+ All Categories
Home > Documents > Renewable 1

Renewable 1

Date post: 07-Aug-2018
Category:
Upload: alejandroherreraguridechile
View: 213 times
Download: 0 times
Share this document with a friend

of 7

Transcript
  • 8/20/2019 Renewable 1

    1/15

    10/16/20

    Renewable EnergyPart 1

    Professor Mohamed A . El-Sharkawi

    Renewable Energy

    • Solar 

    • Wind

    •  

    • Small Hydro

    • Geothermal

    • Tidal

    • Biomass

    Solar Energy

    Solar Power Density

    • 

    : solar power density on earth in kW/m2

      pwadt o               cos

    •  o: ext rater rest ra power ens t y . m

    •   : zenith angle (angle from the outward normal on the earthsurface to the center of the sun)

    •   dt: direct transmittance of g ases except for water (thefraction of radiant energy that is not absor bed by gases)

    •  p: is the transmittance of aerosol

    •   wa: water vapor absorptions of radiation .

    Zenith Angle

      Center

    of Sun

    Center of Earth

      

    Solar Energy (Whr/m2/day)

  • 8/20/2019 Renewable 1

    2/15

    10/16/20

    40%

    60%

    80%

    100%

    Density ratio

    Daily Solar Power Densi ty

    2t t 

    2

    0%

    20%

    0 2 4 6 8 10 12 14 16 18 20 22 24

    Time

    22

    max

         

    o

    e

    t:hour of the day using the 24 hr clock 

      max: the maximum solar power density

    t o: time at  max (noontime in the equator)

     : standard deviation

    Solar Efficiency ()

      pwadt o               cos

    0  

        

    %705cos     pwadt 

    Example

     An area located near the equator has the followingparameters:

    %%,%, wadt  29580        

     Assume that the standard deviation of the solar distribution

    function is 3.5hr. Compute the solar power density and

    solar efficiency at 3:00 PM.

    Solution

    2kW/m019500208001353   ..*..)*cos(*

    cos

    max

     pwadt omax

     At noon

    2532

    1215

    2 kw/m6930012

    2

    2

    2

    .e*.e  ).(*

    )()t t (

    max

    o

      %.*..)*cos( 74950020800    

     At 3:00PM 

    Types of Solar Systems

     –  Passive Solar System

     –   ct ve o ar ystem otovo ta c or

    Passive Solar System

     New supply of cold water  Warm water to the house

    Lens

    Sun rays

     

    water 

    Cold water

     back 

    to solar

    collector 

    Tank 

    Collector 

  • 8/20/2019 Renewable 1

    3/15

    10/16/20

    Passive Solar Integrated Solar Combined

    Cycle System (ISCCS)

    Collector

    mirror 

    Receiver 

    Integrated Solar Combined Cycle System (ISCCS)

     Active Solar Cel l

    Photovoltaic PV

    SiliconSilicon

     Nucleus

    Empty

    space for

    extra

    electron

    Electrons

    Silicon Atom Silicon Crystal

    SiliconSilicon

    • Silicon is a good insulator 

    • To make the silicon more conductive

    ,

    added (doping)

     – Phosphorus (P), which has 5 electrons in

    its outer shell

     – Boron (B), which has 3 electrons in its

    outer shell

  • 8/20/2019 Renewable 1

    4/15

    10/16/20

    P-N Material

    Electron without

     bonding

    SI    SI    SI Extra

    space for

    SI SI SI 

    SI 

    SI SI SI 

    SI 

     P

    electronSI 

    SI 

    SI 

    SI    SI 

     B

    n-type  p-type

    Lens I

    P-Type

    Base

     N-Type

    -

    -

    Load 

     Active Solar Cell (PV) Active Solar Cell (PV)

    • PV cell is built like a diode out of semiconductor

    material.

    • Sunlight is composed of photons, or particles of

    solar ener Photons are the ener b roducts of  .

    the nuclear reaction in the sun.

    • When photons strike a PV cell, some of the

     protons energy is absorbed by the semiconductor

    material of the PV cell.

     Active Solar Cell (PV) Active Solar Cell (PV)

    • With this extra energy, the electron in thesemiconductor material become excited and break off its atom, and eventually begin anelectric current.

    • Because PV cells are built like diodes, freeelectrons are forced to flow in only onedirection

     – the current is DC.

    Glass cover or lens

    Antireflective coating

    Main Parts of PV

    Contacts grid 

    n-type material

     p-type material

    Base

    Structure of Solar SystemStructure of Solar System

    •• PV cell:PV cell: 4X4 inches. The cell can produce

    about 1 watt which is enough to run a

    calculator.

  • 8/20/2019 Renewable 1

    5/15

    10/16/20

    •• Panel or Module:Panel or Module: To increase

    its energy rating, the PV cells

    are connect together in parallel

    Structure of Solar SystemStructure of Solar System

    an ser es.

    • Parallel cells increase the

    current rating

    • Series cells increase the

    voltage rating.

    ••  Array: Array: PV panels connect together in parallel

    and series to form a high power system.

    Structure of Solar SystemStructure of Solar System

  • 8/20/2019 Renewable 1

    6/15

    10/16/20

    Example

    • Estimate the maximum power, current, and voltage ratingsof the panel and array in the figure. Assume that each PVcell produce a maximum power of 2.5 W at the best solarconditions

    Solution

    • The panel has 9 series cells. Assume thatthe voltage of each cell i s 0.5 V, the total

    voltage of the panel is

    *  

    The panel has a total o f 36 cells, the power

    of the panel is

    .. panel

    9036*5.2    panelP W

    Total current of panel

    205.4

    90

     panel

     panel

     panelV 

    P I  A

    The array consists of 2 columns of 4 series modules.

    The total voltage of the array is

    184*5.44*     panelarray   V V  V

    Total power of the array is

    7208*908*     panelarray   PP W

    4018

    720

    array

    array

    array V 

    P

     I A

    Computation of PV Energy

    40%

    60%

    80%

    100%

    2  

    2

    2

    2

    )(

    max

         

    ot t 

    e

    0%

    20%

    0 2 4 6 8 10 1 2 1 4 1 6 1 8 2 0 2 2 2 4

    Time

    Solar power density

    2)t t ( o

    Panel power 

    Computation of PV Energy

    Linear relationship

    2t t 

    Solar power density

    22 

    max panel   ePP  

        2

    24

    0

    22

    2

    max

    )t t (

    max panel   Pdt eP E 

    o

    Panel Energy

    22

    max

            e

    Example

    5.12

    )12(

    max

    2

    e       W Pmax 100

    Compute the daily energy produced by a PV panel.

    Solution

    5.122 2   5.225.12 

    6275.2*2*1002max    P E  panel Wh

  • 8/20/2019 Renewable 1

    7/15

    10/16/20

    Example

     A 2 m2 panel of solar cells i s installed i n the Nevada’s

    area. The efficiency of the solar panel is 10%.

    m / kw.max 012  

    h.53 

    1. Compute the electrical power of the panel.

    2. Assume the panel is installed on a

    geosynchronous satellite. Compute its electrical

    power output.

    Solution

    kW .*. A*Psun 371125685     

    W .*.PP 1137137110  

    1.

    sun pane

    kW .* A*Posun 706221353     

    W .*.PP sun panel 6270270610    

    2.

    Stand Alone

    PV System

      e  r

    Solar array

    House

    dc current

    Charger 

    Discharger    C  o  n  v  e  r   t

    Local load Battery

    ac current

    PV System

    without battery

      rMeter  To utility

    Solar

    arrayHouse

      e  n   t ac current

       C  o  n  v  e  r   t

    Local load 

       d  c  c  u  r

    Solar System With Battery

    •• Battery:Battery: To store the energy whenthe PV power is not f ully uti lized by

    the load. – The battery power is later used when the

    PV power is less than the demand.

     – These batteries are deep cycle types

    •• Charger:Charger: To charge the battery by thePV

    Solar System With Battery

    •• Inverter:Inverter: To invert the dc power of

    the battery to the 60Hz power used in

    homes.

    •• Synchronizer:Synchronizer: Used to connect the

    PV system to the power grid.

     – DC/AC converter.

  • 8/20/2019 Renewable 1

    8/15

    10/16/20

    Ideal PV Model: P-N Junction

    Cathode (K) Cathode (K)

     p

    Anode (A) Anode (A)

     I 

    V d 

    Ideal PV Model: P-N Junction

     I    R

    V d 

    V s+V l

     I Forward biased

    region

    -

    V d Reverse biased

    region

     I o Reverse saturation current

    Ideal PV Model: P-N Junction

     

     

     

      1T 

    o   e I  I    qkT 

    V T  

      I 

    Forward

     biased

    region

     I o Reverse saturationcurrent

     I o: reverse saturation current

    V T : thermal voltage

    q: elementary charge constant (1.602 10-19 Coulomb)

    k : Boltzmann’s constant (1.380 x 10-23 J/K)

    T : absolute temperature in Kelvin (K).

    V d Reverse biased

    region

    PV Model

    • The current Io makes the upper terminal of the load

    positive with respect to the lower terminal

    Io

    Io

            L      o      a        d

    V

    +

    -

    • So the diode has a positive voltage on its anode wrt

    cathode.

    • This is a forward biased voltage which causes a

    forward current to flow back into the diode.

    • Now we have two currents in the circuit at the same time

    1. current coming out of the diode due to the acquired

    energy by the PV Is2. current going into the diode due to the positive

    polarity across the load Id

    PV Model

       d

    Solar Celld s

      I  I  I   

    s   I d     L  o= d 

     I s: the solar current (is a nonlinear variable that changes

    with light density (irradiance)

     I d : the forward current through the diode.

    V d 

     I s

    V d 

     I d 

     I o

    PV Characteristics

    V d 

     I = I s- I 

    Q I 

    Q II 

    Q III    Q IV 

  • 8/20/2019 Renewable 1

    9/15

    10/16/20

    PV Power CharacteristicsVI P 

    d s

     I  I  I 

    V V 

     I s   I d  I   o

      a   d

    V=V d 

    Solar Cell

     

     

     

      1T 

    od    e I  I 

     

     

     

      1T 

    od sd    e I V  I V  I V P

    PV Power Characteristics

     I  I sc

     I mp

    V oc

    P

    Pmax

    V d V mp

    PV Power Characteristics

    • Main variables

     – Short Circuit Current (Isc)

     – Open Circuit Voltage ( oc)

     – Maximum Power Operating Point (Pmax,

    Vmp, Imp)

    Short Circuit PV

     I s I d =0   I sc=I s

    ssc  

    Open Circuit PV

     I s   I d =I s   V oc

     

      

     

     

     

    1ln*

    1

    o

    sT oc

    osd 

     I 

     I V V 

    e I  I  I    T oc

    Example

    • An ideal PV cell with reverse saturation

    current of 1nA is operating at 30oC. The

    solar current at 30oC is 1A. Com utethe output voltage and output power of

    the PV cell when the load draws 0.5A.

  • 8/20/2019 Renewable 1

    10/15

    10/16/20

    Solution

    V10*11.2610*602.1

    )15.27330(*10*38.1 319

    23

    q

    T k V T 

     

     

    1V V 

    os  e I  I  I    T 

     

      

        1*1015.0 02611.09

    e

    V523.0*110*5.01ln 9   T V V 

    W2615.05.0*523.0     I V P

    Example

    • An ideal solar cell with reversesaturation current of 1nA is operating at

    20oC. The solar current at 20oC is 0.8A.

    Compute the voltage and current of the

    solar cell at the maximum power point.

    SolutionVI P 

    0

     I V 

     I V 

    Pmp  

     

     

     

      1T V 

    os   e I  I  I 

    T V V 

    o eV V 

    /

    01/

     

     

     

     

      T mp   V V 

    oT 

    mp

    os   e I V 

     I  I V 

    P

    At maximum Power 

    V10*25.2510*602.1

    )15.27320(*10*38.1 319

    23

    q

    T k V T 

    Solution

    osV V mp

     I 

     I  I e

    V T mp 

       /1

    o

    925.25/ 10*8.025.25

    1    

      

        mpV mp e

    mV8479.443mpV 

    Solution

     

     

     

      1T 

    mp

    osmp   e I  I  I 

    8479.443

    mW948.3357569.0*8479.443*max     mpmp   I V P

    A7569.01108.0 25.259  

     

      e I mp

    Operating Point of PV

    • The operating point of the solar cell depends

    on the magnitude of the load resistance R

    • The load resistance is the out ut volta e Vdivided by the load current I.

    • The intersection of the PV cell characteristic

    with the load line is the operating point of the

    PV cell.

  • 8/20/2019 Renewable 1

    11/15

    10/16/20

    Solar Cell

     I s   I d 

     I    L  o  a   d

    V=V d 

    Operating Point of PV

     I  R1

     R2

     R1

  • 8/20/2019 Renewable 1

    12/15

    10/16/20

    Effect of Irradiance

      1

    P

      2

      1T 3 T 1

    3

    V oc   V 

    T 3

    T 2 Load line

      1  2

    Effect of Temperature T

    T 1P

    T 1>T 2>T 3

    T 3

    PV Module (Series

    Connection)

    I I   Vs

    Is2Id2   V2

            L      o      a        d

    Is=Is1=Is2        L      o      a        d

    V=Vd1+Vd2

    PV Module (Parallel

    Connection)

    I I   V1       a        d

    Is2Id2   V2

            L      o      a        d Is=Is1+Is2

            L      o= d1= d2

    Example

    • An ideal PV module is composed of 50

    solar cells connected in series. At 20oC,

    the solar current of each cell is 1A andthe reverse saturation current is 10nA.

    Draw the I-V and I-P characteristics of

    the module.

  • 8/20/2019 Renewable 1

    13/15

    10/16/20

    Solution

    mV25.2510*602.1

    )15.27320(*10*38.119

    23

    q

    T k V T 

     

      

     

     

     

     

        1*101 02525.08V 

    V V 

    od    ee I  I   T 

     

     

      1*101 02525.08cellV 

    d scell   e I  I  I 

    cellcellcell   I V P  

    cellule  V nV  *mod   

    cellule   PnP *mod      0

    5

    10

    15

    20

    0 5 10 15 20 25

    Module Voltage

       M  o   d  u   l  e   C  u  r  r  e  n   t  a  n   d   P  o  w  e  r

    Current

    Power 

    Losses of PV Cell

    • Irradiance Losses

    • Electrical Losses

    Irradiance Losses

    1. Due to the reflection of the solar radiation at

    the top of the PV cell.

    2. The light has photons with wide range of

    ener levels – Some don’t have enough energy to excite the

    electrons.

     – Others have too much energy that is hard to

    capture by the electrons.

    • These two scenarios account for the loss of

    about 70 percent of the solar energy

    Losses of PV Cell

    (Electrical Losses)

    • The resistances of the collector traces at the

    top of the cell.

    • The resistance of the wires connecting cell to

    load.

    • The resistance of the semiconductor crystal

    Real PV Model

    • To account for the electrical losses only

    Solar

    Cell

    Rs

    Is   IdI

            L      o      a        dV

    VdRp

    Ip

    I

     Rs : Resistance of wires and traces

     R p : internal resistance of the cell

    Effic iency of PV Cell

     A

     I V 

    P

    P sd 

    s

    seirradiance

       

    *

     power Sun

    yelectricittoconverted  powerSun

    sd se

    out 

    e I V 

     I V 

    P

    P

    *

    *

    yelectricittoconverted  powerSun

    celltheof  powerOutput 

     A

     I V 

    P

    P

    P

    P

    P

    P

    s

    out 

    se

    out 

    s

    seeirradiance

         

    *

  • 8/20/2019 Renewable 1

    14/15

    10/16/20

    Example

    • A 100 cm2 solar cell is operating at 30oC

    where the output current is 1A, the load

    voltage is 0.4V and the saturation current of

    e o e s n . e ser es res s ance o e

    cell is 10 m and the parallel resistance is1k. At a give time, the solar power density is200W/m2. Compute the irradiance efficiency

    and the overall efficiency.

    Solution

    V10*1.2610*602.1

    )15.27330(*10*38.1 319

    23

    q

    T k V T 

    V41.001.0*14.0     sd    IRV V 

    mA64.61*101 0261.041.0

    9  

     

     

     

      ee I  I    T d 

    od 

      

    mA41.01000

    41.0

     p

    d  p

     R

    V  I 

    A00705.100041.000664.01     pd s   I  I  I  I 

    205.001.0*200

    00705.1*41.0*

     A

     I V  sd irradiance

       

    Solution

    mW168.101000*10*41.001.0*0.1 23222     p pslosse   R I  R I P

    975.0010168.00.1*4.0

    0.1*4.0

      losselosseout 

    out 

    se

    out 

    ePVI 

    VI 

    PP

    P

    P

    ...     eirradiance   

    Conclusion

    Most of the losses are irradiance

     Assessment of PV Systems

    $5.0

    $4.0

    $5.0

    $6.0

        h

    $1.5

    $0.3$0.4$0.6

    $0.0

    $1.0

    $2.0

    $3.0

    1970 1980 1990 2000 2010

    Year 

         $    /    k    W

    Solar Power and the

    Environment

    • 6kW from a photovoltaic system

    instead of a thermal power plant can

    reduce annual ollution b – 3 lbs. of NOx (Nitrogen Oxides),

     – 10 lbs. of SO2 (Sulfur Dioxide), and

     – 10530 lbs. of CO2 (Carbon Dioxide).

     Assessment of PV Systems

    • Consumer products (calculators, watches,

    battery chargers, light controls, and flashlights)

    are the most common applications

    • Lar er PV s stems are extensivel used in space applications (such as satellites)

    • In higher power applications, three factors

    determine the applicability of the PV systems1. the cost and the payback period of the system

    2. the accessibility to a power grid

    3. the individual inclination to invest in environmentally

    friendly technologies.

  • 8/20/2019 Renewable 1

    15/15

    10/16/20

     Assessment of PV Systems

    • In remote areas without access to power

    grids, the PV system is often the first choiceamong the available alternatives.

    • ,

    systems worldwide had the capacity of more

    than 900 GWh annually – this PV energy is enough for about 70,000 homes

    in the USA, or about 4 million homes in developing

    countries.

     Assessment of PV Systems

    • To manufacture the solar cells, arsenic and

    silicon compounds are used – Arsenic is odorless and flavorless semi-metallic

    chemical that is highly toxic

     – Silicon, by itself, is not toxic. However, when additives

    are added to make the PV semiconductor material, the

    compound can be extremely toxic.

     – Since water is used in the manufacturing process, the

    runoff could cause these material to reach local

    streams

     – Should a PV array catch fire, these chemicals can be

    released into the environment.

     Assessment of PV Systems

    • Solar power density can be intermittent due to

    weather conditions

    • PVs are limited exclusively to daytime use

    • For hi h ower PV s stems the arra s s read 

    over a large area.

    • The PV systems are considered by some to be

    visually intrusive

    • The efficiency of the solar panel is still low, making

    the system expensive and large

    • Solar systems require continuous cleaning of theirsurfaces


Recommended