+ All Categories
Home > Documents > Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of...

Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of...

Date post: 15-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
65
Relaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA
Transcript
Page 1: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Relaxation in Biological Systems

Robert G. BryantUniversity of Virginia

Charlottesville, VA, USA

Page 2: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Collaborators

• Jean-Pierre Korb• Pierre Levitz• Dominique Petit• Yanina Goddard• Yanina Goddard• Galina Diakova• Ken Victor• David Cafiso

Page 3: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Simple Solutions

• Relaxation by rotational and translational motions of spin ½ nuclei: 1H, 13C, 15N, 31P

• Dipolar relaxation dominates at low magnetic field strengthsmagnetic field strengths

• Chemical shift anisotropy makes contribution at high field strengths– 13C, 15N, 31P

Page 4: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Small Diamagnetic Molecules

• Translational correlation times are short, tens of ps.

• Rotational correlation times are tens of ps.• No dispersion usually detected.• No dispersion usually detected.

– Rare possibility of modulation of scalar couplings and very low field, e.g., H2

17O– Dispersion from molecular oxygen if not

removed

Page 5: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Paramagnetic Effects• Contributions from oxygen at ambient

concentration easily detected.

Page 6: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Paramagnetics

• Shift dispersions from translation and rotation into the MHz range

Page 7: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

2

2.5

3

3.5107 108 109 1010 1011 1012

CrDTPA_pH 5.8CrEDTA_pH 3.5CrEDTA_pH 4.50CrEDTA_pH 5.40CrDTPAam_pH 4.4CrDTPAam_pH 7.7CrEDTAam_pH 6.1CrEDTAam_pH 7.7CrEDTAam_pH 4.0

Rel

axat

ion

Rat

e C

onst

ant (

mM

-1,

sec

-1)

Electron Larmor Frequency (rad/sec)

0

0.5

1

1.5

104 105 106 107 108 109 1010

Rel

axat

ion

Rat

e C

onst

ant (

mM

-1,

sec

-1)

Proton Larmor Frequency (rad/sec)

Page 8: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Protein Solution MRD

• Coupling to rotational motion of the protein – Exchange of whole water molecules– Exchange of protons

• Changes in rotation and translation at the interface are small: of order a factor of 3

Page 9: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Koenig’s Early Data

S. H. Koenig, W. E. Schillinger, J. Biol. Chem., 244:3283-3289 (1969).

Page 10: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

0.5

0.4

0.3

0.2

0.20

0.16

0.12

0.08

108

109

1010

1011

1012

ωS (rad/s)

A

B

Protein Solution MRDD2O with oxygen

H2O with oxygen

D O without oxygen

0.60

0.55

0.50

0.45

0.40

0.35

104

105

106

107

108

109

1010

ωI (rad/s)

0.11

0.10

0.09

0.08

0.07

0.06

0.05

C

D

D2O without oxygen

H2O without oxygen

When dilute and no aggregation, the dispersion is Lorentzian

Page 11: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Chemical exchange couples protein rotation to H 2O

τrot 10-50 ns

Internal Water Moleculesτlocal = 10-30 ns 1H2O gel

τexchange = 0.5-100 µs

-

+

Page 12: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Effects of ExchangeDilute Solutions

• The mixing equation

1 1 1

1 1 boundo

bound exchange

P

T T T τ= +

+• In slow-exchange limit

1 1 1bound exchangeT T T τ+

1 1

1 1 boundo

exchange

P

T T τ= +

Page 13: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Exchange Coupling• The exchange time limits the size of the

exchange contribution.

1 1 1

1 1 bound io

i sites bound i exchange i

P

T T T τ−

− − −

= ++∑

• Water lifetimes generally short compared with proton lifetimes– Proton lifetimes are pH dependent and generally 1st

order in [OH-].

• Water effects often dominate for large proteins or solids.

1 1 1bound i exchange i− −

Page 14: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Direct Dipolar Couplings

• Bound protons couple to protein protons and each other by dipole-dipole interactions.

• Surface interactions between water and • Surface interactions between water and biomacromolecules are dipolar– Coupling modulated by rotation and

translation– Correlation times are short, tens of ps– Effective relaxation contributions are small– Logarithmic function of magnetic field strength

Page 15: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

0.4

0.5

0.6

0.7

0.8

Dispersion for BSA(300 uM)

Rel

axat

ion

Rat

e C

onst

ant

(1/s

) HOD Stretched fit for HOD Lorentzian for HOD DMSO Stretched fit for DMSO Lorenztian for DMSO Acetone Stretched fit for AcetoneLorentzian for Acetone

104

105

106

107

108

109

1010

0.1

0.2

0.3

0.4

Rel

axat

ion

Rat

e C

onst

ant

(1/s

)

1H Larmor Frequency (rad/sec)

Page 16: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Protein Proton Dispersion

• Low field rate linear in rotational correlation time.– For small protein, of order 100-200 s-1

• Proton relaxation is superposition of all • Proton relaxation is superposition of all rates at low resolution.

• System is not completely homogenized by rapid spin diffusion.

• Sample shuttle experiments are difficult.

Page 17: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Protein Solution MRD

Examine the high Examine the high field region

Page 18: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Protein Solution MRDAlbumin, lysozyme, ribonuclease A

H2O

D2O observe residual H

Page 19: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

2-D Translational Diffusion Relaxation Equation

2 21( ) log fJ

ω τω τ

+ ∝

11/ ( ) 4 (2 )T B J Jω ω= +

22 2

2

1( ) log f

ff

fs

Jω τ

ω ττ

ω ττ

+ ∝ +

1 1 1

1

( ) ( )b s

b s

P P

T T Tω ω= +

Page 20: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Intermolecular Dipolar Coupling Modulated by Translation

30 ps

Water-1H –protein 1H dipolar coupling modulated by relative translational motion of the water at the protein interface

HO

DH

Page 21: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Lysozyme Intermolecular Contribution

0.09

0.095

0.1

0.105

Lysozyme degassed 8/25/2006

-1

y = 0.03+m1*10^ 8*m2*10 -12*...

ErrorValue

0.0237950.54596m1

1.938131.242m2

NA6.0268e-6Chisq

NA0.99824R

Residual H in HOD; solution

0.065

0.07

0.075

0.08

0.085

10 100 1000

1/T

1, s-1

1H Larmor Frequency, MHz

31 ps

Page 22: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Lysozyme in H2O

0.52

0.54

0.56

Lysozyme H2O, degassed 8_17_2006

-1

y = 0.28+m1*10^ 8*m2*10^-12*...

ErrorValue

0.320273.36m1

1.827614.544m2

NA0.00010289Chisq

NA0.99576R

0.42

0.44

0.46

0.48

0.5

40 60 80 100 300

1/T

1, s-1

1H Larmor Frequency, MHz

NA0.99576R

15 ps

Page 23: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Intermolecular Dipolar Coupling Modulated by Translation at Surface

15 ps

2-particles move Relative translational diffusion constant is sum of each particle.

HO

HH

of each particle.

τ1 = 2τrelative= 30 ps20 ns

Page 24: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Charge Distribution: Ribonuclease A

pH = 7.5All residues were assumed to have their usual pKa i n water and were modified to appropriate protonated states accordingly. The prot ein was set with Conolly atomic radii, CVFF formal charge parameters, and the dielectric c onstant of 2.0. The solvent was set with 1.4 Å radius, zero ionic strength and the dielectri c constant of 80.0. The solute was centered, filling 70% of the grids in each dimensio n, in an 83 ×83×83 grid box of 0.816 Å per grid point. Finite difference methods were used to calculate potential functions providing full coulomb boundary conditions.

Page 25: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

C(t)

+

-

H HO

Rotational Correlation: Long times

t

Orientationalbias

3 ps

15 ps

-

Page 26: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Water-Surface Dynamics

The translational correlation time for water at the protein water at the protein interface is 30 ps–fast but still slower than in the bulk.

Page 27: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

0.3

0.4

0.5107 108 109 1010 1011 1012

Hb HOD Paramagnetic 0907

1, s-1

HOD Paramagnetic Contribution

τf = 6.4 psτs = 2.6 ns

0

0.1

0.2

104 105 106 107 108 109 1010

1/T

1

Radial Frequency, s -1

Page 28: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

40

50

60

R1_4.5%gelBSA, s-1

Immobilization Effects

11

1( )

( )bA C R

Tω ω

ω−= + =

Power Law

Observing water protons

0

10

20

30

0.01 0.1 1 10 100

R1_4.5%gelBSAR1_7%gelBSAR1_10%gelBSAR1_15%gelBSAR1_20%gelBSAR1_30%gelBSAR1_40%gelBSA

Proton Larmor Frequency, MHz

1/T

1, s

R. G. Bryant, D. Mendelson, C. C. Lester, Magn. Reson. Med. 21, 117-126 (1991).

Power Law

Lorentzian

Page 29: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

14N Level Crossing

70

80

90

100

BSADIPS121504

1/T

1, s-1

30

40

50

60

70

2.4 2.6 2.8 3 3.2 3.4

1/T

Proton Larmor Frequency, MHz

Page 30: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Experimental Results

11

1( )

( )bA C R

Tω ω

ω−= + =

Page 31: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Experimental Results

11

1( )

( )bA C R

Tω ω

ω−= + =

Page 32: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Non-rotating protein:Solid spin population

Water: Liquid population

Shirley &Bryant, JACS104:2910 (1982)

Page 33: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Relaxation Coupling

Dry and D2O same, dominated by relaxation of CH3

H2O adds new minimumH2O adds new minimum

H2O at low T adds to relaxation load of CH3

Page 34: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz
Page 35: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz
Page 36: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz
Page 37: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz
Page 38: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz
Page 39: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Spin-coupling of the solid population is general.

Similar to a transferred NOE only the solid population is usually not observed directly.

Effects modeled well by 2-spin-population model.

Line-shape is subject to saturation effects, as usual in cw NMR.

Page 40: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

1,

1, 0( )

WP W WPWW

WP WPPPP

R R RMM

R RMRM

F Fω

+ − = − − +

&

&

Relaxation Coupling

eqPeqW

m Number of protein protonsF

m Number of water protons= =

R Wm Number of water protons

R1,P

Lattice

WaterSolidprotein

RWP

R1,W

R1,

slow

(s-1

)

RWP=P0kex

R1,P

Frequency (MHz)

Page 41: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Backbone Origin of Power Law Polyglycine

ν0.80

Polyalanine

T1 =Aν0.77

Lysozyme et BSA

10-3

10-2

10-1

100

BSALysozyme

T 1 (

s)

ν0.78T =A

C

N

H

C

HH

O

C

n

T1 =Aν0.80

C

N

H

C

CH3H

O

C

n

R. Kimmich

Dynamics ∈∈∈∈ Primary structure

C

N

H

C

RH

O

C

n

n

J.-P. Korb et R.G. Bryant

10-4

10-2 10-1 100 101 102

Frequency (MHz)

νT1=A

Page 42: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Basis of Spin-Fracton Model

• Kimmich: dipolar couplings modulated by backbone fluctuations.

• Vibrational model for local fluctuations– Structural disturbance propagates along backbone– Protein is not uniform in 3-space– Protein is not uniform in 3-space

• Distribution of mass is fractal df ~2.4-3• Vibrational distribution of states is not standard

• Fluctuation is localized and scale is related to the frequency (wavelength)

1 1; 1.3sd dsdω ω− −≠

Page 43: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Note the proximity of protons and their connectivity by dipole-dipole couplings.

Protons not uniformly placed in space.

Page 44: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Spin-phonon Relaxation

Spin Lattice

1

2n0

nδHdip

Direct process

)()()( pdip

eqpdip

pdip HHH δ+=

Spin displacements in localized normal modes

s

f

Propagation of displacement

along the backbone d

Spatial distribution

of protons d

modes

1

T1(ω0 ) ∝ A kT ω0

−2( )ω0dS −1( )ω0

2 d s / d f( )density of

states

localization

Spin LatticeLocal Structural Fluctuation /

( )s fd d

l ωωΩ ∝

Page 45: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

<NH

> R 2.5∝

Lysozyme

Compute df based on crystal structure of protein as the slope of log-log plot of the number of protons within a radius r from a reference proton.R

100

101

102

103

Fractal Dimension

The dimensionality d explored by the disturbance affects the density of vibrational states σ(ω) that determines relaxation efficiency.

101 10

Distance from a reference proton, Å

ω < ωα

ω > ωα

σ(ω0 ) = 3Ndω0

d−1

Ω d

with σ ω( )0

Ω

∫ dω = 3Nd→→→→ds

Page 46: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

The reduction in effective dimensionality caused by the 1-dimensional character of the primary protein structure increases the density of vibrational states, particularly in the 10 -20

10 -14

(d)/

(3N

) 1.33

1

021

1( ) Bk T

Tσ ω∝

Ω

Ω

Constrained Propagation

For d~1, at low frequency, enhancement of σ by 18 orders of magnitude. Localization of the disturbance is also required.

states, particularly in the low frequency range.

10 -32

10 -26

10 -20

10 -2 101 104 10 7

σ(d

)/(3

N)

Frequency (MHz)

3

2

d

Page 47: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Theory - Experiment

0.6

0.8b

max = 0.783

2

21

1 3 1 14 1

4 2

b

B s o b ok TM d

T E Eν ν

ωπ− = +

hh

2000

2500

3000

BSA dry

Lysozyme dry

C

N

H

C

O

C

RH

RHO

N

H

CR H

Polypeptide backbone

C

n

Mode Amide II Ev// =1560 cm-1

I.R.

Stretched modes

b = 3 −2ds

d f

− ds

0

0.2

0.4

1.5 2 2.5 3

b

df

bmin

=

0

500

1000

1500

2000

10-2 10-1 100 101 1021/

T1

(s-1)

Frequency (MHz)

ω0-0.79

Page 48: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

C-C~350 kJ/molH-bond~20 kJ/mol in gasvdW~2 kJ/mol

Temperature Dependence

102

103

BSA

R1 0.1 MHzR1 0.2 MHzR1 0.3 MHzR1 0.01MHzR1 0.03 MHzR1 0.05 MHzR1 0.08 MHZR1 30 MHzR1 10 MHzR1 20 MHZR1 5MHz

Low frequencyR1 = kT

Propagation along stiff connections

vdW

( )( )

( )( ) / 22 21

1cos( tan( ))

1f

bB fB

fbb

k T Tk TA B bA

T T

τωτ

ω ω ω τ∝ +

+

100

101

150 200 250 300 350

R1 5MHz

Temperature (°C)

High frequencyR1 = kT exp(Ea/RT)

(K)

Chain Side-chain

/0

Ea RTc c eτ τ=

Page 49: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Low Temperature Serum Albumin

102

103

, s-1

101

10-2 10-1 100 101

R1 @ T=-118CR1 @ 25C

1/T

1, s

Frequency, MHz

Page 50: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Model Peptides

polyglycine and polyalanine, 183 KBiopolymers, 2007

Page 51: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

0.6

0.7

0.8

0.9

1/T

1, s-1

0.6

0.7

0.8

0.9MRD_1H_BSA10%gel_060525

1/T

1, s-1

Gel ∝ω-0.8

Solution ∝lnω

BSA BSA

High Field MRD

0.4

0.5

0 50 100 150 200 250 300 350

Proton Larmor Frequency, MHz

0.4

0.5

0 100 200 300 400 500 600

Proton Larmor Frequency, MHz

•Constant composition•Glutaraldehyde cross-link•Relaxation changes when rotational state of the protein changes

Page 52: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

1000

104

BSA_D2O_15%gel_043007_NaCl_D2O_061107 11:47:09 AM 6 /15/2007

R1_BSA_gel_D2O_043007R1_BSA_dry

1/T

1, s

-1

1H BSA Dry and in 15% gel in D2O

1

10

100

0.001 0.01 0.1 1 10 100

1/T

1, s

-1

Proton Larmor Frequency, MHz

No 1H in solventobserve protein 1H

Page 53: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Conclusion

• The parameters of the protein dynamics model, df and ds, do not change with hydration.

• The hydration does not substantially change the underlying polypeptide dynamics.

Page 54: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

1000

104

BSA_dry_D2O_gel

R1_BSA_gel_D2O_043007R1_15%BSA_gel_NaCl_D2O_061107R1_BSA_dry

, s-1

15% BSA gel in D2O

Dry BSA

15% BSA in H2O

1H Relaxation in BSA Gels

1

10

100

0.001 0.01 0.1 1 10 100

1/T

1, s

1H Larmor Frequency, MHz

Page 55: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

10

100

BSA_gels_+ Lorentzian

R1_20%gelBSA, s

-1y = 0+m1*10 3*(m0*6.285*10^...

ErrorValue

0.0204721.8798m1

0.0225930.21842m3

3.081426.087m4

NA9.6653Chisq

NA0.99889R

BSA Gel + Lorentzian

0.1

1

0.001 0.01 0.1 1 10 100 1000

1/T

1, s

1H Larmor Frequency, MHz

26 ns

Motion of water inside the protein

Consistent with dielectric relaxation

Page 56: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Coupled and Uncoupled Dyanmics

1000

104

Coupled Dynamics

-1 100

1000

104

Decoupled Dynamics

-1

COUPLED UNCOUPLED

0.1

1

10

100

0.01 0.1 1 10 100 1000

1/T

1, s-1

Larmor Frequency, MHz

0.01

0.1

1

10

100

0.01 0.1 1 10 100 1000

1/T

1, s-1

Larmor Frequency, MHz

Page 57: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Uncoupled Motion: Water In a Protein

No rigid dynamical coupling to protein motions,magnetic dipole-dipole coupling remains.

Page 58: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Coupled Motion: Water In a Protein

H-bond mediated coupling to protein motions

Page 59: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

BSA Gel 10%, 20%

101

Rel

axat

ion

Rat

e

10-2

100

102

100

Proton Larmor Frequency, MHz

Rel

axat

ion

Rat

e

Page 60: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Hydrated Albumin at 185 K

102

10332 g water/100 g BSA

Difference fit to Lorentzian with correlation time

10 -2 10 -1 10 0 10 1

Proton Larmor Frequency, MHz

101

100

correlation time of 92 ns.

Consistent with uncoupled local rotational motion.

Page 61: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Summary• Simple relaxation model accounts for all the

known data– The protein protons relax by an efficient

mechanism that causes a power law in frequency.

• The water protons magnetically coupled to the protein spin relaxation. protein spin relaxation. – Magnetic coupling maps protein relaxation onto

water proton relaxation.

• Side-chains important only at high frequency, low T.

• Internal water dynamics important in middle frequency range (tens of ns).

Page 62: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Phospholipids

0.07

0.08107 108 109 1010 1011 1012

POPC 121102S (water) 2/5/2004

POPC @ 40mM

40 mM POPCResidual H in D2O

Small contribution to

0.03

0.04

0.05

0.06

104 105 106 107 108 109 1010

1/T

1, s-1

Radial Frequency [rad/s]

Small contribution to relaxation rate

Linear in log of frequency

Page 63: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Lipids

0.5

0.6

0.7

0.8

POPC:POPS (3:1) @ 25mM with 680mM sucrose by extrusion 041003

D2O buffer with 680mM sucrose by extrusion 041103

POPC:POPS (3:1) @ 25mM with 30uM dodecyl maltoside by extrusion 041403

107 108 109 1010 1011 1012

Rel

axat

ion

Rat

e C

onst

ant

(1/s

)electron ωωωω

S(rad/sec)

BtuB in POPC:POPS (3:1) LUVs Dispersions of Water ProbeBuffer: 100mM formate, 10mM HEPES, pH=6.8, in D

2O

Eliminated if

0

0.1

0.2

0.3

0.4

0.5

104 105 106 107 108 109 1010

Rel

axat

ion

Rat

e C

onst

ant

(1/s

)

1H ωωωωI(rad/sec)

Eliminated if sucrose scrubbed of metal ions

Page 64: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

The Magnetic Field and Temperature Dependences of Proton Spin-Lattice Relaxation in Proteins, Y. Goddard, J.-P. Korb, R. G. Bryant, J. Chem. Phys. 126, 175105/1 (2007).

Relaxation of Protons by Radicals in Rotationally Immobilized Proteins, J.-P. Korb, G. Diakova, Y. Goddard, J. Magn. Reson., 186, 176-181 (2007).

Nuclear Magnetic Relaxation Dispersion Study of the Dynamics in Solid Homopolypeptides, Y. Goddard, J.-P. Korb, R. G. Bryant, Biopolymers, 86, 148-154 (2007).

Structural and Dynamical Changes in Serum Albumin at Low Temperature: Examination of theGlass Transition, Y. Goddard, J.-P. Korb, R. G. Bryant, Biophysical Journal 91, 3841-3847 (2006).

Structural and Paramagnetic Relaxation of Protons in Rotationally Immobilized Proteins, J.-P. Structural and Paramagnetic Relaxation of Protons in Rotationally Immobilized Proteins, J.-P. Korb, G. Diakova, R. G. Bryant, J. Chem. Phys. 124, 134910/1-134910/6, 2006.

Magnetic Field Dependence of Proton Spin-lattice Relaxation of Confined Proteins. J.-P. Korb, R. G. Bryant, C. R. Physique 5 (2004) 349-359.

Noise and Functional Protein Dynamics. J.-P. Korb, R. G. Bryant, Biophysical Journal, 89, 2685-92 (2005).

The Magnetic Field Dependence of T1. J.-P. Korb, R. G. Bryant, Magn. Reson. Med. 48, 21-26 (2002).

The Physical Basis for the Magnetic Field Dependence of Proton Spin-Lattice Relaxation Rates in Proteins and Tissues. J.-P Korb, R. G. Bryant, J. Chem. Phys. 115, 10964-10974 (2001).

Page 65: Relaxation in Biological SystemsRelaxation in Biological Systems Robert G. Bryant University of Virginia Charlottesville, VA, USA Collaborators • Jean-Pierre Korb • Pierre Levitz

Thank you!

Support: National Institutes of Health, University of Virginia, CNRS, Ecole Polytechnique


Recommended