+ All Categories
Home > Documents > reduceddensity-matrixfunctionaltheory: … · 2018-01-28 · Overview Goals •fast ground-state...

reduceddensity-matrixfunctionaltheory: … · 2018-01-28 · Overview Goals •fast ground-state...

Date post: 02-Aug-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
1
reduced density-matrix functional theory: Energies and forces for materials with strong correlations Robert Schade 1 , Ebad Kamil 2 , Peter Bl¨ ochl 1 , Thomas Pruschke 2 1 Institute for Theoretical Physics, Clausthal University of Technology, Germany 2 Institute for Theoretical Physics, Georg-August-University G¨ ottingen, Germany Overview Goals fast ground-state calculations for correlated electron systems integration into the infrastructure of existing density-functional theory calculations for structure relaxations and ab-initio molecular dynamics Framework variational formulation based on reduced density-matrix func- tional theory (rDMFT) direct evaluation of the density-matrix functional with a DMFT-like local approximation Ensemble rDMFT Reduced ensemble density-matrix functional theory Gilbert [1975], Levy [1979], Lieb [1983] the main quantity is the one-particle reduced density- matrix ˆ ρ (1) c α ˆ c β grand canonical potential Ω β,µ ( ˆ h) Ω ˆ W β,µ ˆ h = 1 β ln Tr e β ˆ h+ ˆ W µ ˆ N = min ρ (1) α,β h α,β ρ (1) β,α oneparticle terms + F ˆ W β ρ (1) density matrix functional interaction energyT·entropy the density-matrix functional F ˆ W β (ρ (1) ) can be calcu- lated/approximated in several ways: 1. via Legendre-Fenchel (Lieb [1983]) transform of the grand canonical potential with respect to the one-particle operator ˆ h F ˆ W β ρ (1) = max h α,β Ω ˆ W β ˆ h Tr ˆ (1) 2. via constrained search (Levy [1979]) over an ensemble of many-particle wave functions |Ψ i : F ˆ W β ρ (1) = min P i ,|Ψ i stat h α,β ,Λ i,j i P i Ψ i | ˆ W |Ψ i interaction energy + β 1 i P i ln (P i ) T ·entropy + α,β h α,β i P i Ψ i | ˆ c α ˆ c β |Ψ i 〉− ρ (1) β,α densitymatrix constraints i,j Λ j,i ( Ψ i |Ψ j 〉− δ i,j ) orthogonality constraints λ i P i 1 probability constraint 3. via a relation to the Luttinger-Ward functional and Greens functions [Bl¨ochl, Pruschke, Potthoff (2013)] F ˆ W β (ρ (1) )= 1 β Tr ρ (1) ln(ρ (1) )+( ρ (1) ) ln( ρ (1) ) entropy of a noninteracting electron gas + stat h ,G,Σ Φ LW β (G, ˆ W ) 1 β ν Tr ln G(ν )i ( h h + Σ(ν ) ) + ( h h + Σ(ν ) ) G(ν ) G(ν ) G(ν ) (h h) h = µ + 1 β ln ρ (1) ρ (1) G(ν )= ( (ν + µ) h ) 1 4. via parametrized approximations like Mueller-functional (M¨ uller [1984]) resp. Power-functional (Sharma et al. [2008]) P. E. Bl¨ochl, C. F. J. Walther, and T. Pruschke. Method to include explicit correlations into density- functional calculations based on density-matrix functional theory. Phys. Rev. B, 84:205101, Nov 2011. P. E. Bl¨ochl, T. Pruschke, and M. Potthoff. Density-matrix functionals from green’s functions. Phys. Rev. B, 88:205139, Nov 2013. doi: 10.1103/PhysRevB.88.205139. T. L. Gilbert. Hohenberg-Kohn theorem for nonlocal external potentials. Phys. Rev. B, 12:2111– 2120, Sep 1975. E. Kamil, R. Schade, T. Pruschke, and P. E. Bl¨ochl. Reduced density-matrix functionals applied to the Hubbard dimer. ArXiv e-prints, accepted for pub. in PRB, 1509.01985, Sept. 2015. M. Levy. Universal Variational Functionals of Electron Densities, First-Order Density Matrices, and Natural Spin-Orbitals and Solution of the v-Representability Problem. Proceedings of the National Academy of Science, 76:6062–6065, Dec. 1979. A. M. K. M¨ uller. Explicit approximate relation between reduced two- and one-particle density matrices. Phys. Lett., 105A:446, Aug 1984. doi: 10.1016/0375-9601(84)91034-X. S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross. Reduced density matrix functional for many-electron systems. Phys. Rev. B, 78:201103, Nov 2008. doi: 10.1103/Phys- RevB.78.201103. W. T¨ows and G. M. Pastor. Lattice density functional theory of the single-impurity anderson model: Development and applications. Phys. Rev. B, 83:235101, Jun 2011. doi: 10.1103/Phys- RevB.83.235101. DFT+rDMFT [Bl¨ochl,Walther,Pruschke2011] E 0 (N ) min |φ n ,f n [0,1] stat µ,Λ nm E DFT [{|φ n 〉}, {f n }] + F ˆ W HF [ρ (1) ] F ˆ W DFT,DC [ρ (1) ] hybrid functional + F ˆ ˜ W ρ (1) ] F ˆ ˜ W HF ρ (1) ] highlevel correction µ n f n N particlenumber constraint i,j Λ i,j (φ i |φ j 〉− δ i,j ) orthogonality constraints with ρ (1) α,β = n χ α |φ n f n φ n |χ β Local approximation [Bl¨ochl,Walther,Pruschke 2011] Define cluster of interacting orbitals C R and restrict interaction to these clusters ˆ W R ˆ W R ˆ W R = 1 2 a,b,c,dC R U a,b,d,c ˆ c a ˆ c b ˆ c c ˆ c d F ˆ W β [ρ (1) ] F R ˆ W R β [ρ (1) ] R F ˆ W R β [ρ (1) ]. Adaptive cluster approximation [Schade, Bl¨ ochl 2016] Main idea: transform density-matrix with a unitary transformation before doing a cluster approximation neglect coupling between interacting orbitals (impu- rity)+effective bath and remaining system in the transformed density matrix ρ (1) T (N = N A · (M + 1), N A interacting orbitals): F ˆ W R [ρ (1) ] F ˆ W R ACA(M ) [ρ (1) ]= F ˆ W R [T N ρ (1) T T N ] reduced sensitivity to truncation of one-particle basis example: histogram of D 0/T,α,β = ∂F W center [ρ 0/T ] ∂ρ 0/T,αβ of half-filled 3-by-3 Hubbard cluster with U/t =5 10 0 10 20 30 40 0.001 0.01 0.1 1 2 |D 0,αβ |/t, −|D T,αβ |/t rapid convergence to the exact result with increasing truncation level M The ACA can be seen as a generalization of the two-level- approximation by T¨ ows and Pastor [2011] to multi-band and multi-site interactions (TLA only one-band). arbitrary truncation parameters M (TLA only M = 1). Corrected adaptive cluster approximation: Additional correction based on parametrized approximate functional F ˆ W [ρ] to mediate effect of truncation for small M : F ˆ W R cACA(M ) [ρ (1) ]= F ˆ W R ACA(M ) [ρ (1) ] F ˆ W R [T N ρ (1) T T N ]+ F ˆ W R [ρ (1) T ] Application to a finite single-orbital SIAM: ˆ H = σ ǫ f ˆ f σ ˆ f σ + U ˆ n f,ˆ n f,+ σ,i ǫ i ˆ n i,σ + V N b i,σ ˆ f σ ˆ c i,σ + cc. (N b = 11, N e = 12, ǫ i = 2t cos(2πn/N b )) Interaction strength dependence (V/t =0.4, ǫ f =0, t> 0): 14.3 14.2 14.1 14 13.9 0 0.05 0.1 0.15 0.75 1 1.25 1.5 0 2 4 6 8 0 0.5 1 E 0 /t W 0 /t n f U/t m f 20 10 0 10 5 0 5 0 0.01 0.02 0.03 0 2 4 6 8 10 3 ΔE/t 10 3 ΔW/t Δn f U/t Impurity onsite-energy dependence (V/t =0.4, U/t =8, t> 0): 27 20 13 0 4 8 0 1 2 10 5 0 5 0 0.5 1 0 0.025 0.05 E 0 /t W 0 /t n f ǫ f /t m f ΔE 0 /t 30 20 10 0 300 200 100 0 0.025 0 0.025 10 5 0 5 10 3 ΔE/t 10 3 ΔW/t Δn f ǫ f /t Bandwidth dependence (ǫ f /V = 1, U/V =5, V> 0): 300 200 100 0 0 1 2 3 4 0.7 1 1.3 1.6 1.9 0 10 20 0 0.5 1 0 0.1 0.2 0.3 E 0 /V W 0 /V n f t/V m f ΔE 0 /V 80 60 40 20 0 40 20 0 0 0.01 0.02 0.03 0.04 0 10 20 0 0.02 0.04 0 1 2 10 3 ΔE/V 10 3 ΔW/V Δn f t/V Application to a half-filled 24-site Hubbard ring: impurity size in the local approximation N A truncation parameter in the ACA M (N = N A · (M + 1)) Convergence with truncation parameter for exact ground state density matrix (single site local approx.): 0.28 0.29 0.3 0.31 0.32 1 2 3 4 5 6 F ˆ W 1 (c)ACA(M ) [ρ 0 ]/t M Exact results and local approximation with ACA for total energy E 0 , interaction energy W 0 and next-neighbor density matrix elements ρ 12 : 1 0.5 0 N A =1 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0 10 20 E 0 /(Nt) exact M=1 M=2 M=3 W 0 /(Nt) ρ 12 U/t 1 0.5 0 N A =2 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0 10 20 E 0 /(Nt) exact M=1 M=2 W 0 /(Nt) ρ 12 U/t HF exact HF ACA M=3 cACA M=2 cACA M=1 ACA M=2 ACA M=1 HF exact/HF HF HF exact ACA M=1 ACA M=2 cACA M=2 cACA M=1 HF exact/HF HF exact HF cACA M=2 ACA M=1 ACA M=2 ←← cACA M=1 ACA cACA
Transcript
Page 1: reduceddensity-matrixfunctionaltheory: … · 2018-01-28 · Overview Goals •fast ground-state calculations for correlated electron systems ... HF exact/HF HF HF exact ACA M=1 ACA

reduced density-matrix functional theory:

Energies and forces for materials with strong correlations

Robert Schade1, Ebad Kamil2, Peter Blochl1, Thomas Pruschke2

1Institute for Theoretical Physics, Clausthal University of Technology, Germany2Institute for Theoretical Physics, Georg-August-University Gottingen, Germany

OverviewGoals

• fast ground-state calculations for correlated electron systems

• integration into the infrastructure of existing density-functionaltheory calculations for structure relaxations and ab-initiomolecular dynamics

Framework

• variational formulation based on reduced density-matrix func-tional theory (rDMFT)

• direct evaluation of the density-matrix functional with a DMFT-likelocal approximation

Ensemble rDMFTReduced ensemble density-matrix functional theory

Gilbert [1975], Levy [1979], Lieb [1983]

• the main quantity is the one-particle reduced density-

matrix ρ(1) = c†αcβ

• grand canonical potential Ωβ,µ(h)

ΩWβ,µ

(

h)

= −1

βln

(

Tr e−β(

h+W−µN))

= minρ(1)

(∑

α,β

hα,βρ(1)β,α

︸ ︷︷ ︸

one−particle terms

+ F Wβ

(

ρ(1))

︸ ︷︷ ︸

density−matrix functional︸ ︷︷ ︸

interaction energy−T·entropy

)

• the density-matrix functional F Wβ (ρ(1)) can be calcu-

lated/approximated in several ways:

1. via Legendre-Fenchel (Lieb [1983]) transform of the grand

canonical potential with respect to the one-particle operator h

F Wβ

(

ρ(1))

= maxhα,β

(

ΩWβ

(

h)

− Tr(

hρ(1)))

2. via constrained search (Levy [1979]) over an ensemble ofmany-particle wave functions |Ψi〉:

F Wβ

(

ρ(1))

=

minPi,|Ψi〉

stathα,β,Λi,j,λ

[∑

i

Pi〈Ψi|W |Ψi〉

︸ ︷︷ ︸interaction energy

+ β−1∑

i

Pi ln (Pi)

︸ ︷︷ ︸

−T ·entropy

+∑

α,β

hα,β

i

Pi〈Ψi|c†αcβ|Ψi〉 − ρ

(1)β,α

︸ ︷︷ ︸

density−matrix constraints

−∑

i,j

Λj,i(〈Ψi|Ψj〉 − δi,j

)

︸ ︷︷ ︸

orthogonality constraints

−λ

i

Pi − 1

︸ ︷︷ ︸

probability constraint

]

3. via a relation to the Luttinger-Ward functional andGreens functions [Blochl, Pruschke, Potthoff (2013)]

F Wβ (ρ(1)) =

1

βTr[

ρ(1) ln(ρ(1)) + (1− ρ(1)) ln(1− ρ(1))]

︸ ︷︷ ︸entropy of a non−interacting electron gas

+ stath′,G,Σ

(

ΦLWβ (G, W )−

1

β

ν

Tr

ln[1−G(iων)i

(h′ − h + Σ(iων)

)]

+(h′ − h + Σ(iων)

)G(iων)−

[G(iων)−G(iων)

](h′ − h)

)

h = µ1 +1

βln

(1− ρ(1)

ρ(1)

)

G(iων) =((iων + µ)1− h

)−1

4. via parametrized approximations like Mueller-functional(Muller [1984]) resp. Power-functional (Sharma et al. [2008])

P. E. Blochl, C. F. J. Walther, and T. Pruschke. Method to include explicit correlations into density-

functional calculations based on density-matrix functional theory. Phys. Rev. B, 84:205101, Nov

2011.

P. E. Blochl, T. Pruschke, and M. Potthoff. Density-matrix functionals from green’s functions.

Phys. Rev. B, 88:205139, Nov 2013. doi: 10.1103/PhysRevB.88.205139.

T. L. Gilbert. Hohenberg-Kohn theorem for nonlocal external potentials. Phys. Rev. B, 12:2111–

2120, Sep 1975.

E. Kamil, R. Schade, T. Pruschke, and P. E. Blochl. Reduced density-matrix functionals applied

to the Hubbard dimer. ArXiv e-prints, accepted for pub. in PRB, 1509.01985, Sept. 2015.

M. Levy. Universal Variational Functionals of Electron Densities, First-Order Density Matrices,

and Natural Spin-Orbitals and Solution of the v-Representability Problem. Proceedings of the

National Academy of Science, 76:6062–6065, Dec. 1979.

A. M. K. Muller. Explicit approximate relation between reduced two- and one-particle density

matrices. Phys. Lett., 105A:446, Aug 1984. doi: 10.1016/0375-9601(84)91034-X.

S. Sharma, J. K. Dewhurst, N. N. Lathiotakis, and E. K. U. Gross. Reduced density matrix

functional for many-electron systems. Phys. Rev. B, 78:201103, Nov 2008. doi: 10.1103/Phys-

RevB.78.201103.

W. Tows and G. M. Pastor. Lattice density functional theory of the single-impurity anderson

model: Development and applications. Phys. Rev. B, 83:235101, Jun 2011. doi: 10.1103/Phys-

RevB.83.235101.

DFT+rDMFT[Blochl,Walther,Pruschke 2011]

E0(N) ≈ min|φn〉,fn∈[0,1]

statµ,Λnm

(

EDFT [|φn〉, fn]

+(

F WHF [ρ

(1)]− F WDFT,DC [ρ

(1)])

︸ ︷︷ ︸hybrid functional

+(

FˆW [ρ(1)]− F

ˆWHF [ρ

(1)])

︸ ︷︷ ︸high−level correction

− µ

(∑

n

fn −N

)

︸ ︷︷ ︸particle−number constraint

−∑

i,j

Λi,j (〈φi|φj〉 − δi,j)︸ ︷︷ ︸

orthogonality constraints

)

with ρ(1)α,β =

n

〈χα|φn〉fn〈φn|χβ〉

Local approximation [Blochl,Walther,Pruschke 2011]

Define cluster of interacting orbitals CR and restrict interaction tothese clusters

W ≈∑

R

WR WR =1

2

a,b,c,d∈CR

Ua,b,d,cc†ac†bcccd

F Wβ [ρ(1)] ≈ F

R WR

β [ρ(1)] ≈∑

R

F WR

β [ρ(1)].

Adaptive cluster approximation[Schade, Blochl 2016]

Main idea: transform density-matrix with a unitary transformationbefore doing a cluster approximation

neglect coupling between interacting orbitals (impu-rity)+effective bath and remaining system in the transformed

density matrix ρ(1)T (N = NA · (M + 1), NA interacting orbitals):

F WR[ρ(1)] ≈ F WR

ACA(M)[ρ(1)] = F WR[T

†Nρ

(1)T TN ]

⇒ reduced sensitivity to truncation of one-particle basis

example: histogram of D0/T,α,β =∂FWcenter [ρ0/T ]

∂ρ0/T,αβof half-filled 3-by-3

Hubbard cluster with U/t = 5

−10

0

10

20

30

40

0.001 0.01 0.1 1 2

|D0,αβ |/t,−|DT,αβ|/t

⇒ rapid convergence to the exact result with increasingtruncation level MThe ACA can be seen as a generalization of the two-level-approximation by Tows and Pastor [2011] to

• multi-band and multi-site interactions (TLA only one-band).

• arbitrary truncation parameters M (TLA only M = 1).

Corrected adaptive cluster approximation:Additional correction based on parametrized approximate functional

F W≈ [ρ] to mediate effect of truncation for small M :

F WR

cACA(M)[ρ(1)] = F WR

ACA(M)[ρ(1)]− F WR

≈ [T†Nρ

(1)T TN ] + F WR

≈ [ρ(1)T ]

Application to a finite single-orbital SIAM:

H =∑

σ

ǫf f†σfσ + Unf,↑nf,↓ +

σ,i

ǫini,σ +V√Nb

i,σ

(

f†σci,σ + cc.

)

(Nb = 11, Ne = 12, ǫi = −2t cos(2πn/Nb))

Interaction strength dependence (V/t = 0.4, ǫf = 0, t > 0):

−14.3

−14.2

−14.1

−14

−13.9

0

0.05

0.1

0.15

0.75

1

1.25

1.5

0 2 4 6 8

0

0.5

1

E0/t

W0/t

nf

U/t

mf

−20

−10

0

−10

−5

0

5

0

0.01

0.02

0.03

0 2 4 6 8

103∆E/t

103∆W/t

∆nf

U/t

Impurity onsite-energy dependence (V/t = 0.4, U/t = 8,t > 0):

−27

−20

−13

0

4

8

0

1

2

−10 −5 0 5

0

0.5

1

0

0.025

0.05E0/t

W0/t

nf

ǫf/t

mf

∆E

0/t

−30

−20

−10

0

−300

−200

−100

0

−0.025

0

0.025

−10 −5 0 5

103∆E/t

103∆W/t

∆nf

ǫf/t

Bandwidth dependence (ǫf/V = −1, U/V = 5, V > 0):

−300

−200

−100

0

0

1

2

3

4

0.7

1

1.3

1.6

1.9

0 10 20

0

0.5

1

00.10.20.3

E0/V

W0/V

nf

t/V

mf

∆E

0/V

−80

−60

−40

−20

0

−40

−20

0

0

0.01

0.02

0.03

0.04

0 10 20

0

0.02

0.04

0 1 2

103∆E/V

103∆W/V

∆nf

t/V

Application to a half-filled 24-site Hubbard ring:

• impurity size in the local approximation NA

• truncation parameter in the ACA M (N = NA · (M + 1))

Convergence with truncation parameter for exact ground state densitymatrix (single site local approx.):

0.28

0.29

0.3

0.31

0.32

1 2 3 4 5 6

FW

1

(c)A

CA(M

)[ρ

0]/t

M

Exact results and local approximation with ACA for total energy E0,interaction energyW0 and next-neighbor density matrix elements ρ12:

−1

−0.5

0NA = 1

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0 10 20

E0/(N

t) exact

M=1

M=2

M=3

W0/(N

t)ρ12

U/t

−1

−0.5

0NA = 2

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0 10 20

E0/(N

t)

exact

M=1

M=2

W0/(N

t)ρ12

U/t

HFexact

HF

↓ ACA M=3

↓ cACA M=2

↓ cACA M=1

↓ ACA M=2

ACA M=1

HF

exact/HF

HF

HF

exact

ACA M=1

ACA M=2

cACA M=2

↑ cACA M=1

HF

exact/HF

HF

exact

HF

↓ cACA M=2

← ACA M=1

← ACA M=2

← ← cACA M=1

↑ ACA

↓ cACA

Recommended