+ All Categories
Home > Documents > REMANE~1

REMANE~1

Date post: 05-Apr-2018
Category:
Upload: andy-wiranata-wijaya
View: 235 times
Download: 0 times
Share this document with a friend
8
8/2/2019 REMANE~1 http://slidepdf.com/reader/full/remane1 1/8 ~i Journal f magnetic materials ELSEVIER Journal of Magnetism and Magnetic Materials 149 (1995) 279-286 Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field Ietje Penninga a, Hendrik de Waard a, Bruce M. Moskowitz b, Dennis A. Bazylinski c, Richard B. Frankel d,, a Department of Physics, University of Groningen, Nyenborgh 4, 9747 AG Groningen, The Netherlands Institute for Rock Magnetism and Department o f Geology and Geophysics, University of Minnesota, Minneapolis, MN 55455, USA c Marine Science Center, Northeastern University, East Point, Nahant, MA 01908, USA d Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA Received 4 November 1994; in revised form 10 January 1995 Abstract We describe pulsed-magnetic-field remanence measurements of individual, killed, undisrupted cells of three different types of magnetotactic bacteria. The measurement technique involved the observation of aligned, individual magnetotactic bacteria with a light microscope as they were subjected to magnetic pulses of increasing amplitude. We show that for MM cells, the hysteresis loop is square, with the coercive field variable from cell to cell. This is consistent with just two magnetization states for the single chain of magnetite particles. For MR and MMP cells, the hysteresis loops are not square, indicating that there are several different magnetization states, and that individual cells can be demagnetized. The coercive fields in the MR and MMP cells are less variable than for the MM cells. I. Introduction Magnetotactic bacteria, a diverse group of prokaryotes, contain magnetosomes [1,2], which are magnetic mineral particles enclosed in membranes. In most cases, the magnetosomes are arranged in a single or multiple chains, and are apparently fixed within the cell. In many magnetotactic bacterial types, the magnetosome mineral particles consist of ferri- magnetic magnetite, Fe30 4 [3], are characterized by narrow particle size distributions, and have uniform, species-specific, crystalline habits [2]. The particle sizes range between 40 to 100 nm, and are within the * Corresponding author. permanent single-magnetic-domain size range for magnetite [4]. In many magnetotactic bacteria from marine, sul- fidic environments, the magnetosome particles con- sist of the iron-sulfide mineral greigite, Fe3S 4 [5], which is isostructural with magnetite and is also ferrimagnetically ordered at ambient temperature. The greigite particles are also characterized by nar- row particle size distributions and species-specific crystal habits [6]. However, whereas the magnetite particles in a magnetosome chain are usually ori- ented so that a [111] crystallographic axis of each particle lies along the chain direction, the greigite particles in a magnetosome chain are usually ori- ented so that a [100] crystallographic axis of each particle is oriented along the chain direction. In one 0304-8853/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved SSDI 0304-8853(95)00078-X
Transcript
Page 1: REMANE~1

8/2/2019 REMANE~1

http://slidepdf.com/reader/full/remane1 1/8

~ i J o u rn a l f

m a g n e t i cm a t e r i a l s

EL SE V IER Journal of Magnet i sm and Magnet ic Mater ia ls 149 (1995) 279-286

R e man e n c e me as u r e me n t s on i n d i v i d u a l magn e t o t ac t i c b ac t e r i a

u s i n g a p u l s e d m agn e t i c f ie l d

I e t j e P e n n i n g a a , H e n d r i k d e W a a r d a , B r u c e M . M o s k o w i t z b ,

D e n n i s A . B a z y l i n s k i c , R i c h a r d B . F r a n k e l d ,,

a

Department o f Physics, Un iversity of Groningen, Nyenborgh 4, 9747 AG Groningen, The NetherlandsInstitute for R ock M agnetism and Department o f Geology and G eophysics, University of Minnesota, Minneapolis, MN 55455, USA

c Marine Science C enter, Northeastern U niversity, East Point , Nahant, MA 01908, USA

d Department o f Physics, Cali fornia Polytechnic State Universi ty, San Lu is Obispo, CA 93407, USA

Received 4 Novem ber 1994; in revised form 10 January 1995

Abstract

W e d e s c r i b e p u l s e d - m a g n e t i c - f i e l d r e m a n e n c e m e a s u r e m e n t s o f i n d i v i d u a l , k i l l e d , u n d i s r u p t e d c e l l s o f t h r e e d i f f e r e n t

t y p e s o f m a g n e t o t a c t i c b a c t e r i a . T h e m e a s u r e m e n t t e c h n i q u e i n v o l v e d t h e o b s e r v a t i o n o f a l i g n e d , i n d i v i d u a l m a g n e t o t a c t i c

b a c t e r i a w i t h a l i g h t m i c r o s c o p e a s t h e y w e r e s u b j e c t e d t o m a g n e t i c p u l s e s o f i n c r e a s i n g a m p l i t u d e . W e s h o w t h a t f o r M M

cel l s , t he hys t e r es i s l oop i s squa re , w i t h t he coe rc i ve f i e l d va r i ab l e f rom ce l l t o ce l l . T h i s i s cons i s t en t w i t h j us t t wom a g n e t i z a t io n s t a t e s f o r t h e s i n g le c h a i n o f m a g n e t i te p a r t ic l e s. F o r M R a n d M M P c e l ls , t h e h y s t e r e s i s lo o p s a r e n o t s q u a r e ,

i nd i ca t i ng t ha t t he r e a r e s eve ra l d i f f e r en t magne t i za t i on s t a t e s , and t ha t i nd i v i dua l ce l l s can be demagne t i zed . T he coe rc i ve

f i e ld s i n t h e M R a n d M M P c e l ls a r e l e s s v a r ia b l e t h a n f o r t h e M M c e ll s.

I . I n t r o d u c t i o n

M a g n e t o t a c t i c b a c t e r i a , a d i v e r s e g r o u p o f

p r o k a r y o t e s , c o n t a i n m a g n e t o s o m e s [ 1 , 2 ] , w h i c h a r e

m a g n e t i c m i n e r a l p a r t i c l e s e n c l o s e d i n m e m b r a n e s .

I n m o s t c a s es , t he m a g n e t o s o m e s a r e a r ra n g e d i n as i n g l e o r m u l t i p l e c h a i n s , a n d a r e a p p a r e n t l y f i x e d

w i t h i n t h e c e ll . I n m a n y m a g n e t o t a c t i c b a c t e r i a l ty p e s ,

t h e m a g n e t o s o m e m i n e r a l p a r ti c l e s c o n s is t o f f e r ri -

m a g n e t i c m a g n e t i t e , F e 3 0 4 [ 3] , a r e c h a r a c t e r i z e d b y

n a r r o w p a r t i c l e s i z e d i s t r i b u t i o n s , a n d h a v e u n i f o r m ,

s p e c i e s - s p e c i f i c , c r y s t a l l i n e h a b i t s [ 2 ] . T h e p a r t i c l e

s i z e s r a n g e b e t w e e n 4 0 t o 1 0 0 n m , a n d a r e w i t h i n t h e

* Corresponding author .

p e r m a n e n t s i n g l e - m a g n e t i c - d o m a i n s i z e r a n g e f o r

m a g n e t i t e [ 4 ] .

I n m a n y m a g n e t o t a c ti c b a c t e ri a f r o m m a r i n e , s u l-

f i d i c e n v i r o n m e n t s , t h e m a g n e t o s o m e p a r t i c l e s c o n -

s i s t o f t h e i ro n - s u l f i d e m i n e r a l g r e i g i t e , F e 3 S 4 [ 5 ] ,

w h i c h i s i s o s tr u c t u r a l w i t h m a g n e t i t e a n d i s a ls o

f e r r i m a g n e t i c a l l y o r d e r e d a t a m b i e n t t e m p e r a t u r e .

T h e g r e i g i t e p a r t i c l e s a r e a l s o c h a r a c t e r i z e d b y n a r -

r o w p a r t ic l e s i z e d i s tr i b u t io n s a n d s p e c i e s - s p e c i f i c

c r y s t a l h a b i t s [ 6 ] . H o w e v e r , w h e r e a s t h e m a g n e t i t e

p a r t i c l e s i n a m a g n e t o s o m e c h a i n a r e u s u a l l y o r i -

e n t e d s o t h a t a [ 1 1 1] c r y s t a l l o g r a p h i c a x i s o f e a c h

p a r t i c l e l i e s a l o n g t h e c h a i n d i r e c t i o n , t h e g r e i g i t e

p a r t i c l e s i n a m a g n e t o s o m e c h a i n a r e u s u a l l y o r i -

e n t e d s o t h a t a [ 1 0 0] c r y s t a l l o g r a p h i c a x i s o f e a c h

p a r t ic l e i s o r i e n t e d a l o n g t h e c h a i n d i r e ct i o n . I n o n e

0304-8853/95/$09.50 © 1995 Elsevier Science B.V. Al l r ights reservedS S D I 0 3 0 4 - 8 8 5 3 ( 9 5 ) 0 0 0 7 8 - X

Page 2: REMANE~1

8/2/2019 REMANE~1

http://slidepdf.com/reader/full/remane1 2/8

2 8 0 L P e n n i n g a e t al . / J o u r n a l o f M a g n e t i s m a n d M a g n e t i c M a t e r i a l s 1 4 9 ( 1 9 95 ) 2 7 9 - 2 8 6

organ i sm , an unusua l , m any-ce l l ed , m agne to tac t i c

p rokaryo te (MM P) [7 ] , pa r t ic les o f non-m agne t ic

pyr i te , FeS 2 , occu r in addi t ion to Fe3S 4 [5] . In

another organism, both magnet i te and greigi te par t i -

c les occur in the s am e cha in o f m a gne tosom es [8 ].W hether the m inera l pa r t i c les a r e m agne t i t e o r

g re ig it e , the cha in o f m agne tosom e par t ic les cons t i-

tu tes a pe rm anen t m agne t ic d ipo le f ixed w i th in the

bac te r ium [9 ] . The r em anen t m om e nt i s genera l ly

close to i ts saturat ion value. Normally i t i s suff i -

c ien t ly la rge r than the background the rm al energy so

that i t , and consequent ly the bacter ium, is or iented

a long geom agne t ic f i e ld l ines as i t sw im s , caus ing

the bacter ium to migrate a long the f ie ld l ines .

K a l m i j n a n d B l a k e m o r e [ 1 0 ] a n d M i z o t a a n d

Maeda [11 ] have r epor ted on the e f f ec t o f pu l s edm agne t ic f i e lds on the m ig ra t ion o f uncharac te r i zed

m agne to tac t i c bac te r i a co l l ec ted f rom na tu ra l env i -

ronm en ts . An in tense m agn e t ic pu l se o f s evera l hun-

dred gauss , or iented oppos i te to a s teady, several

gaus s m agne t ic f i e ld in wh ich the bac te r i a were

migrat ing, caused a f ract ion of the bacter ia , which

increased over a ce r ta in r ange w i th the s t r eng th o f

the pulses , to reverse their d irect ion of migrat ion.

S im i la r ly , exposure o f m agne to tac t i c bac te r i a to an

in tense 60 Hz m agne t ic f i e ld caused abou t 50 pe r -

cen t o f m agne to tac t i c bac te r ia in a s am ple to m ig ra teoppos i te to the or ig inal migrat ion direct ion, subse-

quent to removal of the 60 Hz f ie ld [12] .

These obse rva t ions were cons i s ten t w i th on ly two ,

oppos i te , d irect ions of magnet izat ion rela t ive to the

chain direct ion and a square hys teres is loop for each

cel l , but with coercive f ie lds that var ied f rom cel l to

cel l , or var ied accord ing to the ins tantaneou s or ienta-

t ion of the cel l with respect to the d irect ion of the

m agne t ic pu l s e.In th is paper , we descr ibe pulsed-magnet ic- f ie ld

rem anence m easurem en ts o f ind iv idua l , k i l l ed ,

und is rup ted ce l ls o f th ree d i f f e ren t types o f m agne to -

tac t ic bac te ri a . The m easurem en t t echn ique was based

on a m ethod desc r ibed by Kn owles [13 ] fo r sm al l

synthe t ic ma gnet ic par t ic les. I t involved the observa-

t ion o f a l igned , ind iv idua l m agne to tac t i c bac te r i a

wi th a l igh t m ic roscope as they were sub jec ted to

m agne t ic pu l s es o f inc reas ing am pl i tude . The m i -

c roorgan i sm s s tud ied were the cu l tu rab le m agne to -

tact ic bacter ium Magnetospirillum magnetotacticum(MM) ( fo rm er ly Aquaspirillum magnetotacticumATCC 31632) , wh ich con ta ins a s ing le cha in o f

cubo-oc tahedra l m agne t i t e - con ta in ing m agne tosom es

[3 ] , and two uncu l tu red m agne to tac t i c bac te r i a ; an

uncharac te r i zed m agne to tac t i c cu rved rod tha t con-

ta ins two o r m ore ad jacen t cha ins o f g re ig i te - con ta in -

ing m agne tosom es (MR) , and the MMP desc r ibed

a b o ve . T h e M R a n d M M P w e r e c o l le c t ed f ro m w a t e r

and s ed im en t ob ta ined f rom a b rack i sh s a l t m ar sh

poo l a t M or ro Bay , C a l i fo rn ia . ,

As we show be low , the MM hys te res i s loop i ssquare, with the coercive f ie ld var iable f rom cel l to

ce l l . Th i s i s cons i s ten t w i th ju s t two m agne t iza t ion

s tates for the s ingle chain of magnet i te par t ic les . For

the MR and MMP, the hys te res i s loops a re no t

t:~lsed ie ld Mag netization Alignmentfield

(Bp)" (M) (B.) bA ,F .~ ~ . ~ ~ . )

B < - - I -- ,~ >

C < - - - t • )

D < ; < _- )

E ( = ( ~. )

M

, A , F

~ D ) -Bp

" , , ~ E

=0 ~±7 00G b7G

F i g . 1 . S c h e m a t i c d i a g r a m o f t h e p u l s e d m a g n e t i c f i e ld r e m a n e n c e m e a s u r e m e n t s . A c e l l a l i g n e d i n t h e fi e l d B , i s s u b j e c t e d t o h i g h f ie l d

p u l s e s B p , m o s t l y o r ie n t e d o p p o s i t e t o B , . F o l l o w i n g e a c h p u l s e , t h e r e l a ti v e r e m a n e n t m o m e n t o f t h e c e l l M r i s d e t e r m i n e d a s d e s c r i b e d in

t h e t e xt . A - F c o r r e s po n d t o a s e q u e n c e o f p u l s e s a n d r e m a n e n t m o m e n t m e a s u r e m e n t s th a t r e s u lt s in t h e r e m a n e n c e p l o t s h o w n t o t h e r i g ht .

A , B p = 0 G ; B - E ; - 7 0 0 G < B p < 0 G ; F , Bp = + 7 0 0 G ( B p p a r a ll e l t o B a ).

Page 3: REMANE~1

8/2/2019 REMANE~1

http://slidepdf.com/reader/full/remane1 3/8

L Penninga et al./Journal of Magnetism and Magnetic Materials 149 (1995) 279-286 281

square , indica t ing tha t the re a re severa l d i f fe rent

magne t iza t ion s ta tes , and tha t individua l ce l l s can be

de ma gne t i z e d . The c oe rc i ve f i e l d s i n t he MR a nd

MMP c e l l s a re l e s s va r i a b l e t ha n fo r t he MM c e l l s .

2 . M e t h o d

C e l l s o f MM we re c u l t u re d a s p re v i ous l y de -

sc r i be d [14 ] a nd f i xe d i n 1% g l u t a ra lde hyde . S o me o f

t he f i xe d c e l l s we re de p os i t e d on c a rbon -c oa t e d e l ec -

t ron mi c rosc ope g r i d s fo r t r a nsmi s s i on e l e c t ron mi -

c r o s c o p y .

C e l ls o f M R a n d M M P w e r e c o l le c t e d f r o m

bra c k i sh s a l t ma rsh s e d i me n t s u s i ng a mod i f i e d

ra c e - t r a c k t e c hn i que [15 ]. T he c e l ls we re f i xe d i n 3%f o r m a l d e h y d e . S o m e o f t he M R c e ll s w e r e d e p o s i te d

on c a rbon-c oa t e d e l e c t ron mi c rosc ope g r i d s fo r

t r a nsmi s s i on e l e c t ron mi c rosc opy .

Ma gne t i c me a su re me n t s a re shown sc he ma t i c a l l y

i n F i g . 1 . T h e y w e r e m a d e w i t h a n O l y m p u s B H - 2

mi c rosc ope f i t t e d wi t h a v i de o c a me ra , VC R a nd

mo n i t o r , a nd a c o i l sy s t e m. The × 40 ob j e c t i ve wa s

mod i f i e d by re mov i ng a ma gne t i c sp r i ng t ha t p re s se d

on t he l e ns a nd c a use d a d i s t o r t ion o f t he f i e l d a t the

ob j e c t s it e . The m e t a l mi c rosc op e s ta ge wa s r e p l a c e d

by a luc i te s tage tha t was f i t t ed wi th a coi l sys temc ons i s t i ng o f i n su l a t e d c oppe r wi re wound on l uc i t e

f o r m s .

The c o i l sy s t e m c ons i s t e d o f t wo o r t hogona l ,

5 0 0 - t u r n c o i l p a i r s ( n o m i n a l l y o r i e n t e d N - S a n d

E -W ) t ha t ge ne ra t e d a va r ia b l e (up t o 15 G) , DC

a l i gnme n t f i e l d B a i n t he op t i c a l p l a ne o f t he mi c ro -

sc ope . Th e o r i e n t a t i on o f B a i n t he p l a ne c ou l d be

c on t ro l l e d by a d j us t i ng t he c u r re n t s t h rough t he t wo

c o i l pa ir s . A f i e l d B a wi t h c o ns t a n t ma gn i t ude c ou l d

a lso be used, ro ta t ing in the p lane a t a va r iable ra te

by a pp l y i ng s i nuso i da l c u r re n t s , 90 de g re e s ou t o fpha se , t o t he t wo c o i l pa i r s . Ano t he r 600 - t u rn c o i l

pa i r, o r i e n t e d pa ra l le l t o the E - W a l i gnme n t pa i r,

wa s u se d t o ge ne ra t e a 1 t o 5 ms ma gne t i c pu l s e

f i e l d B p wi t h va r i a b l e a mpl i t ude up t o 700 G. The

t wo pu l se c o i l s , c a l i b ra t e d fo r f i e l d a s a func t i on o f

c u r re n t , we re c o nne c t e d t h rough swi t c h i ng t r a ns is t o r s

t o a 5 0 - 1 5 0 V p o w e r s u p p l y. T h e m a g n i t u d e o f t h e

pu l se f i e l d wa s ob t a i ne d f rom t he r e a d i ng o f a pe a k

vo l t me t e r t ha t me a su re d t he sum o f t he vo l t a ge s

ac ross s tandard res i s tors in se r ies wi th the coi l s .

F i xe d c e l l s i n a que ous suspe ns i on we re d ra wn up

into a g lass capi l la ry tube wi th a rec tangula r c ross-

s e c t i on a nd a n op t i c a l pa t h l e ng t h o f 0 .1 m m ( InVi t ro

Dyna mi c s ) . The c a p i l l a ry t ube wa s p l a c e d on t he

s t a ge a nd v i e we d t h rough t he mi c rosc ope . The sus -pe nde d c e l ls we re obse rve d t o o r i e n t a l ong B a , a nd

t o ro t a t e by 180 de g re e s i f t he d i r e c t ion o f B a wa s

re ve r se d by re ve r s i ng t he d i r e c t i on o f c u r re n t i n t he

coils .

M o s t o f t h e m e a s u r e m e n t s w e r e m a d e w i t h o n l y

t he E- W a l i gnme n t c o i ls a c ti va t e d , wi t h B a a pp rox i -

ma t e l y 7 G . P u l s e d ma gne t i c f i e l d s o f i nc re a s i ng

a mpl i t ude wi t h B p o r i e n t e d oppos i t e t o B a we re

a pp l i e d t o t he s a mpl e . W he n B p e xc e e de d t he c oe r -

c i ve fo rc e H c o f t he c ha i n o f pa r t i c le s i n a pa r t i c u l a r

c e l l , t he c e l l c ou l d be s e e n t o ro t a t e by 180 de g re e sfo l l owi n g t he pu l s e.

T h e r e m a n e n t m a g n e t i c d i p o le m o m e n t o f t h e c e l l

Mr , fo l l owi ng a pu l s e o f a mpl i t ude B p , r e l a ti ve t o it s

or ig ina l va lue , i . e . , be fore be ing subjec ted to any

pu l se s , wa s de t e rmi ne d by me a su r i ng t he t i me T

re qu i re d fo r t he c e l l t o ro t a t e be t we e n t w o a ng l e s , th l

and qb2 , wi t h r e spe c t t o B ~ , fo l l owi ng a r e ve r sa l o f

B a. The re l a t ionsh i p be t w e e n t he t o rque e xe r t e d by

B a on M r a nd t he v i s c ou s d ra g on t he c e l l a s i t

ro ta tes i s g iven by [16] :

MrB a s in 0 = V d O / d t , ( 1 )

whe re 0 i s the i n s t a n t a ne ous a ng l e be t we e n M r a nd

B a , and Vd i s t he ro t a t i ona l -v i s c ous -d ra g c oe f f i c i e n t ,

wh i c h fo r a sphe re i s e qua l t o 8 7 r 1 / R 3 ( 1 / is the

v i s c os i t y c oe f f i c i e n t o f wa t e r a nd R i s the r a d i us o f

t he sphe re ) [17 ] . R e a r ra nge me n t a nd i n t e g ra t i on o f

Eq. (1) y ie lds

T = (Vd/MrBa) [ In t a n ( t h J 2 ) - In t an ( t h 2 / 2 ) ] .

(2 )

For cons tant Vd, Ba , t h l and thE, T i s inver se lyp ropor t i ona l t o M r B e c a use o f t he l oga r i t hmi c d i -

ve rge n c e o f T a t th = 0 a nd 180 ° , T wa s me a su re d

be tw een th l = 10° and t h E = 170° " Th i s m e t hod c ou l d

no t be u se d t o de t e rmi ne t he a bso l u t e ma gn i t ude o f

t he c e l l u l a r r e ma ne n t mome n t be c a use t he a c t ua l

v i s c ous d ra g c oe f f i c i e n t s fo r t he c e l l s in t he w a t e r

m e d i u m w e r e n o t k n o w n .

A va r i a t ion on t h i s me t hod u t i l i z e d B ~ ro t a t i ng i n

t he foc a l p l a ne a t a f i xe d f r e q ue nc y ( = 0 .5 H z ) [18] ,

i n i t i a l l y wi t h a f i e l d ma gn i t ude o f a pp rox i ma t e l y 7

Page 4: REMANE~1

8/2/2019 REMANE~1

http://slidepdf.com/reader/full/remane1 4/8

2 8 2 I. Penninga et al. /Jo urn al of Magnetism and Magnetic Materials 149 (1995) 279-2 86

F i g . 2 . T r a n s m i s s i o n e l e c t r o n m i c r o g r a p h o f a Magnetospirillum

magnetotacticum ( M M ) c e l l . B a r = 1 ~ m .

m i n e d b y a p p l y i n g p r o g r e s s i v e l y l ar g e r d c f i e ld s t o

a n i n i t i a l l y d e m a g n e t i z e d s a m p l e a n d m e a s u r i n g t h e

r e m a n e n c e a f t e r r e m o v a l o f th e f i el d . T h e d c d e m a g -

n e t i z a t i o n ( D C M ) c u r v e w a s d e t e r m i n e d b y s a t u r a t -

i ng the s a m p le i n a l a r ge pos i t i ve f i e ld a nd m e a su r -i n g t h e r e m a n e n c e a f t er a p p l y i n g p r o g r e s s i v e l y la r g er ,

n e g a t iv e , d c f i el d s. T h e b u l k s a m p l e w a s p r e p a r e d b y

d r y ing a sm a l l d r op o f t he c e l l su spe ns ion on to a

g l a s s c ove r s l i p .

3 . Re su l t s

G . A t f i r s t t he c e l l r o t a t e d a t c ons t a n t a ngu la r ve loc -

i t y w i th t he f i e ld . The n , w i th t he r o t a t i on f r e que nc y

u n c h a n g e d , t h e f i e ld m a g n i t u d e B a w a s s l o w l y r e -

duc e d un t i l a t a va lue ( n a ) m i n , t h e c e ll w a s o b s e r v e d

to s top r o t a t i ng w i th t he f i e ld . A c c o r d ing to Eq . ( 1 ) ,

r o t a t i on o f a c e l l a t c ons t a n t a ngu la r ve loc i ty w i l l

oc c u r a s l ong a s t he t o r que on the c e l l due to t he

r o t a t i ng f i e ld i s ba l a nc e d by the v i s c ou s d r a g . A s B a

i s de c r e a se d , O inc r e a se s . A t B a = ( B a ) m i n , 0 = 9 0 ° ,

f o r B a < ( B a ) m i n , t he c e l l s t ops r o t a t i ng w i th t he

f i e ld . F r o m Eq . 1 , M r i s p r opo r t i ona l t o ( B a ) m i n . A S

n o t e d a b o v e , s i n c e V w a s n o t k n o w n , o n l y th e

r e l at i v e m a g n i t u d e o f t h e r e m a n e n t m o m e n t M r o f

the c e l l c ou ld be de t e r m ine d in t h i s w a y .

B e s i d e s t h e p u l s e m e a s u r e m e n t s d e s c r i b e d a b o v e ,

t h e a v e r a g e c o e r c i v e f o r c e a n d r e m a n e n c e c u r v e s o f

a b u l k s a m p l e o f t h e c u l t u r e d M M c e l l s w e r e m e a -

s u r e d w i t h a n a l t e r n a ti n g g r a d i e n t f o r c e m a g n e t o m e -

t e r i n s t a t i c f i e ld s up to 1 . 0 kG . The i so the r m a l

r e m a n e n t m a g n e t i z a t i o n ( I R M ) c u r v e w a s d e t e r -

E= .

Eo

U

¢ -

o~

30 L ~ - ~ - - - ~

20

lo i ~ i ~''''

- 1 0 I ' ~' /

-20 ~ ./"i ~ ,

i

-30 ~ . - - - ~ - J ' ~ :

-3ooo -2o oo 1o oo o tooo 200o 30o0Magnetic Field (G)

F i g . 3 . H y s t e r e s i s l o o p f o r a b u l k M M s a m p l e a t 2 9 5 K . T h e

c o e r c i v e f o r c e i s 3 0 3 G .

3 . 1 . M a g n e t o s p i r ill u m a g n e t o ta c t ic u m

A n e l e c tr o n m i c r o g r a p h o f o n e o f t he M M s p i ri l law i th i t s s i ng l e c ha in o f c ubo - oc t a he d r a l m a gne t i t e

pa r t i c l e s is show n in F ig . 2 . Exa m ina t ion o f t h i rt y

m i c r o g r a p h s s h o w e d t h a t t h e c e l l s c o n t a i n e d f r o m 8

t o 5 2 m a g n e t o s o m e s ( a v e. 2 4 ) w i t h a n a v e r a g e p a r ti -

c l e vo lu m e o f 9 . 6 x 10 - 17 c m 3. U s in g the va lue o f

4 8 0 e m u / c m 3 f o r F e 3 0 4 a t 2 95 K , t h i s y i el d s a n

e s t i m a t e d m a g n e t i c m o m e n t p e r c e l l r a n g i n g f r o m

M = 0 . 32 to 2 . 4 X 10 - 12 e m u , w i th a n a v e r a ge va lue

o f 1 .1 × 10 - 12 e m u ( 1 e m u = 1 e r g / g a u s s ) . T h e

bu lk c oe r c ive f o r c e a t 295 K w a s 303 G ( F ig . 3 ) ,

w h i c h i s c o n s i s t e n t w i t h p r e v i o u s m e a s u r e m e n t s o nM M c e l l s [ 19 ] . The r e m a ne nc e r a t i o ( M r /M ) w a s

0 . 48 , i n e xc e l l e n t a g r e e m e n t w i th t he t he o r e t i c a l

v a l u e o f 0 . 5 f o r a r a n d o m d i s p e r s i o n o f s i n g l e - m a g -

ne t i c - dom a in pa r t i c l e s .

1 5 i

1(I _ _ ~

~ ° o o c

0. 5

~ o.o

~ - (L5

- 1 , 0

- 1 . 5 I

2 0 0 2 5 0

I3 0 0 3 5 0 4 0 0

Pulsed Field (G)

F i g . 4 . P u l s e d m a g n e t i c f i e l d r e m a n e n c e p l o t f o r a n i n d i v i d u a l

M M c e l l .

Edited by Foxit ReaderCopyright(C) by Foxit Corporation,2005-2009For Evaluation Only.

Page 5: REMANE~1

8/2/2019 REMANE~1

http://slidepdf.com/reader/full/remane1 5/8

1 . P e n n i n g a e t a l. / J o u r n a l o f M a g n e t i s m a n d M a g n e t i c M a t e r i a l s 1 4 9 ( 1 99 5 ) 2 7 9 - 2 8 6 2 8 3

In t he pu l s e d re ma ne nc e c u rve o f F i g . 4 , t he

re l a t ive ma gn i t ude o f t he r e ma ne n t d i po l e mom e n t o f

a ce l l M r i s p lo t ted aga ins t the am pl i tude Bp o f the

pu l se d ma gn e t i c f i el d . S i nc e B a wa s t a ke n a s de f i n -

ing the pos i t ive d i rec t ion , and Bp i s ant ipa ra l le l toB a , -B p i s p l o t t e d a long t he absc i ss a i n F i g . 4. F o r

ne ga t i ve va l ue s o f M r t he ma gn e t i z a t ion o f t he c ha i n

ha s r e ve r se d d i re c t i on wi t h i n t he c e l l. Th e hy s t e re s is

loop in th i s sp i r i l lum is ve ry square . In such cases ,

the co erc iv e f ie ld , H c , i s de f ine d as the f ie ld a t

wh i c h t he ma gn e t i z a t ion re ve r sa l t a kes p l a c e ; fo r t he

p re se n t s a mpl e , H c = 3 10(3 ) G . A squa re hys t e re s i s

loop i s charac te r i s t ic of a l l MM ce l l s , sugges t ing tha t

t he ma gne t i z a t i on o f a c e l l c a n be r e ve r se d , bu t t ha t

t he c e l l c a nno t be de ma gne t i z e d . In a f e w c e l l s ,

howe ve r , t he ma gne t i z a t i on re ve r sa l oc c u r re d i n t wos t a ge s , wi t h a sudde n sma l l de c re a se i n mome n t

fo l l owe d by c ompl e t e ma gne t i z a t i on re ve r sa l a t a

s l ight ly h igher pulse f ie ld .

The ma g n i t ude o f M r fo r a c e l l wa s t he s a me

be fo re a nd a f t e r a s a t u ra t ion pu l s e (B p = 700 G) ,

wi th Bp para l le l t o n a , indica t ing tha t the mic ro-

ma gne t i c sp i n s t ruc t u re o f t he c ha i n wa s t he s a me i n

bo t h s t a te s , a nd t ha t the na t u ra l r e ma ne n t mo me n t o f

t he c e l l s equa l s t he s a t u ra t ion re m a ne n t mo me n t .

T h e I R M a n d D C M c u r v e s f o r t h e b u l k s a m p l e

a re shown i n F i g . 5 . As a me a su re o f i n t e r - s t r a nd o rin t ra -s t rand dipola r in te rac t ions , the two se t s of re -

m a n e n c e m e a s u r e m e n t s a r e c o m b i n e d t o f o r m a

mM

0 .5

0 . 0

, ~o iol

- 0 . 5 "?

DC MI

-1 .0 . . . . 2 . . . . . . . . . . . . . ~ J 2 ~ : : ~ . . . . .0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

Magnet ic F ie ld (G)

F i g . 5. N o r m a l i z e d c u r v e s o f i s o t h e r m a l r e m a n e n t m a g n e t i z a t i o n

( I R M ) a n d d c d e m a g n e t i z a t i o n ( D C M ) f o r b u l k s a m p l e . C u r v e s

h a v e b e e n n o r m a l i z e d t o th e s a t u r a ti o n r e m a n e n c e p r o d u c e d i n 1

k G . A H e n k e l p l o t f o r th i s s a m p l e i s s h o w n i n th e i n s e rt .

6 .0 [ . . . . . . ~ . . . . . . . . . . . . . . . 10

i o i . i. 0 : : • c o . s ' : : ' i, 8

/, ! ' 6m / i o

3.0 F :'- - - 4 _ ~

_ /

. . . . . . . . . .

0 .00 100 200 300 400 500 600

Coercivity (G)

F i g . 6 . H i s t o g r a m o f s w i t c h i n g f i e l d s f o r M M c e l l s w i t h s w i t c h i n g

f i e ld d i s t r ib u t i o n s o b t a i n e d b y d i f f e r e n t i a t i n g th e D C M a n d I R M

d a t a in F i g . 5. T h e r e m a n e n t S F D s h a v e b e e n n o r m a l i z e d b y t h e

t o t a l a r e a u n d e r e a c h c u r v e .

Henke l p lo t (e .g . , Ref . [20]) and shown in the inse t

o f F i g . 5 . F o r non - i n t e ra c t i ng s i ng l e doma i n pa r t i -

c l e s , t he He nke l p l o t i s l i ne a r wi t h a s l ope o f -2 .

The s l i gh t c onc a ve upwa rd de pa r t u re f rom i de a l

be ha v i o r sugge s t s a mi n i ma l de g re e o f ne ga t i ve (de -

ma gne t i z i ng ) i n t e ra c t i ons be t we e n ma gne t osome

c ha i ns [19 -22 ] .

The pu l s e f i e l d s a t wh i c h ma gne t i z a t i on re ve r sa l

oc c u r re d we re me a su re d fo r 50 sp i ri l la a nd a re d i s -p l a ye d i n t he h i st og ra m sho wn i n F i g. 6 . The a v e ra ge

ma gne t i z a t i on re ve r sa l f i e l d fo r t he se c e l l s wa s 292

G, i n good a g re e me n t wi t h t he bu l k c oe rc i v i t y o f 303

G fo r t he s a mpl e bu t l e s s t ha n t he r e ma ne n t c oe rc i v -

i ty ( H r ) o f 339 G . The so l i d a nd da she d l i ne s i n F i g.

6 we re ob t a i ne d by d i f f e re n t i a t i ng t he DC M a nd

IR M re ma n e nc e p l o t s o f the bu l k da t a wi t h r e spe c t to

ma gne t i c f i e l d a nd p rov i de e s t i ma t e s o f t he swi t c h -

i ng f i e l d d i s t r i bu t i ons (S F D) du r i ng ma gne t i z a t i on

a nd re ma gne t i z a t i on . B o t h r e ma ne n t S F Ds a re a p -

p rox i ma t e l y t he s a me sugge s t i ng mi n i ma l i n t e ra c t i one f fe c t s a nd i s a no t he r e xp re s s i on o f t he ne a r l i ne a r

He nk e l p l o t. A l t houg h t he a ve ra ge c o e rc i v i t y i s a p -

p rox i m a t e l y t he s a me fo r bo t h t he bu l k a nd s i ng le

ce l l exper ime nts , the re i s a sha rp cuto ff in the s ingle

c e l l S F D c ompa re d t o t he h i gh - f i e l d t a i l fo r t he

ra ndom d i spe r s i on o f d r i e d c e l ls .

The de pe n de nc e o f H c on t he o r i e n t a t ion o f B p

wi t h r e spe c t t o t he o r i e n t a t ion o f M r w a s i nve s t i-

g a t ed b y c o m p a r i n g H c fo r Bp or iented ant ipa ra l le l

to B a , to H c fo r B p or iented a t 45 degree s to B a .

Page 6: REMANE~1

8/2/2019 REMANE~1

http://slidepdf.com/reader/full/remane1 6/8

2 8 4 L P enninga e t a l. / Jo urn a l o j :Magne ti sm and Magne t ic Mater ia l s 149 (1995) 279- 286

i

F i g . 7 . T r a n s m i s s i o n e l e c t r o n m i c r o g r a p h o f a n u n c u l t u r e d m a g n e -

t o t a c t i c r o d ( M R ) . B a r = 1 i x m .

T he va lue s o f H e w e r e 300 G a nd 320 G , r e spe c -

t ive ly .

F e 3 S 4 m a g n e t o s o m e s . A n e l e c t r o n m i c r o g r a p h o f a

M M P i s show n in F ig . 8 . T he o r ga n i sm c ons i s t s o f

mul t i p l e c e l l s , e a c h o f w hic h c on t a ins s i ng l e o r

d o u b l e m a g n e t o s o m e c h a in s . T h e m a g n e t o s o m e m i n -

erals a r e F e 3 S 4 a nd Fe S2 , bu t t he a r r a nge m e nt o f t heminera ls in the cha ins i s not known. F ig . 8 shows the

M M P w i th t he i nd iv idua l c e l l s d i sa gge ga t e d on t he

gr id . T he r e i s e v ide nc e f r om e l e c t r on mic r osc opy

( B .R . H e yw ood , S . M a nn , a nd R .B . F r a nke l , unpub-

l i she d) t ha t t he ma gne tosome c ha ins i n c e l l s o f t he

in t a c t o r ga n i sm ha ve a c ommon o r i e n t a t i on .

Pu l se d f i e l d r e ma ne nc e p lo t s f o r s i x M R c e l l s a nd

f ive MMP ce l l s a re shown in Figs . 9 and 10, r espec-

t i ve ly . T he a ve r a ge va lue s o f H c w e r e 32 0 + 20 G

a nd 200 + 3 G , r e spe c t i ve ly . U n l ike t he M M c e l ls ,

t he M R a nd M M P hys t e r e s i s l oops w e r e no t squa r e ,i nd i c a t i ng t ha t i nd iv idua l M R a nd M M P c e l l s c a n be

de ma gne t i z e d .

3 .2 . M R a n d M M P 4 . D i s cu s s i on

A n e l e c t r on mic r ogr a ph o f a M R c e l l i s show n in

Fig. 7 . The ce l l conta ins two adjacent cha ins of

T he h igh squa r e ne ss o f the pu l se d r e ma n e nc e da t a

ob t a ine d f o r M M i s c ons i s t e n t w i th t he s i ng l e c ha in

F i g . 8 . T r a n s m i s s i o n e l e c t r o n m i c r o g r a p h o f a n u n c u l t u re d , m a n y - c e l l e d , m a g n e t o t a c t i c p r o k a r y o t e ( M M P ) . B a r = 1 I~ m .

Page 7: REMANE~1

8/2/2019 REMANE~1

http://slidepdf.com/reader/full/remane1 7/8

L Penninga et al./Journal of Magnetism and Magnetic Materials 149 (1995) 279-286 28 5

15

1 o [

.~ 0,5

0. 0

1.0

-1.5

100 200

m o

z~ o

z~13A

z~

I30 0

I

4 0 0 5 0 0 6 0 o

Pulsed Field (G)

Fig. 9. Pulsed magnetic field remanence plots for a six magneto-tactic rods (MR).

of s i ng l e -doma i n ma gne t i t e pa r t i c l e s i n t h i s o rga n -

i sm. Th i s s t ruc t u re i s r e mi n i s c e n t o f t he ' c ha i n o f

sphe re s ' mode l fo r e l onga t e d s i ng l e doma i n pa r t i c l e s

[23 ]. M a gne t i c i n t e ra c t i ons be t we e n t he pa r t i c le s a nd

t he pe r fe c t c rys t a l l og ra ph i c a l i gnme n t o f t he c rys -

t a ll i ne e a sy a x i s a l ong t he c ha i n d i re c t i on c om bi ne t o

ma ke t he c ha i n a x i s t he e a sy a x i s o f ma gne t i z a t i on ,

a nd ma gne t i z a t i on re ve r sa l oc c u rs by a f a nn i ng o r

v o r t e x p r o p a g a t i o n m e c h a n i s m [ 2 3 - 2 5 ] . B e c a u s e o f

ga ps be t we e n t he pa r t i c l e s i n t he c ha i n , t he c oe rc i ve

fo rc e i s l e s s t ha n t he c oe rc i ve fo rc e e xpe c t e d fo r a

~ 0.0

a~ 05

-1.0

- I .5

I ~

0.5

]

DA

I I _ I

100 200 300 400 5~ 6~

Pulsed Field (G)

Fig. 10. Pulsed magnetic field remanence plots for five many-cel-

led, magnetotactic prokaryotes (MMP).

so l i d rod o r c y l i nde r [19 ]. F o r e xa m pl e , t he c l a s s i c al

n o n s y m m e t r i c f a n n i n g m o d e o f J a c o b s a n d B e a n [ 23 ]

p re d i c t s H c = 439 G fo r a c ha i n o f 12 m a gne t i t e

pa r t i cl e s o r g re a te r , whe re a s t he obse rv e d Hc fo r t he

M M s a m p l e i s a p p r o x i m a t e l y 3 0 0 G . T h e f a n n i n g -t ype re ve r sa l mode s a re a l so c ons i s t e n t wi t h t he

obse rve d d i s t r i bu t i on i n t he c oe rc i ve fo rc e i n t he

popula t ion , e i the r through a d i s t r ibut ion in gap s izes ,

c ha i n l e ng t hs , o r bo t h . The ore t i c a l mode l s fo r f a n -

n i ng - l ike m a gne t i z a t i on re ve r sa ls i n a l i ne a r c ha in o f

pa r t i c l e s p re d i c t t ha t c ha i n c oe rc i v i t y a pp roa c he s a

sa tura t ion va lue for n > 12 [23,25,26] . We in te rp re t

t he sha rp c u t o f f i n t he c oe rc i v i t y d i s tr i bu t ion ob -

se rve d fo r t he c e l l s i n t e rms o f t h i s s a t u ra ti on e f fe c t .

Howe ve r , s i nc e i t wa s no t pos s i b l e t o obse rve t he

c ha i n l e ng t h i n a c e l l w i t h l i gh t mi c rosc opy , i t wa sno t pos s i b l e t o c o r re l a t e the c o e rc i ve fo rc e o f a g i ve n

ce l l wi th cha in length .

The re l a t i ve l y sma l l i nc re a se , f rom 300 t o 320 G,

i n t he c oe rc i ve fo rc e wi t h c ha nge o f a ng l e f rom 0 t o

45 ° be t we e n t he ba c t e r i a l d i po l e a nd t he pu l s e f i e l d

i s a l so c ons i s t e n t wi t h a n on -c oh e re n t r e ve r sa l mo de ,

suc h a s t he f a nn i ng mode i n t he c ha i n o f sphe re s

mode l [23] .

T h e s u d d e n s m a l l d e c r e a s e i n m o m e n t f o l l o w e d

by c ompl e t e r e ma gne t i z a t i on a t s l i gh t l y h i ghe r pu l s e

f i e l d s , obse rve d i n some MM c e l l s , sugge s t s t ha t a ni n t e rme d i a t e r e ma ne n t s t a t e c a n oc c a s i ona l l y be ob -

ta ined. The reason for th i s i s unc lea r , but i s probably

re la ted to depar tures f rom an idea l , l inea r cha in

s t ruc t u re . One t ype o f de pa r t u re i s t he p re se nc e o f a

f e w i m m a t u r e m a g n e t o s o m e s a t t h e e n d s o f c h a i n s

[27 ] . Imma t u re ma gne t osome s a re sma l l e r - s i z e d pa r -

t i c l e s , a pp roa c h i ng t he supe rpa ra ma gne t i c - s i ng l e do -

ma i n t r a ns i t i on vo l ume , fo rme d du r i ng i n i t i a l c rys t a l

g rowt h . The mome n t s o f t he se pa r t i c l e s ma y swi t c h

a t a lower c r i t i ca l f ie ld than the res t of the cha in due

t o t he i r sma l l e r vo l ume s a nd t e rmi na l pos i t i ons . Theva r i a b l e oc c u r re nc e o f t he se sma l l e r ma gne t osome s

i n MM c e l l s wou l d e xp l a i n bo t h t he sma l l ma gn i t ude

o f t h e m o m e n t d e c r e a s e a n d w h y t h e i n t e r m e d i a t e

mi c roma gne t i c s t a t e i s obse rve d i n on l y some c e l l s .

T h e p u l s e d h y s t e r e s i s m e a s u r e m e n t s o n M R a n d

MMP c e l l s sugge s t t ha t o rga n i sms wi t h t wo o r more

a d j a c e n t c ha i ns c a n be e f fe c t i ve l y de ma gne t i z e d . F o r

t h i s t ype o f ge ome t r i c a l a r ra nge me n t o f ma gne t o -

some s , e i t he r t he mome n t s o f t he t wo s t r a nds a re

a n t i pa ra l l e l ( ' i n t e r -c ha i n ' ) , o r i nd i v i dua l ma gne t o -

Page 8: REMANE~1

8/2/2019 REMANE~1

http://slidepdf.com/reader/full/remane1 8/8

286 L P e n n i n g a e t a l. / J o u r n a l o f M a g n e t is m a n d M a g n e t ic M a t e r i a ls 1 4 9 ( 1 9 95 ) 2 7 9 - 2 8 6

som es a long the s am e cha in can be an t ipa ra l l e l ( ' i n -

t ra-chain ' ) . I t i s noteworthy that the chains with

g re ig it e on ly (MR ) ha ve h igher coerc iv i ty than cha ins

wi th g re ig i t e and py r i t e (MMP) , even though the

greigi te magnetosomes have s imilar s ize d is t r ibu-t ions in both organisms. This observat ion can be

rat ional ized i f we hypothes ize that pyr i te par t ic les

a re co -o rgan ized in the cha ins o f the MMP. T hen i t

is l ikely that MR cel ls reverse their magnet iza t ion by

in te r- cha in r em agne t iza t ion on ly , whereas the MM P

cel ls reverse their magnet izat ion by in tra-chain re-

m agne t iza t ion . P resum ab ly , the non-m agn e t ic py r it e

par t ic les in the MMP chains reduce the s t rong pos i-

t ive in teract ions between the greigi te par t ic les , mak-

ing an in t r a -cha in r ever s ing m ode m ore p robab le

with a concomitant decrease in the energy barr ier forremagnet izat ion. These observat ions are in agree-

m en t w i th r ecen t m ic rom agne t ic m ode l ing o f sw i tch -

ing f i e ld behav io r in in te rac t ing cha ins o f cub ic and

spherical particles [24,25].

Acknowledgements

We thank J . Hils inger for help in the cons truct ion

of the pulsed magnet ic f ie ld apparatus . IP was sup-

por ted by a g ran t f rom the U n iver s ity o f Gron ingen .DA B and R BF were suppor ted by the U .S . Of f ice o f

Nava l Research . BMM and DAB were suppor ted by

the Nat ional Science Foundat ion. Suppor t for the

Ins ti tu te fo r Rock M agne t i sm was p rov ided by g ran t s

f rom the Keck Founda t ion and the Na t iona l Sc ience

Foundat ion. This is contr ibut ion 9409 of the Ins t i tu te

fo r Rock Magne t i sm .

References

[1] R.P. Blakemore, N.A. Blakemore, D.A. Ba zylinski and T.T.Moench, in: Bergy's Manual of Systematic Bacteriology,

Vol. 3, J .T. Staley, E.P. B ryant , N. Pfen nig and J.G. H olt ,

eds. (Will iam s and Wilkins, Balt imore, MD, 1989) p. 1882.

[2] D.A. Bazylinski, A .J. Garratt-Reed and R.B. Frankel, Mi-

crosc. Res. Tech. 27 (1994) 389.

[3] R.B. Frankel , R.P. B lakem ore and R.S. Wolfe, Scienc e 203

(1979) 1355.

[4] R.F. Butler and S.K. Banerjee, J . Geophys. Res. 80 (1975)

4049.

[5] S. M ann , N.H.C. Sparks, R.B. Frankel, D.A. Bazylinski an d

H.J. Jannasch, Nature 343 (1990) 258.[6] B.R. Heywood, D.A. Bazylinski, A.J. Garratt-Reed, S. Mann

and R.B. Frankel , Naturwissenschaften 77 (1990) 536.

[7] F.G. Rogers, R.P. Blakemore, N.A. Blakemore, R.B. Frankel,

D.A. Bazylinski , D. Maratea and C. Rogers, Arch. Micro-

biol . 154 (1990) 18.

[8] D.A. Bazylinski , B.R. Heywood, S. Mann and R.B. Frankel ,

Nature 366 (1993) 218.

[9] R.B. Frankel, A nn. Rev. Biophys. Bioeng. 13 (1984) 85.

[10] A.J. K almijn and R .P. Blakemore, in: Anima l Migration,

Navigation and Homing, eds. K. Schm idt-Ko enig and W.T.

Keeton (Springer-Verlag, Ber lin, 1978) p. 354.

[11] M. Mizota and Y. Maeda, Annu. Rep. Res. Reactor Inst .

Kyoto Univ. 16 (1983) 144.[12] R.P. Blakemore, R.B. F rankel and A.J. Kalmijn, Nature 286

(1980) 384 .

[13] J .E. Knowles, IE EE Trans. Magn. 14 (1978 ) 858.

[14] R.P. Blakemore, D. Maratea and R.S. Wolfe, J. Bacteriol.

140 (1979) 720.

[15] R.S. Wolfe, R.K. Thauer and N. Pfennig, FEMS Microbiol .

Ecol . 4 (1987) 31.

[16] C.P. Bean, Biophys. J . 54 (1989) 258a.

[17] H.C. Berg , R andom W alks in Bio logy (Pr ince ton Univers i ty

Press, Princeton, NJ, 1983) p. 83.

[18] N. Petersen, D .G. We iss and H. Vali , in: Geo ma gnetism and

Palaeomagnetism, eds. F.J. Lowes, D.W. Collison, J.H. Parry,

S .K. Runcorn , D .C. Tozer and A. Soward (Kluwer Academ ic

Publishers, Amsterdam, 1989) p. 231.

[19] B.M. M oskowitz, R.B. Frankel, P.J. Flanders, R.P. Blake-

more and B.B. Schwartz, J . Magn. Magn. Mater . 73 (1988)

2 7 3 - 2 8 8 .

[20] R.W. Ch antrel l and K. O'G rady , in: M agnetic Propert ies of

Fine Part icles, eds. J .L. Dorman and D. Fiorani (North-Hol-

land, Amsterdam, 1992) p. 103.

[21] R. Proksc h and B.M. Moskowitz, J . Appl. Phys. 75 (1994)

5894.

[22] B.M. M oskowitz, R.B. Frankel and D.A. Bazylinski , Earth

Planet. Sci. Letters 120 (1993) 283.

[23] I .S. Jacobs and C.P. Bean, Phys. Rev. 100 (1955) 1060.

[24] Y. Uesaka, Y. Nakatani and N. Hayashi , J . Magn. Magn.

Mater. 123 (1993) 209.[25] P.V. Hendriksen, G. Ch rist iansen and S. Morup, J . Magn.

Magn. Mater . 132 (1994) 207.

[26] P.C. Kuo, J . Appl. Phys. 64 (1988) 5071.

[27] S. Man n, R.B. Frankel and R.P. Blakemore, Nature 310

(1984) 405 .


Recommended