+ All Categories
Home > Documents > References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling....

References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling....

Date post: 11-Jan-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
17
References [Arn97] V. I. Arnol d. Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. Trans- lated from the 1974 Russian original by K. Vogtmann and A. Weinstein, Corrected reprint of the second (1989) edition. [BT82] Raoul Bott and Loring W. Tu. Differential Forms in Algebraic Topology, volume 82 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1982. [GP10] Victor Guillemin and Alan Pollack. Differential Topology. AMS Chelsea Publishing, Providence, RI, 2010. Reprint of the 1974 original. [HH99] John Hamal Hubbard and Barbara Burke Hubbard. Vector Calculus, Linear Algebra, and Differential Forms. Prentice Hall Inc., Upper Saddle River, NJ, 1999. A unified approach. [MTW73] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. Grav- itation. W. H. Freeman and Co., San Francisco, Calif., 1973. DOI 10.1007/978-0-8176-830 - , © Springer Science+Business Media, LLC 2012 , D. Bachman 47 137 , A Geometric Approach to Differential Forms
Transcript
Page 1: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

References

[Arn97] V. I. Arnol′d. Mathematical Methods of Classical Mechanics, volume 60 ofGraduate Texts in Mathematics. Springer-Verlag, New York, 1997. Trans-lated from the 1974 Russian original by K. Vogtmann and A. Weinstein,Corrected reprint of the second (1989) edition.

[BT82] Raoul Bott and Loring W. Tu. Differential Forms in Algebraic Topology,volume 82 of Graduate Texts in Mathematics. Springer-Verlag, New York,1982.

[GP10] Victor Guillemin and Alan Pollack. Differential Topology. AMS ChelseaPublishing, Providence, RI, 2010. Reprint of the 1974 original.

[HH99] John Hamal Hubbard and Barbara Burke Hubbard. Vector Calculus,Linear Algebra, and Differential Forms. Prentice Hall Inc., Upper SaddleRiver, NJ, 1999. A unified approach.

[MTW73] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. Grav-itation. W. H. Freeman and Co., San Francisco, Calif., 1973.

DOI 10.1007/978-0-8176-830 - , © Springer Science+Business Media, LLC 2012, D. Bachman

4 7137,A Geometric Approach to Differential Forms

Page 2: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

Books For Further Reading

[1] R. W. R. Darling. Differential Forms and Connections. Cambridge UniversityPress, Cambridge, 1994.

[2] Manfredo P. do Carmo. Differential Forms and Applications. Universitext.Springer-Verlag, Berlin, 1994. Translated from the 1971 Portuguese original.

[3] Harley Flanders. Differential Forms with Applications to the Physical Sciences.Dover Books on Advanced Mathematics. Dover Publications Inc., New York,second edition, 1989.

[4] Barrett O’Neill. Elementary Differential Geometry. Elsevier/Academic Press,Amsterdam, second edition, 2006.

[5] Michael Spivak. Calculus on Manifolds. A Modern Approach to Classical Theo-rems of Advanced Calculus. W. A. Benjamin, Inc., New York-Amsterdam, 1965.

139

Page 3: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

Index

4-current, 99

alternating, 38, 73, 74, 104antiderivative, 77, 115arc length, 1, 3, 69area form, 39, 114

bilinear, 31, 33, 47boundary, 84–86

Cartan’s method of moving frames, seemethod of moving frames

catenary, 127, 128catenoid, 127, 128cell, 83

boundary of, 84, 85chain, 83change of variables formula, 57, 58charge density, 99closed

chain, 103, 104, 107, 110–113curve, 96, 135form, 103, 110, 111, 115subset, 107surface, 132

cohomology, 112, 115contact structure, 77coordinate-free, 78, 100covariant derivative, 119, 121–123cover, 106, 108covering map, 106cross product, 36, 67curl, 93, 94current density, 99

cylindrical coordinates, 14

DeRham Cohomology, 110derivative

notation, 26of a differential form, 71of a multivariable function, see

directional derivativeof a parameterization, 17, 18, 21, 54,

55, 108of a single-variable function, 4, 119of a vector field, see covariant

derivativedescend, 106, 107determinant, 57, 65differential form, 1, 41differential geometry, 119, 123, 132dimension, 104, 108directional derivative, 10, 12–13, 71,

119, 121–124discrete action, 107div, 94dot product, 12, 27, 122, 126, 129

equivalence relation, 106, 111, 112Euler Characteristic, 132, 133, 135, 136exact form, 111, 112, 115

Faraday, 99foliation, 77, 80, 81, 116Foucault Pendulum, 130frame field, 123, 135frustrum, 52Fubini’s Theorem, 44, 59

141

Page 4: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

142 Index

fundamental domain, 107Fundamental Theorem of Calculus, 93

Gauss’ Divergence Theorem, 98Gauss, Carl Friedrich, 114Gauss–Bonnet Theorem, 132Gaussian curvature, 123, 131, 133, 135,

136geodesic, 131, 133

triangle, 135Godbillon–Vey Invariant, 116grad, 93gradient, 10, 71

field, 96vector, 13

Green’s Theorem, 93group, 107

helicoid, 127, 128holonomy, 129–131, 136homeomorphism, 106, 132

invariant, 132, 133homotopy invariant, 115Hopf Invariant, 115, 116, 117Hopf, Heinz, 115

kernel, 78–81, 116knot, 112, 113, 116

latitude, 13, 130–132lattice, 5, 43–47, 86Legendrian curve, 81Leibniz rule, 122–124length form, 113level curve, 13lift, 106line field, 78line integral, 69, 96linear algebra, 38, 78linear function, 1, 5, 67link, 112–114linking number, 112, 116longitude, 13

manifold, 101, 112Maxwell, 99Maxwell’s Equations, 98measure zero, 107method of moving frames, 123

multilinear, 38, 73, 104multivariable calculus, 7

neighborhood, 79

octahedron, 132open set, 77, 103, 105, 106, 108, 110orientation, 45, 50

induced, 52of a cell, 83of a point, 83

orthonormal basis, 123, 125

parallel vector field, 128, 133parallelepiped, 37–39, 116parameterized

cell, 90, 91curve, 16, 21, 53–55, 69, 79, 89, 95,

113, 119–122, 128, 131line, 16manifold, 108region, 6, 21, 53, 56, 60, 62, 63, 75,

83, 88, 97, 104surface, 19, 41, 44, 46, 49, 52, 53,

95–97, 127, 130, 135partition of unity, 109–110plane field, 77–81, 116pseudo-sphere, 127, 135pull-back, 101, 108, 109, 113–115

Reeb Foliation, 80, 82Riemann Sum, 3, 5, 6, 46, 48, 87

scalar, 32, 34, 35second partial, 8signed area, 30, 33skew-symmetric, 31, 33spherical coordinates, 14Stokes’ Theorem, 86

classical, 97generalized, 87, 103, 133

substitution rule, 57surface

area, 1, 67, 67, 68integral, 68, 98of revolution, 127, 130

tangentcone, 131line, 8, 10–13, 17, 25, 26, 74, 108

Page 5: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

Index 143

plane, 10–11, 21, 74, 77–80, 104, 116,129

space, 25–26, 53, 77, 108, 123, 129

vector, 5, 18, 21, 25, 51, 54, 64–66,95, 113, 114, 119–121, 123–125,131

vector field, 128, 129, 131, 135

tetrahedron, 132

topology, 103, 105, 107, 112, 132

algebraic, 112, 115

differential, 109

torus, 7, 80, 82, 107

tractricoid, 127

tractrix, 127transformation, 107triangulation, 132, 133trigonometric substitution, 57

u-substitution, 57

vector calculus, 35, 92vector field, 42, 71, 73, 93–99, 119, 120,

122, 128–131, 133volume form, 39, 57

wedge product, 29–31, 37, 38, 74winding number, 104, 106, 113

Page 6: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

Solutions to Selected Exercises

Chapter 2

2.2

1. x+ y2.

√4− x2 − y2

3.√1− (2− x2 − y2)2

4.√1− (y − x)2

2.3

1. 212. 33. 164. 2

5 (33−√25 −√

35)

2.4

1. ∂f∂x = 2xy3, ∂f∂y = 3x2y2

2. ∂f∂x = 2xy3 cos(x2y3), ∂f∂y = 3x2y2 cos(x2y3)

3. ∂f∂x = sin(xy) + xy cos(xy), ∂f∂y = x2 cos(xy)

2.7 −4√2

2.8 −2√5

5

2.9 12 + π

4

2.10

1.⟨y2, 2xy

⟩2. 693.

⟨915 ,

1215

⟩4. 15

145

Page 7: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

146

2.11 5

2.13r = ρ sinφ ρ =

√r2 + z2

θ = θ θ = θz = ρ cosφ φ = tan−1

(rz

)2.15

1. z =√x2 + y2, z = r, φ = π

42. y = 0, θ = 0, θ = 03. z = 0, z = 0, φ = π

24. z = x+ y, z = r(sin θ + cos θ), cotφ = sin θ + cos θ

5. z = (x2 + y2)32 , z = r

32 , z = (ρ sinφ)

32

2.16

1. S is the top half of a “two-sheeted hyperboloid.” You can see it as thesurface obtained from the graph of z =

√x2 + 1 (in the xz-plane) by

rotating it around the z-axis.2. z =

√x2 + y2 + 1

2.17

1. ba

2. They are parallel. The one parameterized by φ can be obtained from theother by shifting c units to the right and d units up.

2.19

1. (cos2 θ, cos θ sin θ)2. (x, sin x)

2.20 φ(t) = (t, 4t− 3), 1 ≤ t ≤ 2 (There are many other answers.)

2.22

1. (t2, t)2. 〈4, 1〉2.24

1. The x-axis2. The z-axis3. The line y = z and x = 04. The line x = y = z

2.25 φ(t) = (t, 1− t,√1− 2t+ 2t2)

2.26

1. φ(θ) = (2 cos θ, 2 sin θ, 4), 0 ≤ θ ≤ 2π2. ψ(t) = (t,±√

4− t2, 4), −2 ≤ t ≤ 2

Solutions to Selected Exercises

Page 8: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

147

2.27 Ψ(θ) = (sin θ cos θ, sin2 θ, cos θ)

2.28

1. φ(u, z) = (u, u, z)2. φ(r, θ) = (r cos θ, r sin θ, r2)3. ψ(θ, φ) = (φ sin φ cos θ, φ sinφ sin θ, φ cosφ)4. ψ(θ, φ) = (cosφ sin φ cos θ, cosφ sinφ sin θ, cosφ cosφ)5. φ(θ, z) = (cos2 θ, sin θ cos θ, z)6. φ(r, θ) = (r cos θ, r sin θ,

√r2 − 1)

7. φ(r, θ) = (r cos θ, r sin θ,√r2 + 1)

8. φ(θ, z) = (θ cos θ, θ sin θ, z)

2.29 φ(x, y) = (x, y, f(x, y))

2.30

1. Ψ(x, y) = (x, y, 4 − x2 − y2), 0 ≤ x ≤ 1, 0 ≤ y ≤ 12. Ψ(r, θ) = (r cos θ, r sin θ, 4− r2), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

2.32 ψ(θ, φ) = (2 sinφ cos θ, 2 sinφ sin θ, 2 cosφ), 0 ≤ θ ≤ 2π, π4 ≤ φ ≤ π2

2.34 〈2, 0, 4〉, 〈0, 3, 2〉2.36

1. ψ(ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ), 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π,0 ≤ φ ≤ π

2. ψ(ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ), 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ π2 ,

0 ≤ φ ≤ π2

3. ψ(ρ, θ, φ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ), 0 ≤ ρ ≤ 1, π ≤ θ ≤ 3π2 ,

π2 ≤ φ ≤ π

2.37

1. φ(r, θ, z) = (r cos θ, r sin θ, z), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 12. φ(r, θ, z) = (r cos θ, r sin θ, z), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 2

2.38

φ(t, θ) = ([tf2(θ) + (1 − t)f1(θ)] cos θ, [tf2(θ) + (1− t)f1(θ)] sin θ),

0 ≤ t ≤ 1, a ≤ θ ≤ b

2.39 φ(r, θ) = (3r cos θ, 2r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

Chapter 3

3.2

1. −1, 4, 10

Solutions to Selected Exercises

Page 9: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

148

2. dy = −4dx

3.3

1. 3dx2. 1

2dy3. 3dx+ 1

2dy4. 8dx+ 6dy

3.5

1. ω(V1) = −8, ν(V1) = 1, ω(V2) = −1 and ν(V2) = 2.2. −153. 5

3.15 −127

3.16 c1 = −11, c2 = 4 and c3 = 3

3.17

1. 2dx ∧ dy2. dx ∧ (dy + dz)3. dx ∧ (2dy + dz)4. (dx + 3dz) ∧ (dy + 4dz)

3.27 4

3.28 8

3.31 252

3.32

1. −872. −293. 5

3.33 dx ∧ dy ∧ dz3.34

1. −2dx ∧ dy ∧ dz2. −2

3.36

1. z(x− y)dz ∧ dx+ z(x+ y)dz ∧ dy2. −4dx ∧ dy ∧ dz

Solutions to Selected Exercises

Page 10: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

149

Chapter 4

4.1

1. 〈2, 3, 1〉,〈2, 3, 2〉2. 6dx ∧ dy + 3dy ∧ dz − 2dx ∧ dz3. 54. x2yz2 − x5z2 − y3 + x3y2

4.2 16

4.3

1. a) 4πb) −4π (Don’t worry that the sign is not the same as in the previous part.

Right now you really don’t have enough information yet to properlytell what the right sign should be.)

2. 4π3. 4

√2π

4.4 13

4.5

1. − 1712

2. − 296

4.6 18

4.7 64

4.9 3π5

4.10 16

4.11 14π3

4.12

1. Opposite orientation2. Same orientation3. Does not determine an orientation

4.13 83

4.14 16

4.15 16

4.16 15

4.17 23 cos 6− 3

2 sin 4− 23

4.18 16

4.19 4

Solutions to Selected Exercises

Page 11: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

150

4.20 323

4.22 2

4.23 6π

4.25 12

4.26 143

4.27 −7π6

4.28 π3

(23/2 − 1

)4.29 2π

4.30 2π3

4.31

1. 13

2. π4

Chapter 5

5.1

1. ∇V ω(W ) = −62, ∇Wω(V ) = 42. −66

5.3 dω = (−2x− 1)dx ∧ dy5.6 d(x2y dx ∧ dy + y2z dy ∧ dz) = 0

5.7 −1, 1, 1

5.11 (3x4y2 − 4xy6z)dx ∧ dy ∧ dz5.12

1. 2x sin(y − z)dx+ x2 cos(y − z)dy − x2 cos(y − z)dz2. (− sinx− cos y)dx ∧ dy3. (z − x)dx ∧ dy + yz dx ∧ dz + x(z − 1)dy ∧ dz4. (3x2z − 2xy)dx ∧ dy − (x3 + 1)dy ∧ dz5. (2xz + z2)dx ∧ dy ∧ dz6. (2x+ 2y)dx ∧ dy ∧ dz7. (y2 − 9z8)dx ∧ dy ∧ dz8. 0

5.13(∂f∂x + ∂g

∂y + ∂h∂z

)dx ∧ dy ∧ dz

5.14

1. x dy

Solutions to Selected Exercises

Page 12: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

151

2. x dy ∧ dz3. xyz4. xy2z2

5. sin(xy2)dx+ sin(xy2)dy

Chapter 6

6.1

1. 2, −22. 1

6.4 A circle of radius 1, centered on the z-axis, and one unit above thexy-plane. The orientation is in the direction of increasing θ.

6.12

1. 322. 1

6.13 12

6.14 2

6.15 27

6.16 353

6.17

1. 02.

∫C1

ω =∫C2

ω = 13

3. − 23

6.18

1. 02. 03. If L,R, T and B represent the 1-cells that are the left, right, top and

bottom of Q, respectively, then∫∂Q

ω =

∫(R−L)−(T−B)

ω =

∫R

ω−∫L

ω−∫T

ω+

∫B

ω = 24−0−281

2+4

1

2= 0

4. Opposite5. 4 1

26. 4 1

2

Solutions to Selected Exercises

Page 13: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

152

6.19 8π

6.20 6π

6.21 23

(e− 1

e

)6.23 π

6.24 45π4

6.28 0

6.29

1. 〈1, 0, 0〉2. α = dy ∧ dz3. − 2

3

6.30 43

Chapter 7

7.1 −b3c da ∧ dc+ (a2 − ab2c)db ∧ dc7.8 φ∗τ = − b

a2+b2 da+a

a2+b2 db. This is the form on R2− (0, 0) that gives the

winding number around the origin, so τ measures how many times a curvewraps around the cylinder L.

7.9 dτ ′ = 2 dx ∧ dy and dτ = 0

Chapter 8

8.4 A geometric argument is easiest (and most insightful) here. The 1-form dθprojects vectors onto the vector∇θ, which points in the direction of increasingθ. The vector ∂Ψ

∂θ is found by starting at a point on the surface and moving inthe direction of increasing θ. This is precisely the same as the vector∇θ at thatpoint, so the projection is 1. Similarly, the 1-form dφ projects vectors onto∇φ.However, since ∇θ and ∇φ are orthogonal, we have dφ

(∂Ψ∂θ

)= dφ(∇θ) = 0.

8.5

1. A frame field is given by

E1 =1

f

∂Ψ

∂θ= 〈− sin θ, cos θ, 0〉,

E2 =∂Ψ

∂t= 〈f ′(t) cos θ, f ′(t) sin θ, g′(t)〉.

Thus,

Solutions to Selected Exercises

Page 14: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

153

Ω = dE1 · E2

= 〈− cos θdθ,− sin θdθ, 0〉 · 〈f ′(t) cos θ, f ′(t) sin θ, g′(t)〉= −f ′(t)dθ.

Thus,−dΩ = f ′′(t)dt ∧ dθ.

The Gaussian curvature is thus

K = −dΩ(E1,E2)

= f ′′dt ∧ dθ(E1,E2)

= f ′′∣∣∣∣dt(E1) dθ(E1)dt(E2) dθ(E2)

∣∣∣∣= f ′′

∣∣∣∣0 1f

1 0

∣∣∣∣= −f

′′

f.

2. A cylinder of radius R is parameterized by (R cos θ,R sin θ, t), so f(t) = R

and g(t) = t. Hence, K = − f ′′

f = 0R = 0.

3. A right-angled cone is parameterized by (√22 t cos θ,

√22 t sin θ,

√22 t), so

f(t) = g(t) =√22 t. Hence, K = − f ′′

f = 0√2

2 t= 0.

4. For a sphere of radius R, f(t) = R cos tR and g(t) = R sin t

R . So K =

− f ′′f = −− 1

R cos tR

R cos tR

= 1R2 .

5. If f(t) = et, then K = − f ′′

f = − et

et = −1.

6. If f(t) =√1 + t2, then K = − f ′′

f = − (t2+1)−32√

1+t2= − 1

1+t2 .

8.6

1. A frame field is given by

E1 =∂Ψ

∂t= 〈cos θ, sin θ, 0〉,

E2 =1√t2 + 1

∂Ψ

∂θ=

1√t2 + 1

〈−t sin θ, t cos θ, 1〉.

Thus,

Ω = dE1 · E2

= 〈− sin θdθ, cos θdθ, 0〉 · 1√t2 + 1

〈−t sin θ, t cos θ, 1〉

=t√

t2 + 1dθ.

Solutions to Selected Exercises

Page 15: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

154

Thus,−dΩ = −(t2 + 1)−

32 dt ∧ dθ.

The Gaussian curvature is thus

K = −dΩ(E1,E2)

= −(t2 + 1)−32 dt ∧ dθ(E1,E2)

= −(t2 + 1)−32

∣∣∣∣dt(E1) dθ(E1)dt(E2) dθ(E2)

∣∣∣∣= −(t2 + 1)−

32

∣∣∣∣1 00 1√

t2+1

∣∣∣∣= − 1

t2 + 1.

2. Let Ψ be the given parameterization of the helicoid. As Ψ is one-to-one,it has an inverse, Ψ−1. Now, let Φ denote the parameterization

(√1 + t2 cos θ,

√1 + t2 sin θ, sinh−1 t)

of the catenoid. Then ΦΨ−1 is the desired (many-to-one) function from thehelicoid to the catenoid, sending points at which the Gaussian curvatureis − 1

t2+1 to points with the same curvature.

8.7 According to the solution to Problem 8.5 given above, Ω = −f ′(t)dθ.Thus, the holonomy is given by

H(α) =

∫α

Ω =

2π∫0

−f ′(t)dθ = −2πf ′(t).

8.8 By the generalized Stokes’ Theorem,

H(α) =

∫α

Ω =

∫∂D

Ω =

∫D

dΩ =

∫∫D

K dA.

8.9 Choose a frame field on both S and T so that at each point of α, E1 =α′(t) and E2 = α′(t)⊥. Then, on either surface,

H(α) =

∫α

Ω =

∫Ω(α′(t)) dt.

By definition, Ω(α′) = (∇α′E1) · E2. Since E1 and E2 are the same on bothsurfaces at points of α, Ω(α′) must be the same and, thus, H(α) is the same.

8.10 Thinking of the cone as a surface of revolution of a unit-speed curve,we get a parameterization given by Ψ(t, θ) = (at cos θ, at sin θ, bt), where√a2 + b2 = 1 and 0 ≤ θ ≤ 2π. A parameterization of the unrolled cone

Solutions to Selected Exercises

Page 16: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

155

in the plane is given by Φ(t, θ) = (t cos aθ, t sin aθ), where 0 ≤ θ ≤ 2π. Wecompute the 1-form Ω for the cone first. A frame field is given by

E1 =∂Ψ

∂t= 〈a cos θ, a sin θ, b〉

E2 =1

at

∂Ψ

∂θ= 〈− sin θ, cos θ, 0〉

Then

Ω = dE1 · E2 = 〈−a sin θdθ, a cos θdθ, 0〉 · 〈− sin θ, cos θ, 0〉 = atdθ.

Now, the unrolled cone: A frame field is given by

F1 =∂Φ

∂t= 〈cos aθ, sin aθ〉,

F2 =1

at

∂Φ

∂θ= 〈− sin aθ, cos aθ〉.

So, in this case,

Ω = dF1 ·F2 = 〈−a sinaθdθ, a cos aθdθ〉 · 〈− sin aθ, cos aθ〉 = atdθ.

As these 1-forms are the same, so must be the holonomy on each surface.

8.16 Let α, β and γ denote the interior angles. On a sphere, A = α+β+γ−π,and hence the sum of the interior angles must always be bigger than π. On apseudo-sphere, A = π− (α+β+ γ) and thus the angle sum must be less thanπ.

8.17

1. S is a tube of radius 1 around α.2. As α is unit speed, α′ · α′ = 1. Differentiating this equation gives usα′ · α′′ = 0 and thus α′ is orthogonal to α′′, and thus, also orthogonal toN . E2 = ∂Ψ

∂θ = − sin θN(t) + cos θB(t). Since T is orthognonal to both Nand B, the result follows.

3. dE1 = T ′(t)dt = α′′(t)dt = κN(t)dt, where κ(t) = |α′′(t)|. Thus,

Ω = dE1 ·E2 = κN(t)dt · (− sin θN(t) + cos θB(t)) = −κ sin θdt,

and, hence,−dΩ = κ cos θdθ ∧ dt.

Finally,

K = −dΩ(E1,E2) = κ cos θ

∣∣∣∣0 11 0

∣∣∣∣ = −κ cos θ.

Solutions to Selected Exercises

Page 17: References - Springer978-0-8176-8304-7/1.pdfBooks ForFurtherReading [1] R.W. R.Darling. Differential Forms and Connections.Cambridge University Press,Cambridge,1994. [2] Manfredo

156

4. H(α) =∫α

Ω =b∫a

−κ sin θdt = − sin θb∫a

κdt. The quantityb∫a

κdt is called

the total curvature of α. (When α is a plane curve, it can be shown thatits total curvature is precisely 2π.)

5.∫∫S

K dA =b∫a

2π∫0

−κ cos θ dθ dt = 0

6. χ(S) = 0

Solutions to Selected Exercises


Recommended