+ All Categories
Home > Documents > Refinery Planning Presentation

Refinery Planning Presentation

Date post: 04-Jun-2018
Category:
Upload: alagurm
View: 226 times
Download: 0 times
Share this document with a friend

of 142

Transcript
  • 8/13/2019 Refinery Planning Presentation

    1/142

    Refinery Modeling

    Aaron Smith, Michael Frow,Joe Quddus, Donovan Howell,Thomas Reed, Clark Landrum,

    Brian CliftonMay 2, 2006

  • 8/13/2019 Refinery Planning Presentation

    2/142

    The

    Big

    Black

    Box

  • 8/13/2019 Refinery Planning Presentation

    3/142

    The

    Big

    Black

    Box

    DemandCrude B

    Crude C

    Crude A

    Costs

    Profit

  • 8/13/2019 Refinery Planning Presentation

    4/142

    The

    Big

    Black

    Box

    DemandCrude B

    Crude C

    Crude A

    Costs

    Profit

  • 8/13/2019 Refinery Planning Presentation

    5/142

  • 8/13/2019 Refinery Planning Presentation

    6/142

    Hydrotreating

    INPUT:

    TemperaturePressure

    H2/HC RatioSulfur %Nitrogen %

    OUTPUT:

    Sulfur %Nitrogen %Aromatic %

    MODEL:

    PBR

  • 8/13/2019 Refinery Planning Presentation

    7/142

    http://www.osha.gov/dts/osta/otm/otm_iv/otm_iv_2fig25.gif

  • 8/13/2019 Refinery Planning Presentation

    8/142

    A future of energy production

    Hydrotreating

    Removal of sulfur, nitrogen, andaromatics.

    Government regulations are leading toincreased sulfur removal requirements.

  • 8/13/2019 Refinery Planning Presentation

    9/142

    Typical ProcessingConditions

    35580020000.75-2.0Heavy Gas

    Oil

    42570015000.7-1.5Light GasOil

    3304008001.0-4.0Middle

    Distillate

    2902003001.0-5.0Naptha

    Temperature(oC)

    H2Pressure

    (psia)H2/HCSpacevelocity

  • 8/13/2019 Refinery Planning Presentation

    10/142

    Hydrotreating

    Cracking is assumed to be insignificant.

    Therefore, properties such as density and

    molecular weight are assumed to beconstant.

  • 8/13/2019 Refinery Planning Presentation

    11/142

    Hydrotreating

    Cracking is assumed to be insignificant.

    Therefore, properties such as density and

    molecular weight are assumed to beconstant.

  • 8/13/2019 Refinery Planning Presentation

    12/142

    Hydrotreating Model

    For MoCo catalyst reaction rates are:

    Rates= ksCs2CH2

    .75

    Raten= knCn1.4CH2.6 Ratear= karCarCH2

    http://www.chem.wwu.edu/dept/facstaff/bussell/research/images/thio-HDS.jpg

  • 8/13/2019 Refinery Planning Presentation

    13/142

  • 8/13/2019 Refinery Planning Presentation

    14/142

    Delayed Coking

    INPUT:

    CCRPressure

    OUTPUT:

    Gas OilCokeGas

    Naptha

    MODEL:

    Correlation

  • 8/13/2019 Refinery Planning Presentation

    15/142

    Delayed Coking

    Used to processbottoms from thevacuum distillate.

    Breaks down thisportion into usablenapthas, gas, andgas oil.

  • 8/13/2019 Refinery Planning Presentation

    16/142

    Delayed Coking

    Coke Products

    Shot Coke

    Sponge Coke

    Needle Coke

  • 8/13/2019 Refinery Planning Presentation

    17/142

    Delayed Coking Model

    Most important parameter is the ConradsonCarbon Residue.

    Coke = 1.6 x CCR

    Gas = 7.8 + .144 x CCR

    Naptha = 11.29 + .343 x CCR

    Gas oil = 100 Coke Gas - Naptha

    This is an estimate from Gary and Handwerk

  • 8/13/2019 Refinery Planning Presentation

    18/142

    Effect of Pressure onProduct

    44.951.243.1Gas Oil Yield

    1512.517.5Naptha Yield

    9.99.110.4Gas Yield

    30.227.229Coke

    35 psig15 psigCorrelation

    18.1CCR (wt%)

  • 8/13/2019 Refinery Planning Presentation

    19/142

    Delayed Coking Model

    Modified EquationsGas = (7.4 + (.1 x CCR)) + (.8 x (P-15)/20)

    Naptha = (10.29 + (.2 x CCR)) + (2.5 x (P-15)/20)Coke = (1.5 x CCR) + (3 x (P-15)/20)

    Gas oil = 100 Gas Naptha - Coke

  • 8/13/2019 Refinery Planning Presentation

    20/142

    New Correlation

    44.951.243.449.7Gas Oil Yield

    1512.516.413.9Naptha Yield

    9.99.110.09.2Gas Yield

    30.227.230.227.2Coke

    35 psig15 psigCorrelation(35 psig)

    Correlation(15 psig)

    18.1CCR (wt%)

  • 8/13/2019 Refinery Planning Presentation

    21/142

  • 8/13/2019 Refinery Planning Presentation

    22/142

    Catalytic

    Reforming

    INPUT:

    TemperaturePressure

    % Napthenes% Aromatics% Paraffins

    OUTPUT:

    HydrogenLPGReformate

    MODEL:

    PBR

  • 8/13/2019 Refinery Planning Presentation

    23/142

    Catalytic Reforming

  • 8/13/2019 Refinery Planning Presentation

    24/142

    Catalytic ReformingHydrogen Intensive Process Units

    Xylenes Isomerization

    Boilers

  • 8/13/2019 Refinery Planning Presentation

    25/142

    Catalytic Reforming

    Simplified reactions and equations from

    Case Study 108 by Rase

    ( )

    ( )

    ( )

    ( ) napthenesofingHydrocrack

    paraffinsofingHydrocrack

    HnapthenesParaffins

    HaromaticsNapthenes

    __4

    __3

    2

    *31

    2

    2

    +

    +

  • 8/13/2019 Refinery Planning Presentation

    26/142

    Catalytic Reforming

    ( ) 543212215151515153

    4 Cn

    Cn

    Cn

    Cn

    Cn

    Hn

    HC nn +++++

    ( ) 5432122215151515153

    33 C

    nC

    nC

    nC

    nC

    nH

    nHC nn ++++

    +

    +

    ( ) 22222 HHCHC nnnn ++

    ( ) 2622 31 HHCHC nnnn +

  • 8/13/2019 Refinery Planning Presentation

    27/142

    Catalytic Reforming[ ]

    ( )( )( )atmcatlbhr

    moles

    TkP

    ._,

    3475021.23exp1 =

    =

    )

    [ ]( )( )( )2

    2._

    ,5960098.35expatmcatlbhr

    molesT

    kP =

    =

    )

    [ ]( )( )._

    ,62300

    97.42exp43catlbhr

    moles

    Tkk PP =

    ==

    ))

    [ ] 33

    1 ,46045

    15.46exp*

    atmTP

    PPK

    N

    HAP =

    ==

    [ ] 12 ,12.78000

    exp*

    =

    == atm

    TPP

    PK

    HN

    PP

  • 8/13/2019 Refinery Planning Presentation

    28/142

    Catalytic Reforming

    [ ]

    ( )( )._

    ____*

    2

    22

    catlbhr

    paraffinstoconvertednapthenemoles

    K

    PPPkr

    P

    PHNP =

    =

    )

    )

    [ ]( )( )._

    ____33

    catlbhr

    inghydrocrackbyconvertedparaffinsmoles

    P

    Pkr PP =

    =

    )

    )

    [ ] ( )( )._____*

    1

    3

    11catlbhr

    aromaticstoconvertednapthenemoles

    K

    PPPkr

    P

    HANP =

    =

    )

    )

    [ ]( )( )._

    ____44

    catlbhr

    inghydrocrackbyconvertednapthenesmoles

    P

    Pkr NP =

    =

    )

    )

  • 8/13/2019 Refinery Planning Presentation

    29/142

    Catalytic Reforming

  • 8/13/2019 Refinery Planning Presentation

    30/142

    Catalytic Reforming

  • 8/13/2019 Refinery Planning Presentation

    31/142

  • 8/13/2019 Refinery Planning Presentation

    32/142

    Xylenes

    Isomerization

    INPUT:

    Temperature

    OUTPUT:

    BenzeneTolueneO-Xylene

    P-XyleneEthyl-Benzene

    MODEL:

    Correlation

  • 8/13/2019 Refinery Planning Presentation

    33/142

    Xylenes Isomerization

  • 8/13/2019 Refinery Planning Presentation

    34/142

    Xylenes IsomerizationParaffins & Napthenes - Blending

    Mixed Aromatics Fractionation

  • 8/13/2019 Refinery Planning Presentation

    35/142

    Xylenes Isomerization

  • 8/13/2019 Refinery Planning Presentation

    36/142

    Xylenes Isomerization

    Benzene & Toluene Solvent Quality

    Xylenes Isomerization

    C9+ Aromatics Blending

  • 8/13/2019 Refinery Planning Presentation

    37/142

    Xylenes Isomerization

  • 8/13/2019 Refinery Planning Presentation

    38/142

    Xylenes IsomerizationO-Xylene Chemical Feedstock

    Mixed Aromatics Blending

    P-Xylene Chemical Feedstock

  • 8/13/2019 Refinery Planning Presentation

    39/142

    Xylenes Isomerization

    Reaction driven by equilibrium

    Temperature dependence of equilibriummodeled in Kirk-Othmer Encyclopedia ofChemical Technology

    neEthylBenzeXylenepXyleneoXylenem

  • 8/13/2019 Refinery Planning Presentation

    40/142

    Xylenes Isomerization

  • 8/13/2019 Refinery Planning Presentation

    41/142

  • 8/13/2019 Refinery Planning Presentation

    42/142

    Solvent

    Extraction

    INPUT:

    TemperatureS/F Ratio

    OUTPUT:

    Lube OilAromatics

    MODEL:

    Correlation

  • 8/13/2019 Refinery Planning Presentation

    43/142

    Solvent Extraction

  • 8/13/2019 Refinery Planning Presentation

    44/142

    Solvent ExtractionParaffinic Oils - Solvent Dewaxing

    Mixed Aromatics Blending

  • 8/13/2019 Refinery Planning Presentation

    45/142

    Solvent Extraction Furfural Extraction Averaged K Values

    Benzene from Cyclohexane Benzene from Iso-octane

    1,6-diphenylhexane from Docosane

    Temperature (R) dependence of K correlated from this

    =

    =N

    n

    nE

    Extracted

    0

    11%F

    SKE *=

    ( ) 371.7*0259.0522 += TETK

  • 8/13/2019 Refinery Planning Presentation

    46/142

    Solvent Extraction Correlations developed from Institut Franais

    du Ptrole data

    ( ) 9318.00426.0*% +

    = F

    SieldRaffinateY

    ( ) 9229.0)0073.0(*0004.0*..2

    +

    =

    F

    S

    F

    SGRaffinateS

  • 8/13/2019 Refinery Planning Presentation

    47/142

    Solvent Extraction

  • 8/13/2019 Refinery Planning Presentation

    48/142

    Solvent Extraction

  • 8/13/2019 Refinery Planning Presentation

    49/142

  • 8/13/2019 Refinery Planning Presentation

    50/142

    Visbreaker

    INPUT:

    Temperature

    OUTPUT:

    GasGasolineGas Oil

    Residue

    MODEL:

    PFR

  • 8/13/2019 Refinery Planning Presentation

    51/142

    Visbreaking

  • 8/13/2019 Refinery Planning Presentation

    52/142

    Visbreaking Carbon chains cracking into smaller chains of varying

    carbon numbers

  • 8/13/2019 Refinery Planning Presentation

    53/142

    A future of energy production

    Visbreaking

    Si-2 + O2

    Si-3 + O3

    Si-j

    + Oj

    S2 + Oi-2

    S1 + Oi-1

    Si

    Si forms all components with carbons less than i-1

  • 8/13/2019 Refinery Planning Presentation

    54/142

    A future of energy production

    Visbreaking

    Si is formed from all components with carbons greaterthan i+1

    Si-2 + O2

    Si-3 + O3

    Si-j + Oj

    S2 + Oi-2

    S1 + Oi-1

    Sn

    Sn-1

    Sk

    Si+3

    Si+2

    On-i

    On-1-i

    Ok-i

    O3

    O2

    Si

    Si forms all components with carbons less than i-1

  • 8/13/2019 Refinery Planning Presentation

    55/142

    Visbreaking

    First order kinetics with molar concentrations

    =+=

    =

    2

    1

    ,

    2

    ,

    i

    j

    jii

    n

    ik

    kiki KCsCsKrs +=

    =

    n

    ij

    jijji CsKro1

    ,

    ii rs

    FdzdCs 2

    41=

    i

    i roFdz

    dCo 2

    41=

  • 8/13/2019 Refinery Planning Presentation

    56/142

    Visbreaking

    Rate Constant dependent on molecular weight

    RTB

    jiji

    jieAK/

    ,,,

    = jiji PMbPMbbB ++= 210,

    [ ]( )

    2

    3

    4

    2

    1

    2

    210,

    ++=

    a

    a

    PMPM

    iiji

    ij

    ePMaPMaaA11.35

    146.9532.06E+06

    -4.51.90E+08

    428941.51E+12

    ba

  • 8/13/2019 Refinery Planning Presentation

    57/142

    Visbreaking

    Model inputs

    Temperature and mass flow rate

    Model Product form

    Weight percents Components are lumped into 4 categories

    Gas: C1-C4

    Gasoline: C5-C10 Gas Oil: C11-C21

    Residue: C22-C45

  • 8/13/2019 Refinery Planning Presentation

    58/142

    I i ti

  • 8/13/2019 Refinery Planning Presentation

    59/142

    Isomerization

    INPUT:

    TemperatureH2/HC Ratio

    OUTPUT:

    HydrocarbonsC4-C6

    MODEL:

    PFR

  • 8/13/2019 Refinery Planning Presentation

    60/142

    Isomerization

  • 8/13/2019 Refinery Planning Presentation

    61/142

    Isomerization

    Main reactants: n-Butane, n-Pentane, n-Hexane

    Typically catalyzed-gas phase reaction

    Low temperature favors isomer formation

    Seven rate laws

    Only one of n-Pentanes isomers forms

    n-Butane i-Butane

    n-Pentane i-Pentane

    3-MP 2,2-DMB

    2-Mp 2,3-DMB

    n-Hex.

  • 8/13/2019 Refinery Planning Presentation

    62/142

    A future of energy production

    Isomerization

    n-Butane

    n-Pentane

    n-Hexane

    2

    4

    2

    4

    214

    H

    Ciso

    H

    CnCn

    PPK

    PPKr

    +=

    [ ] ( )[ ]55

    125.0

    2

    525 10000197.0 CieqCneq

    CnCn CKCKt

    H

    CKr

    +

    =

    ==

    +

    =

    5

    1

    ,

    5

    1

    ,

    j

    jjii

    j

    iji CKCKr

  • 8/13/2019 Refinery Planning Presentation

    63/142

    A future of energy production

    Isomerization

    Model inputs Temperature, mass flow rate, and H2/HC ratio

    Model Product form

    Weight percents of the individual isomers

  • 8/13/2019 Refinery Planning Presentation

    64/142

    Hydrocracking

  • 8/13/2019 Refinery Planning Presentation

    65/142

    Hydrocracking

    INPUT:

    APIKwH2/BBL

    OUTPUT:

    NapthaLightHeavy

    C3Upi-Butane

    n-Butane

    Gas Oil

    MODEL:

    Correlation

  • 8/13/2019 Refinery Planning Presentation

    66/142

    A future of energy production

    Hydrocracking

    Convert higher boiling point petroleum fractions

    into lighter fuel products

  • 8/13/2019 Refinery Planning Presentation

    67/142

    Hydrocracking Complementary Reactions

    Cracking reactions Provides olefins for hydrogenation

    R-C-C-C-R + heat R-C=C + C-R

    Hydrogenation reactions

    Provides heat for cracking

    R-C=C + H2 R-C-C + heat

  • 8/13/2019 Refinery Planning Presentation

    68/142

    Hydrocracking Feedstocks- Heavy distillate stocks, aromatics,

    cycle oils, and coker oils

    Catalysts- zeolites

    Operating conditions-

    500-30002000-3000Pressure (psi)

    500-900750 -800Temperature (F)

    0.5-100.2-1LHSV (hr-1)

    1000-24001200-1600HydrogenConsumption (SCFB)

    DistillateResiduum

    Hydrocracking Model

  • 8/13/2019 Refinery Planning Presentation

    69/142

    Hydrocracking Model

    Development

    Correlated data from Oil and GasJournal W.L. Nelson

    Graphical correlated data was made

    continuous for hydrogen feed rate, Kwand API of the feed

    3 inputs

    5 outputs

  • 8/13/2019 Refinery Planning Presentation

    70/142

    Hydrocracking Model

  • 8/13/2019 Refinery Planning Presentation

    71/142

    Hydrocracking Model

    y = 0.84165e0.00096x

    R2= 0.99872

    y = 0.91507e0.00099x

    R2= 0.99903

    y = 1.03077e0.00102x

    R2= 0.99873

    y = 1.17542e0.00105x

    R2= 0.99820

    y = 1.35330e0.00110x

    R2= 0.99840

    y = 1.48461e0.00120x

    R2= 0.99938

    y = 1.64851e0.00129x

    R2= 0.99707

    y = 1.80073e0.00143x

    R2= 0.98730

    y = 2.20169e0.00147x

    R2= 0.98763

    y = 2.67927e0.00153x

    R2= 0.98715

    y = 3.40926e0.00157x

    R2= 0.98555

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 500 1000 1500 2000 2500 3000

    Hydrogen Rate SCFB

    32.5

    30

    27.5

    25

    22.5

    20

    17.5

    15

    12.510

    7.5

  • 8/13/2019 Refinery Planning Presentation

    72/142

    Hydrocracking Model

    y = 1.852E-05x4- 1.206E-03x3+ 2.920E-02x2-

    2.531E-01x + 1.546E+00

    R2= 9.992E-01

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 10 20 30 40

    API of Feed

    A

    Constant

    y = 6.024E-11x6- 6.539E-09x5+ 2.738E-

    07x4- 5.600E-06x3+ 5.935E-05x2- 2.996E

    04x + 1.509E-03

    R2= 9.982E-01

    0

    0.0002

    0.00040.0006

    0.0008

    0.001

    0.0012

    0.0014

    0.0016

    0.0018

    0 10 20 30 40

    API of Feed

    BC

    onstant

  • 8/13/2019 Refinery Planning Presentation

    73/142

    Hydrocracking Model

    Vol% of light naptha

    Hydrogen Rate(SCFB) 7.5 10 12.5 15 17.5 20 22.5 25

    2500 Kw=12.1 9.25 11 13 16 21 30 45 80

    diff. from Kw=10.9 0.75 1 1 1.25 1.75 2.5 5 7.5

    8.11% 9.09% 7.69% 7.81% 8.33% 8.33% 11.11% 9.38%

    1500 Kw=12.1 3.4 4 4.8 5.8 7.3 9.1 11.25 14.25

    diff. from Kw=10.9 0.35 0.45 0.5 0.55 0.7 1 1.5 1.75

    10.29% 11.25% 10.42% 9.48% 9.59% 10.99% 13.33% 12.28%

    500 Kw=12.1 1.4 1.55 1.7 2 2.3 2.8 3.4 4.2

    diff. from Kw=10.9 0.1 0.17 0.2 0.2 0.25 0.3 0.35 0.4

    7.14% 10.97% 11.76% 10.00% 10.87% 10.71% 10.29% 9.52%

    API

  • 8/13/2019 Refinery Planning Presentation

    74/142

    Hydrocracking Model

    y = -0.7691x + 11.739

    R2= 0.9916

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    10.5 11 11.5 12 12.5

    Kw

    slope

  • 8/13/2019 Refinery Planning Presentation

    75/142

    Hydrocracking Equations

    HBw AeKpvol = )00833.000833.1(% 1

    )%(11.739)+K0.7691-(% 1w2 pvolpvol =

    )%(0.337% 13 pvolpvol =)%(0.186% 14 pvolpvol =

    )%(0.091% 15 pvolpvol +=

  • 8/13/2019 Refinery Planning Presentation

    76/142

    Hydrocracking Model

    Hydrogen

    (SCFB)

    15 2500 12.1 16.4 39.9

    actual 15.0 40.5

    20 750 10.9 3.3 11.0actual 3.5 10.0

    30 1250 10.9 16.3 54.7

    actual 13.0 43.0

    API Kw vol% p1 vol% p2

    9%

    25%

    7%

    1%

    27%

    9%

  • 8/13/2019 Refinery Planning Presentation

    77/142

    Solvent

    Dewaxing

  • 8/13/2019 Refinery Planning Presentation

    78/142

    Dewaxing

    INPUT:

    CompositionTemperature

    OUTPUT:

    WaxLube Oil

    MODEL:

    Correlation

  • 8/13/2019 Refinery Planning Presentation

    79/142

    A future of energy production

    Solvent Dewaxing

    Separate high pour point waxes from

    lubricating oils

  • 8/13/2019 Refinery Planning Presentation

    80/142

    Solvent Dewaxing

    Feedstocks Distillate and residual stocks heavy gas oils

    Solvents Ketones (MEK) and Propane

    Operating conditions

    Solvent to oil ratio 1:1 to 4:1

    Desired pour point of product

    Dewaxing Model

  • 8/13/2019 Refinery Planning Presentation

    81/142

    Development Correlation from Energy and Fuels

    Krishna et. al. 3 experimentally determined parameters

    3 inputs

    2 outputs

    2/1)/100log(0 ACLAPCAPPT ++=

    ( )( ))(100

    )(100%)(productPC

    feedPCwtOilYield

    =

  • 8/13/2019 Refinery Planning Presentation

    82/142

    Dewaxing Model ErrorBC2 NC6 NC7 NC8 NC9 NC10

    C 375-500 375-400 400-425 425-450 450-475 475-500

    wax wt% 46.8 44.88 47.28 48.41 48.72 47.05

    CL 26.89 24.13 25.13 27.14 29.05 31PPT act. 48 39 45 48 51 57

    PPT pred. 48.0 41.0 44.0 48.9 52.8 55.9

    error % 0.1% 5.0% 2.3% 1.8% 3.5% 1.9%

    dewaxing model Desired PPT= 10PPT low 9.99 9.50 9.77 9.82 9.65 9.81

    PPT high 10.01 10.50 10.23 10.18 10.35 10.19

    wax wt% low 0.368 0.819 0.608 0.336 0.202 0.133

    wax wt% high 0.369 0.931 0.643 0.352 0.220 0.139

    yield low 0.5340 0.5558 0.5304 0.5176 0.5138 0.5302yield high 0.5340 0.5564 0.5306 0.5177 0.5139 0.5302

    error % 0.001% 0.112% 0.036% 0.016% 0.019% 0.006%

  • 8/13/2019 Refinery Planning Presentation

    83/142

    Alkylation

  • 8/13/2019 Refinery Planning Presentation

    84/142

    INPUT:

    Iso-butaneButylene /Propylene

    Reaction time

    OUTPUT:PropaneButaneAlkylate

    MODEL:

    Correlation

  • 8/13/2019 Refinery Planning Presentation

    85/142

    Alkylation PFD

    http://www.prod.exxonmobil.com/refiningtechnologies/pdf/AlkyforWR02.pdf

    Exxon-Mobil Autorefrigeration H2SO4 alkylation

  • 8/13/2019 Refinery Planning Presentation

    86/142

    Alkylation

    *Lots of side reactions

    Alk l i

  • 8/13/2019 Refinery Planning Presentation

    87/142

    Alkylation

    O

    FE

    SV

    OIIF

    )(100

    )/(=

    FOI )/(

    =EI

    =OSV)(

    = volumetric isobutane/olefin ratio in feed

    isobutane in reactor effluent, liquid volume %

    F= Factor defined by A.V. Mrstikolefin space velocity, v/hr/v

    Progress in Petroleum Technology AV Mrstik et al. ACS Publications

  • 8/13/2019 Refinery Planning Presentation

    88/142

    Polymerization

  • 8/13/2019 Refinery Planning Presentation

    89/142

    INPUT:

    Iso-butaneButylene /Propylene

    OUTPUT:GasolineDiesel

    MODEL:

    Correlation

    PolymerizationPolymerizationPolymerizationPolymerization

  • 8/13/2019 Refinery Planning Presentation

    90/142

    Converts Propylenes and butylenes into saturatedcarbon chains

    1st used Catalytic Solid Phosphoric Acid (SPA) on

    silica fell out of popularity in 1960s. Now experimenting with Zeolites.

    C C

    C

    C + C C

    C

    C

    C C

    C

    CC C

    C

    C

    C C C + C C C C C

    C

    CC C

    - Polymerization reaction is highly exothermic and temperature iscontrolled either by injecting cold propane quench or by

    generating steam.

    - Propane is also recycled to help control temperature

    CO School of Mines http://jechura.com/ChEN409/11%20Alkylation.pdfhttp://www.personal.psu.edu/users/w/y/wyg100/fsc432/Lecture%2015.htm

    Z litZ litZ litZ lit P l i tiP l i tiP l i tiP l i ti

  • 8/13/2019 Refinery Planning Presentation

    91/142

    ZeoliteZeoliteZeoliteZeolite PolymerizationPolymerizationPolymerizationPolymerization Converts propylenes and butylenes into

    saturated carbon chains by means ofzeolite catalysis (ZSM-5)

    Z litZ litZ litZ lit P l i tiP l i tiP l i tiP l i ti

  • 8/13/2019 Refinery Planning Presentation

    92/142

    ZeoliteZeoliteZeoliteZeolite PolymerizationPolymerizationPolymerizationPolymerization Converts propylenes and butylenes into

    saturated carbon chains by means ofzeolite catalysis (ZSM-5)

    ZeoliteZeoliteZeoliteZeolite Pol e izatioPol e izatioPol e izatioPol e izatio

  • 8/13/2019 Refinery Planning Presentation

    93/142

    ZeoliteZeoliteZeoliteZeolite PolymerizationPolymerizationPolymerizationPolymerization Converts propylenes and butylenes into

    saturated carbon chains by means ofzeolite catalysis (ZSM-5)

    79MON

    92RON

    Octane

    0.73SpecificGravity

    [Tabak, 1986]

    ZeoliteZeoliteZeoliteZeolite PolymerizationPolymerizationPolymerizationPolymerization

  • 8/13/2019 Refinery Planning Presentation

    94/142

    ZeoliteZeoliteZeoliteZeolite PolymerizationPolymerizationPolymerizationPolymerizationCharge

    17wt.% Propylene

    10.7 wt.% Propane

    36.1 wt.% 1-butene

    27.2 wt.% isobutane

    Temperature = 550K

    Total Pressure =5430 kPa

    Propylene partial pressure =7~3470kPa.

    *Depending on desiredchain length

    ZeoliteZeoliteZeoliteZeolite PolymerizationPolymerizationPolymerizationPolymerization

  • 8/13/2019 Refinery Planning Presentation

    95/142

    ZeoliteZeoliteZeoliteZeolite PolymerizationPolymerizationPolymerizationPolymerizationCharge

    17wt.% Propylene

    10.7 wt.% Propane

    36.1 wt.% 1-butene

    27.2 wt.% isobutane

    Temperature = 550K

    Total Pressure =5430 kPa

    Propylene partial pressure =7~3470kPa.

    *Depending on desiredchain length

    Polymerization

    + PBR-gas phase

    Alkylation

    - CSTR- liquid phaseVS

  • 8/13/2019 Refinery Planning Presentation

    96/142

    + PBR-gas phase

    - Solid catalysis

    + Produce eitherdiesel or gasolinerange chains

    - Typical octanenumber = 92(RON)

    - CSTR liquid phase

    + Liquid catalysis

    - Requires very vigorousagitation

    - Typically .1lbmacidconsumed per gallonproduct

    ++Typical octane number =96(RON)

    VS

  • 8/13/2019 Refinery Planning Presentation

    97/142

    Deasphalting

    INPUT MODEL:

  • 8/13/2019 Refinery Planning Presentation

    98/142

    INPUT:

    %HeaviesTemperaturePressure

    OUTPUT:%HeaviesLube oil

    MODEL:

    Correlation

    Propane Deasphalting - PFD

  • 8/13/2019 Refinery Planning Presentation

    99/142

    Propane Deasphalting - PFD

    http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000300012&lng=pt&nrm=iso

    Typical Propane Deasphalting

    Propane Deasphalting

  • 8/13/2019 Refinery Planning Presentation

    100/142

    Propane Deasphalting

    Types

    1. Sub Critical. (below 369K) Modeled first byRobert E. Wilson in 1936. Hildebrandsolubility parameters now used.

    2. Super Critical. (above 369K) Now popular.High selectivity. No good model.

    Both remove greater than 99% asphalt

    Sub Critical Propane

    Deasphalting

  • 8/13/2019 Refinery Planning Presentation

    101/142

    Deasphalting

    21

    =

    VTRH g

    =

    =H

    =gR

    Hildebrand solubility

    Solubility Parameter [J/mol]

    Heat of vaporization [J/mol]

    Universal gas Constant [8.314J/mol/K]T = Temperature [K]V = molar volume [L/mol]

    Super Critical Propane

    Deasphalting

  • 8/13/2019 Refinery Planning Presentation

    102/142

    Deasphalting

    Models typically break down near the critical point. Including

    Redlick-Kwong, Soave-Redlick-Kwong and Perturbed-Hard-Chain(PHC). Therefore correlations have to be used.

    Typically operate atT=400KPressure=55 barRatio= 4:1 propane to oil

    mixture

    Pressure (bar)

    Phase Equilibria in Supercritical Propane Systems for Separation of Continuous Oil Mixtures Radosz, Maciej et al. Ind. Eng. Chem. Res. 1987, 26, 731-737

  • 8/13/2019 Refinery Planning Presentation

    103/142

    Catalytic

    Cracking

    INPUT: MODEL:

  • 8/13/2019 Refinery Planning Presentation

    104/142

    INPUT:

    KwTemperature

    OUTPUT:Gas OilGasolineLPGDry Gas

    Coke

    PFR

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    105/142

    Fluidized Catalytic Cracking

    Pretreated feedstock is fed intothe bottom of the riser tubewhere it meets very hotregenerated catalyst.

    The feed vaporizes and iscracked as it passes up theriser. 1

    http://www.uyseg.org/catalysis/petrol/petrol2.htm

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    106/142

    Fluidized Catalytic Cracking

    Different yields of products willoccur depending on:

    Temperature

    Inlet Feed Properties

    Top of the riser, the catalystseparates from the mixture andis steam stripped

    The final product exits the topof the reactor

    2

    http://www.uyseg.org/catalysis/petrol/petrol2.htm

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    107/142

    Fluidized Catalytic Cracking

    One product from catalyticcracking is coke or carbon thatforms on the surface of thecatalyst.

    To reactivate catalyst, it mustbe regenerated.

    3

    http://www.uyseg.org/catalysis/petrol/petrol2.htm

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    108/142

    z y g

    Catalysis is regenerated byentering a combustion chamberand mixed with superheated air

    Energy released fromregenerating the catalysis isthen coupled with the inlet feedat the bottom of the riser

    Cracking4

    http://www.uyseg.org/catalysis/petrol/petrol2.htm

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    109/142

    A B C

    DE

    Ancheyta-Juarez, Jorge, Estimation of Kinetic Constants., Energy & Fuels,2000, 14, 1226-1231

    y g

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    110/142

    A B C

    DE

    Ancheyta-Juarez, Jorge, Estimation of Kinetic Constants., Energy & Fuels,2000, 14, 1226-1231

    y g

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    111/142

    A B C

    DE

    Ancheyta-Juarez, Jorge, Estimation of Kinetic Constants., Energy & Fuels,2000, 14, 1226-1231

    y g

  • 8/13/2019 Refinery Planning Presentation

    112/142

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    113/142

    A B C

    DE

    8 kinetic constants

    One catalyst deactivation

    Gas Oil considered as a second order reaction

    Ancheyta-Juarez, Jorge, Estimation of Kinetic Constants., Energy & Fuels,2000, 14, 1226-1231

    g

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    114/142

    Assumptions

    One-dimensional tubular reactor

    No radial and axial dispersion

    Cracking only takes place in the riser

    Dispersion/Adsorption inside catalyst isnegligible

    Coke deposited does not affect the fluid flow

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    115/142

    Change Temperature

    Inlet Feed

    Mass Balance:

    dtdt

    dCCC ii *0 +=

    i

    C

    Li rWHSVdz

    dy = )(1

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    116/142

    Change Temperature

    Inlet Feed

    Mass Balance:

    dtdt

    dCCC ii *0 +=

    i

    C

    Li rWHSVdz

    dy = )(1

    TEMPERATURE:480, 500, 520 C

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    117/142

    Constant C/O Ratio of 5 Varying space velocity (WHSV)

    6 48 h-1

    Gas Oil Conversion ~ 70 %

    Gasoline ~ 50%

    LPG ~ 12 %

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    118/142

    Constant C/O Ratio of 5 Varying space velocity (WHSV)

    6 48 h-1

    Gas Oil Conversion ~ 70 %

    Gasoline ~ 50%

    LPG ~ 12 %

    Fluidized Catalytic Cracking

  • 8/13/2019 Refinery Planning Presentation

    119/142

    Constant C/O Ratio of 5 Varying space velocity (WHSV)

    6 48 h-1

    Gas Oil Conversion ~ 70 %

    Gasoline ~ 50%

    LPG ~ 12 %

  • 8/13/2019 Refinery Planning Presentation

    120/142

    Blending

    INPUT:

    35 streams

  • 8/13/2019 Refinery Planning Presentation

    121/142

    OUTPUT:Gasoline

    RegularPremium

    LPG

    CokeLube Oil

    WaxAsphalt

    Blending

  • 8/13/2019 Refinery Planning Presentation

    122/142

    A future of energy production

    Final products are created by blendingstreams from refinery units

    35 streams from 13 units are blended

    30 streams are used in gasoline

    5 streams are other products

    Propane gas, lube oil, asphalt, wax, andcoke

    Blending Indexes

  • 8/13/2019 Refinery Planning Presentation

    123/142

    Most properties do not blend linearly Empirical blending indexes are used to

    linearize the blending behavior

    =i

    iimix BIxBI

    icomponentoffractionvolumetheisIndexBlendingtheisWhere

    ixBI

    Blending Indexes( ) 25.1RVPVPBI =Reid Vapor Pressure

  • 8/13/2019 Refinery Planning Presentation

    124/142

    =08.0

    1

    pp TBIPour Point

    10

    10

    log3

    log

    +=vBIViscosity Index

    =05.0

    1

    CLCL TBICloud Point

    6.42

    24141188.6log10

    +=

    F

    F

    TBI

    Flash Point

    ( )[ ]APBIAP 00657.0exp124.1=Aniline Point

    ( )RVPVPBI =e d apo essu e

    Gasoline Blending

  • 8/13/2019 Refinery Planning Presentation

    125/142

    Specifications: Octane (normal 87, premium 91)

    Reid Vapor Pressure (EPA mandated)

    Maximum additive amounts Inputs:

    Market conditions (Price, Demand)

    Incoming streams from refinery units Objective: Maximize Profit

    Gasoline Blending

  • 8/13/2019 Refinery Planning Presentation

    126/142

    Vapor pressure blending can beimproved by using thermodynamicallybased methods

    Raoult's Law

    =

    *

    ii

    PxP

    Blending

  • 8/13/2019 Refinery Planning Presentation

    127/142

    Other possible products Fuel oils

    Lube oils

    Diesel fuel

    Blending requires data for aniline point,pour point, cloud point, flash point, anddiesel index

    Refinery Planning

    Addresses the planning of short-term crude oil

  • 8/13/2019 Refinery Planning Presentation

    128/142

    Addresses the planning of short-term crude oilpurchasing and processing

    Does not address risk or uncertainty

    Determine purchasing schedule to meet: Specification (Octane, n-Butane, etc.)

    Demand with HIGHEST profit

    Decision Variables: Crude oil purchase

    Processing variables Temperatures, Pressures, Blending mixtures

  • 8/13/2019 Refinery Planning Presentation

    129/142

    A future of energy production

  • 8/13/2019 Refinery Planning Presentation

    130/142

    A future of energy production

  • 8/13/2019 Refinery Planning Presentation

    131/142

    A future of energy production

  • 8/13/2019 Refinery Planning Presentation

    132/142

    A future of energy production

    Refinery Planning

    Max Profit

  • 8/13/2019 Refinery Planning Presentation

    133/142

    =

    Tt Cc Tt Cctctctctctc

    Tt Cctc

    o ppclALcoACcpMANU ,,,,,,

    Pongsakdi, Arkadej, et. al, Financial risk., Int. J. Production Economics, accepted 20 April 2005

    Refinery Planning

    Max Profit

  • 8/13/2019 Refinery Planning Presentation

    134/142

    =

    Tt Cc Tt Cctctctctctc

    Tt Cctc

    o pp

    clALcoACcpMANU,,,,,,

    Product Sales

    Amount of product producedin that time period multipliedby

    unit sale price of product c

    Pongsakdi, Arkadej, et. al, Financial risk., Int. J. Production Economics, accepted 20 April 2005

    Refinery Planning

    Max Profit

  • 8/13/2019 Refinery Planning Presentation

    135/142

    =

    Tt Cc Tt Cctctctctctc

    Tt Cctc

    o pp

    clALcoACcpMANU,,,,,,

    Product Sales

    Amount of product producedin that time period multipliedby

    unit sale price of product c

    Crude Oil Costs

    Amount of crude oil refined inthat time period multipliedby

    unit purchase price of crude oil

    Pongsakdi, Arkadej, et. al, Financial risk., Int. J. Production Economics, accepted 20 April 2005

    Refinery Planning

    Max Profit

  • 8/13/2019 Refinery Planning Presentation

    136/142

    =

    Tt Cc Tt Cctctctctctc

    Tt Cctc

    o pp

    clALcoACcpMANU,,,,,,

    Product Sales

    Amount of product producedin that time period multipliedby

    unit sale price of product c

    Crude Oil Costs

    Amount of crude oil refined inthat time period multipliedby

    unit purchase price of crude oil

    Discounted Expense

    Amount of product volumethat cannot satisfy demand

    multipliedby discounted price

    Pongsakdi, Arkadej, et. al, Financial risk., Int. J. Production Economics, accepted 20 April 2005

  • 8/13/2019 Refinery Planning Presentation

    137/142

    Modeling

  • 8/13/2019 Refinery Planning Presentation

    138/142

    A Visual Basic macro in Excel was usedto help Solver find the optimal crudeselection

    Model Inputs

    Inputs:

    Crude A: $71 88 / barrel (Australia)

  • 8/13/2019 Refinery Planning Presentation

    139/142

    Crude A: $71.88 / barrel (Australia)

    Crude B: $72.00 / barrel (Kazakhstan) Crude C: $71.20 / barrel (Saudi Arabia)

    Regular Gasoline:

    $2.75 / gal ($2.12) Demand: 310,000 bbl/month

    Premium Gasoline:

    $3.00 / gal ($2.31)

    Demand: 124,000 bbl/month

    Energy Information Administration, U.S. Department of Energyhttp://www.eia.doe.gov/oil_gas/petroleum/info_glance/petroleum.html

    Model Results

  • 8/13/2019 Refinery Planning Presentation

    140/142

    Outputs: Maximum Profit: $21 per barrel

    Crude Selection:

    Crude A: 150,000 bbl/month Crude B: 150,000 bbl/month

    Crude C: 300,000 bbl/month

    Demand exactly met

    Future Work

  • 8/13/2019 Refinery Planning Presentation

    141/142

    Include storage of crude and products Include risk and uncertainty

    Demand changing over time

    Wider variety of products: diesel,solvents, fuel oils, lube oils, etc.

    Questions?

  • 8/13/2019 Refinery Planning Presentation

    142/142


Recommended