+ All Categories
Home > Documents > REFRASORT demoday presentation complete final 2 · Henning Knapp, RWTH Aachen REFRASORT • LIBS...

REFRASORT demoday presentation complete final 2 · Henning Knapp, RWTH Aachen REFRASORT • LIBS...

Date post: 06-Aug-2018
Category:
Upload: dinhhuong
View: 214 times
Download: 0 times
Share this document with a friend
42
27/09/2016 1 REFRASORT DEMO-DAY Orbix, Henry Fordlaan 84, Genk 21 September 2016 1 Welcome 2
Transcript

27/09/2016

1

REFRASORT DEMO-DAYOrbix, Henry Fordlaan 84, Genk21 September 2016

1

Welcome

2

27/09/2016

2

REFRASORT demo-day 21 September 2016

• 10.00 – 10.15: Welcome• 10.15 – 10.30: Importance of raw materials in the refractory industry• 10.30 – 11.30: Results REFRASORT• 11.30 – 13.30: Lunch + guided visit to demonstrator• 13.30 – 14.00: Wrap-up and discussion• 14.00: Reception

Programme

3

Presentations and other information on www.refrasort.eu

Welcome and introduction

Dirk Van Mechelen, Orbix

27/09/2016

3

Welcome

5

Background

6

27/09/2016

4

Background

7

Background

8

27/09/2016

5

Background

9

Background

10

27/09/2016

6

Background

11

Background

12

27/09/2016

7

Background

13

Background

14

27/09/2016

8

Background

15

Background

16

27/09/2016

9

Importance of raw materials in refractory industry

Johannes Hartenstein, Magnesita

Importance of raw materials in refractory industry

» China is currently the main supplier of high volume of important refractory grade raw materials

18

27/09/2016

10

Importance of raw materials in refractory industry

19

» Raw materials price evolution 2007 - 2015

» Refractory suppliers are under significant pressure:

Raw materials play a fundamental role on product’s quality

Raw materials represent 40-50% of the cost of refractories

Besides raw material’s cost, energy cost and environmental regulation

» Significant price increase for:

Bauxite

Brown fused Alumina

Graphite

Sintered Magnesia

Fused Magnesia

Importance of raw materials in refractory industry

20

» Critical Raw Materials for EU 54 raw materials reviewed from which 20 are considered as being critical

27/09/2016

11

Importance of raw materials in refractory industry

21

» How to improve in the customers the value in use of products?

Invest and increase the use of own raw materialsand strictly control of the costs.

Develop use of externally sourced recycled refractory materials:

Development of supply chain for obtaining used refractory materials that can be successfully processed and used for refractory brick production.

» EU commission Statement:“It’s worth recalling that all Raw Materials, even when not critical, are important for the European Economy, and therefore not being critical doesn’t imply that a given Raw Material and its availability to the European economy should be neglected”

REFRASORT project outline

Liesbeth Horckmans, VITO

27/09/2016

12

Introduction

23

FP7 REFRASORT

1/11/2013 – 31/10/2016

Budget 2.38 M€Funding 1.75 M€

Partners:• VITO (coordinator)• RECMIX -> Orbix• Fraunhofer ILT• RWTH Aachen AMR• LSA• Tritec• Magnesita

Introduction

REFRASORT system = sensor based sorting system

24

Inlining & Singularization

Pretreatment Identification Sorting

27/09/2016

13

Introduction

REFRASORT system

25

Inlining & Singularization

Pretreatment Identification Sorting

Mechanicalhandling

LIBS

Auxiliarysensors

Dust/metal removal

Introduction

REFRASORT work plan

26

On-site Integration/demonstration

Technology development

Validation & evaluation

2013-2015

2016

WP3

WP5

WP4

27/09/2016

14

Challenges for spent refractory identification

Focus: 8 types of refractories, 3 main classes

27

CaO % MgO % SiO2 % Al2O3 % TiO2 % C%

MgO-C without antioxidant 1.32 96.2 0.85 0.82 0.02 10.9

MgO-C with antioxidant 1.49 94.1 0.82 3.08 0.01 14.5

Fired MgO 0.81 97.0 0.38 1.27 0.02 0.05

Fired Doloma 54.84 43.23 0.68 0.49 0.02 0.09

Carbon bonded Doloma 54.18 43.61 0.85 0.57 0.02 5.3

Fired Bauxite 0.52 0.48 10.36 82.6 2.96 0.04

Fired Andalousite 0.13 0.60 36.19 61.47 0.38 0.03

Fired Chamotte 0.11 0.35 50.27 45.62 2.08 0.04

MgO-based

Doloma based

Alumina based

Typical concentrations, recalculated to 100% mineral composition

Temperedvs fired

Challenges for spent refractory identification

Material characteristics

28

Big bricks> 150 mm, 4-21 kg

Small bricks110-200 mm, 1.9-5.6 kg

Broken and unshaped80-250 mm, 0.25-4.1 kg

Slag

Garbage, metal

• Variable size/weight• Largest diameter up to > 300 mm, weight up to > 20 kg -> too large for e.g. XRT

27/09/2016

15

Challenges for spent refractory identification

Surface contamination

29

Slag

Dust

Carbonation

Problematic for surfacesensors, e.g. Color sensors,

LIF, NIR, FTIR, XRF

LIBSLaser induced

breakdown spectroscopy

Can penetrate surface

But…

Challenges for refractory identification

Metal impact

30

Decarbonisation

Heterogeneous effects -> need for additional identification

27/09/2016

16

REFRASORT: Technology development

Henning Knapp, RWTH Aachen

REFRASORT

• LIBS development (WP3)

• Mechanical handling (WP4)

• Alternative/complementary identification (WP5)• Metal detection• Carbon detection

Technology development – Lab scale development

32

27/09/2016

17

Mechanical handling

» Isolate single bricks

» Inline the bricks with a defined distance

» Present the bricks to the LIBS-system one by one

» Sort according to the LIBS-results

Lab scale development

33

Mechanical handling

» Data acquisition» Sizes and shapes» Size distribution

» Additional screening step?» Slide angle

Lab scale development - basics mechanical handling

34

27/09/2016

18

Mechanical handling

» Single plate conveyor

» Single pushing device

» Basic PLC program

Lab scale development - assembly of first parts

35

Mechanical handling

Lab scale development - adjustment of PLC logic and pusher design

36

27/09/2016

19

Mechanical handling

Lab scale development - first tests of plate conveyor and vibratory feeder

37

Identification

» Laser-induced breakdown spectroscopy – LIBS» multi-elemental analysis» direct analysis without preparation» fast measurement and data evaluation» easily automated for continuous monitoring» applicable inline

Lab scale development – LIBS tests

38

27/09/2016

20

Identification

discrimination of refractory material classesbased on elemental content

39

Identification

first LIBS test on fresh reference material

40

4 83 72 6

1 5

27/09/2016

21

Identification

» multiple LIBS measurements on reference samples» theoretical probabilities for correct classification

» between main classes > 99 %» between members of a main class > 90 %

Lab scale development – LIBS selectivity

41

Identification

» Microwave heating » IR temperature detection» Evaluation of IR-image

Lab scale development - carbon detection

42

27/09/2016

22

Identification

0

5

10

15

20

25

30

MC MCA FM FD DC FB FA FC

Hea

ting

[°C

]

Heating

Lab scale development - carbon detection

43

Identification

0

20

40

60

80

100

120

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Tem

pera

ture

[°C

]

Metal content [wt%]

Average temperature

FM

MC

MCA

FD

DC

FA

FC

FB

MCr

Lab scale development - carbon detection

44

27/09/2016

23

Identification

» Crushed refractory material» Pieces of metal recovered from refractories » Mixed and stored in uniform plastic cups

Lab scale development - metal detection

45

Identification

R² = 0.9177

0

50

100

150

200

250

300

350

400

0 0.5 1 1.5 2 2.5

Am

plit

ude

[V]

Metal content [g]

FC

Lab scale development - metal detection

46

27/09/2016

24

Identification

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6

Am

plit

ude

[V]

Metal content [wt%]

Amplitude of all refractory types

FM

FC

MC

MCA

DC

FD

FA

FB

Lab scale development - metal detection

47

REFRASORT demonstrator

Cord Fricke-Begemann, Fraunhofer ILT

27/09/2016

25

LIBS for industrial applications

laser identification of steel grades of coils

49

© Laser Analytical Systems & Automation GmbH - LSA

LIBS for industrial applications

50

Sturm et al., Anal. Chem. 86(2014)9687-96925

ladle

LIBS

laser analysis of liquid slags

27/09/2016

26

LIBS for industrial applications

sorting of aluminum alloys

51

Identification

Laser-induced breakdown spectroscopy - LIBS

52

~10 ns

~50 µs

spectral analysis

27/09/2016

27

Identification

examples of LIBS spectra

53

Mg

Al

Identification

discrimination of three main classes

54

AMagnesia

BDoloma

CAlumina-Silica

27/09/2016

28

Identification

LIBS - integrated laser cleaning

55

laser

sample

plasma radiation

Identification

» ablation of surface contaminations» cleaning + plasma creation ~ 1 ms» spectroscopic measurement ~ 10 µs

LIBS reduction of surface contamination

56

300µm

27/09/2016

29

Identification

LIBS–based development platform iSort at ILT

57

2 cm

metalshavings

WEEE

5 cm

metalchunks

10 cm

minerals

20 cm

Identification

LIBS–based development platform iSort – identification of spent refractory bricks

58

speed of the conveyor belt 0.7 m/s

12 measurements per brick

blind test 29 out of 30 identifications correct for 3 main classes

27/09/2016

30

REFRASORT demonstrator

Schematic overview

59

1 2 3 4Feed Singularisation LIBS Sorting

REFRASORT demonstrator

Installation at Orbix

60

27/09/2016

31

REFRASORT demonstrator

Discrimination of refractory material classes – sorting trials

61

REFRASORT demonstrator

Sorting trial of 1 t of mixed used refractories, unknown composition

62

AnalysesCaO%

MgO%

SiO2%

Fe2O3%

Al2O3%

LOI%

Lab1 XRF

Magnesia

3.3 91.2 1.2 1.8 1.8 0.6

Lab2 XRF 3.2 89.4 1.3 1.9 2.6

target specs 3.0 max 88 min 3.5 max 2.0 max 4.0 max 5.0 max

Lab1 XRF

Doloma

38.3 54.1 1.7 1.2 4.0 0.9

Lab2 XRF 36.1 55.9 1.8 1.1 3.7

target specs 60 max 35 min 2.5 max 2.0 max 2.0 max

Sorting output 1095 kg

Magnesia 360 kg

Doloma 560 kg

Al-based & Others ~175 kg

Lab1: MagnesitaLab2: VITO

27/09/2016

32

REFRASORT demonstrator

Large sorting trial of 30 t of mixed used refractories, unknown composition

63

AnalysesCaO%

MgO%

SiO2%

Fe2O3%

Al2O3%

LOI%

Lab1 XRFMagnesia

2.9 93.2 1.2 1.2 1.0 1.3

target specs 3.0 max 88 min 3.5 max 2.0 max 4.0 max 5.0 max

Lab1 XRFDoloma

37.3 56.9 3.0 1.6 0.8 0.9

target specs 60 max 35 min 2.5 max 2.0 max 2.0 max

Sorting output ~30,000 kg

Magnesia ~25 %

Doloma ~25 %

Al-based & Others ~50 %

REFRASORT: Validation testing

Antoine Ducastel, Magnesita

27/09/2016

33

Validation testing

Ability of LIBS to distinguish main types of Refractories, based on fresh samples

By setting all the major thresholds between elements like Ca, Mg, Si, Al, C, Cr, and Fe in the LIBS system, it should be possible to distinguish accuratelythe 8 different families of refractories

LIBS sorting on unused bricks

65

AMagnesia

BDoloma

CAlumina-Silica

Laser-induced plasma on fresh refractory

Laser-induced plasma on fresh refractory

A1: Magnesia w AOX, carbon bondA2: Magnesia w/o AOX, carbon bondA3: Magnesia brick, firedB1: Doloma brick, firedB2: Doloma brick, carbon bondC1: Bauxite based brick, firedC2: Andalusite based brick, firedC3: Chamotte brick, fired

Validation testing

LIBS sorting on 30 used bricks

66

30 used bricks, coming from three different refractory families (magnesia, doloma and alumina), for each of them 12 measurements were done on the upper face of the used brick : only one brick sorted as magnesia instead of doloma

XRF analyses done on the resulting sorted batches

Chemical Analysis(mass%)

Magnesiarecycling

Dolomarecycling

Alumina recycling

C 2,25 4,41 -CaO 5,42 58,22 0,43MgO 92,88 39,12 0,73SiO2 0,38 0,92 57,36

Fe2O3 0,42 1,01 1,98Al2O3 0,67 0,48 36,29TiO2 - - 1,31K2O - - 1,46Na2O - - 0,32

Used bricks testedUsed bricks tested

The threshold from which a sample is classified as magnesia, here the signal intensity ratio MgO/CaO, should be pushed upward

27/09/2016

34

Validation testing

LIBS sorting on 30 used bricks: Test cylinders made from the sorted Magnesia recycling

67

Important amount of doloma higlightedby chemistry analyses (CaO>4%)

More important is the volume change after tempering (at 300°C for 2h)

Recycling material share (mass%)

0 30 50 80

Che

mic

al

Ana

lysi

s (m

ass%

) SiO2 0.51 0.49 0.45 0.42

Al2O3 0.24 0.47 0.52 0.77

Fe2O3 0.42 0.43 0.46 0.46

CaO 0.92 2.10 4.04 4.52

MgO 97.79 96.39 94.4 93.7

Prop

erti

esaf

ter

tem

peri

ng Vol. change (vol.%) 0.09 0.33 0.67 0.87

BD (g/cm3) 2.97 2.95 2.91 2.88

AP (vol.%) 4.6 6.4 9.0 10.3

CCS (MPa) 64 74 65 80

LoI (mass%) 9.9 8.0 6.1 5.2

Prop

erti

es a

fter

co

king

at

1000

o C BD (g/cm3) 2.92 2.91 2.89 2.84

AP (vol.%) 10.8 12.0 14.4 16.0

CCS (MPa) 29 38 40 41

LoI (mass%) 1.3 1.4 1.6 1.4

Carbon (mass%) 8.6 6.7 5.0 3.9

Aspect of cylinderskept at room temperature for two months(recycling content, from left to right:0, 30, 50, 80)

Aspect of cylinderskept at room temperature for two months(recycling content, from left to right:0, 30, 50, 80)

Cracks when hydrated

Validation testing

LIBS sorting on 30 used bricks: Sorted doloma recycling used in monolithic formulation

68

20, 30, 50, 60% of sorted doloma recycling has been used to substitute the unused doloma

Same GSD than the reference

Proportional decrease in bulk density

Significant decrease in rammed density

But this recycling containing product could still be used as a backfillor as gap filler material

27/09/2016

35

Validation testing

LIBS sorting on 30 tons of recycling

69

Around 20 Big Bags of magnesia and doloma were sorted

Chemistries of each resulting fraction

Magnesia based Ramming mix Gunning mixDoloma based Backfill Levelling

Chemical Analysis (mass%)

Magnesia recycling

Doloma recycling

LoI 1,34 3,08C 0,95 0,45CaO 2,94 37,26MgO 93,21 56,92SiO2 1,2 3,03Fe2O3 1,17 1,55Al2O3 0,95 0,79Mn3O4 0,1 0,14Cr2O3 0,35 0,19

Four different products have been prepared and trials in steel shops are ongoing:

Validation testing

LIBS sorting on 30 tons of recycling: Laboratory gunning test

70

Gunning test on a cold wall:- good workability- good stickiness- possibility to build up 10 cm thickness- no slipping from the wall after build up the thickness- low rebound- no spalling

ReferenceReferenceRecycling material

containing mixRecycling material

containing mix

27/09/2016

36

Future

Dirk Van Mechelen, Orbix

IMPLEMENTATION

Design, engineering and building of sorting equipment (> 50.000 tons/year)

72

27/09/2016

37

IMPLEMENTATION

Development of the market

» Refractory Industries» Chemical Industries

73

Type I Type II Type III

min (%) max (%) min (%) max (%) min (%) max (%)

SiO2 0,2 0,3 0,8 1,2 2 3

Al2O3 0,06 0,1 85 90

Fe2O3 0,17 0,7 0,6 1 4 6

CaO 2 3 36 58

MgO 95 98 40 62

C

TiO2 6

IMPLEMENTATION

Development of the market

» Bricks, containing metal

» Bricks, not conform specification of refractory or chemical industry

» Refractory fines, with and with-out metal

Grinding to < 100 µm

De-metalisation

Binder for briquetting using the carbonatation technology

74

27/09/2016

38

IMPLEMENTATION

75

IMPLEMENTATION

Valorisation of refractories fines

76

27/09/2016

39

IMPLEMENTATION

Valorisation of refractories fines

77

IMPLEMENTATION

Valorisation of refractories fines

78

27/09/2016

40

IMPLEMENTATION

Valorisation of refractories fines

79

IMPLEMENTATION

80

27/09/2016

41

IMPLEMENTATION

81

IMPLEMENTATION

82

27/09/2016

42

VIDEO

83


Recommended