+ All Categories
Home > Documents > REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of...

REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of...

Date post: 18-Jul-2018
Category:
Upload: domien
View: 242 times
Download: 1 times
Share this document with a friend
16
REFERENCES 1. AASHTO-T 88, “Determination of Grain Size Analysis of Soil”. 2. AASHTO T-89, “Determination of Liquid Limit of Soil”. 3. AASHTO T-90, “Determination of Plastic Limit of Soil”. 4. AASHTO T-100, “Determination of Specific Gravity of Soil”. 5. AASHTO M-145, “Determination of Classification of Soil”. 6. AASHTO T-203, “Hand Auger for Subsurface Determination”. 7. AASHTO T-207, “Shelby Tube Sampling of Soil”. 8. AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216, “Determination of Consolidation Test”. 11. AASHTO T-265, “Determination of Moisture Content”. 12. AASHTO T-267, “Determination of LOI (Loss of Ignition)”. 13. AASHTO T-296, “Determination of Triaxial Testing” (UU). 14. AASHTO T-297, “Determination of Triaxial Testing” (CU). 15. AASHTO T-307, “Determination of Resilient Modulus”. 16. ASTM D-2434, “A Constant Head Test to Determine the Hydraulic Conductivity of Soil”. 17. ASTM D-2976, “Determination of pH Values of Soil” 18. ASTM D-5084, “Flexible Wall Method to Determine the Hydraulic Conductivity of Fine Soils”. 19. Bowles, J.E., (1998) “Foundation Analysis and Design”, McGraw-Hill Book Company, Inc., New York. 20. Canadian Foundation Engineering Manual. 21. Das, B. M. (1988) “Principles of Foundation Engineering”. 22. Das, B. M. (1994) “Principles of Geotechnical Engineering”. 23. Malott ,Clyde A. (1922) Physiographic Map of Indiana 24. Driven 1.2 (1998) User’s Manual” Publication No. FHWA-SA-98-074 25. EM 1110-2-1906, “Determination of Unit Weight of Soil”, Engineer Manual of Soil Laboratory Test. U.S. Army Corps of Engineers. 26. FHWA Manual (COM 624 Program) of Piles Analysis (FHWA IP-84-11) (Uses Wang and Reese’s Method). 27. HFHWA-HI-88-009 Workshop Manual on Soils and Foundation, NHI Course No. 13212. 28. FHWA-HI-96-013 and FHWA-HI-97-014 Design and Construction of Driven Pile Foundations.
Transcript
Page 1: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

REFERENCES

1. AASHTO-T 88, “Determination of Grain Size Analysis of Soil”.

2. AASHTO T-89, “Determination of Liquid Limit of Soil”.

3. AASHTO T-90, “Determination of Plastic Limit of Soil”.

4. AASHTO T-100, “Determination of Specific Gravity of Soil”.

5. AASHTO M-145, “Determination of Classification of Soil”.

6. AASHTO T-203, “Hand Auger for Subsurface Determination”.

7. AASHTO T-207, “Shelby Tube Sampling of Soil”.

8. AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”.

9. AASHTO T-215, “Determination of Permeability of Soil”.

10. AASHTO T-216, “Determination of Consolidation Test”.

11. AASHTO T-265, “Determination of Moisture Content”.

12. AASHTO T-267, “Determination of LOI (Loss of Ignition)”.

13. AASHTO T-296, “Determination of Triaxial Testing” (UU).

14. AASHTO T-297, “Determination of Triaxial Testing” (CU).

15. AASHTO T-307, “Determination of Resilient Modulus”.

16. ASTM D-2434, “A Constant Head Test to Determine the Hydraulic Conductivity of Soil”.

17. ASTM D-2976, “Determination of pH Values of Soil”

18. ASTM D-5084, “Flexible Wall Method to Determine the Hydraulic Conductivity of Fine

Soils”.

19. Bowles, J.E., (1998) “Foundation Analysis and Design”, McGraw-Hill Book Company,

Inc., New York.

20. Canadian Foundation Engineering Manual.

21. Das, B. M. (1988) “Principles of Foundation Engineering”.

22. Das, B. M. (1994) “Principles of Geotechnical Engineering”.

23. Malott ,Clyde A. (1922) Physiographic Map of Indiana

24. Driven 1.2 (1998) User’s Manual” Publication No. FHWA-SA-98-074

25. EM 1110-2-1906, “Determination of Unit Weight of Soil”, Engineer Manual of Soil

Laboratory Test. U.S. Army Corps of Engineers.

26. FHWA Manual (COM 624 Program) of Piles Analysis (FHWA IP-84-11) (Uses Wang and

Reese’s Method).

27. HFHWA-HI-88-009 Workshop Manual on Soils and Foundation, NHI Course No. 13212.

28. FHWA-HI-96-013 and FHWA-HI-97-014 Design and Construction of Driven Pile

Foundations.

Page 2: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

29. FHWA-Manual on “Design and Construction of Driven Pile Foundations”, DP-66-1,

January 1996.

30. FHWA-RD-89-043 (1990) “Reinforced Soil Structures”.

31. FHWA-SA-96-071 (1998) “Mechanically Stabilized Earth Wall”.

32. Gray, Henry H. (1982) Map of Indiana Showing Topography of Bedrock Surfaces

33. Gray, Henry H. (1988) Map of Indiana Showing Thickness of Unconsolidated Deposits.

34. Gray, Henry H. (1989) Indiana Geological Survey Quaternary Geological Map of Indiana

35. INDOT Bridge Design Memorandum #213 (1992) for Seismic Design Criteria.

36. Meyerhof, G.G. (1976) “Bearing Capacity and Settlement of Pile Foundations”, Journal of

Geotechnical Engineering Division ASCE Vol. 1.2 No. G13 Proc. Lafer 11962 pp 195 –

228.

37. MN DOT (1991) Weathering Nomenclature for Rocks.

38. Nordlund, R.L. (1963) “Bearing Capacity of Piles in Cohesionless Soils”, ASCE

39. Nordlund, R.L. (1979) “Point Bearing and Shaft Friction of Piles in Sand”, 5th Annual

Fundamentals of Deep Foundation Design. University of Missouri Rolla.

40. NY DOT (1977) “Prescription Values of Allowable Lateral Loads on Vertical Piles”, (Uses

Bron’s Method of Pile Analysis).

41. Peck, Hanson and Thornburn (1974) “Foundation Engineering”, John Wiley and Sons

N,.Y. 2nd Edition.

42. Peck, R. P., et. al., (1953) “Foundation Engineering”, John Wiley & Sons, Inc., New York.

43. Folk, R. L. (1980) Petrology of Sedimentary Rocks.

44. Rendon-Herrero (1980) “Universal Compression Index Equation”, Journal of Geotechnical

Engineering Vol. 106, GTII, 1979-1200.

45. Schroeder, J.A., (December 1980), “Static Design Procedures for Ultimate Capacity of

Deep Foundations”, prepared for H. C. Nutting (in-house seminar), Cincinnati, OH

46. Skempton, A.W. and Bjerrum, L. (1957) “A Contribution to Settlement Analysis of

Foundations in Clay Geo-technique”, London, England, U.K. V.7, P. 178.

47. Sowers, G.F., “Introductory Soils Mechanics and Foundations: Geotechnical

Engineering”. MacMillan Publishing Company, Inc., New York, (1979).

48. Tomilson, M.J., (1970) “Some Effects of Pile Driving on Skin Friction”, Conference on

Behavior of Piles, Institute of Civil Engineers, London, pp,. 57-66.

49. Tomilson, M.J. (1980) “Foundation Design and Construction”, Pitman Advanced

Publishing, Boston, MA. 4th edition.

50. Tomilson, M.J. (1985) “Foundation Design and Construction”, Langman Scientific and

Technical, Essex, England.

51. WEAP (1997) “Wave Equation Analysis for Pile Design”.

Page 3: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

52. XSTABL (1995) “Version 5 Reference Manual Interactive Software Designs” Moscow,

ID, USA

Page 4: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

APPENDICES

Page 5: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 1 (4.1) Boring Log Example

Page 6: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 2 Grain Size Example

Boulders Gravel Sand

Silt Cla

y Coarse Fine

Sample

Identification. Station / Offset / Line Dept, meters Elev. USCGS

RB-5 SS-3 2+300 3.0m Lt. "A" 1.2 - 1.7 258.8 + 258.1

Lab # Class Spec.

Gravity pH

%

Gravel

%

Sand % Silt % Clay

MC

% LL PL PI

N/A Loam

A-4(1)

# 4 # 10 # 40 # 200

0

10

20

30

40

50

60

70

80

90

100

0.0010.010.1110

Per

cen

t F

iner

By W

eigh

t

Grain Size (mm)

Grian Size Analysis

Class 'C' Fly ash

loess

G CB

Page 7: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 3 Consolidation Test

(Specimen Data)

Date:

Project:

Boring No:

Classification:

Tare No.

Before Test After Test

Specimen Trimmings Specimen

Ring and Plates

Wei

ght

in

gra

ms

Tare plus wet soil

Tare plus dry soil

Water WW WW WWF

Tare

Dry Soil WS

Water Content W W

O % % WF

Consolidometer No. Area of specimen A, sq. in.

Weight of ring, g Height of specimen, H, in.

Weight of plates, g Specific gravity of solids, GS

WAGWS

HS

sf

WF

HH

HSr ,after test saturation of Degree %.

Net change of height of specimen at end of test, ∆H= in.

Height of specimen at end of test, Hr = H - ∆H= in.

Remarks:

H

H-H safter test ratio Void

s

sf

=

% H - H

H So test,before saturation of Degree

s

w

ft.lb/cu A x H

Density Dry s

Ws

Technician: Computed by: Checked by:

Page 8: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 4 Consolidation Test

(Time-Consolidation Data)

Date:

Subject:

Boring No: Sample No: Consolidation No:

Date &

Pressure Time

Elapsed

time,

min.

Dial

Rdg.

10-4 in.

Temp. oC

Date &

Pressure Time

Elapsed

time,

min.

Dial

Rdg.

10-4 in.

Temp. oC

Technician:

Page 9: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 5 E-Log P Curve

Consolidation Test

Boring No: Sample No: Depth:

Soil Description:

Liquid Limit: Plastic Limit: % Fines:

Wet Density, t: Water Content, W%: Initial Void Ratio, ℓo:

Cc: Cr: Pc: Cv:

Page 10: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 6 Strain Percentage Worksheet

Unconfined Compressive Strength Test

Pcf

/kP

a

8000

7000

6000

5000

4000

3000

2000

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Strain Percent

Sample Location:

Depth: Moisture Content

Strain Rate: Dry Unit Weight

Soil Description:

Soil Description:

Soil Description:

Project #: Des. #:

Road: County:

Location:

1

Page 11: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 7 Triaxial Compression Test

(Specimen Data)

Date:

Project:

Boring No: Sample No:

Type of Test: Confining Pressure tons/sq ft

Test No. Classification:

Before test

Specimen Trimmings Specimen

Tare No:

Wei

gh

t,q

Tare plus wet soil

Tare plus dry soil

Water WW WWO Wwf

Tare

Wet Soil WS

Dry Soil W

Water

Content W % wO % wf %

Initial Condition of Specimen

Diameter, inch (cm) Do Top Center Bottom Average

Height, cm Ho Volume of solids, in. 3 Vs

Area sq inch = 7.854 D2 Ao Void ratio = (Vo - Vs) ÷ Vs eo

Volume = in.2 Vo Saturation, % S

Specific gravity of solids G Dry Density, lb/cu ft d

Condition of Specimen After Consolidation (R and S Tests)

Change in height during

consolidation, in. δHo Volume, in. = AcHc Vc

Height, = Ho -δHoin. Hc Void Ratio = (Vc - Vs) ÷ Vs ec

Area, sq. in. Ac Saturation, % Sc

Condition of Specimen After Test (R and S Tests)

Diameter, cm Dr Top Center Bottom Average

Change in height during Shear

Tests, in. ∆H Volume, in.3 = AfHf Vf

Height, in. = Hc - ∆ H Hr Void Ratio = (Vr - Vs) ÷ Vs e r

Area, sq inch Af Saturation, % Sr

contentwaterw

H

HHA, Ac. x

Vo

wx

VsVf

w

wx

wf

S

xVV

yw

wx

w

sxVV

yw

wx

w

SGY

Wv

w

WWs

o

oo

s

s

r

sc

sc

c

so

so

o

sw

ss

462 ,100

100

,100100

,100100

,,

Remarks:

Technician: Computed by: Checked by:

Page 12: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 8 Triaxial Compression (Q) and Test

Axial Loading Data

Date:

Project:

Boring No: Sample No: Test No:

Type Test: Confining Pressure: lb/sq ft:

Time

Elapsed

Time

min.

Dial

Reading

10-2

Cumulative

Change (Δ H)

10- 2 in

P Axial

Load lb

P Axial

Strain *

ΔH

H

ε

^corr =

A**

1 - ε sq

in.

Deviator

Stress =

P x 0.465

Corr tons/sq

ft

* Use Ho for Q tests and Hc for R tests Ho inch (cm) in Ao

sq in

**Use Ho for Q tests and Hc for R tests Ho inch (cm) in Ao

sq in

Test time to failure min. Type Failure:

.

Technician:

.

Page 13: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 9 Resilient Modulus Test Data Sheet OMC

Page 14: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 10 Subgrade Evaluation (example)

Bo

rin

g N

o.

Sta Offset Line Sample

No

Depth

(ft.) Soil Type

AA

SH

TO

Cla

ss. SPT

(N)

In-situ

Dry

Density

(pcf)

Max.

Dry

Density

(pcf)

In-situ

%

Comp

action

Nat.

Moisture

(%)

Opt

iMoisture

(%)

%

Moi

Diff

RB-06 276+00 20’ Lt “A” SS-1 2.0-3.5 Loam A-6 5 110.9 110.0 100.8 14.5 17.8 -3.3

RB-09 290+00 20’ Rt “A” SS-2 3.5-5.0 Silty Clay

Loam A-6 13 111.5 110.0 101.4 17.6 17.8 -0.2

RB-11 303+00 30’ Rt “A” SS-1 1.5-3.0 Silty Clay

Loam A-6 7 109.1 110.0 99.2 17.8 17.8 0.0

RB-16 322+50 35’ Lt “A” SS-1 2.0-3.5 Silty Clay

Loam A-6 9 108.3 110.0 98.4 16.0 17.8 -1.8

RB-22 343+00 20’ Lt “A” SS-1 2.0-3.0 Loam A-6 9 119.5 110.6

RB-27 385+00 35’ Lt “A” SS-1 2.0-3.0 Silty Clay

Loam A-6 10 109.8 110.0 99.8 12.7 17.8 -5.1

RB-36 440+00 15’ Lt “PR-A” SS-2 1.5-3.5 Silty Clay

Loam A-6 12 108.2 110.0 98.3 18.7 17.8 0.9

Page 15: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 11: Peat Unit Weight (example)

Boring

No. Station Offset Line

Sample

No.

Depth

(feet) Soil Type

AASHTO

Class.

SPT

(N)

Natural

Moisture

(%)

Max. Dry

Density

(pcf)

RB-17B 326+00 98’Rt “A” ST-2 16.0-18.0 Silty Clay w/Little

Organic Matter A-7-5 0 82.6 91.8

RB-17B 326+50 98’Rt “A” SWT-9 33.5-35.0 Silty Clay w/Little

Organic Matter A-7-5 0 103.6 90.2

RB-17B 326+50 98’Rt “A” ST-3 36.0-38.0 Silty Clay w/Little

Organic Matter A-7-5 0 71.5 81.0

RB-18 326+50 54’Lt “A” SS-1 0.5-2.0 Silty Clay w/Traces of

Organic Matter A-6 2 55.4 92.3

RB-18 326+50 54’Lt “A” SS-4 8.5-10.0 Silty Clay w/Little

Organic Matter A-7-5 0 65.0 93.2

RB-18 326+50 54’Lt “A” SS-9 21.0-22.5 Silty Clay w/Little

Organic Matter A-7-5 0 119.1 88.8

RB-18B 328+00 51’Lt “A” SS-2 3.0-4.5 Silty Clay w/Little

Organic Matter A-7-5 1 89.1 105.2*

RB-19 332+15 35’Rt “A” SS-1 1.0-2.0 Silty Clay w/Traces of

Organic Matter Visual 25 35.4 110.3*

Average of Peat Unit Weight 89.5*

RB-18D 326+50 30’Lt “A” SS-4 8.5-10.0 Loam A-7-6 16.3 16.3 120.9*

RB-18E 326+45 54’Lt “A” ST-1 5.0-7.0 Clay w/Little Organic

Matter Visual 75.6 75.6 119.8

* Not included in average

Page 16: REFERENCES - in.gov · AASHTO T-208, “Determination of Unconfined Compressive Strength of Soil”. 9. AASHTO T-215, “Determination of Permeability of Soil”. 10. AASHTO T-216,

Appendix 12: MSE Wall Design Parameter and Geotechnical Check Table

MSE Wall Design Parameter and Geotechnical Check Table

Design Parameter Value (area 1)*

Maximum Calculated Settlement "x" inches

Maximum Differential Settlement "y" inches

Time for settlement completion "z" days

Maximum wall height XX ft

Design Recommendations

Minimum Reinforcement Length/Height Ratio 0.75H (example)

Undercut required yes/no

Undercut depth X feet

Undercut area from Sta. XX to XX line "XX"

Undercut Backfill Material XXXXXXX

Seismic recommendation

Site Class

Seismic Zone

Peak Ground Acceleration As

Geotechnical Analysis Checks CDR

Sliding >=1.0

Eccentricity >=1.0

Global Stability Factor of safety/ resistance factor

Factored Bearing Resistance 5400 psf (example value)

Foundation Soils Strength Parameters**

Cohesion

internal friction angle

Notes: *more sheets can be added to include recommendations for each area of concern. **if varying soil conditions encountered underneath the MSE wall, the table can be expanded to include all soil profile information


Recommended