+ All Categories
Home > Documents > REPORT (Autosaved)

REPORT (Autosaved)

Date post: 27-Dec-2015
Category:
Upload: sujithasuja
View: 12 times
Download: 2 times
Share this document with a friend
Description:
dscs
Popular Tags:
124
SREE KRISHNA POLYTECHNIC SREE KRISHNA POLYTECHNIC COLLEGE COLLEGE KALLIANCAUD, NAGERCOIL KALLIANCAUD, NAGERCOIL PROJECT REPORT Submitted in Partial fulfillment of the Requirement For Diploma in CIVIL ENGINEERING OF Board of Technical Education, TAMILNADU PLANNING DESIGINING AND ANALAYSIS OF HOSTEL BUILDING GUIDED By Mr. G. Siva. BE. Submitted By R.S.ARYA 12105427 K.A.ASHA 12105428 M.KEERTHIKA 12105440 G.MANJU 12105441 G. SIVAKUMAR 12121137
Transcript

SREE KRISHNA POLYTECHNICSREE KRISHNA POLYTECHNIC COLLEGECOLLEGE

KALLIANCAUD, NAGERCOILKALLIANCAUD, NAGERCOIL

PROJECT REPORT

Submitted in Partial fulfillment of the Requirement For Diploma in

CIVIL ENGINEERING

OF

Board of Technical Education, TAMILNADU

PLANNING DESIGINING AND ANALAYSIS OF

HOSTEL BUILDING

GUIDED By

Mr. G. Siva. BE.

Submitted By

R.S.ARYA 12105427

K.A.ASHA 12105428

M.KEERTHIKA 12105440

G.MANJU 12105441

G. SIVAKUMAR 12121137

SREE KRISHNA POLYTECHNICSREE KRISHNA POLYTECHNIC COLLEGECOLLEGE

KALLIANCAUD, NAGERCOILKALLIANCAUD, NAGERCOIL

DEPARTMENT OF CIVIL ENGINEERING

CERTIFICATE

Certified that is a Bonafide report of the project work entitled as

PLANNING DESIGNING AND ANALYSIS OF HOSTEL BUILDING

Done by Mr of final year civil Engineering with Reg No in fulfillment for the award of diploma in civil Engineering during the academic year 2013-2014 from the board of Techanical Education,tamil nadu.

GUIDE HEAD OF THE DEPARTMENT

Submitted for the project Viva-voce examination head on …………………………………

INTERNAL EXAMINER EXTERNAL EXAMINER

CONTENTS

CONTENTS

INTRODUCTION

SPECIFICATION

SYMBOLS

DRAWING DETAILS

DESIGN OF SLAB

DESIGN OF BEAM

DESIGN OF COLUMN &FOOTING

DESIGN OF LINTEL CUM SUNSHADE

BAR BENDING SCHEDULE

DATA PREPARATION

DETAILED PREPARATION

SCHEDULE OF RATE

ABSTRACT ESTIMATE

CONCLUSION

BIBLIOGRAPHY

introduction

LITERATURE REVIEW

SLAB

Slab are the primary member of a structure which support the imposed load directly on

them and transit the same safety to the supporting elements such as beams, wall and column etc;

therefore a slab should be safe and stable against the applied loads and should have the required

strength and stiffness to satisfy the service ability requirements. This chapter deals with the design

of different types of solid slabs.

COLUMN

A column is structural member provided to carry a compressive load and whose effective

length exceed items its least lateral dimension. In building column are provided to support the

roof andflooring system effectively and to transmit the load safety to the foundation this chapter

deals with the design of the different types of RC columns.

COLUMNS FOOTING

Foundation is the bottom most but the most important component of a structed which

greatly lieswell below the ground level. Even though thus not provides any aesthetics appearance

to the elevation view of the building ,it has to be well planned and carefully designed to ensure

thesafety and stability of the structure.

BEAM

Beam are defined a horizontal load carrying member in a structure reinforced cement

concrete, prestressed concrete and steel I-section are used as beam to support the slab. Thus in a

structureload is transmitted from the column is transmitted to the soil hence the beam should be

supported by a column load bearing wall.

Depending upon the support the beams are classified as follows

1. Simply supported beam

2. Rigidity fixed beam

3. Cantilever beam

4. Overhanging beam

5. Continuous beam

Design of slab

DESIGN OF SLAB

DESIGN OF ROOM SLAB

Design of room slab of size 4600*3900mm

Ly/lx=3900/4600=0.8<2

Two way slab

Size of slab

Assume effective depth

d=4600/(35*0.8)*0.95

d=172.9mm

Over all depth

D=172.9+15+10/2

D=192.9mm

Revised the effective depth

Shorter span

Dx =192.9-15-10-10/2

Dx =162.9mm

Longer span

Dy =192.9-15-10/2

Dy =172.9mm

Effective span

Shorter span

Leff = lx + d

=4600+172.9

Leff=4772.9mm

Longer span

Leff=ly+d

=3900+172.9

Leff=4072.9mm

Load Calculation

Factored load

Self weight=0.193*25=4.8KN/m²

Imposed load=3KN/m²

Floor Finish=1KN/m²

Total load=4.8+3+1=8.8KN/m²

Design load=8.8*1.5=13.2KN/m²

Design Bending Moment

Shorter span

Mux = 0.062*13.2*4072.9=3.33KN/m²

Longer span

Muy = 0.062*13.2*4072.9=3.33KN/m²

Effective depth=√ 3.3∗103

2.76∗1000

d=1.10mm

Ast along shorter span(Mux)

3.33*10³=0.87*415*Astx*(162.9-415*Astx/20*1000)

Astx=56.62mm²

Ast along longer span

3.33*10³=0.87*415*Asty*(172.9-415*Asty/20*1000)

Asty =53.34mm²

Spacing Limit

Shorter span

Provide 10mmdia rod

Svx=78.53/56.62

Svx=138.69mm

Spacing limit

3d=3*162.9=488.7mm

300mm

Spacing is 140 mm C/c

Longer span

Svy=78.53/53.34

Svy=147.23mm

Spacing limit

3dy=3*172.9=519mm

300mm

Spacing is 150 mm C/c

DESIGN OF BATHROOM SLAB

Design of bathroom slab sizes of 1500*3900mm

Ly/lx=3900/1800=2.6>2

One way slab

Size of slab

BAssumed effective depth

d=1500/20*0.95

d=78.95mm

Over all depth

D=78.95+15+10/2

D=98.95mm

Effective span of slab

Leff=300/2+1500+300/2

Leff=1800mm

Leff=1500+78.95

Leff=1578.95mm

Load Calculation

Live load=1.5KN/m²

Weight of weathering coarse=1.5KN/m²

Self weight of slab=0.10*25=2.5KN/m²

Total load=5.5KN/m²

Design Bending Moment

Mu=5.5*1578.95²/8

Mu=1717*10³N/mm²

Effective depth=√ 1714∗1032.76∗1000

d=24.92mm

Ast along tensile steel

1714*10³=0.87*415*Ast*(78.95-415*Ast/20*1000)

Ast=61.14mm²

Spacing limit

Provide 10mm dia

Sv=78.53/61.44

Sv=128mm

Spacing limit

Sv=3d=3*78.95=236.85mm

300mm

Spacing is 130mm C/c

Ast minimum

Ast min=0.12/100*1000*98.95

Ast min=12mm²

DESIGN OF ENTRANCE SLAB

Design of verandah slab sizes 8000*3900mm

Ly/lx=3900/8000=0.5<2

Two way slab

Size of slab

Assume effective depth

d=8000/(35*0.8)*0.95

d=300.75mm

Overall depth

D=300.75+15+10/2

D=320.75mm

Revised the effective depth

Shorter span

dx=320.75-15-10-10/2

dx=290.75mm

Longer span

dy=320.75-15-10/2

dy=300.75mm

Effective span

Shorter span

Leff=8000+300.75

Leff=8300mm

Longer span

Leff=3900+300.75

Leff=4200mm

Factored load

Seif weight of load=0.20*25=8KN/m²

Imposed load=3KN/m²

Floor Finish load=1KN/m²

Total load=8+3+1=12 KN/m²

Total design load=12*1.5=18 KN/m²

Design bending moment

Shorter span

Mux=0.062*18*4200

Mux=4.7*10³

Longer span

Muy=0.062*18*4200

Muy=4.7*10³

Assume effective depth

d= √ 4.7∗103

2.76∗1000

d=1.30mm

Tensile steel

Shorter span

4.7*10³=0.87*415*Astx*(290.75-(415*Astx)/(20*1000))

Astx=448mm

Longer span

4.7*10³=0.87*415*Asty*(300.75-(415*Asty)/(20*1000))

Asty=433mm

Spacing limit at tensile steel

Shorter span

Svx = (78.53/448)*1000

Svx = 175.3mm

Spacing limit

Sv=3d=3*290.75=872.3mm

300mm

Longer span

Svy=(78.53/443)*1000

Svy=177.3mm

Spacing limit

Sv=3d=300.75*3=902.3mm

300mm

Design of beam

DESIGN OF BEAM

A beam is defined as a structural member subject to transverse loads. The plane of traverse

load is parallel to the plane of symmetry of the cross- section of the beam and its passe through

the shear centre so that the simple bending occurs the traverse loads produce bending moment

and shear force in the beam at all the section of the beam.

In the section of a beam ,the stiffness also plays an important role. The beam should not

be allowed to deflect more that the permissible limit. According to IS 800-1962, the maximum

deflection should not exceed 1/325 of the span so as not to impair the structure or lead to

damage to finishing.

1.Due to excessive deflective the cracks may occurs in the plaster ceiling of a buildings.

2.Excessive deflection gives uncomfortable feeling to the user.

3.Greater deflections cause district and twisting of connection and thus secondary stresses are produced in the connected members.

DESIGN OF BEAM

Design of beam for room sizes ,8000*3900mm

Room sizes=8000mm

Slab thickness=140mm

Effective depth=8230mm

Sizes of beam

Factored and design load (Wu)

a) Self weight of beam =0.275*0.860*25=5.9125 KN/m²b) Imposed load=8 KN/m²c) Floor Finish =1 KN/m²

Total load (W)=5.91+8+1

Assumed of effective depth of beam

d=8230/10

d=823mm

say d=825mm

Over all depth

D=825+25+16/2

D=858mm

Breadth (b)

b= (1*825)/3

b=275mm

Effective span

B=300

Leff=300/2+8230+300/2

Leff=8550mm

Leff=8550+825

Leff=9375mm

So Leff=8550mm select lesser value

Factored and design load (Wu)

a) Self weight of beam=0.275*0.860*25=5.9125KN/m²

b) Imposed load=8

c) Floor finish load=1

Total load (W) =5.91+8+1

W=14.91 KN/m²

Total design load, Wu=1.5*14.91

Wu=22.36 KN/m²

Factored and design bending moment (Mu)

Mu = (22.36*8550)/8

Mu=204321.48 KN/m

Assumed effective depth (d)

d=√ 204321.48∗1032.76∗275

d=16.4mm

Limiting bending moment of resistance (Mu limit)

Mu limit=2.76*275*825=626.176KNm

Type of section

Mu=204321.48KNm

Mu limit=626.176KNm

Mu>Mu limit

So over reinforced section

Tensile steel (Ast)

Mu=0.87*415*Ast*(825-(415*Ast)/(20*275))

Ast=68.63

Astmax

Ptmax=0.957

Astmax=(0.957/100)*275*825

Astmax=2171mm²

Number of bars (n)

Ast =314.15mm

n=68.63/314.15

n=2Nos

Design of beam for room sizes1500*3900

Room sizes =1500*3900mm

Clear span=1500mm

Slab thickness=140mm

Effective span=1730mm

Sizes of beam

Assumed of effective depth of beam

d=1730/10

d=173mm

Over all depth

D=173+25+16/2

D=286mm

Breadth (b)

b= (1*173)/3

b=58mm

Effective span

B=300

Leff=300/2+1730+300/2

Leff=2030mm

Leff=1730+173

Leff=1903mm

So Leff=1903mm select lesser value

Factored and design load (Wu)

a) Self weight of beam=0.58*0.200*25=2.987KN/m²

b) Imposed load=8

c) Floor finish load=1

Total load (W) =2.98+8+1

W=11.3 KN/m²

Total design load, Wu=1.5*11.3

Wu=16.95 KN/m²

Factored and design bending moment (Mu)

Mu = (16.95*1903²)/8

Mu=7672.8 KN/m

Assumed effective depth (d)

d=√ 7672.8∗1032.76∗58

d=236mm

Limiting bending moment of resistance (Mu limit)

Mu limit=2.76*58*173=4791KNm

Type of section

Mu=7672.86KNm

Mu limit=4791KNm

Mu>Mu limit

So over reinforced section

Tensile steel (Ast)

Mu=0.87*415*Ast*(173-(415*Ast)/(20*58))

Ast=226mm²

Astmax

Ptmax=0.957

Astmax=(0.957/100)*58*173

Astmax=96.02mm²

Number of bars (n)

Ast =314.15mm

n=226/314.15

n=2Nos

Design of beam for room sizes 4600*3900

Room sizes =4600*3900mm

Clear span=4600mm

Effective span=4830mm

Sizes of beam

Assumed of effective depth of beam

d=4830/10

d=483mm

Over all depth

D=485+25+16/2

D= 518 mm say D=485mm

Breadth (b)

B = (1*485)/3

b=162mm

Effective span

B=300

Leff=300/2+4830+300/2

Leff=5130mm

Leff=4830+485

Leff=5315mm

So Leff=5130mm select lesser value

Factored and design load (Wu)

a) Self weight of beam=0.162*0.520*25=2.106KN/m²

b) Imposed load=8

c) Floor finish load=1

Total load (W) = 2.106+8+1

W=11.106 KN/m²

Total design load, Wu=1.5*11.106

Wu=16.659 KN/m²

Factored and design bending moment (Mu)

Mu = (16.658*5130²)/8

Mu=54801.65KN/m

Assumed effective depth (d)

d=√ 54801.65∗1032.76∗162

d=11mm

Limiting bending moment of resistance (Mu limit)

Mu limit=2.76*162*485²=105173.8KNm

Type of section

Mu=54801.65KNm

Mu limit=308KNm

Mu>Mu limit

So over reinforced section

Tensile steel(Ast)

Mu=0.87*415*Ast*(485-(415*Ast)/(20*162))

Ast=344m

Astmax

Ptmax=0.957

Astmax=(0.957/100)*162*485

Astmax=766mm²

Number of bars (n)

Ast =314.15mm

n=344/314.15

n=2Nos

Design of passage beam of sizes 11200*3900mm

Clear span =11200mm

Effective span =11430mm

Sizes of beam

Assumed of effective depth of beam

d=4830/10

d=483mm

Over all depth

D=485+25+16/2

D=518mm say D=485mm

Breadth (b)

b=(1*485)/3

b=162mm

Effective span

B=300

Leff=300/2+4830+300/2

Leff=5130mm

Leff=4830+485

Leff=5315mm

So Leff=5130mm select lesser value

Factored and design load (Wu)

a)Selfweight of beam=0.162*0.520*25=2.106KN/m²

b)Imposed load=8

c)Floor finish load=1

Total load(W)=2.106+8+1

W=11.106 KN/m²

Total design load,Wu=1.5*11.106

Wu=16.659 KN/m²

Factored and design bending moment(Mu)

Mu=(16.658*5130²)/8

Mu=54801.65KN/m

Assumed effective depth(d)

d=√ 54801.65∗1032.76∗162

d=11mm

Limiting bending moment of resistance (Mulimit)

Mulimit=2.76*162*485²=105173.8KNm

Type of section

Mu=54801.65KNm

Mulimit=10517308KNm

Mu>Mulimit

So over reinforced section

Tensile steel(Ast)

Mu=0.87*415*Ast*(485-(415*Ast)/(20*162))

Ast=344mm²

Astmax

Ptmax=0.957

Astmax=(0.957/100)*162*485

Astmax=766mm²

Number of bars(n)

ast=314.15mm

n=344/314.15

n=2Nos

Design of passage beam of sizes 1000*32810mm

Clear span =1000mm

Slab thickness=140mm

Sizes of beam

Assumed of effective depth of beam

d=1000/10

d=100mm

Over all depth

D=100+25+16/2

D=133mm

Breadth (b)

b=(1*100)/3

b=3.3mm

Effective span

B=300

Leff=300/2+1000+300/2

Leff=1300mm

Leff=1000+100

Leff=1100mm

So Leff=1100mm select lesser value

Factored and design load (Wu)

a)Selfweight of beam=0.1*0.133*25=0.3325KN/m²

b)Imposed load=8

c)Floor finish load=1

Total load(W)=0.3325+8+1

W=9.3325 KN/m²

Total design load,Wu=1.5*9.3325

Wu=13.99 KN/m²

Factored and design bending moment(Mu)

Mu=(13.99*1100²)/8

Mu=2117.3KN/m

Assumed effective depth(d)

d=√ 2117.3∗1032.76∗3.3

d=482mm

Limiting bending moment of resistance (Mulimit)

Mulimit=2.76*162*485²=105173.8KNm

Type of section

Mu=2117.3KNm

Mulimit=91080KNm

Mu>Mulimit

So over reinforced section

Tensile steel(Ast)

Mu=0.87*415*Ast*(100-(415*Ast)/(20*3.3))

Ast=337mm²

Astmax

Ptmax=0.957

Astmax=(0.957/100)*3.3*100

Astmax=3.15mm²

Number of bars(n)

ast=314.15mm

n=337/314.15

n=2Nos

DESIGN OF COLUMN & FOOTING

DESIGN OF COLUMN

Sizes of column=240mm*240mm

Length=3000mm

Fy=415N/mm²

Fck=20N/mm²

Gross area of section ,Ag=D²

Ag=240²

Ag=57600mm²

Asc=2% of Ag

Asc=0.02*57600

Asc=1152mm²

Ac=Ag-Asc

Ac=57600-1152

Ac=56448

Slenderness ratio (d)

d=3000/240

d=12.5

leff/D>12 So long column

ie;12.5>12

Eccentricity (emin)

emin=L/500+D/30

=3000/500+240/30

emin=14mm

e permitted=0.05D

=0.05*240

e permitted=12mm

emin>e permitted

Area of steel,Asc

n=Asc/asc

asc=4∗π4

∗202

Actual Asc=1.2*10³mm²

Min Asc =0.8%Ag

Min Asc=0.8/100*57600

Min Asc=460.8mm²

Max Asc=4%Ag

=4/100*57600

Max Asc=2304mm²

Min Asc <Actual Asc<Max Asc

Lateral ties

a)Diameter

1)5mm

2)1/4*d=1/4*20

d=5mm

So d=5mm

b)Pitch

1)The least lateral dimension ,P=240mm

2)16*d=16*20=320mm

3)P=300mm

So P=240mm (Taking the least value from above)

Similar calculation is goes to all column

DESIGN OF FOOTING

Column size=240mm*240mm

Total load=588.735 KN

Fck=20N/mm²

Fy=415N/mm²

Bearing capacity of soil=150KN/m²

Load calculation

Self weight of footing=10% of column load

=10/100*588.735KN

=58.874KN

Total load acting on footing=Column load+ Self weight of footing

=588.735+58.874

=647.61KN

Area of footing =Total load acting on footing/SBC

=647.61/150

=4.317m²

Area=B²

B²=√4 .317

B=2m

Size of footing =(2*2m)

Upward Pressure, w

W=Column load*1.5/Area of footing

=Column load*1.5/2*2

=147.182KN/m²

Design bending

Projection of footing=B-a/2

=2-0.24/2

=0.88m

BM=Net upward Pressure *Projection of footing*Projection of footing/2

=147.182*2*0.88*0.88/2

=113.978KNm

Depth required for footing

d req=√MRQB=143.695mm

For shear consideration

d req =1.5*143.695

=215.542mm

=220mm

D=220+50

D=270mm

Design of reinforcement

113.978*10³=79431*ASt*(1-9.432*10²Ast)

=530.110mm²

Provide 16mm dia bars

Area of bars ast

Ast =π4∗162

Spaacing

Sv=201.06/530.110*1000

=379.279mm

Check for spacing

1)3d

2)300mm

3)Sv=370mm

Sv=300mm C/c

Area of distribution reinforcement

Ast min=0.12BD/100

=0.12X1000X0.370/100

=810mm²

Provide 8mm∅

Bars

Area of one bar ast

Ast=π4∗82

=50.265mm²

Spacing

Sv=50.265/810*1000

=62.05mm

Check for spacing

1)5d

2)450mm

3) Sv=62.05mm

Sv=62.50mm

Check for stiffness

1)% of steel=Ast/bd*100

=530.110/(2000*270)*100

=0.098%

2)Actual ast=ast/Spacing*1000

=670.2mm²

DESIGN OF STAIRCASE

T=300mm

R=150mm

Landing width=1.2mm

Effective span

Support by landing

Leff=x/2+G+x/2

G=N*T

G=10*300

G=3000

Leff=2000+1200/2

Leff=4200mm

Size of flight slab

1) Effective depth(d)

d=Effective span/BV*MF

=4200/(20*0.95)

d=200mm

2) Overall depth

D=200+15+10/2

D=220mm

Load calculation

Self weight of slab=0.220*25*√ 0.32+0.1520.3

=3.3KN/m²

Self weight of steps=1/2*0.15*0.3*19*1/0.3

=1.425KN/m²

Imposed load =3KN/m²

Weight of floor finish=0.50KN/m²

Total load W=3.3+1.42+3+0.50=8.22KN/m²

Total design load=1.5*8.22=12.33KN/m²

Design bending moment (mu)

Mu=(12.33*4200²)/2

Mu=108750.6KNm

Assumed effective slab

d=√ 108750.6∗1032.76∗1000

d=199mm

Area of tensile steel (Ast)

108750.6*10³=0.87*415*Ast*(199-(415*Ast)/(20*1000))

Ast=1883m²

Spacing for main rod

Sv=79/1883*1000

Sv=41.7mm C/c

Spacing limit

1)Sv=3d=3*199=597mm

2)300mm C/c

So Sv=41.7mm C/c

Area of distribution

Ast min=0.12/100/b*d

=0.12/100*(1000*200)

Ast min=264mm²

Spacing limit

Sv=50.27/264*1000

Sv=190mm C/c

Spacing limit

1)Sv=5d=5*200=1000mm C/c

2)Sv=450 mm C/c

So Sv=190 mmC/c

Similar calculation for design of staircase in opposite sides.

Design of staircase in middle section

T=300mm

R=150mm

Landing width=1.2mm

Effective span

Support by landing

Leff=x/2+G+x/2

G=N*T

G=6*300

G=1800

Leff=1200/2+1800+1200/2

Leff=3000mm

Size of flight slab

1) Effective depth(d)

d=Effective span/BV*MF

=3000/(20*0.95)

d=158mm

2) Overall depth

D=158+15+10/2

D=178mm

Load calculation

Self weight of slab=0.178*25*√ 0.32+0.1520.3

=4.45KN/m²

Self weight of steps=1/2*0.15*0.3*19*1/0.3

=1.425KN/m²

Imposed load =3KN/m²

Weight of floor finish=0.50KN/m²

Total load W=4.45+1.425+3+0.50=9.375KN/m²

Total design load=1.5*9.375=14.06KN/m²

Design bending moment (mu)

Mu=(14.06*3000²)/2

Mu=15817.5KNm

Assumed effective slab

d=√ 15817.5∗1032.76∗1000

d=76mm

Area of tensile steel (Ast)

7.473.5*10³=0.87*415*Ast*(158-(415*Ast)/(20*1000))

Ast=288m²

Spacing for main rod

Sv=79/288*1000

Sv=274mm C/c

Spacing limit

1)Sv=3d=3*158=474mm

2)300mm C/c

So Sv=274mm C/c

Area of distribution

Ast min=0.12/100/b*d

=0.12/100*(1000*178)

Ast min=214mm²

Spacing limit

Sv=50.27/214*1000

Sv=236mm C/c

Spacing limit

1)Sv=5d=5*158=790mm C/c

2)Sv=450 mm C/c

So Sv=236 mmC/c

DESIGN OF LINITEL CUM

SUNSHADE

Design of Lintel Cum Sunshade

Lx=3510mm

T=80mm

L=150mm

Imposed load=1.5

Size of slab

Assume effective depth(d)

d=5510/(7*0.95)

d=527.8mm

Overall depth

D=527.8+15+10/2

D=547.8mm

Effective span

L=3510+300/2

Leff=3660

Leff=3510+527.8

Leff=4.37.8mm

Factors & design load

Imposed load=1.5KN/m²

Weight of weathering course=1KN/m²

Self weight of slab=0.547*25=13.6KN/m²

Total load=1.5+1+13.6=16.175KN/m²

Total design load=1.5**16.175=24.26KN/m²

Factored & design bending moment

Mu=(24.26*3660²)/2

Mu=162505.3KN/m²

Check assume effective depth

Mu=2.76*1000*527.8²

Mu=76686KN/m²

Assumed effective depth

d=√ 162505∗1032.76∗1000

d=242649mm

Area of tesion steel

162505*10³=0.87*415*Ast*(527.8-(415*Ast)/(20*1000))

Ast=882mm²Spacing for tension steel

Assume 10mm∅ bars

Sv=78.58/882*1000

Sv=89.09

Spacing limit

1)Sv=3d=3*527.8=1583.4mm

2)300mm

Sv=89.09mm

Area of distributed bars

Ast min=0.12/100*1000*547.8

Ast min=657.36mm²

Spacing limit

Sv=50.26/882*1000

Sv=56.99mm

DETAILED ESTIMATE FOR

HOSTEL BUILDING

CONTENTS

CONTENTS

DESIGN OF SLAB

DESIGN OF ROOM SLAB

Design of room slab of size 4600*3900mm

Ly/lx=3900/4600=0.8<2

Two way slab

Size of slab

Assume effective depth

d=4600/(35*0.8)*0.95

d=172.9mm

Over all depth

D=172.9+15+10/2

D=192.9mm

Revised the effective depth

Shorter span

dx=192.9-15-10-10/2

dx=162.9mm

Longer span

dy=192.9-15-10/2

dy=172.9mm

Effective span

Shorter span

Leff=lx+d

=4600+172.9

Leff=4772.9mm

Longer span

Leff=ly+d

=3900+172.9

Leff=4072.9mm

Load Calculation

Factored load

Self weight=0.193*25=4.8KN/m²

Imposed load=3KN/m²

Floor Finish=1KN/m²

Total load=4.8+3+1=8.8KN/m²

Design load=8.8*1.5=13.2KN/m²

Design Bending Moment

Shorter span

Mux=0.062*13.2*4072.9=3.33KN/m²

Longer span

Muy=0.062*13.2*4072.9=3.33KN/m²

Effective depth=√ 3.3∗103

2.76∗1000

d=1.10mm

Ast along shorter span(Mux)

3.33*10³=0.87*415*Astx*(162.9-415*Astx/20*1000)

Astx=56.62mm²

Ast along longer span

3.33*10³=0.87*415*Asty*(172.9-415*Asty/20*1000)

Asty=53.34mm²

Spacing Limit

Shorter span

Provide 10mmdia rod

Svx=78.53/56.62

Svx=138.69mm

Spacing limit

3d=3*162.9=488.7mm

300mm

Spacing is 140 mm C/c

Longer span

Svy=78.53/53.34

Svy=147.23mm

Spacing limit

3dy=3*172.9=519mm

300mm

Spacing is 150 mm C/c

DESIGN OF BATHROOM SLAB

Design of bathroom slab sizes of 1500*3900mm

Ly/lx=3900/1800=2.6>2

One way slab

Size of slab

Assumed effective depth

d=1500/20*0.95

d=78.95mm

Over all depth

D=78.95+15+10/2

D=98.95mm

Effective span of slab

Leff=300/2+1500+300/2

Leff=1800mm

Leff=1500+78.95

Leff=1578.95mm

Load Calculation

Live load=1.5KN/m²

Weight of weathering coarse=1.5KN/m²

Self weight of slab=0.10*25=2.5KN/m²

Total load=5.5KN/m²

Design Bending Moment

Mu=5.5*1578.95²/8

Mu=1717*10³N/mm²

Effective depth=√ 1714∗1032.76∗1000

d=24.92mm

Ast along tensile steel

1714*10³=0.87*415*Ast*(78.95-415*Ast/20*1000)

Ast=61.14mm²

Spacing limit

Provide 10mm dia

Sv=78.53/61.44

Sv=128mm

Spacing limit

Sv=3d=3*78.95=236.85mm

300mm

Spacing is 130mm C/c

Ast minimum

Ast min=0.12/100*1000*98.95

Ast min=12mm²

DESIGN OF ENTRANCE SLAB

Design of vearadah slab sizes 8000*3900mm

Ly/lx=3900/8000=0.5<2

Two way slab

Size of slab

Assume effective depth

d=8000/(35*0.8)*0.95

d=300.75mm

Overall depth

D=300.75+15+10/2

D=320.75mm

Revised the effective depth

Shorter span

dx=320.75-15-10-10/2

dx=290.75mm

Longer span

dy=320.75-15-10/2

dy=300.75mm

Effective span

Shorter span

Leff=8000+300.75

Leff=8300mm

Longer span

Leff=3900+300.75

Leff=4200mm

Factored load

Self weight=0.320*25=8KN/m²

Imposed load=3KN/m²

Floor Finsh load=1KN/m²

Total load=8+3+1=12 KN/m²

Total design load=12*1.5=18 KN/m²

Design bending moment

Shorter span

Mux=0.062*18*4200

Mux=4.7*10³

Longer span

Muy=0.062*18*4200

Muy=4.7*10³

Assume effective depth

d= √ 4.7∗103

2.76∗1000

d=1.30mm

Tensile steel

Shorter span

4.7*10³=0.87*415*Astx*(290.75-(415*Astx)/(20*1000))

Astx=448mm

Longer span

4.7*10³=0.87*415*Asty*(300.75-(415*Asty)/(20*1000))

Asty=433mm

Spacing limit at tensile steel

Shorter span

Svx=(78.53/448)*1000

Svx=175.3mm

Spacing limit

Sv=3d=3*290.75=872.3mm

300mm

Longer span

Svy=(78.53/443)*1000

Svy=177.3mm

Spacing limit

Sv=3d=300.75*3=902.3mm

300mm

CONTENTS

DESIGN OF BEAM

A beam is defined as a structural member subject to transverse loads. The plane of traverse

load is parallel to the plane of symmetry of the cross- section of the beam and its passe through

the shear centre so that the simple bending occurs the traverse loads produce bending moment

and shear force in the beam at all the section of the beam.

In the section of a beam ,the stiffness also plays an important role. The beam should not

be allowed to deflect more that the permissble limit. According to IS 800-1962, the maximum

deflection should not exceed 1/325 of the span so as not to impair the structure or lead to

damage to finishing.

1.Due to excessive deflective the cracks may occurs in the plaster ceiling of a buildings.

2.Excessive deflection gives uncomfortable feeling to the user.

3.Greater deflections cause district and twisting of connection and thus secondary stresses are produced in the connected members.

DESIGN OF BEAM

Design of beam for room sizes ,8000*3900mm

Room sizes=8000mm

Slab thickness=140mm

Effective span=8230mm

Sizes of beam

actored and design load (Wu)

d) Self weight of beam =0.275*0.860*25=5.9125 KN/m²e) Imposed load=8 KN/m²f) Floor Finish =1 KN/m²

Total load (W)=5.91+8+1

Assumed of effective depth of beam

d=8230/10

d=823mm say d=825mm

Over all depth

D=825+25+16/2

D=858mm

Breadth (b)

b=(1*825)/3

b=275mm

Effective span

B=300

Leff=300/2+8230+300/2

Leff=8550mm

Leff=8550+825

Leff=9375mm

So Leff=8550mm select lesser value

Factored and design load (Wu)

a)Selfweight of beam=0.275*0.860*25=5.9125KN/m²

b)Imposed load=8

c)Floor finish load=1

Total load(W)=5.91+8+1

W=14.91 KN/m²

Total design load,Wu=1.5*14.91

Wu=22.36 KN/m²

Factored and design bending moment(Mu)

Mu=(22.36*8550)/8

Mu=204321.48 KN/m

Assumed effective depth(d)

d=√ 204321.48∗1032.76∗275

d=16.4mm

Limiting bending moment of resistance (Mulimit)

Mulimit=2.76*275*825=626.176KNm

Type of section

Mu=204321.48KNm

Mulimit=626.176KNm

Mu>Mulimit

So over reinforced section

Tensile steel(Ast)

Mu=0.87*415*Ast*(825-(415*Ast)/(20*275))

Ast=68.63mm²

Astmax

Ptmax=0.957

Astmax=(0.957/100)*275*825

Astmax=2171mm²

Number of bars(n)

ast=314.15mm

n=68.63/314.15

n=2Nos

Design of beam for room sizes1500*3900

Room sizes =1500*3900mm

Clear span=1500mm

Slab thickness=140mm

Effective span=1730mm

Sizes of beam

Assumed of effective depth of beam

d=1730/10

d=173mm

Over all depth

D=173+25+16/2

D=286mm

Breadth (b)

b=(1*173)/3

b=58mm

Effective span

B=300

Leff=300/2+1730+300/2

Leff=2030mm

Leff=1730+173

Leff=1903mm

So Leff=1903mm select lesser value

Factored and design load (Wu)

a)Selfweight of beam=0.58*0.200*25=2.987KN/m²

b)Imposed load=8

c)Floor finish load=1

Total load(W)=2.98+8+1

W=11.3 KN/m²

Total design load,Wu=1.5*11.3

Wu=16.95 KN/m²

Factored and design bending moment(Mu)

Mu=(16.95*1903²)/8

Mu=7672.8 KN/m

Assumed effective depth(d)

d=√ 7672.8∗1032.76∗58

d=236mm

Limiting bending moment of resistance (Mulimit)

Mulimit=2.76*58*173=4791KNm

Type of section

Mu=7672.86KNm

Mulimit=4791KNm

Mu>Mulimit

So over reinforced section

Tensile steel(Ast)

Mu=0.87*415*Ast*(173-(415*Ast)/(20*58))

Ast=226mm²

Astmax

Ptmax=0.957

Astmax=(0.957/100)*58*173

Astmax=96.02mm²

Number of bars(n)

ast=314.15mm

n=226/314.15

n=2Nos

Design of beam for room sizes 4600*3900

Room sizes =4600*3900mm

Clear span=4600mm

Slab thickness=140mm

Effective span=4830mm

Sizes of beam

Assumed of effective depth of beam

d=4830/10

d=483mm

Over all depth

D=485+25+16/2

D=518mm say D=485mm

Breadth (b)

b=(1*485)/3

b=162mm

Effective span

B=300

Leff=300/2+4830+300/2

Leff=5130mm

Leff=4830+485

Leff=5315mm

So Leff=5130mm select lesser value

Factored and design load (Wu)

a)Selfweight of beam=0.162*0.520*25=2.106KN/m²

b)Imposed load=8

c)Floor finish load=1

Total load(W)=2.106+8+1

W=11.106 KN/m²

Total design load,Wu=1.5*11.106

Wu=16.659 KN/m²

Factored and design bending moment(Mu)

Mu=(16.658*5130²)/8

Mu=54801.65KN/m

Assumed effective depth(d)

d=√ 54801.65∗1032.76∗162

d=11mm

Limiting bending moment of resistance (Mulimit)

Mulimit=2.76*162*485²=105173.8KNm

Type of section

Mu=54801.65KNm

Mulimit=10517308KNm

Mu>Mulimit

So over reinforced section

Tensile steel(Ast)

Mu=0.87*415*Ast*(485-(415*Ast)/(20*162))

Ast=344mm²

Astmax

Ptmax=0.957

Astmax=(0.957/100)*162*485

Astmax=766mm²

Number of bars(n)

ast=314.15mm

n=344/314.15

n=2Nos

Design of passage beam of sizes 11200*3900mm

Clear span =11200mm

Effective span =11430mm

Sizes of beam

Assumed of effective depth of beam

d=4830/10

d=483mm

Over all depth

D=485+25+16/2

D=518mm say D=485mm

Breadth (b)

b=(1*485)/3

b=162mm

Effective span

B=300

Leff=300/2+4830+300/2

Leff=5130mm

Leff=4830+485

Leff=5315mm

So Leff=5130mm select lesser value

Factored and design load (Wu)

a)Selfweight of beam=0.162*0.520*25=2.106KN/m²

b)Imposed load=8

c)Floor finish load=1

Total load(W)=2.106+8+1

W=11.106 KN/m²

Total design load,Wu=1.5*11.106

Wu=16.659 KN/m²

Factored and design bending moment(Mu)

Mu=(16.658*5130²)/8

Mu=54801.65KN/m

Assumed effective depth(d)

d=√ 54801.65∗1032.76∗162

d=11mm

Limiting bending moment of resistance (Mulimit)

Mulimit=2.76*162*485²=105173.8KNm

Type of section

Mu=54801.65KNm

Mulimit=10517308KNm

Mu>Mulimit

So over reinforced section

Tensile steel(Ast)

Mu=0.87*415*Ast*(485-(415*Ast)/(20*162))

Ast=344mm²

Astmax

Ptmax=0.957

Astmax=(0.957/100)*162*485

Astmax=766mm²

Number of bars(n)

ast=314.15mm

n=344/314.15

n=2Nos

Design of passage beam of sizes 1000*32810mm

Clear span =1000mm

Slab thickness=140mm

Sizes of beam

Assumed of effective depth of beam

d=1000/10

d=100mm

Over all depth

D=100+25+16/2

D=133mm

Breadth (b)

b=(1*100)/3

b=3.3mm

Effective span

B=300

Leff=300/2+1000+300/2

Leff=1300mm

Leff=1000+100

Leff=1100mm

So Leff=1100mm select lesser value

Factored and design load (Wu)

a)Selfweight of beam=0.1*0.133*25=0.3325KN/m²

b)Imposed load=8

c)Floor finish load=1

Total load(W)=0.3325+8+1

W=9.3325 KN/m²

Total design load,Wu=1.5*9.3325

Wu=13.99 KN/m²

Factored and design bending moment(Mu)

Mu=(13.99*1100²)/8

Mu=2117.3KN/m

Assumed effective depth(d)

d=√ 2117.3∗1032.76∗3.3

d=482mm

Limiting bending moment of resistance (Mulimit)

Mulimit=2.76*162*485²=105173.8KNm

Type of section

Mu=2117.3KNm

Mulimit=91080KNm

Mu>Mulimit

So over reinforced section

Tensile steel(Ast)

Mu=0.87*415*Ast*(100-(415*Ast)/(20*3.3))

Ast=337mm²

Astmax

Ptmax=0.957

Astmax=(0.957/100)*3.3*100

Astmax=3.15mm²

Number of bars(n)

ast=314.15mm

n=337/314.15

n=2Nos

DESIGN OF COLUMN & FOOTING

DESIGN OF COLUMN

Sizes of column=240mm*240mm

Length=3000mm

Fy=415N/mm²

Fck=20N/mm²

Gross area of section ,Ag=D²

Ag=240²

Ag=57600mm²

Asc=2% of Ag

Asc=0.02*57600

Asc=1152mm²

Ac=Ag-Asc

Ac=57600-1152

Ac=56448

Slenderness ratio (d)

d=3000/240

d=12.5

leff/D>12 So long column

ie;12.5>12

Eccentricity (emin)

emin=L/500+D/30

=3000/500+240/30

emin=14mm

e permitted=0.05D

=0.05*240

e permitted=12mm

emin>e permitted

Area of steel,Asc

n=Asc/asc

asc=4∗π4

∗202

Actual Asc=1.2*10³mm²

Min Asc =0.8%Ag

Min Asc=0.8/100*57600

Min Asc=460.8mm²

Max Asc=4%Ag

=4/100*57600

Max Asc=2304mm²

Min Asc <Actual Asc<Max Asc

Lateral ties

a)Diameter

1)5mm

2)1/4*d=1/4*20

d=5mm

So d=5mm

b)Pitch

1)The least lateral dimension ,P=240mm

2)16*d=16*20=320mm

3)P=300mm

So P=240mm (Taking the least value from above)

Similar calculation is goes to all column

DESIGN OF FOOTING

Column size=240mm*240mm

Total load=588.735 KN

Fck=20N/mm²

Fy=415N/mm²

Bearing capacity of soil=150KN/m²

Load calculation

Self weight of footing=10% of column load

=10/100*588.735KN

=58.874KN

Total load acting on footing=Column load+ Self weight of footing

=588.735+58.874

=647.61KN

Area of footing =Total load acting on footing/SBC

=647.61/150

=4.317m²

Area=B²

B²=√4 .317

B=2m

Size of footing =(2*2m)

Upward Pressure, w

W=Column load*1.5/Area of footing

=Column load*1.5/2*2

=147.182KN/m²

Design bending

Projection of footing=B-a/2

=2-0.24/2

=0.88m

BM=Net upward Pressure *Projection of footing*Projection of footing/2

=147.182*2*0.88*0.88/2

=113.978KNm

Depth required for footing

d req=√MRQB=143.695mm

For shear consideration

d req =1.5*143.695

=215.542mm

=220mm

D=220+50

D=270mm

Design of reinforcement

113.978*10³=79431*ASt*(1-9.432*10²Ast)

=530.110mm²

Provide 16mm dia bars

Area of bars ast

Ast =π4∗162

Spaacing

Sv=201.06/530.110*1000

=379.279mm

Check for spacing

1)3d

2)300mm

3)Sv=370mm

Sv=300mm C/c

Area of distribution reinforcement

Ast min=0.12BD/100

=0.15*2000*270/100

=810mm²

Provide 8mm∅

Bars

Area of one bar ast

Ast=π4∗82

=50.265mm²

Spacing

Sv=50.265/810*1000

=62.05mm

Check for spacing

1)5d

2)450mm

3) Sv=62.05mm

Sv=62.50mm

Check for stiffness

1)% of steel=Ast/bd*100

=530.110/(2000*270)*100

=0.098%

2)Actual ast=ast/Spacing*1000

=670.2mm²

DESIGN OF STAIRCASE

T=300mm

R=150mm

Landing width=1.2mm

Effective span

Support by landing

Leff=x/2+G+x/2

G=N*T

G=10*300

G=3000

Leff=1200/2+3000+1200/2

Leff=4200mm

Size of flight slab

3) Effective depth(d)

d=Effective span/BV*MF

4200/(20*0.95)

d=200mm

4) Overall depth

D=200+15+10/2

D=220mm

Load calculation

Self weight of slab=0.220*25*√ 0.32+0.1520.3

=3.3KN/m²

Self weight of steps=1/2*0.15*0.3*19*1/0.3

=1.425KN/m²

Imposed load =3KN/m²

Weight of floor finish=0.50KN/m²

Total load W=3.3+1.42+3+0.50=8.22KN/m²

Total design load=1.5*8.22=12.33KN/m²

Design bending moment (mu)

Mu=(12.33*4200²)/2

Mu=108750.6KNm

Assumed effective slab

d=√ 108750.6∗1032.76∗1000

d=199mm

Area of tensile steel (Ast)

108750.6*10³=0.87*415*Ast*(199-(415*Ast)/(20*1000))

Ast=1883m²

Spacing for main rod

Sv=79/1883*1000

Sv=41.7mm C/c

Spacing limit

1)Sv=3d=3*199=597mm

2)300mm C/c

So Sv=41.7mm C/c

Area of distribution

Ast min=0.12/100/b*d

=0.12/100*(1000*200)

Ast min=264mm²

Spacing limit

Sv=50.27/264*1000

Sv=190mm C/c

Spacing limit

1)Sv=5d=5*200=1000mm C/c

2)Sv=450 mm C/c

So Sv=190 mmC/c

Similar calculation for design of staircase in opposite sides.

Design of staircase in middle section

T=300mm

R=150mm

Landing width=1.2mm

Effective span

Support by landing

Leff=x/2+G+x/2

G=N*T

G=6*300

G=1800

Leff=1200/2+1800+1200/2

Leff=3000mm

Size of flight slab

3) Effective depth(d)

d=Effective span/BV*MF

3000/(20*0.95)

d=158mm

4) Overall depth

D=158+15+10/2

D=178mm

Load calculation

Self weight of slab=0.178*25*√ 0.32+0.1520.3

=4.45KN/m²

Self weight of steps=1/2*0.15*0.3*19*1/0.3

=1.425KN/m²

Imposed load =3KN/m²

Weight of floor finish=0.50KN/m²

Total load W=4.45+1.425+3+0.50=9.375KN/m²

Total design load=1.5*9.375=14.06KN/m²

Design bending moment (mu)

Mu=(14.06*3000²)/2

Mu=15817.5KNm

Assumed effective slab

d=√ 15817.5∗1032.76∗1000

d=76mm

Area of tensile steel (Ast)

7.473.5*10³=0.87*415*Ast*(158-(415*Ast)/(20*1000))

Ast=288m²

Spacing for main rod

Sv=79/288*1000

Sv=274mm C/c

Spacing limit

1)Sv=3d=3*158=474mm

2)300mm C/c

So Sv=274mm C/c

Area of distribution

Ast min=0.12/100/b*d

=0.12/100*(1000*178)

Ast min=214mm²

Spacing limit

Sv=50.27/214*1000

Sv=236mm C/c

Spacing limit

1)Sv=5d=5*158=790mm C/c

2)Sv=450 mm C/c

So Sv=236 mmC/c

DESIGN OF LINITEL CUM SUNSHADE

Design of Lintel Cum Sunshade

Lx=3510mm

T=80mm

L=150mm

Imposed load=1.5

Size of slab

Assume effective depth(d)

d=5510/(7*0.95)

d=527.8mm

Overall depth

D=527.8+15+10/2

D=547.8mm

Effective span

L=3510+300/2

Leff=3660

Leff=3510+527.8

Leff=4.37.8mm

Factors & design load

Imposed load=1.5KN/m²

Weight of weathering course=1KN/m²

Self weight of slab=0.547*25=13.6KN/m²

Total load=1.5+1+13.6=16.175KN/m²

Total design load=1.5**16.175=24.26KN/m²

Factored & design bending moment

Mu=(24.26*3660²)/2

Mu=162505.3KN/m²

Check assume effective depth

Mu=2.76*1000*527.8²

Mu=76686KN/m²

Assuned effective depth

d=√ 162505∗1032.76∗1000

d=242649mm

Area of tesion steel

162505*10³=0.87*415*Ast*(527.8-(415*Ast)/(20*1000))

Ast=882mm²Spacing for tension steel

Assume 10mm∅ bars

Sv=78.58/882*1000

Sv=89.09

Spacing limit

1)Sv=3d=3*527.8=1583.4mm

2)300mm

Sv=89.09mm

Area of distributed bars

Ast min=0.12/100*1000*547.8

Ast min=657.36mm²

Spacing limit

Sv=50.26/882*1000

Sv=56.99mm

Spacing limit

1)Sv=5d=5*527.8=2639mm

2)450mm

Sv=56.99mm

Development length

Ld=(0.87*415*527.8)/(4*1.2)

Ld=57.16N/mm²

Curtailment bars

Curtail 50% @ l/2 Free end.

Design of Lintel Cum Sunshade

Lx=2132mm

T=80mm

L=150mm

Imposed load=1.5

Size of slab

Assume effective depth(d)

d=2132/(7*0.95)

d=320.6mm

Overall depth

D=320.6+15+10/2

D=340.6mm

Effective span

L=2132+300/2

Leff=2282mm

Leff=2132+320.6

Leff=2472mm

Factors & design load

Imposed load=1.5KN/m²

Weight of weathering course=1KN/m²

Self weight of slab=0.340.6*25=5.1KN/m²

Total load=1.5+1+5.1=7.6KN/m²

Total design load=1.5*7.6=11.4KN/m²

Factored & design bending moment

Mu=(11.4*2282²)/2

Mu=296828.8KN/m²

Check assume effective depth

Mu=2.76*1000*320.6²

Mu=283684.8KN/m²

Assuned effective depth

d=√ 296828∗1032.76∗1000

d=327942mm

Area of tesion steel

29682.88*10³=0.87*415*Ast*(320.6-(415*Ast)/(20*1000))

Ast=261mm²Spacing for tension steel

Assume 10mm∅ bars

Sv=78.58/261*1000

Sv=301mm

Spacing limit

1)Sv=3d=3*320.6=961.8mm

2)300mm

Sv=30mm

Area of distributed bars

Ast min=0.12/100*1000*340.6

Ast min=408.72mm²

Spacing limit

Sv=50.26/261*1000

Sv=193mm

Spacing limit

1)Sv=5d=5*320.6=1603mm

2)450mm

Sv=163mm

Development length

Ld=(0.87*415*320.6)/(4*1.2)

Ld=34725.7N/mm²

Curtailment bars

Curtail 50% @ l/2 Free end.

BER BENDING SCHEDULE

DATA PREPARATION

DETAILED ESTIMATION

DETAILED ESTIMATION

SCHEDULE OF RATE

ABSTRACT ESTIMATION

CONCLUSION

CONCLUSION

We have tried our best to bring the project to complete success with in the prescribed time with help of oud teachers. The project work has given an opportunity to think and solve the problem , and difficulties , what may arise in planning , designing, estimating and costing. If the project is construted, it will folfill the need of a hostel . We once again then the faculty and owe very much to them for bringing the project to success.

We are sure that if our project is constructed at our selected site ,it will satify the need of a hostel . Our construction have a plinth area of 5000m² and cost of Rs.

BIBLIOGRAPHY

BIBLIOGRAPHY

1.Indian Standarr Code of Practice for plain And Reinforcement Concrete is Code456-2000

2.ReinforcementConcrete StructureVol. 1 –B.C.Punmia.

3.Structural Engineering–A.P.Arulmanikam.

4.Standard Data Book and Current Schedule of Rates – P.W.D

5.Type Design of India Institute of Technology,Chennai.


Recommended