+ All Categories
Home > Documents > Relationships between partial derivatives

Relationships between partial derivatives

Date post: 07-Jan-2016
Category:
Upload: jeneva
View: 43 times
Download: 2 times
Share this document with a friend
Description:
You have to introduce a new symbol for this function, also the physical meaning can be the same. Relationships between partial derivatives. Reminder to the chain rule. composite function:. Example :. Internal energy of an ideal gas. Let’s calculate. with the help of the chain rule. - PowerPoint PPT Presentation
12
Relationships between partial derivatives Reminder to the chain rule ,...) y , x ( v ,...), y , x ( u ( F ,...) y , x ( F composite function: ... , v , u ( F ,.. y , x ( u ,. ,...) y , x ( v You have to introduce a new symbol for this function, also the phys meaning can be the same Example: Internal energy of an ideal gas T c n u n ) T ( U V 0 nR PV ) V , P ( T R PV c u n ) V , P ( U V 0
Transcript
Page 1: Relationships between partial derivatives

Relationships between partial derivatives

Reminder to the chain rule

,...),...)y,x(v,...),y,x(u(F,...)y,x(F

composite function: ....),v,u(F

,...),y,x(u ,...,...)y,x(v

You have to introduce a new symbol for this function, also the physicalmeaning can be the same

Example: Internal energy of an ideal gas Tcnun)T(U V0

nR

PV)V,P(T

R

PVcun)V,P(U V0

Page 2: Relationships between partial derivatives

,...),...)y,x(v,...),y,x(u(F,...)y,x(F

Let’s calculate x

,...)y,x(F

with the help of the chain rule

...x

,...)y,x(v

v

,...)v,u(F

x

,...)y,x(u

u

,...)v,u(F

x

,...)y,x(F

Example: xysinyx,...)y,x(F2/322

xycosyyxxysinx2yx2

3

x

,...)y,x(F 2/32222

explicit:

Now let us build a composite function with: 22 yx)y,x(u and xy)y,x(v

vsinu)v,u(F 2/3 vsinu2

3

u

)v,u(F 2/1

x2x

)y,x(u

vcosuv

)v,u(F 2/3

yx

)y,x(v

Page 3: Relationships between partial derivatives

x

)y,x(v

v

)v,u(F

x

)y,x(u

u

)v,u(F

x

)y,x(F

u

)v,u(F

x

)y,x(u

v

)v,u(Fy

x

)y,x(v

vsinu

2

3 x2 vcosu 2/3 y xycosyyxxysinx2yx2

3

x

)y,x(F 2/32222

Composite functions are important in thermodynamics

-Advantage of thermodynamic notation:

Example: ))Z,X(Y,X(F)Z,X(F

If you don’t care about new Symbol for F(X,Y(X,Z))

wrong conclusion from X

Y

Y

F

X

F

X

F

0X

Y

Y

F

-Thermodynamic notation: ZXYZ X

Y

Y

F

X

F

X

F

can be well distinguished

Page 4: Relationships between partial derivatives

Apart from phase transitions thermodynamic functions are analytic

y

)y,x(F

xx

)y,x(F

y yx

)y,x(F

xy

)y,x(F 22

See later consequences for physics

(Maxwell’s relations, e.g.)

Inverse functions and their derivatives

Reminder: )x(yfunction )y(xinverse function defined according to

y))y(x(y

Example:1x

1)x(y

function 1y)1x( 1yxy xyy1

y

y1)y(x

y

y)y1(

y

1y

y1

1

1)y(x

1))y(x(y

Page 5: Relationships between partial derivatives

X

Y0 2 4 6 8 100

2

4

6

8

10

Y

X

Page 6: Relationships between partial derivatives

y=y(x,z=const.)

What to do in case of functions of two independent variables y(x,z)

keep one variable fixed (z, for instance)

)z,x(y )z,y(xis inverse to if y)z),z,y(x(y

y)z),z,y(x(y Let’s apply the chain rule to

1dy

dx

dx

)z),y(x(dy

Result from intuitive relation: 1y

x

x

y

Thermodynamic notation:

1Y

X

X

Y

ZZ

Page 7: Relationships between partial derivatives

0 1 2 30

1

2

3

dY/d

X*d

X/d

Y

X

0 2 4 6 8 100

2

4

6

8

10

Y

X

0 2 4 6 80

2

4

6

dY/d

X

X

0 2 4 6 8 100

2

4

6

8

10

x

Y0 2 4 6 8

0

2

4

6

dX

/dY

Y

Numerical example

Page 8: Relationships between partial derivatives

Application of the new relation 1Y

X

X

Y

ZZ

Definition of isothermal compressibilityT

T P

V

V

1

Definition of the bulk modulus

Remember the

TT V

PVB

With 1V

P

P

V

TT

1

V

BV T

T

1BTT TT B/1or

Page 9: Relationships between partial derivatives

Application of yx

)y,x(F

xy

)y,x(F 22

Isothermal compressibility:T

T P

V

V

1

TT

VP

V

Volume coefficient of thermal expansion:P

V T

V

V

1

VP

VT

V

TP

V

PT

V 22

P

T

T

)V(

T

V

P

)V(

P

TT

P TV

T

V

T

VV

T PV

P

V

=

P

TT TVV

V

=T

VVT P

VV

T

V

P

T

PT

PTP

V

TTPT

V

P

Page 10: Relationships between partial derivatives

We learn: Useful results can be derived from general mathematical relations

Are there more such mathematical relations

Consider the equation of state: )T,V(PP or )T,P(VV

)T),T,P(V(PP

For .constP .const)T),T,P(V(P

Total derivative with respect to temperature

0T

P

T

V

V

P

VPT

VP

T

0P

T

T

P

P

T

T

V

V

P

VVVPT

1

1P

T

T

V

V

P

VPT

(before we calculated derivative with respect to P @ T=const.

now derivative with respect to T @constant P)

Page 11: Relationships between partial derivatives

1P

T

T

V

V

P

VPT

Is a physical counterpart of the general mathematical relation:

1X

Z

Z

Y

Y

X

YXZ

Let’s verify this relation with the help of an example

X

Y

Z

2222 Rzyx Surface of a sphere

X=0 plane

z

y

y=0 plane

x

z

z=0 plane

x

y

Page 12: Relationships between partial derivatives

2222 Rzyx

222 zyRx

222 zxRy

222 yxRz

x

y

zyR

y

y

x

222z

y

z

zxR

z

z

y

222x

z

x

yxR

x

x

z

222y

for x,y,z 1st quadrant

yxz x

z

z

y

y

x

z

x

y

z

x

y 1

Physical application: Change in pressure caused by a change in temperature

1P

T

T

V

V

P

VPT

V

PTP

T

1

T

V

V

P

VT

P

VT

P

PT T

V

V

1

V

PV

VTB

X

Y Z

cyclic permutation


Recommended