

and

MeS

A

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n10

•U

ncer

tain

ty a

naly

sis

•P

ropo

sal f

or a

sys

tem

atic

pro

cedu

re to

der

ive

PD

Fs•

Pro

toco

l to

treat

mod

el u

ncer

tain

ties

•Th

ese

proc

edur

es s

houl

d be

furth

er d

evel

oped

and

test

ed in

an

inte

rnat

iona

l fra

mew

ork

•U

se o

f rea

listic

Saf

ety

Cas

es•

Exp

erie

nces

sha

red

with

oth

er in

stitu

tions

cou

ld p

rovi

de v

alua

ble

guid

ance

•E

xper

t jud

gem

ent

•R

evie

w o

f app

roac

hes

was

mad

e•

Nec

essa

ry to

exa

min

e su

ch g

uide

lines

furth

er

•to

det

erm

ine

whe

ther

and

whe

n m

ore

form

al a

ppro

ache

s to

exp

ert j

udge

men

tare

war

rant

ed

•fo

r sys

tem

des

crip

tion

and

scen

ario

der

ivat

ion

•P

roba

bilis

tic s

ensi

tivity

ana

lysi

s (S

A)

•P

rinci

ple

cons

ider

atio

ns o

f con

vent

iona

l and

som

e m

oder

n m

etho

ds fo

r sen

sitiv

ity a

naly

ses

with

in th

e po

st-c

losu

re s

afet

y as

sess

men

t of D

GR

•R

obus

tnes

s of

var

ious

met

hods

to h

andl

e no

n-lin

earit

ies

is q

uite

diff

eren

t and

the

resu

lts a

re n

ot

alw

ays

the

sam

e fo

r all

met

hods

•M

ore

rese

arch

wor

k is

nee

ded

to e

stab

lish

a re

liabl

e pr

oced

ure

for S

A•

An

inte

rnat

iona

l fra

me

wou

ld b

e ne

eded

for a

n ef

ficie

nt tr

eatm

ent o

f thi

s ta

sk

2nd

draf

t pro

posa

l: TE

P: C

onfid

ence

Bui

ldin

g an

d H

andl

ing

of

Unc

erta

intie

s in

Saf

ety

Asse

ssm

ent f

or G

eolo

gica

l Dis

posa

l Fac

ilitie

s

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n11

WP

1: M

anag

emen

t of u

ncer

tain

ties

•Ta

sk 1

.1: S

trate

gies

for m

anag

ing

unce

rtain

ty•

Task

1.2

: Man

agem

ent o

f unc

erta

intie

s in

diff

eren

t tim

e fra

mes

of d

ispo

sal s

yste

m e

volu

tion

•Ta

sk 1

.3: R

egul

ator

y de

cisi

on-m

akin

g un

der u

ncer

tain

ty•

Task

1.4

: Com

mun

icat

ion

of u

ncer

tain

ty

WP

2: U

ncer

tain

ty id

entif

icat

ion

and

quan

tific

atio

n •

Task

2.1

: Exp

ert j

udge

men

t•

Task

2.2

: PD

F de

rivat

ion

•Ta

sk 2

.3: I

dent

ifica

tion

and

quan

tific

atio

n of

cor

rela

tions

WP

3: S

ensi

tivity

ana

lysi

s •

Task

3.1

: Sur

vey

and

asse

ssm

ent o

f met

hods

in v

iew

of P

A•

Task

3.2

: Com

paris

on o

f met

hods

by

num

eric

al e

xper

imen

ts•

Task

3.3

: R&

D tr

igge

ring

WP

4: C

o-or

dina

tion

•Ta

sk 4

.1: W

ork

co-o

rdin

atio

n•

Task

4.2

: Tra

inin

g•

Task

4.3

: Int

erna

tiona

l con

fere

nce

Plan

ned

cont

ribut

ions

of J

A8pa

rtic

ipan

ts in

201

4 an

d 20

15

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n12

Work  in2014/2015

Activ

esupp

ort/provideinpu

tWP 1: M

anagem

ent o

f uncertaintie

s (Lead

er: G

alson)

Task 1.1: Strategies for m

anaging un

certainty

NDA

, Galson, 

Andra, SKB

, TUC, Posiva

Task 1.2: M

anagem

ent o

f uncertaintie

s in diffe

rent 

time fram

es of d

ispo

sal system evolutio

nNDA

, Galson, 

Andra, SKB

, Posiva, GRS

Task 1.3: R

egulatory de

cision

‐making un

der 

uncertainty

Comment: to be do

ne with

in EC project, in 2 ye ars, 

whe

n SSM and

 STU

K fin

alize

d their reviews

Task 1.4: C

ommun

ication of uncertainty 

NDA

 (test in stakeh

olde

r dialogue), G

alson,

GRS?, Surao, U

JVWP 2: Uncertainty id

entification an

d qu

antification (Leade

r: NDA

)Task 2.1: Expert jud

gemen

tNDA

, Nagra?

BfS?,Surao, G

alson

Task 2.2: P

DF de

rivation

NDA

, GRS, 

SKB, Posiva, And

ra, N

RG(2015), Surao, U

JVTask 2.3: Ide

ntificatio

n an

d qu

antification of 

correlations

NDA

, GRS, 

Andra, SKB

WP 3: Sen

sitiv

ity ana

lysis (Lead

er: G

RS)

Task 3.1: Survey an

d assessmen

t of m

etho

ds in

 view  

of PA

GRS: distrib

ute overview

 repo

rt secon

d half 2014

Task 3.2: C

ompa

rison

 of m

etho

ds by nu

merical 

expe

rimen

tsGRS, Sandia, And

ra, 

TUC: distrib

ute overview

 repo

rt secon

d half 2014

Task 3.3: R

&D triggerin

gSurao, UJ V

197

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 209: Reduced size m3 ft 15sn08180210 hansen

Rec

ent,

Cur

rent

or P

lann

ed W

ork

rela

ted

to W

P 3

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n13

GR

S:

•C

ompi

latio

n of

an

over

view

repo

rt on

met

hods

of s

ensi

tivity

ana

lysi

s •

Test

and

com

paris

on o

f diff

eren

t met

hods

two

gene

ric re

posi

tory

sys

tem

s in

rock

sal

t•

Iden

tific

atio

n of

furth

er m

etho

ds to

ove

rcom

e id

entif

ied

prob

lem

s

AND

RA:

•B

ench

mar

k te

sts

of s

ensi

tivity

ana

lysi

s m

etho

ds•

repo

sito

ry s

yste

m in

cla

y (F

renc

h co

ncep

t)

San

dia:

•D

etai

led

sens

itivi

ty a

naly

sis

stud

ies

for Y

ucca

Mou

ntai

n si

te

Furt

her P

roce

dure

and

Out

look

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n14

Con

tinue

co-

oper

atio

n w

ork

with

in th

e TS

WG

on o

wn

cost

unt

il 20

15/2

016

•S

peci

fic s

ub-g

roup

s w

ith c

omm

on in

tere

st•

Topi

cs a

s id

entif

ied

(cf.

Tabl

e)

Sch

edul

e•

Oct

ober

201

4: IG

D-T

PE

xcha

nge

Foru

m K

alm

ar (S

wed

en)

•P

rese

ntat

ion

of o

n-go

ing

and

plan

ned

JA8

wor

k•

Spr

ing

2015

: Tec

hnic

al m

eetin

g •

Pre

sent

atio

n of

resu

lts a

chie

ved

in th

e w

orki

ng g

roup

s•

Com

pila

tion

of p

rogr

ess

•Id

entif

icat

ion

of to

pics

for f

urth

er in

tern

atio

nal i

nves

tigat

ion

•S

epte

mbe

r 201

5: D

escr

iptio

n of

topi

cs fo

r a p

oten

tial T

EP

198

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 210: Reduced size m3 ft 15sn08180210 hansen

Uncertainty and Sensitivity Analysis for Repository Systems in Rock Salt

US-German Workshop on Salt Repository Research

September 7-12, 2014

Santa Fe, New Mexico, USAD.-A. Becker

Gesellschaft fuer Anlagen- und Reaktorsicherheit, Braunschweig, Germany

Abstract

Probabilistic uncertainty and sensitivity analysis of the performance assessment model is an essential part of the safety case for final repositories. Current investigations at GRS and TU Clausthal aim at testing various classical and newly-developed mathematical methods of sensitivity analysis, identifying the typical problems arising with sensitivity analysis of complex final repository models and proposing solutions. The presentation gives an introduction to the general subject as well as an overview of possible approaches and methods and presents some recent results, using the example of a hypothetical repository for low and intermediate-level waste. This system was developed based on the experiences with the model for the German ERAM site.

199Proceedings of 5th US/German Workshop

January 30, 2015

Page 211: Reduced size m3 ft 15sn08180210 hansen

Unc

erta

inty

and

Sen

sitiv

ity A

naly

sis

for R

epos

itory

Sys

tem

s in

Roc

k Sa

ltD

irk-A

. Bec

ker,

GR

SC

ontri

butio

ns: S

abin

e S

pies

slan

d S

ebas

tian

Kuh

lman

nS

epte

mbe

r 10,

201

420

14 U

S/G

erm

an W

orks

hop

on S

alt R

epos

itory

Res

earc

h,

Des

ign,

and

Ope

ratio

n S

anta

Fe

Unc

erta

intie

s in

Lon

g-Te

rm P

erfo

rman

ce A

sses

smen

t

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n2

Will

the

repo

sito

ry b

e sa

fe n

ow a

nd fo

reve

r?

•W

e ca

nnot

pro

ve it

•W

e ca

nnot

do

expe

rimen

ts o

ver m

ore

than

a fe

w y

ears

•W

e ha

ve to

ass

ess

the

safe

ty b

y nu

mer

ical

mod

elin

g

But

how

do

we

know

the

sim

plifi

ed m

odel

calc

ulat

es th

e rig

ht re

sults

?

•Th

ere

are

lots

of u

ncer

tain

ties:

mod

el, s

cena

rio, p

aram

eter

s•

Can

we

trust

the

mod

el if

it s

ays

the

repo

sito

ry is

saf

e?•

Som

ehow

we

have

to ta

ke th

e un

certa

intie

s in

to a

ccou

nt ..

.

Han

dlin

g of

Unc

erta

intie

s in

PA

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n3

1.Id

entif

y th

e un

certa

intie

s•

Whi

ch k

ind

of u

ncer

tain

ty?

•H

ow c

an it

be

hand

led?

•C

onse

rvat

ive

appr

oach

•M

ultip

le in

vest

igat

ions

•Fl

exib

le m

odel

•P

aram

eter

ban

dwid

th a

nd d

istri

butio

n2.

Qua

ntify

par

amet

er u

ncer

tain

ties

•An

alyz

e kn

owle

dge

•C

onsu

lt ex

perts

•P

aram

eter

dep

ende

ncie

s?•

Assi

gn d

istri

butio

ns3.

Perfo

rm p

roba

bilis

tic a

naly

sis

•M

any

mod

el ru

ns w

ith s

tatis

tical

ly v

arie

d pa

ram

eter

s•

Unc

erta

inty

ana

lysi

s: A

naly

ze th

e un

certa

inty

of t

he m

odel

out

put

•Se

nsiti

vity

ana

lysi

s: A

naly

ze th

e m

odel

sen

sitiv

ity to

par

amet

er v

aria

tion

Prob

abili

stic

Per

form

ance

Ass

essm

ent

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n4

200

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 212: Reduced size m3 ft 15sn08180210 hansen

Unc

erta

inty

and

Sen

sitiv

ity A

naly

sis:

Why

?

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n5

Unc

erta

inty

ana

lysi

s•

Cal

cula

te b

andw

idth

of p

ossi

ble

mod

el o

utpu

t•

Ass

ess

prob

abili

ty o

f lim

it ex

ceed

ance

Sen

sitiv

ity a

naly

sis

•Id

entif

y “im

porta

nt” ,

“les

s im

porta

nt” a

nd “u

nim

porta

nt” p

aram

eter

s•

“impo

rtanc

e” m

eans

: th

e pa

ram

eter

val

ue w

ithin

its

band

wid

th h

as a

con

side

rabl

e in

fluen

ce to

the

mod

el o

utpu

t•

Trig

ger r

esea

rch

need

s•

Impr

ove

mod

el u

nder

stan

ding

•S

A pr

ovid

es in

sigh

t to

the

mod

el b

ehav

ior

•H

elp

findi

ng m

odel

or d

ata

erro

rs•

SA

can

disc

lose

impl

ausi

ble

mod

el b

ehav

ior

Met

hods

of S

ensi

tivity

Ana

lysi

s

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n6

•G

raph

ical

met

hods

•G

ive

a di

rect

impr

essi

on o

f par

amet

er im

porta

nce

•P

rovi

de v

isua

l ins

ight

to th

e m

odel

beh

avio

r•

Can

dis

clos

e so

phis

ticat

ed in

put-o

utpu

t rel

atio

nshi

ps•

Met

hods

bas

ed o

n lin

ear c

orre

latio

n or

regr

essi

on•

Pro

vide

info

rmat

ion

on th

e di

rect

ion

of in

fluen

ce•

Bes

t ade

quat

e fo

r lin

ear o

r clo

se-to

-line

ar s

yste

ms

•A

dequ

ate

for m

onot

onic

sys

tem

s af

ter a

pplic

atio

n of

rank

tran

sfor

mat

ion

•Va

rianc

e-ba

sed

met

hods

•P

rovi

de q

uant

itativ

e in

form

atio

n on

par

amet

er s

ensi

tivity

•D

o no

t pro

vide

info

rmat

ion

on th

e di

rect

ion

of in

fluen

ce•

Ade

quat

e fo

r all

kind

s of

mod

els

•N

on-p

aram

etric

met

hods

•B

ased

on

non-

para

met

ric s

tatis

tics

(two-

sam

ple

test

s, e

.g.)

•N

o im

plic

it as

sum

ptio

ns o

n m

odel

beh

avio

r

Exam

ple:

Gen

eric

Rep

osito

ry fo

r LIL

Win

Roc

k Sa

lt

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n7

Hyp

othe

tical

mod

el b

ased

on

expe

rienc

es w

ith th

e ER

AMsi

te

GR

S-de

velo

ped

softw

are

tool

: Rep

oTR

END

•ne

ar fi

eld:

LO

POS

•fa

r fie

ld: G

eoTR

END

-PO

SA

•bi

osph

ere:

Bio

TREN

D

AEB

Seal

edEC

MB

Mix

ing

Reg

ion

NAB

Uns

eale

d EC

RG

Part

ially

bac

kfill

ed m

ine

open

ings

w

ithou

t was

te

Con

nect

ion

to fa

r fie

ld

EC

= E

mpl

acem

ent C

ham

ber

Cap

rock

Aqui

fer

Bio

sphe

re

Inte

rfac

e to

Bio

sphe

re

Dis

solv

ing

Seal

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n8

Seal

failu

re

Sea

l iso

latin

g th

e w

aste

em

plac

emen

t cha

mbe

r fro

m th

e m

ine

•C

emen

titio

usm

ater

ial

•C

hem

ical

ly c

orro

ded

by m

agne

sium

con

tain

ing

brin

e•

Dis

solu

tion

front

trav

ellin

g th

roug

h th

e se

al•

Flow

resi

stan

ce is

det

erm

ined

by

inta

ct p

art

•S

ealin

g ef

fect

lost

alm

ost i

nsta

ntly

whe

n th

e fro

nt re

ache

s th

e en

d•

sudd

en in

crea

se o

f out

put (

dose

) at s

ome

poin

t in

time

•Ti

me

of s

eal f

ailu

re d

eter

min

ed b

y •

initi

al p

erm

eabi

lity

of s

eal m

ater

ial

•m

agne

sium

con

tent

of b

rine

•pr

essu

re d

iffer

ence

s

unco

rrode

dco

rrode

d 0

, k0, 0

1, k

1, 1

L

l

F F E

10

201

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 213: Reduced size m3 ft 15sn08180210 hansen

Gra

phic

al M

etho

ds

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n9

Log

(Inpu

tRan

geof

IniP

erm

Seal

[m2 ])

Log(AnnualDose[Sv/yr])

-48

-46

-44

-42

-40

-38

-36

-34

10-1

3

10-1

2

10-1

1

10-1

0

10-9

10-8

10-7

10-6

10-5

10-4

4096

Runs

LpTa

u

7Pa

ram

eter

s

105

Year

s

Sca

tterp

lots

CS

M-P

lots

Cob

web

Plo

ts /

Mea

nR

ank

Plo

ts

Log

(Inpu

tRan

geof

AEBC

onv

[-])

Log(AnnualDose[Sv/yr])

12

34

510

-13

10-1

2

10-1

1

10-1

0

10-9

10-8

10-7

10-6

10-5

10-4

4096

Runs

LpTa

u

6Pa

ram

eter

s

105

Year

sV:

\pro

jekte

\mos

el\re

chnu

ngen

\mc\m

osel

\LIL

W\sc

atte

rplo

t\lpta

u\6\

mc4

096-

6-LI

LW-lp

tau-

scat

ter-A

EBCo

nv-1

e5.la

y

MgB

rineS

at=

0.2

12

34

56

78

910

1112

1314

1516

1718

1920

210

200

400

600

800

1000

1200

1400

1600

1800

2000

LILW

- B

iosp

here

Para

met

er

Mean Rank of Span

246810121416

1 –Ko

nvFak

2 –GasEn

tryP

3 –C1

4Inv

4 –Po

rDeb

ris5 –FacD

iffCo

eff

(Dum

my)

6 –IniPermSeal

7 –Re

fCon

v8 –DiffC

oeff

9 –MBC

onv

10 –RG

Conv

11 –AE

BCon

v

12 –NAB

Conv

13 –GasCo

rrFe

14 –GasCo

rrPE

15 –Tb

rine

16 –Re

fPor

17 –BrineM

gSat

18 –RG

GasProd

19 –AE

BGasProd

20 –NAB

GasProd

21 –FacD

isp

Cor

rela

tion-

and

Reg

ress

ion-

Bas

ed m

etho

ds

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n10

Tim

e[y

rs]

SRRCRankingCoefficient

103

104

105

106

-0.9

-0.6

-0.30

0.3

0.6

IniP

erm

Sea

lA

EB

Con

vG

asE

ntry

PG

asC

orrP

ER

efC

onv

TBrin

eM

gBrin

eSat

RG

Con

vG

asC

orrF

eA

EB

Gas

Pro

dN

AB

Gas

Pro

d

P:\a

401\

proj

ekte

\mos

el\re

chnu

nge

n\m

c\m

osel

\LIL

W\R

\ran

kin

g_va

lues

\lpta

u\11

\mc2

048-

409

6-11

-LIL

W-lp

tau-

Srr

c-R

-PS

AM

.lay

LpTa

uS

olid

:204

8R

uns

Das

hed:

4096

Run

s11

Par

amet

ers

Tim

e[y

rs]

SpearmanRankingValue

103

104

105

106

-0.9

-0.6

-0.30

0.3

0.6

IniP

erm

Sea

lA

EB

Con

vG

asE

ntry

PB

rineM

gSat

Ref

Con

vG

asC

orrP

ETB

rine

RG

Con

v

P:\a

401\

proj

ekte

\mos

el\re

chnu

nge

n\m

c\m

osel

\LIL

W\R

\ran

kin

g_va

lues

\lpta

u\20

\mc2

048-

409

6-20

-LIL

W-lp

tau-

Spe

a-R

.lay

Das

hed:

2048

Run

sS

olid

:409

6R

uns

LpTa

u

20P

aram

eter

s

Ran

k-re

gres

sion

: SR

RC

Ran

k-co

rrela

tion:

Spe

arm

an

•R

ank

trans

form

atio

n ap

plie

d•

trans

form

s m

onot

onic

to li

near

beh

avio

r•

ofte

n im

prov

es p

erfo

rman

ce o

f thi

s ty

pe o

f met

hods

on

non-

linea

r sys

tem

s

Varia

nce-

Bas

ed M

etho

ds

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n11

Cal

cula

tion

of fi

rst-o

rder

sen

sitiv

ity in

dice

s:

SI1

Var

E Var

is th

e en

tiret

y of

mod

el o

utpu

t val

ues,

is th

e en

tiret

y of

inpu

t val

ues

for p

aram

eter

j,VarE

is th

e ex

pect

atio

n of

un

der t

he c

ondi

tion

that

is

hel

d co

nsta

nt.

Tim

e[y

rs]

EASISensitivityIndexofFirstOrder(SI1)

103

104

105

106

0

0.050.

1

0.150.

2In

iPer

mS

eal

AE

BC

onv

Gas

Ent

ryP

Gas

Cor

rPE

Ref

Con

vTB

rine

MgB

rineS

atR

GC

onv

Gas

Cor

rFe

AE

BG

asP

rod

NAB

Gas

Pro

d

V:\p

roje

kte\

mos

el\re

chnu

ngen

\mc\

mos

el\L

ILW

\eas

i\lpt

au\1

1\m

c409

6-81

92-1

6384

-11-

LILW

-lpta

u-SI

1-ea

si-si-

PSA

M.la

y

LpTa

u

Das

hed:

4096

Run

sD

otte

d:81

92R

uns

Solid

:163

84R

uns

11Pa

ram

eter

s

Tim

e[y

rs]

SDPSensitivityIndexofFirstOrder(SI1)

103

104

105

106

0

0.050.

1

0.150.

2In

iPer

mS

eal

AEB

Con

vG

asEn

tryP

Brin

eMgS

atR

efC

onv

Gas

Cor

rPE

TBrin

e

V:\p

roje

kte\

mos

el\re

chnu

ngen

\mc\

mos

el\L

ILW

\SDP

\lpta

u\11

\mc4

096-

8192

-163

84-1

1-LI

LW-lp

tau-

SI1-

SDP.

lay

LpTa

u

Das

hed:

4096

Run

sD

otte

d:81

92R

uns

Solid

:163

84R

uns

11Pa

ram

eter

s

Tim

e[y

rs]

EFASTSensitivityIndexofFirstOrder(SI1)

103

104

105

106

0

0.1

0.2

0.3

IniP

erm

Seal

AEB

Con

vG

asEn

tryP

Gas

Cor

rPE

Ref

Con

vTB

rine

MgB

rineS

at

1635

9R

uns

7Pa

ram

eter

s

Das

hed:

Diff

eren

tSee

d

EASI

SDP

EFAS

T

Why

is th

is Im

port

ant R

esea

rch?

2014

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign,

and

Ope

ratio

n12

•P

roba

bilis

tic p

erfo

rman

ce a

sses

smen

t is

an e

ssen

tial p

art o

f the

saf

ety

case

•S

ensi

tivity

ana

lysi

s is

a s

ubje

ct o

f cur

rent

mat

hem

atic

al in

tere

st•

incr

easi

ng c

ompu

ter p

erfo

rman

ce•

perm

anen

t dev

elop

men

t of n

ew m

etho

ds a

nd te

chni

ques

•S

ensi

tivity

ana

lysi

s he

lps

unde

rsta

ndin

g th

e m

odel

beh

avio

r and

can

reve

al e

rror

s•

Rep

osito

ry m

odel

s –

espe

cial

ly in

rock

sal

t –ha

ve s

peci

fic p

rope

rties

•di

scon

tinui

ties

•w

ide

span

of p

ossi

ble

outp

ut v

alue

s•

poss

ibili

ty o

f zer

o-ru

ns•

such

mod

els

are

norm

ally

not

inve

stig

ated

by

theo

retic

ians

!•

theo

retic

al fi

ndin

gs a

nd d

evel

opm

ents

are

onl

y pa

rtly

trans

fera

ble

to re

posi

tory

m

odel

s•

appl

icat

ion

of in

adeq

uate

SA

met

hods

can

lead

to w

rong

con

clus

ions

•S

o fa

r, th

e w

ork

has

rais

ed a

t lea

st a

s m

any

ques

tions

as

answ

ered

...

202

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 214: Reduced size m3 ft 15sn08180210 hansen

THM-coupled processes in rock salt with special attention to two-phase flow

Benchmark of two different modelling approaches concerning the long-term analysis of THM-coupled processes in the near-field of a generic salt repository for high-level

nuclear waste Karl-Heinz Lux, Uwe Düsterloh, Ralf Wolters

Clausthal University of Technology (TUC), Clausthal-Zellerfeld, Germany Jens T. Birkholzer, Jonny Rutqvist, Laura Blanco Martín

Lawrence Berkeley National Laboratory (LBNL), Earth Sciences Division, Berkeley, CA, USA

Abstract

Rock salt is a potential host rock medium for the underground disposal of high-level nuclear waste because it has several assets, in particular its water and gas tightness in the undisturbed state, its ability to heal technically induced fractures and its high thermal conductivity as compared to other shallow-crustal rock types. To comply with the safety requirements of a repository for high-level nuclear waste, the long-term integrity of the geologic as well as geotechnical barriers has to be evaluated. For this purpose, numerical simulations regarding the long-term behaviour of geologic as well as geotechnical barriers of a high-level nuclear waste repository are required, based on state-of-the-art knowledge and using verified and validated numerical simulation tools. We present an overview on the physical behaviour of rock salt as well as results of two benchmark exercises performed by Clausthal University of Technology and Lawrence Berkeley National Laboratory to validate the numerical simulation tools FLAC-TOUGH (TUC) and TOUGH-FLAC (LBNL) [1]. The first benchmark exercise concerns the TSDE-experiment [2] which has been performed during the 1990s within the German Asse-mine to investigate the compaction behaviour of crushed salt under HLW-disposal conditions in salt rock mass. Thus, this experiment provides excellent data on crushed salt compaction. Moreover, the three-dimensional modelling of the experiment has led to the calibration of some parameters needed to describe the time-dependent response of the natural salt host rock [3], whose determination is difficult in laboratory tests, e.g. due to very low deviatoric stresses resulting in extremely long test durations. The second benchmark exercise concerns the long-term analysis of THM-coupled processes in the near-field of a generic salt repository for high-level nuclear waste. Therefore, a two-dimensional model of an emplacement drift is investigated, including a heat- and gas-generating waste package and the crushed salt backfill material within the drift. Due to the compaction of the crushed salt and the corrosion-induced gas generation, a gas pressure build-up occurs within the emplacement drift, leading to a pressure-driven fluid infiltration into the surrounding salt rock mass. This infiltration process has to be regarded as a two-phase flow scenario. The results of the performed benchmark exercises are very satisfactory and increase the credibility of numerical predictions concerning the long-term behaviour of a high-level nuclear waste repository in salt rock mass.

References:

[1] Blanco Martín, L., Rutqvist, J., Birkholzer, J.T., Wolters, R., Rutenberg, M., Zhao, J., Lux, K.-H. Comparison of two modeling procedures to evaluate thermal-hydraulic-mechanical processes in a generic salt repository for high-level nuclear waste. Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, June 1-4 2014. Paper 14-7411.

[2] Bechthold, W., Rothfuchs, T., Poley, A., Ghoreychi, M., Heusermann, S., Gens, A., Olivella, S., 1999. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS Project). European Atomic Energy Community. Report EUR19124 EN.

[3] Wolters, R., Lux, K.-H., Düsterloh, U., 2012. Evaluation of Rock Salt Barriers with Respect to Tightness: Influence of Thermomechanical Damage, Fluid Infiltration and Sealing/Healing. Proceedings of the 7th International Conference on the Mechanical Behavior of Salt (SaltMech7). Paris: Balkema, Rotterdam.

203Proceedings of 5th US/German Workshop

January 30, 2015

Page 215: Reduced size m3 ft 15sn08180210 hansen

THM

-cou

pled

proc

esse

sin

rock

sal

tw

ithsp

ecia

latte

ntio

nto

two-

phas

e flo

wBe

nchm

ark

oftw

odi

ffere

nt m

odel

ling

appr

oach

esco

ncer

ning

the

long

-term

an

alys

isof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

K.-H

. Lux

, U. D

üste

rloh,

R. W

olte

rs

J.T.

Birk

holz

er, J

. Rut

qvis

t, L.

Bla

nco

Mar

tín

5th

US

/Ger

man

wor

ksho

pon

sal

trep

osito

ryre

sear

ch, d

esig

n, a

ndop

erat

ion

San

ta F

e, S

epte

mbe

r 10t

h20

14

2TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Con

tent

s

P

hysi

calb

ehav

iour

ofro

ck s

alt

C

onst

itutiv

em

odel

Lux/

Wol

ters

N

umer

ical

sim

ulat

ion

tool

sTO

UG

H-F

LAC

and

FLA

C-T

OU

GH

B

ench

mar

k 1:

TS

DE

-exp

erim

ent w

ithin

Ass

e-m

ine

in G

erm

any

B

ench

mar

k 2:

Lo

ng-te

rm a

naly

sis

ofTH

M-c

oupl

edpr

oces

ses

in th

ene

ar-fi

eld

ofa

gene

ricsa

ltre

posi

tory

forh

igh-

leve

l nuc

lear

was

te

C

oncl

usio

ns&

per

spec

tives

3TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Phy

sica

lbeh

avio

urof

rock

sal

t

C

reep

beha

viou

rofr

ock

salt

unde

rdev

iato

ricst

ress

con

ditio

nsw

ithtra

nsie

nt, s

tead

y-st

ate

and

terti

ary

cree

pph

ase

D

amag

ebe

havi

ouro

froc

k sa

ltun

derd

evia

toric

stre

ss

cond

ition

sex

ceed

ing

the

dam

age

/ dila

tanc

ybo

unda

ry

Cha

nge

ofpr

oper

ties

isus

edfo

rmon

itorin

gan

dde

term

inat

ion

ofdi

lata

ncy

/ dam

age

I-c

ompa

ctio

nII

-dam

age

(mic

ro)

III-r

uptu

re(m

acro

)

sour

ce: S

chul

ze e

t al.

(200

1)

051015202530354045

050

100

150

200

250

Zeit

(d)

Axiale Verzerrung (%)

time

(d)

axial strain(%)

4TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

sour

ce: L

erch

e (2

012)

time

(d)

dilatancy(-)

axial stress / confiningpresure(MPa)

axia

l stre

ss

co

nfin

ing

pres

sure

dila

tanc

ydi

lata

ncy

(cal

cula

ted)

Phy

sica

lbeh

avio

urof

rock

sal

t

S

ealin

g/ h

ealin

gbe

havi

ouro

froc

k sa

ltun

ders

uita

ble

stre

ss

cond

ition

s

sour

ce: S

chul

ze e

t al.

(200

1)

TETC

204

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 216: Reduced size m3 ft 15sn08180210 hansen

5TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Phy

sica

lbeh

avio

urof

rock

sal

t

C

reep

beha

viou

rofr

ock

salt

isde

pend

ento

nte

mpe

ratu

re→

Lux

(198

4), H

ampe

l (20

06)

D

amag

ebe

havi

ouro

froc

k sa

ltis

depe

nden

ton

tem

pera

ture

→ L

ange

r (19

80),

Ham

pel e

t al.

(201

4)

Te

mpe

ratu

rech

ange

sle

adto

-the

rmal

lyin

duce

dde

form

atio

ns-t

herm

ally

indu

ced

addi

tiona

l stre

sses

6TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Phy

sica

lbeh

avio

urof

rock

sal

t

U

ndis

turb

ed ro

ck s

alti

sliq

uid

and

gas

tight

!

C

onne

ctio

n of

dam

age-

indu

ced

mic

rofis

sure

scr

eate

sm

icro

path

way

sw

ithin

the

dam

aged

rock

sal

tare

a→

incr

ease

ofse

cond

ary

perm

eabi

lity

0an

dse

cond

ary

poro

sity

0

sour

ce: S

torm

ont(

1990

)

secondarypermeability(m²)

dila

tanc

y(-

)

7TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Phy

sica

lbeh

avio

urof

rock

sal

t

D

amag

e of

rock

sal

t

redu

ctio

nof

bulk

mod

ulus

incr

ease

ofB

iot‘s

coef

ficie

nt1

La

b te

stre

sults

conc

erni

ngth

ere

latio

nshi

pbe

twee

ndi

lata

ncy,

se

cond

ary

perm

eabi

lity

and

Bio

t‘sco

effic

ient

are

show

nin

K

ansy

(200

7)

B

iot‘s

coef

ficie

ntis

used

toca

lcul

ate

effe

ctiv

est

ress

es, i

fpor

epr

essu

reoc

curs

ijFl

ijij

p

ijFl

ijij

p

8TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Phy

sica

lbeh

avio

urof

rock

sal

t

Fl

uid

pres

sure

may

open

gra

inbo

unda

ries

betw

een

rock

sal

tgra

ins

La

b in

vest

igat

ions

conc

erni

ngth

epr

essu

re-d

riven

fluid

infil

tratio

npr

oces

s→

Düs

terlo

h(2

009)

yx

Flp

y

Flx

p

y

Flx

p

x

x

y

y

zFlp

Impe

rfek

tion

Flz

p

zFlp

x

x

y

y

Flz

p

zFlp

x

x

y

y

Flz

p

0

0,51

1,52

2,53

3,54

4,55

020

0040

0060

0080

00Ze

it (m

in)

Druck (MPa)

-50

050100

150

200

250

Fluidvolumen (ml)

infil

tratio

nph

ase

Dar

cy-fl

ow

time

(min

)

fluid volume(ml)

stress / pressure(MPa)

axia

l stre

ss

conf

inin

gpr

essu

re

fluid

pre

ssur

e

fluid

vol

ume

hydr

aulic

brea

kthr

ough

205

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 217: Reduced size m3 ft 15sn08180210 hansen

9TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Con

stitu

tive

mod

elLu

x/W

olte

rs

TM

-cou

pled

parti

al m

odel

10TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Con

stitu

tive

mod

elLu

x/W

olte

rs

H

M-c

oupl

edpa

rtial

mod

el-t

herm

omec

hani

cally

indu

ced

seco

ndar

ype

rmea

bilit

y

-hyd

raul

ical

lyin

duce

dse

cond

ary

perm

eabi

lity

-Bio

t‘sco

effic

ient

0,0,10

ln1

exp

lglg

lg

*||

0

100,

20,

0

vol

vol

vol

vol

tEi

tEi

sr

K

s

vol

vol

vol

vol

KK

ifif

m

in0

105

43

21

exp

arct

an

*1

FlFl

krit

FlFl

krit

FlFl

pi

ip

pi

ii

sp

pp

p

pp

KK

Flkr

itFl

Fl

with

ifif

DD

DD

Dm

DDv

Dif

1

Dif

exp

1;m

ax

11TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Num

eric

alsi

mul

atio

nto

ols

TOU

GH

-FLA

Can

dFL

AC

-TO

UG

H

Bas

ed o

n sa

me

softw

are

Bot

h si

mul

ator

s ar

e ba

sed

on d

iffer

ent n

umer

ical

sch

emes

TOU

GH

-FLA

C

(Ber

kele

y La

b)

Seq

uent

ially

cou

pled

flow

-geo

mec

hani

cs s

imul

ator

s

TOU

GH

2 (fl

uid+

ther

mal

flow

)

FLA

C3D

(geo

mec

hani

cs)

Can

dea

l with

larg

e st

rain

s &

cre

ep p

roce

sses

Mat

eria

l-spe

cific

con

stitu

tive

rela

tions

hips

ava

ilabl

e

FLA

C-T

OU

GH

(T

U C

laus

thal

)

Sim

ilarit

ies

Mai

n di

ffere

nce

12TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Num

eric

alsi

mul

atio

nto

ols

TOU

GH

-FLA

Can

dFL

AC

-TO

UG

H

Flow

pro

blem

is s

olve

d fir

st (f

ixed

-str

ess

split

met

hod)

P : p

ore

pres

sure

T : t

empe

ratu

reS

l: liq

uid

satu

ratio

n

k : p

erm

eabi

lity

: p

oros

ityP

c: c

apilla

ry p

ress

ure

: s

tress

: s

train

t : ti

me

Lege

nd:

206

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 218: Reduced size m3 ft 15sn08180210 hansen

13TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Num

eric

alsi

mul

atio

nto

ols

TOU

GH

-FLA

Can

dFL

AC

-TO

UG

H

Mec

hani

cal p

robl

em is

sol

ved

first

(und

rain

ed s

plit

met

hod)

, ,

, ,

, ,

, ,

, ,

′, ′

,′

, ,

, ,

, ,

, ,

′, ′

,′

, ,

, ,

, ,

, ,

′, ′

,′

, ,

P : p

ore

pres

sure

T : t

empe

ratu

reS

l: liq

uid

satu

ratio

n

k : p

erm

eabi

lity

: p

oros

ity

: stre

ss

: stra

int :

tim

e

Lege

nd:

14TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Num

eric

alsi

mul

atio

nto

ols

TOU

GH

-FLA

Can

dFL

AC

-TO

UG

H

O

ptim

um d

iscr

etiz

atio

nsfo

r geo

mec

hani

csan

d flo

w a

re n

ot n

eces

saril

y th

e sa

me

TO

UG

H2

requ

ires

a V

oron

oidi

scre

tizat

ion,

ev

en w

hen

the

mes

h de

form

s

Geo

mec

hani

cs

mes

hFl

owm

esh

Flow

mes

h is

upd

ated

as

geo

mec

hani

csm

esh

defo

rms

15TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Ben

chm

ark

1:

TSD

E-e

xper

imen

t with

inA

sse-

min

e in

Ger

man

y

„T

herm

al S

imul

atio

n of

Drif

t Em

plac

emen

t“ ex

perim

ent

(sta

rted

in 1

990)

sour

ce: F

inal

Rep

ort o

fBA

MB

US

I-P

roje

ct

sour

ce: F

inal

Rep

ort o

fBA

MB

US

I-P

roje

ctD

esig

n se

rvic

epo

wer

per

hea

ter:

6.4

kW

16TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Ben

chm

ark

1:

TSD

E-e

xper

imen

t with

inA

sse-

min

e in

Ger

man

y

N

umer

ical

mod

el

207

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 219: Reduced size m3 ft 15sn08180210 hansen

17TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Ben

chm

ark

1:

TSD

E-e

xper

imen

t with

inA

sse-

min

e in

Ger

man

y

Be

nchm

ark

resu

ltsI (

com

paris

onof

tem

pera

ture

evol

utio

n)

18TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Ben

chm

ark

1:

TSD

E-e

xper

imen

t with

inA

sse-

min

e in

Ger

man

y

Be

nchm

ark

resu

ltsII

(com

paris

onof

defo

rmat

ion

and

com

pact

ion)

19TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Ben

chm

ark

1:

TSD

E-e

xper

imen

t with

inA

sse-

min

e in

Ger

man

y

B

ench

mar

k re

sults

III (d

ilata

ncy

at t

= 8

year

saf

ter b

ackf

illing

)

Dila

tanc

y [-]

20TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

B

ench

mar

k-sc

enar

io:

Long

-term

ana

lysi

sof

a se

aled

empl

acem

ent

drift

cont

aini

nga

heat

and

gas

gene

ratin

gw

aste

cani

ster

and

crus

hed

salt

back

fill

mat

eria

l

U

sed

cons

titut

ive

mod

els:

Lux/

Wol

ters

fort

hena

tura

lsal

tand

a m

odifi

edcw

ipp

fort

hecr

ushe

dsa

lt

M

odel

ling

sequ

ence

:-

prim

ary

stat

e-

exca

vatio

nof

the

empl

acem

entd

rift

-w

aste

cani

ster

empl

acem

enta

ndba

ckfil

loft

hedr

ift-

post

-clo

sure

phas

e(1

00,0

00 y

ears

)

sour

ce: C

arte

r et a

l. (2

011)

208

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 220: Reduced size m3 ft 15sn08180210 hansen

21TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

I: C

rush

edsa

ltco

nsol

idat

ion

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

-M

ost o

f the

bac

kfill

is re

cons

olid

ated

afte

r 20

year

s-

Com

pact

ion

is n

ot u

nifo

rm in

spa

ce-

Ove

rall

sim

ilar r

espo

nse

22TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

II: E

volu

tion

ofE

DZ

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

23TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

II: E

volu

tion

ofE

DZ

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

24TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

II: E

volu

tion

ofE

DZ

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

209

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 221: Reduced size m3 ft 15sn08180210 hansen

25TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

II: E

volu

tion

ofE

DZ

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

26TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

II: E

volu

tion

ofE

DZ

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

27TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

II: E

volu

tion

ofE

DZ

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

28TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

III: E

volu

tion

ofin

filtra

tion

zone

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

210

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 222: Reduced size m3 ft 15sn08180210 hansen

29TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

III: E

volu

tion

ofin

filtra

tion

zone

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

30TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

III: E

volu

tion

ofin

filtra

tion

zone

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

31TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

III: E

volu

tion

ofin

filtra

tion

zone

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

32TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

III: E

volu

tion

ofin

filtra

tion

zone

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

211

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 223: Reduced size m3 ft 15sn08180210 hansen

33TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

III: E

volu

tion

ofin

filtra

tion

zone

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

34TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Res

ults

IV: L

ong-

term

evo

lutio

nof

tem

pera

ture

, por

epr

essu

rean

dsa

tura

tion

Ben

chm

ark

2:

Long

-term

ana

lysi

sof

THM

-cou

pled

proc

esse

sin

the

near

-fiel

dof

a ge

neric

salt

repo

sito

ryfo

rhig

h-le

vel n

ucle

arw

aste

Ove

rall s

imila

r res

pons

e

Key

aspe

cts

well

repr

oduc

ed-

Tem

pera

ture

evo

lutio

n du

ring

com

pact

ion

-Po

re p

ress

ure

evol

utio

n du

ring

com

pact

ion

and

gas

prop

agat

ion

-Sa

tura

tion

evol

utio

n

35TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Con

clus

ions

& p

ersp

ectiv

es

C

oncl

usio

ns-N

umer

ical

ana

lysi

s of

an

in s

itu h

eate

r tes

t has

bee

n pe

rform

ed u

sing

the

two

diffe

rent

sim

ulat

ion

tool

s TO

UG

H-F

LAC

(LB

NL)

and

FLA

C-T

OU

GH

(TU

C)

-Lon

g-te

rm e

valu

atio

n of

a g

ener

ic s

alt r

epos

itory

has

bee

n pe

rform

ed u

sing

the

two

diffe

rent

sim

ulat

ion

tool

s TO

UG

H-F

LAC

(LB

NL)

and

FL

AC

-TO

UG

H (T

UC

)-S

imul

ator

s TO

UG

H-F

LAC

(LB

NL)

and

FLA

C-T

OU

GH

(TU

C) i

nclu

de s

tate

-of-

the-

art c

onst

itutiv

e m

odel

s as

wel

l as

the

capa

bilit

y to

han

dle

with

larg

e st

rain

s-R

esul

ts o

f the

ben

chm

ark

exer

cise

s ar

e ve

ry s

atis

fyin

g-C

apab

ilitie

s of

the

two

sim

ulat

ors

to e

valu

ate

the

barr

iers

inte

grity

ove

r tim

e ha

s be

en d

emon

stra

ted

incl

udin

g ro

ck m

ass

conv

erge

nce,

bac

kfill

com

pact

ion,

hea

t pr

oduc

tion,

gas

pro

duct

ion,

2-p

hase

flow

, inf

iltra

tion

(TH

2M-c

oupl

ed p

roce

sses

)

P

ersp

ectiv

es-O

ptim

izat

ion

of th

e nu

mer

ical

app

roac

hes

to m

odel

larg

er a

reas

of a

repo

sito

ry

(3D

con

figur

atio

n)

36TH

M-c

oupl

edpr

oces

ses

in ro

ck s

alt

with

spec

iala

ttent

ion

totw

o-ph

ase

flow

Than

kyo

ufo

ryou

ratte

ntio

n!

Than

ksfo

rgre

atco

oper

atio

nin

the

past

. H

opef

ully

, we

can

cont

inue

this

coop

erat

ion

in th

efu

ture

.

Fina

l pic

ture

?

212

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 224: Reduced size m3 ft 15sn08180210 hansen

213

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 225: Reduced size m3 ft 15sn08180210 hansen

214

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 226: Reduced size m3 ft 15sn08180210 hansen

215

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 227: Reduced size m3 ft 15sn08180210 hansen

216

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 228: Reduced size m3 ft 15sn08180210 hansen

217

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 229: Reduced size m3 ft 15sn08180210 hansen

San

dia

Nat

iona

l Lab

orat

orie

s is

a m

ulti-

prog

ram

labo

rato

ry m

anag

ed a

nd o

pera

ted

by S

andi

a C

orpo

ratio

n, a

who

lly o

wne

d su

bsid

iary

of L

ockh

eed

Mar

tin

Cor

pora

tion,

for t

he U

.S. D

epar

tmen

t of E

nerg

y’s

Nat

iona

l Nuc

lear

Sec

urity

Adm

inis

tratio

n un

der c

ontra

ct D

E-A

C04

-94A

L850

00. S

AN

DN

O. 2

011-

XXXX

P

NEA

 salt club

 upd

ate

Jörg M

önig

Gesellsc

haftfürA

nlagen

‐und

 Reaktorsic

herheit(GRS) m

bHTh

eodo

r‐Heu

ss‐Str. 4 

3812

2 Braunschweig, Germany 

Hou

seke

epin

g

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

2

Mee

tings

K

ick-

off m

eetin

g, A

pr. 2

0, 2

012,

Par

is (1

5 pa

rtici

pant

s)

1s

t mee

ting

Dec

. 4, 2

012,

Par

is (2

5 pa

rtici

pant

s)

2n

d m

eetin

g, S

ept.

16, 2

013,

Ber

lin (3

2 pa

rtici

pant

s)

3r

d m

eetin

g, M

ar 1

8, 2

014,

Par

is (2

0 pa

rtici

pant

s)

ne

xtm

eetin

gFe

b. 2

6, 2

015,

Par

is (t

obe

conf

irmed

)

Cur

rent

man

date

term

inat

esen

d of

2015

R

enew

alat

ann

ualI

GS

C m

eetin

gfa

ll 20

15

Mem

bers

hip

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

3

CO

VRA

NR

GC

OVR

AN

RG

CO

VRA

NR

G

SNL

LAN

LU

S D

oEEM

, CFO

Res

pec

WIP

P

SNL

LAN

LU

S D

oEEM

, CFO

Res

pec

WIP

P

SNL

LAN

LU

S D

oEEM

, CFO

Res

pec

WIP

P

Min

istr

yof

Econ

omic

sM

inis

try

ofEc

onom

ics

Min

istr

yof

Econ

omic

s

BG

R

IfG

DB

E Te

chno

logy

KIT

GR

STU

CH

ZDR

TUB

S

Acc

ompl

ishm

ents

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

4

218

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015

Page 230: Reduced size m3 ft 15sn08180210 hansen

Prog

ram

me

ofW

ork

unt

il20

15 (I

)

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

5

Com

mon

FE

P ca

talo

gue

fora

HLW

repo

sito

ryin

dom

al/ b

edde

dro

ck s

alt

Sal

t Kno

wle

dge

Arc

hive

Mec

hani

calB

ehav

iour

ofro

cksa

lt

R

e-co

nsol

idat

ion

ofro

cksa

lt

C

reep

ofro

cksa

ltat

low

devi

ator

icst

ress

es

D

ilata

ntbe

havi

ouro

froc

ksa

lt

Ther

mod

ynam

icas

pect

sof

brin

ech

emis

try

A

BC

Sal

t Wor

ksho

ps

Jo

int I

nter

natio

nal P

itzer

Dat

abas

e

Prog

ram

me

ofW

ork

unt

il20

15 (I

I)

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

6

Mic

robi

alac

tiviti

esin

rock

sal

t

R

epor

t on

exis

ting

data

form

icro

bial

ecol

ogy

in a

sal

trep

osito

ry

Id

entif

icat

ion

offu

ture

wor

kw

ithpo

tent

ial r

elev

ance

tosa

fety

case

deve

lopm

ent

Nat

ural

and

anth

ropo

geni

can

alog

ues

issu

esin

rock

sal

t

Con

clud

ing

Rem

arks

5th

US/

Ger

man

Wor

ksho

p on

Sal

t Rep

osito

ry R

esea

rch,

Des

ign

& O

pera

tion,

Sep

t. 07

-11,

201

4, S

anta

Fe,

USA

-M

önig

7

Sal

t Clu

b is

aliv

ean

dac

tive

al

read

yre

mar

kabl

ere

sults

achi

evd

am

bitio

usw

ork

prog

ram

me

ahea

d

Suc

cess

depe

nds

on p

erso

nal/i

nstit

utio

nal„

devo

tion“

so

met

imes

chal

leng

ing

toen

dure

(bud

getc

onst

rain

ts)

Con

cent

rate

wor

k

try

topr

ovid

eta

ngib

lere

sults

Focu

s on

sci

entif

icis

sues

with

impa

cton

the

safe

tyca

sede

velo

pmen

tfor

a re

posi

tory

in s

altr

ock

219

Pro

ceed

ings

of 5

th U

S/G

erm

an W

orks

hop

Janu

ary

30, 2

015


Recommended