+ All Categories
Home > Documents > REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling...

REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling...

Date post: 19-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
31
125 REFERENCES Abbaspour A., A. Khajehzadeh and A. Ghaffarinejad (2009). A simple and cost- effective method, as an appropriate alternative for visible spectrophotometry: development of a dopamine biosensor, Analyst, vol. 134, pp. 1692-1698. Ahmed A., N. S. Gajbhiye and A. G. Joshi (2011). Low cost, surfactant-less, one pot synthesis of Cu 2 O nano-octahedra at room temperature, J. Solid. State. Chem. vol. 184, pp. 2209-2214. Alizadeh T and S. Mirzagholipur (2014). A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles-graphene nanocomposite, Sensors and Actuators B, vol. 198, pp. 438-447. Almajdalawi S., V. Pavlinek, M. Mrlik, Q. Cheng, P. Piyamanocha, M. Pastorek and M. Stenicka (2013). Solvothermal synthesis of different TiO 2 morphology and their electro rheological characteristics, Journal of Physics: Conference Series, vol. 412, pp. 012004. Ammeraal R. N., G. A. Delgado, F. L. Tenbarge and R. B. Friedman (1991). High- performance anion-exchange chromatography with pulsed amperometric detection of linear and branched glucose oligosaccharides, Carbohydrate Research, vol. 215, pp. 179-192. Ananth A., S. Dharaneedharan, M. S. Heo and Y. S. Mok (2015). Copper oxide nanomaterials: Synthesis, characterization and structure-specific antibacterial performance, Chemical Engineering Journal, vol. 262, pp. 179-188. Alothman Z. A., N. Bukhari, S. M. Wabaidur and S. Haider (2010). Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode, Sensors and Actuators B, vol. 146, pp. 314-320. Ardakani M. M and M. A. S. Mohseni (2011). Carbon Nanotubes in Electrochemical Sensors, InTech, pp. 395-412. Armelao L., D. Barreca, M. Bertapelle, G. Bottaro, C. Sada and E. Tondello (2003). A sol-gel approach to nanophasic copper oxide thin films, Thin Solid Films, vol. 442, pp. 48-52. Arya S. K., A. Chaubey and B. D. Malhotra (2006). Fundamentals and Applications of Biosensors, Proc Indian Natn Sci Acad, vol. 72, pp. 249-266.
Transcript
Page 1: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

125

REFERENCES

Abbaspour A., A. Khajehzadeh and A. Ghaffarinejad (2009). A simple and cost-

effective method, as an appropriate alternative for visible spectrophotometry:

development of a dopamine biosensor, Analyst, vol. 134, pp. 1692-1698.

Ahmed A., N. S. Gajbhiye and A. G. Joshi (2011). Low cost, surfactant-less, one pot

synthesis of Cu2O nano-octahedra at room temperature, J. Solid. State. Chem. vol.

184, pp. 2209-2214.

Alizadeh T and S. Mirzagholipur (2014). A Nafion-free non-enzymatic amperometric

glucose sensor based on copper oxide nanoparticles-graphene nanocomposite, Sensors

and Actuators B, vol. 198, pp. 438-447.

Almajdalawi S., V. Pavlinek, M. Mrlik, Q. Cheng, P. Piyamanocha, M. Pastorek and

M. Stenicka (2013). Solvothermal synthesis of different TiO2 morphology and their

electro rheological characteristics, Journal of Physics: Conference Series, vol. 412,

pp. 012004.

Ammeraal R. N., G. A. Delgado, F. L. Tenbarge and R. B. Friedman (1991). High-

performance anion-exchange chromatography with pulsed amperometric detection of

linear and branched glucose oligosaccharides, Carbohydrate Research, vol. 215, pp.

179-192.

Ananth A., S. Dharaneedharan, M. S. Heo and Y. S. Mok (2015). Copper oxide

nanomaterials: Synthesis, characterization and structure-specific antibacterial

performance, Chemical Engineering Journal, vol. 262, pp. 179-188.

Alothman Z. A., N. Bukhari, S. M. Wabaidur and S. Haider (2010). Simultaneous

electrochemical determination of dopamine and acetaminophen using multiwall

carbon nanotubes modified glassy carbon electrode, Sensors and Actuators B, vol.

146, pp. 314-320.

Ardakani M. M and M. A. S. Mohseni (2011). Carbon Nanotubes in Electrochemical

Sensors, InTech, pp. 395-412.

Armelao L., D. Barreca, M. Bertapelle, G. Bottaro, C. Sada and E. Tondello (2003). A

sol-gel approach to nanophasic copper oxide thin films, Thin Solid Films, vol. 442,

pp. 48-52.

Arya S. K., A. Chaubey and B. D. Malhotra (2006). Fundamentals and Applications

of Biosensors, Proc Indian Natn Sci Acad, vol. 72, pp. 249-266.

Page 2: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

126

Atta F. N., A. Galal and R. A. Ahmed (2011). Simultaneous Determination of

Catecholamines and Serotonin on Poly (3, 4-ethylene dioxythiophene) Modified Pt

Electrode in Presence of Sodium Dodecyl Sulfate, J. Electrochem. Society, vol.

158:(4), pp. F52-F60.

Babu K. J., A. Zahoor, K. S. Nahm, R. Ramachandran, M. A. Jothi Rajan and G. G.

kumar (2014). The influences of shape and structure of MnO2 nanomaterials over the

non-enzymatic sensing ability of hydrogen peroxide, J Nanopart Res, vol. 16, pp.

2250.

Bae W. K., K. Char, H. Hur and S. Lee (2008). Single-Step Synthesis of Quantum

Dots with Chemical Composition Gradients, Chemistry of Materials, Vol. 20 pp. 531-

539.

Bai S and X. Shen (2012). Graphene-inorganic nanocomposites (2012). RSC

Advances, vol. 2, pp. 64-98.

Balaguru R. J. B and B. G. Jeyaprakash. Quantum size effect, electrical conductivity

and Quantum transport, NPTEL-Electrical & Electronics Engineering-Semiconductor

Nanodevices.

Bakker E and Y. Qin (2006). Electrochemical Sensors, Anal Chem, vol. 78(12), pp.

3965-3984.

Balamurugan B and B. R. Mehta (2001). Optical and structural properties of

nanocrystalline copper oxide thin films prepared by activated reactive evaporation,

Thin Solid Films, vol. 396, pp. 90-96.

Balan L., J. P. Malval, R. Schneider and D. Burget (2007). Silver nanoparticles: New

synthesis, characterization and photophysical properties, Materials Chemistry and

Physics, vol. 104, pp. 417-421.

Barsoukov E and J. R.Macdonald (2005). Impedance Spectroscopy Theory,

Experiment, and Applications, A John Wiley & Sons, Inc., Publications, ISBN: 978-

0-471-64749-2.

Blaesi A. H and C. R. Buie (2011). Characterization of the Electrochemical Oxidation

of Glucose on Pt Nanoparticle Catalysts in pH Neutral Phosphate Buffer Solution,

ECS Transactions., vol. 33 (40), pp. 41-48.

Bieniasz L. K (2015). Basic Assumptions and Equations of Electroanalytical Models,

Modelling Electroanalytical Experiments by the Integral Equation Method

Monographs in Electrochemistry, pp. 9-47.

Page 3: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

127

Boduroglu S., J. M. E. Khoury, D. V. Reddy, Peter L. Rinaldi and J. Hu (2005). A

colorimetric titration method for quantification of millimolar glucose in a pH 7.4

aqueous phosphate buffer, Bioorganic & Medicinal Chemistry Letters, vol. 15, pp.

3974-3977.

Borowiec J., R. Wang, L. Zhu and J. Zhang (2013). Synthesis of nitrogen-doped

graphene nanosheets decorated with gold nanoparticles as an improved sensor for

electrochemical determination of chloramphenicol, Electrochimica Acta, vol. 99, pp.

138-144.

Bo Z., X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan and K. Cen (2014). Green

preparation of reduced graphene oxide for sensing and energy storage applications,

Scientific Reports 4.

Bo X., J. C. N. damanisha, J. Bai, and L. Guo (2010). Nonenzymatic amperometric

sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered

mesoporous carbon nanocomposite, Talanta, vol. 82, pp. 85-91.

Buzea C., I. I. P. Blandino and K. Robbie (2007). Nanomaterials and nanoparticles:

Sources and toxicity, Biointerphases, vol. 2 pp. MR17-MR172.

Cao F and J. Gong (2012). Nonenzymatic glucose sensor based on CuO microfibers

composed of CuO nanoparticles, Anal Chim Acta, vol. 723, pp. 39-44.

Cao X and N. Wang (2011). A novel non-enzymatic glucose sensor modified with

Fe2O3 nanowire arrays, Analyst, vol. 136, pp. 4241-4246.

Carnes C. L., J. Stipp and K. J. Klabunde (2002). Synthesis, Characterization, and

Adsorption Studies of Nanocrystalline Copper Oxide and Nickel Oxide, Langmuir,

vol. 18, pp. 1352-1359.

Cash K. J and H. A. Clark (2010). Nanosensors and nanomaterials for monitoring

glucose in diabetes, Trends in Molecular Medicine, vol.16, pp. 584-593.

Campanella L., A. Bonanni, E. Finotti and M. Tomassetti (2004). Biosensors for

determination of total and natural antioxidant capacity of red and white wines:

comparison with other spectrophotometric and fluorimetric methods, Biosensors and

Bioelectronics, vol. 19, pp. 641-651.

Chaturvedi S., P. N. Dave and N.K. Shah (2012). Applications of nano-catalyst in

new era, Journal of Saudi Chemical Society, vol. 16, pp. 307-325.

Page 4: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

128

Chang G., H. Shu, K. Ji, M. Oyama, X. Liu and Y. He (2014). Gold nanoparticles

directly modified glassy carbon electrode for non-enzymatic detection of glucose,

Applied Surface Science, vol. 288, pp. 524-529.

Chang X., G. Ji, K. Shen, L. Pan, Y. Shi and Y. Zheng (2009), Fabrication of

nanowire-like cuprous oxide in aqueous solutions of a triblock copolymer, Journal of

Alloys and Compounds, vol. 482, pp. 240-245

Chandra R., P. Taneja and P. Ayyub (1999). Optical properties of transparent

nanocrystalline Cu2O thin films synthesized by high pressure gas sputtering,

Nanostructured Materials, vol. 11, pp. 505-512.

Cherevko S and C. H. Chung (2009). Gold nanowire array electrode for non-

enzymatic voltammetric and amperometric glucose detection, Sensors and Actuators

B, vol. 142, pp. 216-223.

Chen G., H. Zhou, W. Ma, D. Zhang, G. Qiu and X. Liu (2011). Microwave-assisted

synthesis and electrochemical properties of urchin-like CuO micro-crystals, Solid

State Sci, vol. 13, pp. 2137-2141.

Chen G., H. Tong, T. Gao, Y. Chen and G. Li (2014). Direct application of gold

nanoparticles to one-pot electrochemical biosensors, Analytica Chimica Acta, vol.

849, pp. 1-6.

Chen J., B. Lim, E. P. Lee and Y. Xia (2009). Shape-controlled synthesis of platinum

nanocrystals for catalytic and electrocatalytic applications, Nano Today., vol. 4, pp.

81-95.

Chi B. Z., Q. Zeng, J. H. Jiang, G. L. Shen and R. Q. Yu (2009). Synthesis of

ruthenium purple nanowire array for construction of sensitive and selective biosensors

for glucose detection, Sens. Actuators B, vol. 140, pp. 591-596.

Chinwangso P., A. C. Jamison and T. R. Lee (2011). Multidentate adsorbates for self-

assembled monolayer films, Acc Chem Res, vol. 44(7), pp. 511-519.

Cheng B., Y. Le, W. Cai and J. Yu (2011). Synthesis of hierarchical Ni(OH)2 and NiO

nanosheets and their adsorption kinetics and isotherms to Congo red in water, J.

Hazard. Mater, vol. 185, pp. 889-897.

Choi T., S. H. Kim, C. W. Lee, H. Kim, S. K. Choi, S. H. Kim, E. Kim, J. Park and

H. Kim (2015). Synthesis of carbon nanotube-nickel nanocomposites using atomic

layer deposition for high-performance non-enzymatic glucose sensing, Biosensors

and Bioelectronics, vol. 63, pp. 325-330.

Page 5: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

129

Conroy P. J., S. Hearty, P. Leonard and R. J. O. Kennedy (2009). Antibody

production, design and use for biosensor-based applications, Seminars in Cell &

Developmental Biology, vol. 20, pp. 10-26.

Cosnier S., A. L. Goff and M. Holzinger (2014). Towards glucose biofuel cells

implanted in human body for powering artificial organs: Review, Electrochemistry

Communications, vol. 38, pp. 19-23.

Cote G. L and B. D. Cameron (1997). Noninvasive polarimetric measurement of

glucose in cell culture media, J. Biomed. Opt, vol. 2(3), pp. 275-281.

Cui H. F., J. S. Ye, W. D. Zhang, C. M. Li, J. H. T. Luong, F. S. Sheu (2007).

Selective and sensitive electrochemical detection of glucose in neutral solution using

platinum-lead alloy nanoparticle/carbon nanotube nanocomposites, Anal. Chim. Acta,

vol. 594, pp. 175-183.

Dam D. T and J. M. Lee (2013). Polyvinylpyrrolidone-assisted polyol synthesis of

NiO nanospheres assembled from mesoporous ultrathin nanosheets, Electrochim.

Acta, vol. 108, pp. 617-623.

Dar M. A., Y. S. Kim, W. B. Kim, J. M. Sohn and H. S. Shin (2008). Structural and

magnetic properties of CuO nanoneedles synthesized by hydrothermal method,

Applied Surface Science, vol. 254, pp. 7477-7481.

Dar M. A., S. H. Nam, Y. S. Kim and W. B. Kim (2010). Versatile synthesis of

rectangular shaped nanobat-like CuO nanostructures by hydrothermal method;

structural properties and growth mechanism, J Solid State Electrochem, vol. 14, pp.

1719-1726.

Demazeau G. (2008). Solvothermal reactions: an original route for the synthesis of

novel materials, Journal of Materials Science, vol. 43 (7), pp. 2104-2114.

Ding Y., Y. Wang, L. Su, H. Zhang and Y. Lei (2010). Preparation and

characterization of NiO-Ag nanofibers, NiO nanofibers, and porous Ag: towards the

development of a highly sensitive and selective non-enzymatic glucose sensor, J.

Mater. Chem, vol. 20, pp. 9918-9926.

Dong J., T. Tian, L. Ren, Y. Zhang, J. Xu and X. Cheng (2015). CuO nanoparticles

incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-

enzymatic glucose sensing, Colloids and Surfaces B: Biointerfaces, vol. 125, pp. 206-

212.

Page 6: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

130

Ebadi M., S. Sharma, S. Shavali and H. E. L. Refaey (2002). Neuroprotective actions

of selegiline, J. Neurosci. Res., vol. 67, pp. 285-289.

A. A. Ensafi, S. D.Tehrani and B. Rezaei (2010). Voltammetric determination of

dopamine in the presence of uric acid using a 2-hydroxy-1-(1-hydroxynaphthyl-2-

azo)-naphthalin-4-sulfonic acid modified glassy carbon electrode, J. Serb. Chem. Soc,

vol. 75 (12), pp. 1685-1699.

Ensafi A. A., M. Taei, T. Khayamian and A. Arabzadeh (2010). Highly Selective

Determination of Ascorbic Acid, Dopamine, and Uric Acid by Differential Pulse

Voltammetry Using Poly (Sulfonazo III) Modified Glassy Carbon Electrode, Sens.

Actuators B, vol. 147, pp. 213-221.

Espro C., N. Donato, S. Galvagno, D. Aloisio, S. G. Leonardi and G. Neri (2014).

CuO Nanowires-based Electrodes for Glucose Sensors, Chemical Engineering

Transactions, vol. 41, pp. 415-420.

Fan H., L. Yang, W. Hua, X. Wu, Z. Wu, S. Xie and B. Zou (2004). Controlled

synthesis of monodispersed CuO nanocrystals, Nanotechnol, vol. 15, pp. 37-42.

Fan X., I. M. White, S. I. Shopova, H. Zhu, J. D. Suter and Y. Sun (2008). Sensitive

optical biosensors for unlabeled targets: A review, Analytica chimica acta, vol. 620,

pp. 8-26.

Fang L., K. Huang, B. Zhang, B. Liu, Y. Liu and Q. Zhang (2014). Nanosheet-based

3D hierarchical ZnO structure decorated with Au nanoparticles for enhanced

electrochemical detection of dopamine, RSC Adv., vol. 4, pp. 48986- 48993.

Farghaly O. A., R. S. Abdel Hameed, A. Alhakeem and H. A. Nawwas (2014).

Analytical Application Using Modern Electrochemical Techniques, Int. J.

Electrochem. Sci., vol. 9, pp. 3287-3318.

Felix S., P. Kollu, B. P. C. Raghupathy, S. K. Jeong and A. N. Grace (2015).

Electrocatalytic oxidation of carbohydrates and dopamine in alkaline and neutral

medium using CuO nanoplatelets, Journal of Electroanalytical Chemistry, 739, pp. 1-

9.

Felix S., P. Kollu, B. P. C. Raghupathy, S. K. Jeong and A. N. Grace (2014).

Electrocatalytic activity of Cu2O nanocubes-based electrode for glucose oxidation, J.

Chem. Sci. vol. 126 pp.25-32.

Filipponi L and D. Sutherland (2007). Nanotechnology: A Brief Introduction, pp. 1-

11.

Page 7: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

131

Folkers J. P., P. E. Laibinis and G. M. Whiteside (1991). Self-assembled monolayers

of alkanethiols on gold: the adsorption and wetting properties of monolayers derived

from two components with alkane chains of different lengths, J. Adhesion.Sci.

technol. vol. 6, pp. 1397-1410.

Gao H., F. Xiao, C. B. Ching and H. Duan (2011). One-step electrochemical synthesis

of PtNi nanoparticle-graphene nanocomposites for nonenzymatic glucose sensors,

Appl. Mater. Interfaces., vol. 3, pp. 3049-3057.

Gholivand M. B and L. M. Behzad (2014). Fabrication of a highly sensitive

sumatriptan sensor based on ultrasonic-electrodeposition of Pt nanoparticles on the

ZrO2 nanoparticles modified carbon paste electrode, Journal of Electroanalytical

Chemistry, vol. 712, pp. 33-39.

Geng D., S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T. K. Sham, X. Sun, S. Ye and S.

Knights (2011). Nitrogen doping effects on the structure of graphene, Applied Surface

Science, vol. 257, pp. 9193-9198.

Ghaemi F., A. Amiri and R. Yunus (2014). Methods for coating solid-phase micro

extraction fibers with carbon nanotubes, Trends in Analytical Chemistry, vol. 59, pp.

133-143.

Guerrieri A., G. E. D. Benedetto, F. Palmisanot and P. G. Zambonin (1998).

Electrosynthesized non-conducting polymers as permselective membranes in

amperometric enzyme electrodes: a glucose biosensor based on a co-cross linked

glucose oxidase/overoxidized polypyrrole bilayer, Biosensors & Bioelectronics, vol.

13, pp. 103-112.

Gu S., Y. Lu, Y. Ding, L. Li, H. Song, J. Wang and Q. Wu (2014). A droplet-based

microfluidic electrochemical sensor using platinum-black microelectrode and its

application in high Sensitive glucose sensing, Biosensors and Bioelectronics, vol. 55,

pp. 106-112.

Gulaboski R and C. M. Pereira (2008). Electroanalytical Techniques and

Instrumentation in Food Analysis, Handbook of Food Analysis Instrument, pp. 379-

402.

Gu H., Y. Yang, J. Tian and G. Shi (2013). Photochemical Synthesis of Noble Metal

(Ag, Pd, Au, Pt) on Graphene/ZnO Multihybrid Nanoarchitectures as Electrocatalysis

for H2O2 Reduction, Appl. Mater. Interfaces., vol. 5, pp. 6762-6768.

Page 8: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

132

Guo B., Q. Liu, E. Chen, H. Zhu, L. Fang and J. R. Gong (2010). Controllable N-

Doping of Graphene, Nano Lett, vol. 10, pp. 4975-4980.

Guo X., B. Liang, J. Jian, Y. Zhang and X. Ye (2014). Glucose biosensor based on a

platinum electrode modified with rhodium nanoparticles and with glucose oxidase

immobilized on gold nanoparticles, Microchim Acta, vol. 181, pp. 519-525.

Grieshaber D., R. MacKenzie, J. Voros and E. Reimhult (2008). Electrochemical

Biosensors- Sensor Principles and Architectures, Sensors, vol. 8(3) pp. 1400-1458.

Gizhevski B. A., Y. P. Sukhorukov, A. S. Moskvin, N. N. Loshkareva, E. V.

Mostovshchikova, A. E. Ermakov, E. A. Kozlov, M. A. Uimin and V. S. Gaviko

(2006). Anomalies in the optical properties of nanocrystalline copper oxides CuO and

Cu2O near the fundamental absorption edge, Journal of experimental and theoretical

physics, vol. 2, pp. 297-302.

Haes A. J and R. P. V. Duyne (2002). A Nanoscale Optical Biosensor: Sensitivity

and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance

Spectroscopy of Triangular Silver Nanoparticles, J. Am. Chem. Soc, vol. 124, pp.

10596-10604.

Habermuller K., M. Mosbach and W. Schuhmann (2000). Electron-transfer

mechanisms in amperometric biosensors, Fresenius J Anal Chem, vol. 366, pp. 560-

568.

Hassan M. S., T. Amna, O. B. Yang, M. H. E. Newehy, S. S. A. Deyabd and M. S.

Khil (2012). Smart copper oxide nanocrystals: Synthesis, characterization,

electrochemical and potent antibacterial activity, Colloids and Surfaces B:

Biointerfaces, vol. 97, pp. 201-206.

Hazmi F. A., T. A. Harbi and W. E. Mahmoud (2012). Synthesis and characterization

of thin shell hollow sphere NiO nanopowder via ultrasonic technique, Mater. Lett,

vol. 86, pp. 28-30.

Hirlekar, M. Yamagar, H. Garse, M. Vij and V. Kadam (2009). Carbon Nanotubes

and its Applications: A review, Asian Journal of Pharmaceutical and Clinical

Research, vol. 2, pp. 17-27.

Hou C., Q. Xu, L. Yin and X. Hu (2012). Metal-organic framework templated

synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection, Analyst, vol.

137, pp. 5803-5808.

Page 9: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

133

Howard B. V and J. W. Rosett (2002). Sugar and Cardiovascular Disease A Statement

for Healthcare Professionals from the Committee on Nutrition of the Council on

Nutrition, Physical Activity, and Metabolism of the American Heart Association,

Circulation, vol. 106, pp. 523-527.

Hsu Y. W., T. K. Hsu, C. L. Sun, Y. T. Nien, N. W. Pu and M. D. Ger (2012).

Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical

glucose biosensor applications. Electrochim. Acta, vol. 82, pp. 152-157.

Huber W (2003). Basic calculations about the limit of detection and its optimal

determination, Accred Qual Assur, vol. 8, pp. 213-217.

Huang X. W., Z. J. Liu and Y. F. Zheng (2011). Synthesis of Cu2O nanobelts via

surfactant-assisted polyol method, Chinese Chemical Letters, vol. 22, pp. 879-882.

Huang T. K., K. W. Lin, S. P. Tung, T. M. Cheng, I. C. Chang, Y. Z. Hsieh, C. Y. Lee

and H. T. Chiu (2009). Glucose sensing by electrochemically grown copper nanobelt

electrode, J. Electroanal. Chem. vol. 636, pp. 123-127.

Huang F., Y. Zhong, J. Chen, S. Li, Y. Li, F. Wang and S. Feng (2013).

Nonenzymatic glucose sensor based on three different CuO nanomaterials, Anal.

Methods. Vol. 5, pp. 3050-3055.

Hu K., D. Lan, X. Li and S. Zhan (2008). Electrochemical DNA Biosensor Based on

Nanoporous Gold Electrode and Multifunctional Encoded DNA-Au Bio Bar Codes,

Anal. Chem, vol. 80, pp. 9124-9130.

Hu F., S. Chen, C. Wang, R. Yuan, Y. Chai, Y. Xiang and C. Wang (2011). ZnO

nanoparticle and multiwalled carbon nanotubes for glucose oxidase direct electron

transfer and electrocatalytic activity investigation, J. Mol. Catal. B: Enzym, vol. 72,

pp. 298-304.

Hu Q., F. Wang, Z. Fang and X. Liu (2012). Cu2O-Au nanocomposites for enzyme-

free glucose sensing with enhanced performances, Colloids and Surfaces B:

Biointerfaces, vol. 95, pp. 279-283.

Hu Y., F. He, A. Ben and C. Chen (2014). Synthesis of hollow Pt-Ni-graphene

nanostructures for nonenzymatic glucose detection, J Electroanal Chem., vol. 726, pp.

55-61.

Huh P., M. Kim and S. C. Kim (2012). Glucose sensor using periodic nanostructured

hybrid 1D Au/ZnO arrays, Materials Science and Engineering C, vol. 32, pp. 1288-

1292.

Page 10: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

134

Hummers W. S and R. E. Offeman (1958). Preparation of graphite oxide, Journal of

the American Chemical Society, vol. 80, pp. 1339.

Ibupoto Z. H., K. Khun, V. Beni, X. Liu and M. Willander (2013). Synthesis of Novel

CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications, Sensors.

Vol. 13(6), pp. 7926-7938.

Iqbal M. A., S. G. Gupta and S. S. Hussaini (2012). A Review on Electrochemical

Biosensors: Principles and Applications, Advances in Bioresearch, vol. 3[4], pp. 158-

163.

Iui Z. I., C. Hong and Y. Ruifu (1997). DNA based biosensors, Biotechnology

Advances, vol.15, pp. 43-58.

Jafri R. I., N. Rajalakshmi and S. Ramaprabhu (2010). Nitrogen doped graphene

nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange

membrane fuel cell, J. Mater. Chem. vol. 20, pp. 7114-7117.

Jamal M., M. Hasan, M. Schmidt, N. Petkov, A. Mathewson and K. M. Razeeb

(2013). Shell@ Core Coaxial NiO@ Ni Nanowire Arrays as High Performance

Enzymeless Glucose Sensor, J. Electrochem. Soc., vol. 160 (11), pp. B207-B212.

Jia W., E. Reitz, H. Sun, H. Zhang and Y. Lei (2009). Synthesis and characterization

of novel nanostructured fishbone-like Cu(OH)2 and CuO from Cu4SO4(OH)6,

Materials Letters, vol. 63, pp. 519-522.

Jiang D., Q. Liu, K. Wang, J. Qian, X. Dong, Z. Yang, X. Du and B. Qiu (2014).

Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated

nitrogen-doped graphene, Biosens. Bioelectron, vol. 54, pp. 273-278.

Jiang L. C and W. D. Zhang (2010). A highly sensitive nonenzymatic glucose sensor

based on CuO nanoparticles-modified carbon nanotube electrode, Biosens.

Bioelectron. vol. 25, pp. 1402-1407.

Jiang T., Y. Wang, D. Meng, X. Wu, J. Wang and J. Chen (2014). Controllable

fabrication of CuO nanostructure by hydrothermal method and its properties, Applied

Surface Science, vol. 311, pp. 602-608.

Janata J (2009). Conductometric Sensors, Principles of Chemical Sensors, pp. 241-

266.

Jusoh N., A. Aziz and E. Supriyanto (2012). Improvement of Glucose Biosensor

Performances Using Poly (hydroxyethyl methacrylate) Outer Membrane,

International Journal of Biology and Biomedical Engineering, vol. 1(6), pp. 77-86.

Page 11: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

135

Kaur B., T. Pandiyan, B. Satpati and R. Srivastava (2013). Simultaneous and sensitive

determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver

nanoparticles-decorated reduced graphene oxide modified electrode, Colloids and

Surfaces B: Biointerfaces, vol. 111, pp. 97-106.

Khan G. F., M. Ohwa and W. Wernet (1996). Design of a stable charge transfer

complex electrode for a third-generation amperometric glucose sensor, Anal. Chem.,

vol. 68, pp. 2939-2945.

Kissinger P. T and W. R. Heineman (1983). Cyclic Voltammetry, Journal of

Chemical Education, pp. 702-706.

Khalid N. R., E. Ahmed, Z. Hong, Y. Zhang and M. Ahmad (2012). Nitrogen doped

TiO2 nanoparticles decorated on graphene sheets for photo-catalysis applications,

Current Applied Physics, vol. 12, pp. 1485-1492.

Kim S. H and C. W. Park (2013). Novel Application of Platinum Ink for Counter

Electrode Preparation in Dye Sensitized Solar Cells, Bull. Korean Chem. Soc, vol. 34,

pp. 831-836.

Kobos R. K (1987). Enzyme-based electrochemical biosensors, TrAC Trends in

Analytical Chemistry, vol. 6, pp. 6-9.

Krishnamoorthy K., G. S. Kim and S. J. Kim (2013). Graphene nanosheets:

Ultrasound assisted synthesis and characterization, Ultrasonics Sonochemistry, vol.

20, pp. 644-649.

Kong C., L. Tang, X. Zhang, S. Sun, S.Yang, X. Song and Z. Yang (2014).

Templating synthesis of hollow CuO polyhedron and its application for nonenzymatic

glucose detection, J. Mater. Chem. A, vol. 2, pp.7306-7312.

Koyun A., E. Ahlatcıoglu and Y. K. Ipek (2012). Biosensors and Their Principles, A

Roadmap of Biomedical Engineers and Milestones, Intech, pp. 115-124.

Kumar S. A., H. W. Cheng, S. M. Chen and S. F. Wang (2010). Preparation and

characterization of copper nanoparticles/zinc oxide composite modified electrode and

its application to glucose sensing, Materials Science and Engineering C, vol. 30, pp.

86-91.

Kumar D. R., D. Manoj and J. Santhanalakshmi (2014). Au-ZnO bullet-like

heterodimer nanoparticles: synthesis and use for enhanced nonenzymatic

electrochemical determination of glucose, RSC Adv., vol. 4, pp. 8943-8952.

Page 12: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

136

Kung C. W., Y. H. Cheng and K. C. Ho (2014). Single layer of nickel hydroxide

nanoparticles covered on a porous Ni foam and its application for highly sensitive

non-enzymatic glucose sensor, Sensors and Actuators B, vol. 204, pp. 159-166.

Lee D. W and B. R. Yoo (2014). Advanced metal oxide (supported) catalysts:

Synthesis and applications, vol. 20, pp. 3947-3959.

Lei J., Y. Liu, X. Wang, P. Hu and X. Peng (2015). Au/CuO nanosheets composite

for glucose sensor and CO oxidation, RSC Adv., vol. 5, pp. 9130-9137.

Lenarczuk T., D. Wencel, S. Gł and R. Koncki (2001). Prussian blue-based optical

glucose biosensor in flow-injection analysis, Analytica Chimica Acta, vol. 447, pp.

23-32.

Li C., Y. Su, S. Zhang, X. Lv, H. Xia and Y. Wang (2010). An improved sensitivity

nonenzymatic glucose biosensor based on a CuxO modified electrode, Biosens

Bioelectron, vol. 26(2), pp.903-907.

Li X., J. Yao, F. Liu, H. He, M. Zhou, N. Mao, P. Xiao and Y. Zhang (2013).

Nickel/Copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose

biosensors, Sensors and Actuators, vol. 181, pp. 501-508.

Li S., W. Zhang, M. H. So, C. M. Che, R. Wang and R. Chen (2012). One-pot

solvothermal synthesis of Pd/Fe3O4 nanocomposite and its magnetically recyclable

and efficient catalysis for Suzuki reactions, Journal of Molecular Catalysis A:

Chemical, vol. 359, pp. 81-87.

Li S., Y. Zheng, G. W. Qin, Y. Ren, W. Pei and L. Zuo (2011). Enzyme-free

amperometric sensing of hydrogen peroxide and glucose at a hierarchical Cu2O

modified electrode, Talanta, vol. 85, pp. 1260-1264.

Li Y., Y. Wei, G. Shi, Y. Xian and L. Jin (2011). Facile synthesis of leaf-like CuO

nanoparticles and their application on glucose biosensor, Electroanal, vol. 23, pp.

497-502.

Lim S. P., N. M. Huang and H. N. Lim (2013). Solvothermal synthesis of SnO2/

graphene nanocomposites for super capacitor application, Ceramics International,

vol. 39, pp. 6647-6655.

Li S. J., N. Xia, X. L. Lv, M. M. Zhao, B. Q. Yuan and H. Pang (2014). A facile one-

step electrochemical synthesis of graphene/NiO nanocomposites as efficient

electrocatalyst for glucose and methanol, Sensors and Actuators B, vol. 190, pp. 809-

817.

Page 13: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

137

Li Y., F. Huang, J. Chen, T. Mo, S. Li, F. Wang, S. Feng and Y. Li (2013). A High

Performance Enzyme-Free Glucose Sensor Based on the Graphene-CuO

Nanocomposites, Int. J. Electrochem. Sci., vol. 8, pp. 6332-6342.

Li N., Z. Wang, K. Zhao, Z. Shi, Z. Gu and S. Xu (2010). Large scale synthesis of N-

doped multi-layered graphene sheets by simple arc-discharge method, Carbon, vol.

48, pp. 255-259.

Li Y., F. Huang, J. Chen, T. Mo, S. Li, F. Wang, S. Feng and Y. Li (2013). A High

Performance Enzyme-Free Glucose Sensor Based on the Graphene-CuO

Nanocomposites, Int. J. Electrochem. Sci., vol. 8, pp. 6332-6342.

Li H., C. Y. Guo and C. L. Xu (2015). A highly sensitive non-enzymatic glucose

sensor based on bimetallic Cu-Ag superstructures, Biosensors and Bioelectronics, vol.

63, pp. 339-346.

Li Y., F. Huang, J. Chen, T. Mo, S. Li, F. Wang, S. Feng and Y. Li (2013). A High

Performance Enzyme-Free Glucose Sensor Based on the Graphene-CuO

Nanocomposites, Int. J. Electrochem. Sci, vol. 8, pp. 6332-6342.

Li Y., J. Fu, R. Chen, M. Huang, B. Gao, K. Huo, L. Wang and P.K. Chu (2014).

Core-shell TiC/C nanofiber arrays decorated with copper nanoparticles for high

performance non-enzymatic glucose sensing, Sensor. Actuat B-Chem, vol. 192, pp.

474-479.

Li M., X. Bo, Z. Mu, Y. Zhang and L. Guo (2014). Electrodeposition of nickel oxide

and platinum nanoparticles on electrochemically reduced graphene oxide film as a

nonenzymatic glucose sensor, Sensors and Actuators B, vol. 192, pp. 261-268.

Liu D., X. Zhang and T. You (2014). Electrochemical Performance of Electrospun

Free-Standing Nitrogen-Doped Carbon Nanofibers and Their Application for Glucose

Biosensing, ACS Appl. Mater. Interfaces, vol. 6, pp. 6275-6280.

Liu S., B. Yu and T. Zhan (2013). A novel non-enzymatic glucose sensor based on

NiO hollow spheres, Electrochim. Acta, vol. 102, pp. 104-107.

Liu S., Z. Wang, F. Wang, B. Yu and T. Zhang (2014). High surface area mesoporous

CuO: a high performance electrocatalyst for non-enzymatic glucose biosensing, RSC

Adv, vol. 4, pp. 33327-33331.

Liu J., S. Wang, Q. Wang and B. Geng (2009). Microwave chemical route to self-

assembled quasi-spherical Cu2O microarchitectures and their gas-sensing properties,

Sensors and Actuators B, vol. 143, pp. 253-260.

Page 14: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

138

Liu S., Z. Wang, F. Wang, B. Yu and T. Zhang (2014). High surface area mesoporous

CuO: a high-performance electrocatalyst for non-enzymatic glucose biosensing, RSC

Adv., vol. 4, pp. 33327-33331.

Lin K.C., Y. C. Lin and S. M. Chen (2013). A highly sensitive nonenzymatic glucose

sensor based on multi-walled carbon nanotubes decorated with nickel and copper

nanoparticles, Electrochim. Acta, vol. 96, pp. 164-172.

Liu S., B. Yu and T. Zhang (2013). A novel non-enzymatic glucose sensor based on

NiO hollow spheres, Electrochim. Acta., vol. 102, pp. 104-107.

Liu Y., H. Teng, H. Hou and T. You (2009). Non-enzymatic glucose sensor based on

renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode,

Biosens. Bioelectron., vol. 24, pp.3329-3334.

Lu L. M., X. B. Zhang, G. L. Shen and R. Q. Yu (2012). Seed-mediated synthesis of

copper nanoparticles on carbon nanotubes and their application in nonenzymatic

glucose biosensors, Anal. Chim. Acta, vol. 715, pp. 99-104.

Lu L. M., L. Zhang, F. L. Qu, H. X. Lu, X. B. Zhang, Z. S. Wu, S. Y. Huan, Q. A.

Wang, G. L. Shen and R. Q. Yu (2009). A nano-Ni based ultrasensitive

nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a

nanowire array strategy, Biosens. Bioelectron., vol. 25, pp. 218-223.

Lu P., J. Yu, Y. Lei, S. Lu, C. Wang, D. Liu and Q. Guo (2015). Synthesis and

characterization of nickel oxide hollow spheres-reduced graphene oxide-Nafion

composite and its biosensing for glucose, Sensors and Actuators B, vol. 208, pp. 90-

98.

Luo J., H. Zhang, S. Jiang, J. Jiang and X. Liu (2012). Facile one-step electrochemical

fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified

with copper nanoparticles and graphene, Microchim Acta, vol. 177 pp. 485-490.

Luo S., F. Su, C. Liu, J. Li, R. Liu, Y. Xiao, Y. Li, X. Liu and Q. Cai (2011). A new

method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a

sensitive nonenzymatic glucose sensor, Talanta, vol. 86, pp. 157.

Lv W., F. M. Jin, Q. Guo, Q. H. Yang and F. Kang (2012). DNA-dispersed

graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor,

Electrochim. Acta., vol. 73, pp. 129-135.

Page 15: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

139

Ma Y., M. Zhao, B. Cai, W. Wang, Z. Ye and J. Huang (2014). 3D graphene foams

decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection, Biosensors

and Bioelectronics, vol. 59, pp. 384-388.

Mahshid S. S., S. Mahshid, A. Dolati, M. Ghorbani, L. Yang, S. Luo and Q. Cai

(2013). Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for

non-enzymatic glucose detection, Journal of Alloys and Compounds, vol. 554, pp.

169-176.

Manimaran R., K. Palaniradja, N. Alagumurthi, S. Sendhilnathan and J. Hussain

(2014). Preparation and characterization of copper oxide nanofluid for heat transfer

applications, Appl Nanosci, 4, 163-167.

Magier Z and R. Jarzyna (2013). The role of glucose transporters in human metabolic

regulation, Postepy Biochem, vol. 59(1), pp. 70-82.

Male K. B., S. Hrapovic, Y. Liu, D. Wang and J. H. T. Luong (2004).

Electrochemical detection of carbohydrates using copper nanoparticles and carbon

nanotubes, Anal. Chim. Acta, vol. 516, pp. 35-41.

Meneses C.T., W.H. Flores, F. Garcia and J.M. Sasaki (2007). A simple route to the

synthesis of high-quality NiO nanoparticles, Journal of Nanoparticle Research, vol. 9,

pp. 501-505.

Mo J. W and B. Ogorevc (2001). Simultaneous Measurement of Dopamine and

Ascorbate at Their Physiological Levels Using Voltammetric Microprobe Based on

Overoxidized Poly (1, 2-phenylenediamine)-Coated Carbon Fiber, Anal. Chem, vol.

73, pp. 1196-1202.

Mondal A. K., D. Su, Y. Wang, S. Chen, Q. Liu and G. Wang (2014). Microwave

hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for

lithium-ion batteries and super capacitors with enhanced electrochemical

performances, J. Alloys Compd, vol. 582, pp. 522-527.

Morgan L. A(2013). The Importance of Glucose,

http://www.livestrong.com/article/133891-the-importance-glucose.

Li H., C. Y. Guo and C. L. Xu (2015). A highly sensitive non-enzymatic glucose

sensor based on bimetallic Cu–Ag superstructures, Biosensors and Bioelectronics,

vol. 63, pp. 339-346.

Page 16: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

140

Li X., J. Yao, F. Liu, H. He, M. Zhou, N. Mao, P. Xiao and Y. Zhang (2013).

Nickel/Copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose

biosensors, Sensors and Actuators B, vol. 181, pp. 501-508.

Li Y., X. Niua, J. Tang, M. Lan and H. Zhao (2014). A Comparative Study of

Nonenzymatic Electrochemical Glucose Sensors Based on Pt-Pd Nanotube and

Nanowire Arrays, Electrochimica Acta, vol. 130, pp. 1-8.

Lin H. H., Wang C Y, Shih H C, Chen J M and Hsieh CT (2004). J. App. Phys. 95

5889.

Liu M., R. Liu and W. Chen (2013). Graphene wrapped Cu2O nanocubes: non-

enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide

with enhanced stability, Biosens Bioelectron, vol. 45, pp. 206-212.

Lisdat F and D. Schafer (2008). The use of electrochemical impedance spectroscopy

for biosensing, Anal Bioanal Chem, vol. 391, pp. 1555-1567.

Long F., A. Zhu and H. Shi (2013). Recent Advances in Optical Biosensors for

Environmental Monitoring and Early Warning, Sensors, vol. 13, pp. 13928-13948.

Love J. C., L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides (2005).

Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,

Chem. Rev, vol. 105, pp. 1103-1169.

Marck M. A.V and B. R. Bloem (2014). How to organize multispecialty care for

patients with Parkinson‟s disease, Parkinsonism and Related Disorders, vol. 20S1,

pp. S167-S173.

Magier Z and R. Jarzyna (2013). The role of glucose transporters in human metabolic

regulation, Postepy Biochem, vol. 59(1), pp. 70-82.

Marie (2013). Understanding Glucose: What Is It and Why Is It So Important? Blog,

Diabetes Facts.

Mayrhofer K. J. J., S. J. Ashton, J. Kreuzer and M. Arenz (2009), An Electrochemical

Cell Configuration Incorporating an Ion Conducting Membrane Separator between

Reference and Working Electrode, Int. J. Electrochem. Sci., vol. 4, pp. 1-8.

Malitesta C., F. Palmisano, L. Torsi and P. G. Zambonin (1990). Glucose fast-

response amperometric sensor based on glucose oxidase immobilized in an

electropolymerized poly (o-phenylenediamine) film, Anal. Chem., vol. 62, pp. 2735-

2740.

Page 17: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

141

Mayrhofer K. J. J., S. J. Ashton, J. Kreuzer and M. Arenz (2009), An Electrochemical

Cell Configuration Incorporating an Ion Conducting Membrane Separator between

Reference and Working Electrode, Int. J. Electrochem. Sci., vol. 4, pp. 1-8.

Meher S. K and G. R. Rao (2013). Archetypal sandwich-structured CuO for high

performance non-enzymatic sensing of glucose, Nanoscale, vol. 5, pp. 2089-2099.

Meneses C.T., W.H. Flores, F. Garcia and J.M. Sasaki (2007). A simple route to the

synthesis of high-quality NiO nanoparticles, Journal of Nanoparticle Research, vol. 9,

pp. 501-505.

Meng T., P. P. Ma, J. L. Chang, Z. H. Wang and T. Z. Ren (2014), The

Electrochemical Capacitive Behaviors of NiO Nanoparticles, Electrochimica Acta,

125, 586-592.

Mello L. D and L. T. Kubota (2002). Review of the use of biosensors as analytical

tools in the food and drink industries, Food Chemistry, vol. 77, pp. 237-256.

Mohanty S. P and E. Kougianos (2006). Biosensosrs: A Tutorial Review, IEEE

Potentials, vol. 25, pp. 35-40.

Mojica C. Y., J. M. Dao, M. Yuan, S. E. Loughlin and F. M. Leslie (2014). Nicotine

modulation of adolescent dopamine receptor signaling and hypothalamic peptide

response, Neuropharmacology, vol. 77, pp. 285-293.

Mondal A. K., D. Su, Y. Wang, S. Chen, Q. Liu and G. Wang (2014). Microwave

hydrothermal synthesis of urchin-like NiO nanospheres as electrode materials for

lithium-ion batteries and supercapacitors with enhanced electrochemical

performances, J. Alloys Compd., vol. 582, pp. 522-527.

Morf W. E (1980). Theoretical Evaluation of the Performance of Enzyme Electrodes

and of Enzyme Reactors, Microchimica Acta, pp. 317-322.

Morgan L. A (2013). The Importance of Glucose,

http://www.livestrong.com/article/133891-the-importance-glucose

Nayak P., P. N. Santhosh and S. Ramaprabhu (2014). Enhanced Electron Field

Emission of One-Dimensional Highly Protruded Graphene Wrapped Carbon

Nanotube Composites, J. Phys. Chem. C, vol. 118(10), pp. 5172-5179.

Newman J. D and S. J. Setford (2006). Enzymatic biosensors, Mol Biotechnol. Vol.

32(3), pp. 249-68.

Page 18: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

142

Nie Z., C. A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A. W. Martinez, M.

Narovlyansky and G. M. Whitesides (2010). Electrochemical sensing in paper-based

microfluidic devices, Lab Chip, vol. 10, pp. 477-483.

Niu X., M. Lan, C. Chen and H. Zhao (2012). Nonenzymatic electrochemical glucose

sensor based on novel Pt-Pd nanoflakes, Talanta, vol. 99, pp. 1062-1067.

Niu X., C. Chen, H. Zhao, Y. Chai and M. Lan (2012). Novel snowflake-like Pt-Pd

bimetallic clusters on screen-printed gold nanofilm electrode for H2O2 and glucose

sensing, Biosens Bioelectron, vol. 36(1), pp. 262-266.

North J. R (1985). Immunosensors: Antibody-based biosensors, Trends in

Biotechnolgy, vol. 3, pp. 180-186.

Niasari M. S., F. Davar and Z. Fereshteh (2010). Synthesis of nickel and nickel oxide

nanoparticles via heat-treatment of simple octanoate precursor, Journal of Alloys and

Compounds, vol. 494, pp. 410-414.

Ozin G., A. C Arsenault and L. Cademartiri (2009). Nanochemistry: A chemical

approach to Nanomaterials, Cambridge, U.K.: RSC Publications.

Park S., T. D. Chung and H. C. Kim (2003). Nonenzymatic glucose detection using

mesoporous platinum, Anal. Chem, vol. 75, pp. 3046-3049.

Patil V., S. Pawar, M. Chougule, P. Godse, R. Sakhare, S. Sen and P. Joshi (2011).

Effect of Annealing on Structural, Morphological, Electrical and Optical Studies of

Nickel Oxide Thin Films, Journal of Surface Engineered Materials and Advanced

Technology, vol. 1, pp. 35-41.

Parvez K., S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng and K. Mullen

(2012). Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient

Electrocatalysts for Oxygen Reduction Reaction, ACS nano, vol. 6, pp. 9541-9550.

Patskovsky S., R. Jacquemart, M. Meunier, G. D. Crescenzo and A. V. Kabashin

(2008). Phase-sensitive spatially-modulated surface plasmon resonance polarimetry

for detection of biomolecular interactions, Sensors and Actuators B, vol. 133, pp. 628-

631.

Patel P. N., V. Mishra and A. S. Mandloi (2010). Optical Biosensors: Fundamentals

& Trends, Journal of Engineering Research and Studies, I, pp. vol. 15-34.

Parlato R and B. Liss (2014). How Parkinson's disease meets nuclear stress,

Biochimica et Biophysica Acta, vol. 1842, pp. 791-797.

Page 19: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

143

Perumal V and U. Hashim (2014). Advances in biosensors: principle, architecture and

applications, J. Appl. Biomed, vol. 12, pp. 1-15.

Plock C. E and J. Vasquez (1969). Use of glassy carbon as a working electrode in

controlled potential coulometry, Talanta, vol. 16, pp. 1490-1492.

Pitkethy M. J (2003). Nanoparticles as building blocks, Materials Today, vol. 6, pp.

36-42

Power A. C and A. Morrin (2013). Electroanalytical Sensor Technology, Intech, pp.

142-175.

Pohanka M and P. Sklada (2008). Electrochemical biosensors-principles and

applications, J. Appl. Biomed, vol. 6, pp. 57-64.

Prodromidis M. I and M. I. Karayannis (2002). Electroanalysis, vol. 14, pp. 241-261.

Popov V. N. (2004). Carbon nanotubes: properties and application, Materials Science

and Engineering R, vol. 43, pp.61-102.

Qiao F., L. Chen, X. Li, L. Li and S. Ai (2014). Peroxidase-like activity of manganese

selenide nanoparticles and its analytical application for visual detection of hydrogen

peroxide and glucose, Sensor Actuat B, vol. 193, pp. 255-262.

Qian Y., F. Ye, J. Xu and Z. G. Le (2012). Synthesis of Cuprous Oxide (Cu2O)

Nanoparticles/Graphene Composite with an Excellent Electrocatalytic Activity

Towards Glucose, Int. J. Electrochem. Sci., vol. 7, pp. 10063-10073.

Qiu M., L. Zhu, T. Zhang, H. Li, Y. Sun and K. Liu (2012). Ultrasound assisted quick

synthesis of square-brick-like porous CuO and optical properties, Materials Research

Bulletin, vol. 47, pp. 2437-2441.

Qiu Y., J. Li, H. Li , Q. Zhao, H. Wang, H. Fang, D. Fan, W. Wang (2015). A facile

and ultrasensitive photo electrochemical sensor for copper ions using in-situ

electrodeposition of cuprous oxide, Sensors and Actuators B: Chemical, vol. 208, pp.

485-490.

Qu Y., X. Li, G. Chen, H. Zhang and Y. Chen (2008). Synthesis of Cu2O nano-

whiskers by a novel wet-chemical route, Mater. Lett, vol. 62, pp. 886-888.

Qu L., Y. Liu, J. B. Baek and L. Dai (2010). Nitrogen-Doped Graphene as Efficient

Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells, ACS Nano, vol. 4, pp.

1321-1326.

Page 20: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

144

Rai P., W. K. Kwak and Y. T. Yu (2013). Solvothermal synthesis of ZnO

nanostructures and their morphology-dependent gas-sensing properties, ACS Appl

Mater Interfaces, vol. 5(8), pp. 3026-3032.

Raj D. M. A., A. D. Raj and A. A. Irudayaraj (2014). Facile synthesis of rice shaped

CuO nanostructures for battery Application, J Mater Sci.- Mater Electron. Vol. 25,

pp. 1441.

Rahulan K. M., S. Ganesan and P. Aruna (2011). Synthesis and optical limiting

studies of Au-doped TiO2 nanoparticles, Adv. Nat. Sci.: Nanosci. Nanotechnol, vol. 2,

025012.

Renault N. J and S. V. Dzyadevych (2008). Conductometric Microbiosensors for

Environmental Monitoring, Sensors, vol. 8(4), 3673432.

Sanjini N. S., R. Dhanalakshmi and S. Velmathi (2014). Photocatalytic Application of

Wide Band Gap CuO Nanoparticles Synthesized by Microwave Assisted Quick

Precipitation, Science of Advanced Materials, vol. 6, pp. 1399-1405.

Sarkas H. W., S. T. Arnold, J. H. Hendricks, L. H. Kidder, C. A. Jones and K. H.

Bowen (1993). An investigation of catalytic activity in mixed metal oxide nanophase

materials, Z. Phys. D, vol. 26, pp. 46-50.

Saravanan P., R. Gopalan and V. Chandrasekaran (2008), Synthesis and

Characterisation of Nanomaterials, Defence Science Journal, vol. 58, pp. 504-516.

Saravanakumar B., R. Mohan, S. J. Kim (2013). Facile synthesis of graphene/ZnO

nanocomposites by low temperature hydrothermal method, Materials Research

Bulletin, vol. 48, pp. 878-883.

Saranya M., C. Santhosh, R. Ramachandra, P. Kollu, P. Saravanan, M. Vinoba, S. K.

Jeong and A. N. Grace (2014). Hydrothermal growth of CuS nanostructures and its

photocatalytic properties, Powder Technology, vol. 252, pp. 25-32.

Scozzari A (2008). Electrochemical sensing methods: A Brief Review, NATO

Science for Peace and Security Series A: Chemistry and Biology, pp. 335-351.

Sekhar H. and D. N. Rao (2012). Preparation, characterization and nonlinear

absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles, J.

Nanopart. Res, vol. 14, pp. 1-11.

Sehemi G. A., A. S. A. Shihri, A. Kalam, G. Du, T. Ahmad (2014). Microwave

synthesis, optical properties and surface area studies of NiO nanoparticles, Journal of

Molecular Structure, vol. 1058, pp. 56-61.

Page 21: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

145

Sharma P. and H. S. Bhatti (2009). Synthesis of fluorescent hollow and porous Cu2O

nanopolyhedras in the presence of poly (vinyl pyrrolidone), Mater. Chem. Phys. Vol.

114 (2-3), pp. 889-896.

Shu H., L. Cao, G. Chang, H. He, Y. Zhang and Y. He (2014). Direct

Electrodeposition of Gold Nanostructures onto Glassy Carbon Electrodes for Non-

enzymatic Detection of Glucose, Electrochimica Acta, vol. 132, pp. 524-532.

Sheng Q., H. Mei, H. Wu, X. Zhang and S. Wang (2015). A highly sensitive non-

enzymatic glucose sensor based on PtxCo1−x/C nanostructured composites, Sensors

and Actuators B, vol. 207, pp. 51-58.

Shaikh M. S and M. A. Patil (2012). Analysis, Designing and Working Principal of

Optical Fiber (OF) Biosensors, International Journal of Engineering and Science, vol.

1, pp. 52-57.

Shu H., L. Cao, G. Chang, H. He, Y. Zhang and Y. He (2014). Direct

Electrodeposition of Gold Nanostructures onto Glassy Carbon Electrodes for Non-

enzymatic Detection of Glucose, Electrochim Acta., vol. 132, pp. 524-532.

Siddiqui H., M. S. Qureshi and F. Z. Haque (2014). One-step, template-free

hydrothermal synthesis of CuO tetrapods, Optik - International Journal for Light and

Electron Optics, vol. 125, pp. 4663-4667.

Simpson G. L. W., B. J. Ortwerth (2009). “The non-oxidative degradation of ascorbic

acid at physiological conditions”, Biochim. Biophys. Acta, vol. 1501, pp. 12-24.

Singh G., A. Gutierrez, K. Xu and I. A. Blair (2000). Liquid

Chromatography/Electron Capture Atmospheric Pressure Chemical Ionization/Mass

Spectrometry: Analysis of Pentafluorobenzyl Derivatives of Biomolecules and Drugs

in the Attomole Range, Anal. Chem, vol. 72, pp. 3007-3013.

Sinha A. K., M. Basu, S. Sarkar, M. Pradhan and T. Pal (2013). Synthesis of gold

nanochains via photoactivation technique and their catalytic applications, Journal of

Colloid and Interface Science, vol. 398, pp. 13-21.

Singh D. P., N. R. Neti, A. S. K. Sinha and O. N. Srivastava (2007). Growth of

Different Nanostructures of Cu2O (Nanothreads, Nanowires, and Nanocubes) by

Simple Electrolysis Based Oxidation of Copper, J. Phys. Chem. C, vol. 111 (4), pp.

1638-1645.

Page 22: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

146

Soomro R. A., Z. H. Ibupoto, Sirajuddin, M. I. Abro, M. Willander (2015).

Electrochemical sensing of glucose based on novel hedgehog-like NiO

nanostructures, Sensors and Actuators B, vol. 209, pp. 966-974.

Song M. J., S. W. Hwang and D. Whang (2010). Non-enzymatic electrochemical CuO

nanoflowers sensor for hydrogen peroxide detection, Talanta, vol. 80, pp. 1648-1652.

Shrivastava A and V. B Gupta (2011). Methods for the determination of limit of

detection and limit of quantitation of the analytical methods, vol. 2, pp. 21-25.

Streeter I., G. G. Wildgoose, L. Shao and R. G. Compton (2008). Cyclic voltammetry

on electrode surfaces covered with porous layers: An analysis of electron transfer

kinetics at single-walled carbon nanotube modified electrodes, Sensors and Actuators

B, vol. 133, pp. 462-466.

Stradiotto N. R., H. Yamanaka and M. V. B. Zanon (2013). Electrochemical sensors:

A powerful tool in analytical chemistry, J. Braz. Chem. Soc. vol. 14, pp.14801-14970.

Sun C. L., W. L. Cheng, T. K. Hsu, C. W. Chang, J. L. Chang and J. M. Zen (2013).

Ultrasensitive and highly stable nonenzymatic glucose sensor by a CuO/graphene-

modified screen-printed carbon electrode integrated with flow-injection analysis,

Electrochemistry Communications, vol. 30, pp. 91-94.

Sun Y., H. Buck and T. E. Mallouk (2001). Combinatorial Discovery of Alloy

Electrocatalysts for Amperometric Glucose Sensors, Anal. Chem. vol. 73, pp. 1599-

1604.

Sun S., X. Zhang, Y. Sun, J. Zhang, S. Yang, X. Song and Z. Yang (2013). A facile

strategy for the synthesis of hierarchical CuO nanourchins and their application as

non-enzymatic glucose sensors, RSC Adv, vol. 3, pp.13712-13719.

Sun D., Y. Du, X. Tian, Z. Li, Z. Chen and C. Zhu (2014). Microwave-assisted

synthesis and optical properties of cuprous oxide micro/nanocrystals, Materials

Research Bulletin, vol. 60, pp. 704-708.

Sun W., L. Chen, S. Meng, Y. Wang, H. Li, Y. Han and N. Wei (2014). Synthesis of

NiO nanospheres with ultrasonic method for supercapacitors, Materials Science in

Semiconductor Processing, vol. 17, pp. 129-133.

Tang H., J. Chen, S. Yao, L. Nie, G. Deng and Y. Kuang (2004). Amperometric

glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-

modified carbon nanotube electrode, Analytical Biochemistry, vol. 331, pp. 89-97.

Page 23: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

147

Taurino I., S. Carrara, M. Giorcelli, A. Tagliaferro and G.D. Micheli (2012).

Comparison of two different carbon nanotube-based surfaces with respect to

potassium ferricyanide electrochemistry, Surf. Sci, vol. 606, pp.156-160.

Thompson R. F (1993). The Brain: A Neuroscience Primer, W. H. Freeman and

Company, 475.

Thevenot D. R, K. Toth, R. A. Durst and G. S. Wilson (2001). Electrochemical

biosensors: recommended definitions and classification, Biosens Bioelectron, vol. 1-2,

pp. 121-31.

Thevenot D., K. Toth, R. Durst and G. Wilson (1999). Electrochemical biosensors:

recommended definitions and classification, Pure Appl. Chem, vol. 71, pp. 2333-

2348.

Thevenot D. R., K. Toth, R. A. Durst and G. S. Wilson (1999). Electrochemical

biosensors: Recommended definitions and classification, pure appl. chem, vol. 71, pp.

2333-2348.

Tian J., H. Li, Z. Xing, L. Wang, Y. Luo, A.M. Asiri, A.O.A. Youbi and X. Sun

(2012). One-pot green hydrothermal synthesis of CuO-Cu2O-Cu nanorod-decorated

reduced graphene oxide composites and their application in photocurrent generation,

Catal. Sci. Technol. vol. 2, pp. 2227-2230.

Thomas K. G (2009). Tuning functional properties: From nanoscale building blocks

to hybrid nanomaterials, Current trends in science, Platinum Jubilee Special, pp. 53-

66.

Toebes M. L., J. H. Bitter, A. J. V. Dillen and K. P. D. Jong (2002). Impact of the

structure and reactivity of nickel particles on the catalytic growth of carbon

nanofibers, Catalysis Today, vol. 76, pp. 33-42.

Toghill K. E., L. Xiao, M. A. Phillips and R. G. Compton (2005). The non-enzymatic

determination of glucose using an electrolytically fabricated nickel microparticle

modified boron-doped diamond electrode or nickel foil electrode, Sens. Actuators B.

vol. 147(2), pp. 642-652.

Toghill K. E and R. G. Compton (2010). Electrochemical Non-enzymatic Glucose

Sensors: A Perspective and an Evaluation, Int. J. Electrochem. Sci., vol. 5 pp. 1246-

1301.

Tu Y. B., J. Y. Luo, M. Meng, G. Wang and J. J. He (2009). Ultrasonic-assisted

synthesis of highly active catalyst Au/MnOx-CeO2 used for the preferential oxidation

Page 24: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

148

of CO in H2-rich stream, International journal of hydrogen energy, vol. 34, pp. 3743-

3754.

Vamvakaki V., K. Tsagaraki, and N. Chaniotakis (2006). Carbon Nanofiber-Based

Glucose Biosensor, Anal. Chem, Vol. 78, pp. 5538-5542.

Vijayakumar T. S., S. Karthikeyeni, S. Vasanth, A. Ganesh, G. Bupesh, R. Ramesh,

M. Manimegalai, and P. Subramanian (2013). Synthesis of Silver-Doped Zinc Oxide

Nanocomposite by Pulse Mode Ultrasonication and Its Characterization Studies,

Journal of Nanoscience, vol. 2013, Article ID 785064.

Viswanathan V., K. L. Pickrahn, A. C. Luntz, S. F. Bent and J. K. Norskov (2014),

Nanoscale Limitations in Metal Oxide Electrocatalysts for Oxygen Evolution, Nano

Lett., vol. 14 (10) pp. 5853-5857.

Vladikova D (2004). The Technique of the differential impedance analysis part I:

basics of the impedance spectroscopy, Institute of Electrochemistry and Energy

Systems-Bulgarian Academy of Sciences, Advanced Techniques for Energy Sources

Investigation and Testing, pp. L8-1to L8-28.

Wang B., S. Li, J. Liu and M. Yu (2014). Preparation of nickel nanoparticle/graphene

composites for non-enzymatic electrochemical glucose biosensor applications,

Materials Research Bulletin, vol. 49, pp. 521-524.

Wang C., C. Xu, H. Zeng and S. Sun (2009). Recent Progress in Syntheses and

Applications of Dumbbell-like Nanoparticles, Adv. Mater, vol. 21(30), pp. 3045-3052.

Wang L., Y. Zheng, X. Lu, Z. Li, L. Sun, and Y. Song (2014). Dendritic copper-

cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon

electrode for glucose sensing, Sensors and Actuators B, vol.195, pp. 1-7.

Wang S., Z. Liang, T. Liu, B. Wang and C. Zhan (2006). Nanotechnology, vol. 17, pp.

1551-1557.

Wang X., E. Liu and X. Zhang (2014). Non-enzymatic glucose biosensor based on

copper oxide-reduced graphene oxide nanocomposites synthesized from water-

isopropanol solution, Electrochimica Acta, vol.130, pp. 253-260.

Wagner C. D., W. M. Riggs, L. E. Davis, J. E. Moulder and G. E. Muilenber (1979).

Handbook of photoelectron Spectroscopy, Perkin Elmer Corporation Physical

Electronics Division, USA.

Page 25: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

149

Wang Z., H. Wang, L. Wang and L. Pan (2009). One-pot synthesis of single-

crystalline Cu2O hollow nanocubes, Journal of Physics and Chemistry of Solids, vol.

70, pp. 719-722.

Wang Y. Z., H. Zhong, X. M. Li, F. F. Jia, Y. X. Shi, W. G. Zhang, Z. P. Cheng, L. L.

Zhang and J. K. Wang (2013). Perovskite LaTiO3-Ag0.2 nanomaterials for

nonenzymatic glucose sensor with high performance, Biosens. Bioelectron, vol. 48,

pp. 56-60.

Wang B., S. Li, J. Liu and M. Yu (2014). Preparation of nickel nanoparticle/graphene

composites for non-enzymatic electrochemical glucose biosensor applications,

Materials Research Bulletin, vol. 49, pp. 521-524.

Wang Y., H. Xu, J. Zhang and G. Li (2008). Electrochemical Sensors for Clinic

Analysis, Sensors, vol. 8, pp. 2043-2081.

Wang J (2008). Electrochemical Glucose Biosensors, Chem. Rev, vol. 108 (2), pp.

814-825.

Wang J (2001). Glucose Biosensors: 40 Years of Advances and Challenges,

Electroanalysis, vol. 13.

Wang D. S., R. Xu, X. Wang and Y. Li (2006). NiO nanorings and their unexpected

catalytic property for CO oxidation, vol. 17, pp. 979-983.

Wang L., J. Fu, H. Hou and Y. Song (2012). A Facile Strategy to Prepare Cu2O/Cu

Electrode as a Sensitive Enzyme-free Glucose Sensor, Int. J. Electrochem. Sci., vol. 7,

pp.12587-12600.

Wang J and W. D. Zhang (2011). Fabrication of CuO nanoplatelets for highly

sensitive enzyme-free determination of glucose, Electrochim. Acta, vol. 56, pp. 7510-

7516.

Wang X., C. Hu, H. Liu, G. Du, X. He and Y. Xi (2010). Synthesis of CuO

nanostructures and their application for nonenzymatic glucose sensing, Sensors and

Actuators B, vol. 144, pp. 220-225.

Wang X., X. Kong, Y. Yu and H. Zhang (2007). Synthesis and characterization of

water-soluble and bifunctional ZnO-Au nanocomposites, J. Phys. Chem. C, vol. 111,

pp. 3836-3841.

Wang S., H. Xu, L. Qian, X. Jia, J. Wang, Y. Liu, W. Tang (2009). CTAB-assisted

synthesis and photocatalytic property of CuO hollow microspheres, J. Solid State

Chem, vol. 182, pp. 1088-1093.

Page 26: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

150

Wan M., D. Jin, R. Feng, L. Si, M. Gao and L. Yue (2011). Pillow-shaped porous

CuO as anode material for lithium-ion batteries, Inorg. Chem. Commun., vol. 14, pp.

38-41.

Wan X., M. Yuan, S. L. Tie and S. Lan (2013). Effects of catalyst characters on the

photocatalytic activity and process of NiO nanoparticles in the degradation of

methylene blue, Applied Surface Science, vol. 277, pp. 40-46.

Wang G., Y. Wei, W. Zhang, X. Zhang, B. Fang and L. Wang (2010). Enzyme-free

amperometric sensing of glucose using Cu-CuO nanowire composites, Microchim

Acta, vol. 168, pp. 87-92.

Wang G., X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng and X. Zhang (2013).

Non-enzymatic electrochemical sensing of glucose, Microchim Acta, vol. 180, pp.

161-186.

Wang L., X. Lu, C. Wen, Y. Xie, L. Miao, S. Chen, H. Li, P. Li and Y. Song (2015).

One-step synthesis of Pt-NiOnanoplate array/reduced graphene oxide nanocomposites

for nonenzymatic glucose sensing, J. Mater. Chem. A, vol. 3, pp. 608-616.

Wang J (2008). Electrochemical Glucose Biosensors, Chem. Rev. vol. 108, pp. 814-

825.

Watson, D. E and D. M. Yee (1969). Behaviour of Ag/AgCl electrodes in solutions

containing both Cl- and I

-, vol. 14, pp. 1143-1153.

G. M. Whitesides (2005). Nanoscience, Nanotechnology, and Chemistry, small, 1,

vol. 2, pp.172-179

Wijesundera R. P., M. Hidaka, K. Koga, J. Y. Choi and N. E. Sung (2010). structural

and electronic properties of electrodeposited heterojunction of CuO/Cu2O, Ceramics-

Silikáty, vol. 54 (1), pp. 19-25.

Wu G., H. Huang, X. Chen, Z. Cai, Y. Jiang, X. Chen (2013). Facile synthesis of

clean Pt nanoparticles supported on reduced graphene oxide composites: Their growth

mechanism and tuning of their methanol electro-catalytic oxidation property,

Electrochimica Acta, vol. 111, pp. 779-783.

Wu S., T. Liu, W. Zeng, S. Cao, K. Pan, S. Li, Y. Yan, J. He, B. Miao and X. Peng

(2014). Octahedral cuprous oxide synthesized by hydrothermal method in

ethanolamine/distilled water mixed solution, J Mater Sci: Mater Electron, vol. 25, pp.

974-980.

Page 27: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

151

Wu L., X. Zhang and H. Ju (2007). Amperometric glucose sensor based on catalytic

reduction of dissolved oxygen at soluble carbon nanofibers, Biosensors and

Bioelectronics, vol. 23, pp. 479-484.

Wu Z. S., G. Zhou, L. C. Yin, W. Ren, F. Li and H. M. Cheng (2012).

Graphene/metal oxide composite electrode materials for energy storage, Nano

Energy, pp. 107-131.

Xiao X., M. Wang, H. Li, Y. Pan and P. Si (2014). Non-enzymatic glucose sensors

based on controllable nanoporous gold/copper oxide nanohybrids, Talanta, vol. 125,

pp. 366-371.

Xu F., K. Cui, Y. Sun, C. Guo, Z. Liu, Y. Zhang, Y. Shi and Z. Li (2010). Facile

synthesis of urchin-like gold sub microstructures for nonenzymatic glucose sensing.

Talanta, vol. 82, pp. 1845-1852.

Xu L., Q. Yang, X. Liu, J. Liu and X. Sun (2014). One-dimensional copper oxide

nanotube arrays: biosensors for glucose detection, RSC Adv., vol. 4, pp. 1449-1455.

Xiang J. Y., J. P. Tu, J. Zhang, J. Zhong, D. Zhang and J. P. Cheng (2010).

Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-

ion storage, Electrochemistry Communications, vol.12, pp. 1103-1107.

Xu C., X. Wang, L. Yang and Y. Wu (2009). Fabrication of a graphene-cuprous oxide

composite, Journal of Solid State Chemistry, vol. 182, pp. 2486-2490.

Xu Q., Y. Zhao, J. Z. Xu and J.J. Zhu (2006). Preparation of functionalized copper

nanoparticles and fabrication of a glucose sensor, Sensor Actuat B-Chem, vol. 114,

pp. 379-386.

Yang Y., R. Fu, H. Wang and C. Wang (2013). Carbon nanofibers decorated with

platinum nanoparticles:a novel three-dimensional platform for non-enzymatic sensing

of hydrogen peroxide, Microchim Acta., vol. 180, pp. 1249-1255.

Yang L., Y. Zhang, M. Chu, W. Deng, Y. Tan, M. Ma, X. Su, Q. Xie and S. Yao

(2014). Facile fabrication of network film electrodes with ultrathin Au nanowires for

nonenzymatic glucose sensing and glucose/O2 fuel cell, Biosensors and

Bioelectronics, vol. 52, pp. 105-110.

Yang C., F. Xiao, J. Wang and X. Su (2015). 3D flower-and 2D sheet-like CuO

nanostructures: Microwave-assisted synthesis and application in gas sensors, Sensors

and Actuators B: Chemical, vol. 207, pp. 177-185.

Page 28: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

152

Yang J., L.C. Jiang, W.D. Zhang and S. Gunasekaran (2010). A highly sensitive non-

enzymatic glucose sensor based on a simple two-step electrodeposition of cupric

oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays, Talanta, vol.

82, pp. 25-33.

Yang Z. H., D. P. Zhang, W. X. Zhang and M. Chen (2009). Controlled synthesis of

cuprous oxide nanospheres and copper sulfide hollow nanospheres, Journal of

Physics and Chemistry of Solids, vol. 70, pp. 840-846.

Yu H.Y., M. Q. Xu, S. H. Yu and G. C. Zhao (2013). A novel non-enzymatic glucose

sensor based on CuO-graphene nanocomposites, Int. J. Electrochem. Sci, vol. 8, pp.

8050-8057.

Yu X. Y., R. X. Xu, C. Gao, T. Luo, Y. Jia, J. H. Liu, X. J. Huang (2012). Novel 3D

Hierarchical Cotton-Candy-Like CuO: Surfactant-Free Solvothermal Synthesis and

Application in As(III) Removal, ACS Appl. Mater. Interfaces, vol. 4, pp. 1954-1962.

Yun S., H. Zhang, H. Pu, J. Chen, A. Hagfeldt and T. Ma (2013). Metal

Oxide/Carbide/Carbon Nanocomposites: In Situ Synthesis, Characterization,

Calculation, and their Application as an Efficient Counter Electrode Catalyst for Dye-

Sensitized Solar Cells, Advanced Energy Materials, vol. 3, pp. 1407-1412.

Zhang L., F. Yuan, X. Zhang, and L. Yang (2011). Facile synthesis of flower like

copper oxide and their application to hydrogen peroxide and nitrite sensing, Chem

Cent J, vol. 5, pp. 75-83.

Zhang X., A. Gu, G. Wang, Y. Wei, W. Wang, H. Wu and B. Fang (2010).

Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free

glucose sensor, CrystEngComm, vol. 12, pp. 1120-1126.

Zhang Y., Y. Wang, J. Jia and J. Wang (2012). Nonenzymatic glucose sensor based

on graphene oxide and electrospun NiO nanofibers, Sens. Actuators B, vol. 171-172,

pp. 580-587.

Zhang L., L. Wang, Z. Jiang and Z. Xie (2012). Synthesis of size-controlled

monodisperse Pd nanoparticles via a non-aqueous seed-mediated growth, Nanoscale

Research Letters, vol. 7, pp. 312.

Zhang Y., S. Wang, X. Li, L. Chen, Y. Qian and Z. Zhang (2006). CuO shuttle-like

nanocrystals synthesized by oriented attachment, Journal of Crystal Growth, vol. 291,

pp. 196-201.

Page 29: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

153

Zhang L., Z. Gao, C. Liu, L. Ren, Z. Tu, R. Liu, F. Yang, Y. Zhang, Z. Ye, Y. Li and

L. Cui (2014). N-doped nanoporous graphene decorated three dimensional CuO

nanowire network and its application to photocatalytic degradation of dyes, RSC Adv.,

vol. 4, pp. 47455-47460.

Zhang X., S. Sun, J. Lv, L. Tang, C. Kong, X. Song and Z. Yang (2014).

Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic

glucose detection, Mater. Chem. A, vol. 2, pp. 10073-10080.

Zhang R.Y. and H. Olin (2011). Gold-carbon nanotube nanocomposites: synthesis and

applications, Int. J. Biomedical Nanoscience and Nanotechnology, vol. 2, pp. 112-

135.

Zhang L., Y. Ni and H. Li (2010). Addition of porous cuprous oxide to a Nafion film

strongly improves the performance of a nonenzymatic glucose sensor, Microchim.

Acta, vol. 171, pp.103-108.

Zhang L., C. Yang, G. Zhao, J. Mu, Y. Wang (2015). Self-supported porous CoOOH

nanosheet arrays as a non-enzymatic glucose sensor with good reproducibility,

Sensors and Actuators B, vol. 210, pp. 190-196.

Zhao Y., X. Song, Q. Song and Z. Yin (2012). A facile route to the synthesis copper

oxide/reduced graphene oxide nanocomposites and electrochemical detection of

catechol organic pollutant, CrystEngComm, vol. 14, pp. 6710-6719.

Zheng B., G. Liu, A. Yao, Y. Xiao, J. Du, Y. Guo, D. Xiao, Q. Hu, and M. M. F.

Choi (2014). A sensitive AgNPs/CuO nanofibers non-enzymatic glucose sensor based

on electrospinning technology, Sensor Actuat B., vol. 195, pp. 431-438.

Zhou X., H. Nie, Z. Yao, Y. Dong, Z. Yang and S. Huang (2012). Facile synthesis of

nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures

and their application in enzyme-free glucose sensing, Sensors and Actuators B

vol.168, pp. 1-7.

Zhu Z., L. G. Gancedo, A. J. Flewitt, H. Xie, F. Moussy and W. I. Milne (2012). A

Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon

Nanotubes and Graphene, Sensors, vol. 12, pp. 5996-6022.

Zhu J., G. Zeng, F. Nie, X. Xu, S. Chen, Q. Hana and X. Wang (2010). Decorating

graphene oxide with CuO nanoparticles in a water–isopropanol system, Nanoscale,

vol. 2, pp. 988-994.

Page 30: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

154

Xu F., K. Cui, Y. Sun, C. Guo, Z. Liu, Y. Zhang, Y. Shi and Z. Li (2010). Facile

synthesis of urchin-like gold sub microstructures for nonenzymatic glucose sensing,

Talanta, vol. 82(5), pp. 1845-1852.

Yao Y., J. Zhang, Z. Wei and A. Yu (2012). Hydrothermal Synthesis of Porous NiO

Nanosheets and Application as Anode Material for Lithium Ion Batteries, Int. J.

Electrochem. Sci, vol. 7, pp. 1433-1442.

Yang X. D., L. L. Jiang, C. J. Mao, H. L. Niu, J. M. Song, S.Y. Zhang (2014).

Sonochemical synthesis and nonlinear optical property of CuO hierarchical

superstructures, Mater Lett. Vol. 115, pp. 121-124.

Yousaf S. A. and S. Ali (2007-2008). Why Nanoscience and Nanotechnology? What

is there for us?, Journal of Faculty of Engineering & Technology, pp. 11-20.

Yang N., X. Chena, T. Ren, P. Zhang and D. Yang (2015). Carbon nanotube based

biosensors, Sensors and Actuators B, vol. 207, pp. 690-715.

Yalcin B and S. Otles (2014). Working Principle, Mechanism and Lift Effectiveness

of Nanobiosensors, Advances in Biosensors and Bioelectronics, vol. 3, pp.7-14.

Yogeswaran U. and S. M. Chen (2008). A Review on the Electrochemical Sensors

and Biosensors Composed of Nanowires as Sensing Material, Sensors, vol. 8, pp.

290-313.

Yoo E. H and S. Y. Lee (2010). Glucose Biosensors: An Overview of Use in Clinical

Practice, Sensors, vol. 10, pp. 4558-4576.

Yu C. H., K. Tam and E. S. C. Tsang, Chemical Methods for Preparation of

Nanoparticles in Solution, Handbook of Metal Physics, vol. 5, pp. 113-141.

Zhao J., H. Yu, Z. Liu, M. Ji, L. Zhang and G. Sun (2014). Supercritical Deposition

Route of Preparing Pt/Graphene Composites and Their Catalytic Performance toward

Methanol Electrooxidation, J. Phys. Chem. C, vol. 118, pp. 1182-1190.

Zhang Z., S. Gu, Y. Ding and J. Jin (2012). A novel nonenzymatic sensor based on

LaNi0.6Co0.4O3 modified electrode for hydrogen peroxide and glucose, Anal. Chim.

Acta, vol. 745, pp. 112-117.

Zhu Z. G., L. G. Gancedo, C. Chen, X. R. Zhu, H. Q. Xie, A. J. Flewitt and W. I.

Milne (2013). Enzyme-free glucose biosensor based on low density CNT forest grown

directly on a Si/SiO2 substrate, Sens. Actuators B, vol. 178, pp. 586-592.

Page 31: REFERENCES - Shodhgangashodhganga.inflibnet.ac.in/.../18/18_reference.pdf · Modelling Electroanalytical Experiments by the Integral Equation Method Monographs in Electrochemistry,

155

Zhang L., C. Yang, G. Zhao, J. Mu and Y. Wang (2015). Self-supported porous

CoOOH nanosheet arrays as a non-enzymatic glucose sensor with good

reproducibility, Sensors and Actuators B, vol. 210, pp. 190-196.

Zhang L., Z. Gao, C. Liu, L. Ren, Z. Tu, R. Liu, F. Yang, Y. Zhang, Z. Ye, Y. Li and

L. Cui (2014). N-doped nanoporous graphene decorated three dimensional CuO

nanowire network and its application to photocatalytic degradation of dyes, RSC Adv.,

vol. 4, 47455-47460.


Recommended