+ All Categories
Home > Documents > REPUBLIC OF RWANDA WESTERN PROVINCE. RUBAVU DISTRICT ...

REPUBLIC OF RWANDA WESTERN PROVINCE. RUBAVU DISTRICT ...

Date post: 05-Jan-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
34
REPUBLIC OF RWANDA WESTERN PROVINCE. RUBAVU DISTRICT PROJECT: RESIDENTIAL BUILDING PROJECT OWNER: MUKAHIGIRO Marie Claire REINFORCED CONCRETE STRUCTURAL DESIGN DESIGN CODE:BS 8110 BS 8004 Computer Aided Design: ROBOT STRUCTURAL ANALYSIS STRUCTURSL DESIGNER: Eng. HAVUGIMANA Juvens
Transcript
RUBAVU DISTRICT
REINFORCED CONCRETE STRUCTURAL DESIGN
Computer Aided Design: ROBOT STRUCTURAL ANALYSIS
STRUCTURSL DESIGNER: Eng. HAVUGIMANA Juvens
1 | P a g e
Contents 1. DESIGN INFORMATION..................................................................................................2
3. 2. STAIRS DETAILING.............................................................................................11
4. 1. CONTINOUS RECTANGULAR BEAM ................................................................12
5. DESIGN OF COLUMNS ..................................................................................................17
5. 1. 1. RECTANGULAR COLUMN...........................................................................17
5. 1. 2. Column Definition............................................................................................17
2 | P a g e
REINFORCED CONCRETE STRUCTURAL DESIGN
Relevant Building Regulations and Design Code
Residential Building Intended use of the building
Roof –Imposed 1.5 kN/m2
Floor –Imposed loads 2kN/m2
Variable according to the site conditions: Average allowable bearing pressure =220kN/m2
Subsoil conditions
Concrete : C30 fcu = 30.00 (MPa)
Longitudinal reinforcement : T fy = 460.00 (MPa)
Transversal reinforcement : R fy = 250.00 (MPa)
Materials properties
Unity weight of masonry = 18kN/ m3
Other relevant information
Partial safety factor
2. SLAB DESIGN
1. Slab: Plate107 - Panel no. 107
1.1. Reinforcement:
· Type : RC floor · Main reinforcement direction : 0° · Main reinforcement grade : ; Characteristic strength = 460.00 MPa · Bar diameters bottom d1 = 1.2 (cm) d2 = 1.2 (cm)
top d1 = 1.2 (cm) d2 = 1.2 (cm) · Cover bottom c1 = 3.0 (cm)
top c2 = 3.0 (cm)
· Class : C25/30; Characteristic strength = 31.30 MPa · Density : 2501.36 (kG/m3) · Concrete creep coefficient : 2.10
1.3. Hypothesis
· Calculations according to : BS 8110 · Method of reinforcement area calculations : analytical · Allowable cracking width
- upper layer : 0.30 (mm) - lower layer : 0.30 (mm)
· Allowable deflection : 3.0 (cm) · Verification of punching : yes · Fire rating : 0 h · Exposure
- upper layer : mild
- lower layer : mild · Calculation type : simple bending
1.4. Slab geometry
Thickness 0.15 (m)
Contour: edge beginning end length
x1 y1 x2 y2 (m) 1 -0.00 -4.40 3.60 -4.40 3.60 2 3.60 -4.40 3.60 0.00 4.40 3 3.60 0.00 0.00 0.00 3.60 4 0.00 0.00 -0.00 -4.40 4.40
Support: n° Name dimensions coordinates edge
(m) x y 70 linear 0.20 / 1.80 2.70 0.00 — 71 point 0.20 / 0.20 -0.00 -4.40 — 71 linear 0.20 / 3.60 1.80 -4.40 — 71 linear 1.90 / 0.20 -0.00 -3.45 — 71 point 0.20 / 0.20 -0.00 -4.40 — 72 point 0.20 / 0.20 -0.00 -2.50 — 72 linear 2.50 / 0.20 -0.00 -1.25 — 72 point 0.20 / 0.20 -0.00 -2.50 — 74 point 0.20 / 0.20 0.00 0.00 — 74 linear 0.20 / 1.80 0.90 0.00 — 74 point 0.20 / 0.20 0.00 0.00 — 75 point 0.20 / 0.20 1.80 0.00 — 75 point 0.20 / 0.20 1.80 0.00 — 81 point 0.20 / 0.20 3.60 -1.70 — 81 linear 1.70 / 0.20 3.60 -0.85 — 81 linear 1.70 / 0.20 3.60 -2.55 — 81 point 0.20 / 0.20 3.60 -1.70 — 82 point 0.20 / 0.20 3.60 -3.40 — 82 linear 1.00 / 0.20 3.60 -3.90 — 82 point 0.20 / 0.20 3.60 -3.40 — 83 point 0.20 / 0.20 3.60 -4.40 — 83 point 0.20 / 0.20 3.60 -4.40 — 85 point 0.20 / 0.20 3.60 0.00 — 85 point 0.20 / 0.20 3.60 0.00 — * - head present
1.5. Calculation results:
Ax(+) Ax(-) Ay(+) Ay(-)
Modified required reinforcement (cm2/m): 3.19 1.95 2.33 1.95
Original required reinforcement (cm2/m):
3.19 1.95 2.33 1.95 Coordinates (m):
-0.00;-2.50 1.60;-3.60 1.80;0.00 0.80;- 3.60
1.5.2. Maximum moments + reinforcement for bending
Ax(+) Ax(-) Ay(+) Ay(-)
Symbol: required area/provided area Ax(+) (cm2/m) 3.19/3.90 1.95/3.90 1.95/3.90 1.95/3.90 Ax(-) (cm2/m) 1.95/2.45 1.95/2.45 0.00/2.45 1.95/2.45 Ay(+) (cm2/m) 2.12/2.38 0.00/2.38 2.33/2.38 0.00/2.38 Ay(-) (cm2/m) 1.95/2.12 1.95/2.12 0.00/0.00 1.95/2.12
ULS Mxx (kN*m/m) 13.23 -4.27 6.24 0.05 Myy (kN*m/m) 7.82 -1.24 9.86 -2.05 Mxy (kN*m/m) -1.43 -0.29 -0.58 -0.72
Nxx (kN/m) -0.29 -1.17 2.29 -1.05 Nyy (kN/m) 0.20 0.24 6.14 0.27 Nxy (kN/m) 1.31 0.69 0.18 1.00
Coordinates (m) -0.00;-2.50 1.60;-3.60 1.80;0.00 0.80;- 3.60 Coordinates* (m) 6.10;8.30;4.60 4.50;9.40;4.60 4.30;5.80;4.60
5.30;9.40;4.60 * - Coordinates in the structure global coordinate system
1.5.4. Deflection |f(+)| = 0.0 (cm) <= fdop(+) = 3.0 (cm) |f(-)| = 0.0 (cm) <= fdop(-) = 3.0 (cm)
1.5.5. Cracking upper layer ax = 0.00 (mm) <= adop = 0.30 (mm) ay = 0.00 (mm) <= adop = 0.30 (mm) lower layer ax = 0.00 (mm) <= adop = 0.30 (mm) ay = 0.00 (mm) <= adop = 0.30 (mm)
2. Loads:
Case Type List Value 2 uniform load PZ=-11.00(kN/m) 3 (FE) uniform 103to110 222to229 PZ=-5.00(kN/m2)
Combination/Component Definition ULS/4 (1+2)*1.35+3*1.50
3. Results - detailing
List of solutions: Reinforcement: bars Solution no. Reinforcement range Total weight
Diameter / Weight (kG)
6 | P a g e
1 - 135.05 2 - 135.38 3 - 143.46 4 - 148.48 5 - 155.42 6 - 160.43 7 - 168.51
Results for the solution no. 1 Reinforcement zones
Bottom reinforcement Name coordinates Provided reinforcementAt Ar
x1 y1 x2 y2 f (mm) / (cm) (cm2/m) (cm2/m) 1/1- Ax Main -0.00 -4.40 3.60 0.00 10.0 / 32.0 1.95 < 2.45 1/2- Ay Perpendicular -0.00 -4.40 3.60 0.00 10.0 / 37.0 1.95 < 2.12
Top reinforcement Name coordinates Provided reinforcementAt Ar
x1 y1 x2 y2 f (mm) / (cm) (cm2/m) (cm2/m) 1/1+ Ax Main -0.00 -4.40 3.60 0.00 12.0 / 29.0 3.19 < 3.90 1/2+ Ay Perpendicular -0.00 -4.40 3.60 0.00 10.0 / 33.0 2.33 < 2.38
4. Material survey
· Concrete volume = 2.38 (m3) · Formwork = 15.84 (m2) · Slab circumference = 16.00 (m) · Area of openings = 0.00 (m2)
· Steel · Total weight = 133.94 (kG) · Density = 56.37 (kG/m3) · Average diameter = 10.5 (mm) · Survey according to diameters:
Diameter Length Number: (m)
10.0 mm 3.54 14 10.0 mm 4.34 21 12.0 mm 3.54 15
7 | P a g e
3. DESIGN OF STAIRS
3. 1. STAIR SLAB SPANNING LONGITUDINALLY
The effective spanis 2.5m, the rise of stairis 1.35m, 300 mm treads, 150 mm risers, 125 mm waist, effective depth d=90mm and the characteristicmaterialstrengths are fcu= 30 N/mm2, fy=250 N/mm2
Slopelength of stair = √ (1.352+2.52) =2.84m width of stairs=1m Self-weight of waist plus steps =(2.84*0.125+1.5*0.3/2)*25=14.5KN Live load =3.0*2.5*1=7.5KN Ultimateload =1.4*14.5+1.6*7.5=32.3kN Our stairwillbeconstructedmonolithicallythus moment must becalculated by:
M= =
SEDR=
= .∗
∗ =0.99
For simplysupportedslab, basic ratio=20 from table 6.7, for fy=250N/mm2 the corresponding value of fs=156 N/mm2, therefore the spandepth modification factor is 1.98whichis the minimum value. Since the stairs flight occupies more than 60 per cent of the span a furtherincrease of 15 per cent ispermitted, thus
Limiting=
Actual =
=27.8
Thus d=90 mm isadequate and therewillbe no deflection, because27.8<30.88
K=
= .∗
∗∗ =0.033< K=0.156, therefore no compression reinforcementrequired.
Z=d(0.5+(0.25-k/0.9)^1/2
Transverse distribution steel= .
= .∗∗
=288mm2
Provide R10 bars@250mm centers, Asp=314 mm2/m Continuity bars at the top and bottom of the spanshouldbeprovided and about 50 per cent of the main steelwouldbereasonable, whilesatisfying maximum spacinglimits of 3d = 90*3=270mm.
8 | P a g e
STAIRCASE DESIGN: Main stair The main staircase have landing supported by two inclined beams; these beam has the same reinforcement as other normal beams: Flight design:
Landing:
As: use
Landing:
3. 2. STAIRS DETAILING
4. DESIGN OF REINFORCED CONCRETE BEAM
4. 1. CONTINOUS RECTANGULAR BEAM
1 Level:
· Name : Story 2 · Reference level : --- · Fire rating : 0 (h) · Maximum cracking : 0.30 (mm) · Environment class : moderate
· Concrete creep coefficient : jp = 2.00
2 Beam: Beam85 Number: 1
2.1 Material properties:
2.2 Geometry:
2.2.1 Span Position L.supp. L R.supp. (m) (m) (m)
P1 Span 0.20 3.00 0.20 Span length: Lo = 3.20 (m) Section from 0.00 to 3.00 (m)
20.0 x 30.0 (cm) without left slab without right slab
2.3 Calculation options:
· Regulation of combinations : BS8110 · Calculations according to : BS 8110 · Precast beam : no · Cover : bottom c = 3.0 (cm)
: side c1 = 3.0 (cm) : top c2 = 3.0 (cm)
2.4 Calculation results:
2.4.1 Internal forces in ULS
13 | P a g e
Span Mtmax. Mtmin. Ml Mr Ql Qr (kN*m) (kN*m) (kN*m) (kN*m) (kN) (kN)
P1 9.30 -0.00 -4.43 -10.70 20.19 -24.36
2.4.2 Internal forces in SLS
Span Mtmax. Mtmin. Ml Mr Ql Qr (kN*m) (kN*m) (kN*m) (kN*m) (kN) (kN)
P1 0.00 0.00 0.00 0.00 0.00 0.00
2.4.3 Required reinforcement area
Span Span (cm2) Left support (cm2) Right support (cm2) bottom top bottom top bottom top
P1 0.89 0.00 0.00 0.43 0.00 1.03
0 0.5 1 1.5 2 2.5 3 40
30
20
10
0
-10
-20
-30
-40
[m]
0 0.5 1 1.5 2 2.5 3 -80
-60
-40
-20
0
20
40
60
80
[m]
[kN]
14 | P a g e
2.4.4 Deflection and cracking
at(s-t) - initial deflection due to total load ap(s-t) - initial deflection due to long-term load ap(l-t) - long-term deflection due to long-term load a - total deflection aall - allowable deflection
Cw - width of perpendicular cracks
Span at(s-t) ap(s-t) ap(l-t) a aall Cw (cm) (cm) (cm) (cm) (cm) (mm)
P1 0.0 0.0 0.0 0.0=(L0/--) -1.3 0.0
0 0.5 1 1.5 2 2.5 3 4
3
2
1
0
1
2
3
4
[m]
[cm2]
0 0.5 1 1.5 2 2.5 3 6
4
2
0
2
4
6
[m]
[cm2/m]
15 | P a g e
2.5 Theoretical results - detailed results:
2.5.1 P1 : Span from 0.20 to 3.20 (m) ULS SLS
Abscissa M max. M min. M max. M min. A bottom A top (m) (kN*m) (kN*m) (kN*m) (kN*m) (cm2) (cm2) 0.20 0.00 -4.43 0.00 0.00 0.00 0.43 0.42 0.00 -0.19 0.00 0.00 0.00 0.02 0.74 4.47 -0.00 0.00 0.00 0.43 0.00 1.06 7.60 -0.00 0.00 0.00 0.73 0.00 1.38 9.21 -0.00 0.00 0.00 0.89 0.00 1.70 9.30 -0.00 0.00 0.00 0.89 0.00 2.02 7.87 -0.00 0.00 0.00 0.76 0.00 2.34 4.92 -0.00 0.00 0.00 0.47 0.00 2.66 0.45 -0.00 0.00 0.00 0.04 0.00 2.98 0.00 -5.54 0.00 0.00 0.00 0.53 3.20 0.00 -10.70 0.00 0.00 0.00 1.03
ULS SLS Abscissa Q max. Q max. Cw (m) (kN) (kN) (mm) 0.20 20.19 0.00 0.0 0.42 16.92 0.00 0.0 0.74 12.17 0.00 0.0 1.06 7.41 0.00 0.0 1.38 2.66 0.00 0.0 1.70 -2.09 0.00 0.0 2.02 -6.84 0.00 0.0 2.34 -11.59 0.00 0.0 2.66 -16.35 0.00 0.0 2.98 -21.10 0.00 0.0 3.20 -24.36 0.00 0.0
0 0.5 1 1.5 2 2.5 3 1.5
1
0.5
0
-0.5
-1
-1.5
[m]
[cm]
0 0.5 1 1.5 2 2.5 3 0.3
0.2
0.1
0
0.1
0.2
0.3
[m]
[mm]
2.6 Reinforcement:
2.6.1 P1 : Span from 0.20 to 3.20 (m) Longitudinal reinforcement: · bottom
2 14 l = 3.34 from 0.03 to 3.37 · assembling (top)
2 14 l = 3.10 from 0.15 to 3.25
· support () 2 14 l = 1.55 from 0.03 to 1.01 2 14 l = 1.55 from 2.39 to 3.37
Transversal reinforcement: · main
stirrups 17 8 l = 0.89 e = 1*0.06 + 16*0.18 (m)
pins 17 8 l = 0.89 e = 1*0.06 + 16*0.18 (m)
3 Material survey:
· Concrete volume = 0.20 (m3) · Formwork = 2.76 (m2)
· Steel · Total weight = 28.97 (kG) · Density = 142.03 (kG/m3) · Average diameter = 11.4 (mm) · Survey according to diameters:
Diameter Length Weight NumberTotal weight (mm) (m) (kG) (No.) (kG) 8 0.89 0.35 17 5.94 14 1.55 1.87 4 7.48 14 3.10 3.74 2 7.49 14 3.34 4.04 2 8.07
17 | P a g e
5. DESIGN OF COLUMNS
1 Level:
· Name : Story 2 · Reference level : 1.50 (m) · Fire rating : 0 (h) · Environment class : mild
2 Column: Column63 Number: 1
2.1 Material properties:
2.2 Geometry:
2.2.1 Rectangular 20.0 x 20.0 (cm) 2.2.2 Height: L = 3.10 (m) 2.2.3 Slab thickness = 0.15 (m) 2.2.4 Beam height = 0.30 (m) 2.2.5 Cover = 3.0 (cm)
2.3 Calculation options:
· Calculations according to : BS 8110 · Precast column : no · Pre-design : no · Slenderness taken into account : yes · Ties :to slab · Non-sway structure
2.4 Loads:
Case Nature Group gf N Myu Myl Myi Mzu Mzl Mzi (kN) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m) (kN*m)
DL2 dead load(Structural) 63 1.40 57.95 0.36 -0.18 0.14 -0.67 0.60 -0.27
LL1 live load(Category A) 63 1.60 26.92 0.70 -0.35 0.28 -0.13 0.08 -0.05
gf - load factor
2.5 Calculation results:
2.5.1 ULS Analysis
Design combination: 1.40DL2+1.60LL1 (A) Internal forces:
NSd = 124.21 (kN) MSdy = 1.62 (kN*m) MSdz = -1.13 (kN*m) Design forces: Upper node
NSd = 124.21 (kN) NSd*etotz = 3.12 (kN*m) NSd*etoty= -1.24 (kN*m)
2.5.1.1 Eccentricity:
Eccentricity: ez (My/N) ey (Mz/N) Static ee: 1.3 (cm) -0.9 (cm)
II order eadd: 1.2 (cm) 1.2 (cm) Minimal emin: 1.0 (cm) -1.0 (cm) Total etot: 2.5 (cm) -1.0 (cm)
2.5.1.2 Detailed analysis-Direction Y:
3.10 1.00 3.10
ley/h = 15.50 > 15.00 (10-7) lez/b = 15.50 > 15.00 (10-7) Slender column
2.5.1.2.2 Buckling analysis
M2 = 1.62 (kN*m) M1 = -0.81 (kN*m) Case: Cross-section at the column end (Upper node), Slenderness taken into account M = 1.62 (kN*m) emin = max (20mm ; 0.05 *hy) = 1.0 (cm) (3.8.2.4)
hy = 20.0 (cm) Mmin = N*emin = 1.24 (kN*m) au/2 = ba*K*h/2 = 1.2 (cm) (32)
ba = 0.12 (34) K = min((Nuz-N)/(Nuz-Nbal) ; 1) = 1.00 (33)
Nuz = 2/3*fcu/gc*Ac+fy/gs*Asc = 714.20 (kN) Ac = 0.04 (m2) Asc = 6.16 (cm2)
Nbal = 153.16 (kN) h = 20.0 (cm)
Madd/2 = au/2 * N = 1.49 (kN*m) (35) Md = max (Mmin;M+Madd/2) = 3.12 (kN*m)
2.5.1.3 Detailed analysis-Direction Z:
M2 = 0.96 (kN*m) M1 = -1.13 (kN*m) Case: Cross-section at the column end (Upper node), Slenderness not taken into account M = -1.13 (kN*m) emin = max (20mm ; 0.05 *hz) = -1.0 (cm) (3.8.2.4)
hz = 20.0 (cm) Mmin = N*emin = -1.24 (kN*m) Md = max (Mmin;M) = -1.24 (kN*m)
2.5.2 Reinforcement:
Real (provided) area Asr = 6.16 (cm2)
Ratio: m = 1.54 %
Transversal reinforcement: stirrups: 18 8 l = 0.69 (m)
pins 18 8 l = 0.69 (m)
3 Material survey:
· Concrete volume = 0.11 (m3) · Formwork = 2.24 (m2)
· Steel · Total weight = 19.71 (kG) · Density = 176.00 (kG/m3) · Average diameter = 11.0 (mm) · Reinforcement survey:
Diameter Length Weight Number Total weight (m) (kG) (No.) (kG)
8 0.69 0.27 18 4.87 14 3.07 3.71 4 14.84
6. FOUNDATION DESIGN
6. 1. FOOTING
1 Spread footing: Foundation1...58 Number: 1
1.1 Basic data
· Geotechnic calculations according to : BS 8004 · Concrete calculations according to : BS 8110 · Shape selection : without limits
1.1.2 Geometry:
A = 0.80 (m) a = 0.20 (m) B = 0.80 (m) b = 0.20 (m) h1 = 0.25 (m) ex = 0.00 (m) h2 = 0.20 (m) ey = 0.00 (m) h4 = 0.05 (m)
a' = 20.0 (cm) b' = 20.0 (cm) c1 = 5.0 (cm) c2 = 5.0 (cm)
1.1.3 Materials
· Concrete : C25/30; Characteristic strength = 31.30 MPa Unit weight = 2501.36 (kG/m3)
· Longitudinal reinforcement : type B450C Characteristic strength = 450.00 MPa
· Transversal reinforcement : type B450C Characteristic strength = 450.00 MPa
1.1.4 Loads:
Foundation loads:
21 | P a g e
Case Nature Group N Fx Fy Mx My (kN) (kN) (kN) (kN*m) (kN*m)
COMB1 design ---- 234.91 9.86 -2.74 1.27 4.69 COMB1 design ---- 158.75 -11.02 -3.12 1.49 -5.75 COMB1 design ---- 312.34 -11.01 1.46 -0.80 -5.51 COMB1 design ---- 335.92 11.22 0.37 -0.28 5.57 COMB1 design ---- 62.06 2.25 -0.37 0.15 1.14 COMB1 design ---- 119.10 -2.37 -4.39 2.27 -1.17 COMB1 design ---- 79.47 -0.86 -0.22 0.08 -0.44 COMB1 design ---- 156.44 0.08 1.01 -0.57 0.03 COMB1 design ---- 148.40 -0.26 0.11 -0.13 -0.16 COMB1 design ---- 319.88 -2.62 -1.66 0.68 -1.34 COMB1 design ---- 250.03 4.31 0.96 -0.57 2.12 COMB1 design ---- 205.87 4.64 0.93 -0.55 2.35 COMB1 design ---- 283.49 -3.86 1.47 -0.88 -1.89 COMB1 design ---- 115.30 3.97 1.54 -0.86 2.04 COMB1 design ---- 237.24 0.63 1.35 -0.82 0.38 COMB1 design ---- 198.94 -1.03 0.18 -0.12 -0.43 COMB1 design ---- 193.57 2.48 0.24 -0.15 1.29 COMB1 design ---- 27.76 -2.68 1.76 -0.78 -1.25 COMB1 design ---- 173.45 -2.59 0.67 -0.24 -1.24 COMB1 design ---- 181.27 -2.78 1.20 -0.51 -1.40 COMB1 design ---- 182.93 2.55 -0.11 0.03 1.26 COMB1 design ---- 112.41 -0.90 -0.65 0.29 -0.48
Backfill loads: Case Nature Q1
(kN/m2)
1.1.5 Combination list
1/ ULS : COMB1 N=234.91 Mx=1.27 My=4.69 Fx=9.86 Fy=-2.74 2/ ULS : COMB1 N=158.75 Mx=1.49 My=-5.75 Fx=-11.02 Fy=-3.12 3/ ULS : COMB1 N=312.34 Mx=-0.80 My=-5.51 Fx=-11.01 Fy=1.46 4/ ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37 5/ ULS : COMB1 N=62.06 Mx=0.15 My=1.14 Fx=2.25 Fy=-0.37 6/ ULS : COMB1 N=119.10 Mx=2.27 My=-1.17 Fx=-2.37 Fy=-4.39 7/ ULS : COMB1 N=79.47 Mx=0.08 My=-0.44 Fx=-0.86 Fy=-0.22 8/ ULS : COMB1 N=156.44 Mx=-0.57 My=0.03 Fx=0.08 Fy=1.01 9/ ULS : COMB1 N=148.40 Mx=-0.13 My=-0.16 Fx=-0.26 Fy=0.11 10/ ULS : COMB1 N=319.88 Mx=0.68 My=-1.34 Fx=-2.62 Fy=-1.66 11/ ULS : COMB1 N=250.03 Mx=-0.57 My=2.12 Fx=4.31 Fy=0.96 12/ ULS : COMB1 N=205.87 Mx=-0.55 My=2.35 Fx=4.64 Fy=0.93 13/ ULS : COMB1 N=283.49 Mx=-0.88 My=-1.89 Fx=-3.86 Fy=1.47 14/ ULS : COMB1 N=115.30 Mx=-0.86 My=2.04 Fx=3.97 Fy=1.54 15/ ULS : COMB1 N=237.24 Mx=-0.82 My=0.38 Fx=0.63 Fy=1.35 16/ ULS : COMB1 N=198.94 Mx=-0.12 My=-0.43 Fx=-1.03 Fy=0.18 17/ ULS : COMB1 N=193.57 Mx=-0.15 My=1.29 Fx=2.48 Fy=0.24 18/ ULS : COMB1 N=27.76 Mx=-0.78 My=-1.25 Fx=-2.68 Fy=1.76 19/ ULS : COMB1 N=173.45 Mx=-0.24 My=-1.24 Fx=-2.59 Fy=0.67 20/ ULS : COMB1 N=181.27 Mx=-0.51 My=-1.40 Fx=-2.78 Fy=1.20 21/ ULS : COMB1 N=182.93 Mx=0.03 My=1.26 Fx=2.55 Fy=-0.11 22/ ULS : COMB1 N=112.41 Mx=0.29 My=-0.48 Fx=-0.90 Fy=-0.65 23/* ULS : COMB1 N=234.91 Mx=1.27 My=4.69 Fx=9.86 Fy=-2.74 24/* ULS : COMB1 N=158.75 Mx=1.49 My=-5.75 Fx=-11.02 Fy=-3.12 25/* ULS : COMB1 N=312.34 Mx=-0.80 My=-5.51 Fx=-11.01 Fy=1.46 26/* ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37 27/* ULS : COMB1 N=62.06 Mx=0.15 My=1.14 Fx=2.25 Fy=-0.37 28/* ULS : COMB1 N=119.10 Mx=2.27 My=-1.17 Fx=-2.37 Fy=-4.39 29/* ULS : COMB1 N=79.47 Mx=0.08 My=-0.44 Fx=-0.86 Fy=-0.22 30/* ULS : COMB1 N=156.44 Mx=-0.57 My=0.03 Fx=0.08 Fy=1.01 31/* ULS : COMB1 N=148.40 Mx=-0.13 My=-0.16 Fx=-0.26 Fy=0.11 32/* ULS : COMB1 N=319.88 Mx=0.68 My=-1.34 Fx=-2.62 Fy=-1.66 33/* ULS : COMB1 N=250.03 Mx=-0.57 My=2.12 Fx=4.31 Fy=0.96 34/* ULS : COMB1 N=205.87 Mx=-0.55 My=2.35 Fx=4.64 Fy=0.93 35/* ULS : COMB1 N=283.49 Mx=-0.88 My=-1.89 Fx=-3.86 Fy=1.47 36/* ULS : COMB1 N=115.30 Mx=-0.86 My=2.04 Fx=3.97 Fy=1.54 37/* ULS : COMB1 N=237.24 Mx=-0.82 My=0.38 Fx=0.63 Fy=1.35 38/* ULS : COMB1 N=198.94 Mx=-0.12 My=-0.43 Fx=-1.03 Fy=0.18
22 | P a g e
39/* ULS : COMB1 N=193.57 Mx=-0.15 My=1.29 Fx=2.48 Fy=0.24 40/* ULS : COMB1 N=27.76 Mx=-0.78 My=-1.25 Fx=-2.68 Fy=1.76 41/* ULS : COMB1 N=173.45 Mx=-0.24 My=-1.24 Fx=-2.59 Fy=0.67 42/* ULS : COMB1 N=181.27 Mx=-0.51 My=-1.40 Fx=-2.78 Fy=1.20 43/* ULS : COMB1 N=182.93 Mx=0.03 My=1.26 Fx=2.55 Fy=-0.11 44/* ULS : COMB1 N=112.41 Mx=0.29 My=-0.48 Fx=-0.90 Fy=-0.65
1.2 Geotechnical design
1.2.2 Soil:
Soil level: N1 = 0.00 (m) Column pier level: Na = 0.00 (m) Minimum reference level: Nf = -0.50 (m)
Clay • Soil level: 0.00 (m) • Unit weight:2243.38 (kG/m3) • Unit weight of solid: 2753.23 (kG/m3) • Internal friction angle: 25.0 (Deg) • Cohesion: 0.06 (MPa)
1.2.3 Limit states
1.3 RC design
Shear
Design combination ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37
Load factors: 1.00 * Foundation weight 1.00 * Soil weight
Design load: Nr = 342.68 (kN) Mx = -0.44 (kN*m) My = 10.62 (kN*m)
Length of critical circumference: 0.80 (m) Shear force: 55.61 (kN) Section effective height heff = 0.19 (m)
23 | P a g e
Shear area: A = 0.15 (m2) Reinforcement ratio: r = 0.19 % Shear stress: 0.37 (MPa) Admissible shear stress: 0.47 (MPa) Safety factor: 1.288 > 1
1.3.3 Required reinforcement
bottom:
ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37 My = 22.26 (kN*m) Asx = 3.60 (cm2/m)
ULS : COMB1 N=335.92 Mx=-0.28 My=5.57 Fx=11.22 Fy=0.37 Mx = 19.04 (kN*m) Asy = 3.38 (cm2/m)
As min = 3.38 (cm2/m)
As min = 0.00 (cm2/m)
Column pier: Longitudinal reinforcement A = 1.60 (cm2) A min. = 1.60 (cm2)
A = 2 * (Asx + Asy) Asx = 0.32 (cm2) Asy = 0.48 (cm2)
1.3.4 Provided reinforcement
2.3.1 Spread footing: Bottom: Along X axis:
5 B450C 12 l = 0.85 (m) e = 1*-0.30 + 4*0.15 Along Y axis:
5 B450C 12 l = 0.85 (m) e = 1*-0.30 + 4*0.15 Top:
2.3.2 Pier Longitudinal reinforcement
Dowels Longitudinal reinforcement
4 B450C 14 l = 0.95 (m) e = 1*-0.03 + 1*0.07
24 | P a g e
2 Material survey:
· Concrete volume = 0.17 (m3) · Formwork = 0.96 (m2)
· Steel B450C · Total weight = 12.47 (kG) · Density = 74.25 (kG/m3) · Average diameter = 11.9 (mm) · Survey according to diameters:
Diameter Length Number: (m)
7. RECAPTILATION OF REINFORCEMENTS DESIGN RESULTS
1.1.1 COLUMNS SUMMARY
Floor Internal/ Edge
Edge 20X20 414 8@20 cm c/c Edge
1 Internal 20X20 414 8@20 cm c/c Edge 20X20 414 8@20 cm c/c Edge
25 | P a g e
1.1.2 FOOTING SUMMARY Footing type
Dimensions Reinforcement in X-direction
Type 1 140x140x25 12@200 mm c/c 12@200 mm c/c 414
1.1.3 BEAMS SUMMARY
Bottom reinforcement (mid-span)
Transversal beams
1.1.4 SLAB SUMMARY
10@20cm c/c
10@20cm c/c
Done at RUBAVU on May 22 ,2018 Eng. HAVUGIMANA Juvens
V1 P1 V2
200 2250 200
310 1080 3
80
26
Tel. Fax Concrete : C20/25 = 0.153 m3
Formwork = 2.04 m2
Side cover 3 cm
28 00 29
Pos.ReinforcementCodeShape SteelNumber
140
18
Formwork = 2.24 m2
1
100 700 10
680
310
4
100
100
3
Cover c1 = 5 cm, c2 = 5 cm
View scale 1/20
3600
Formwork = 15.8 m2
Element: Plate107
3600
, Tel. Fax Concrete : C25/30 = 2.38 m3 Cover top = 3 cm
bottom = 3 cm Level Story 2 Subject: MUKAHIGIRO M.Claire
Element: Plate107
Drawing: BOTTOM SLAB REINFORCEMENT Scale : 1/50 Date : 22/05/18 Page 2/4
3600
, Tel. Fax Concrete : C25/30 = 2.38 m3 Cover top = 3 cm
bottom = 3 cm Level Story 2 Subject: MUKAHIGIRO M.Claire
Element: Plate107
Drawing: TOP SLAB REINFORCEMENT Scale : 1/50 Date : 22/05/18 Page 3/4
1 12.0 l=3540 00 3540 15
Pos. Reinforcement Code Shape Steel Number
2 10.0 l=4340 00 4340 21
3 10.0 l=3540 00 3540 14
, Tel. Fax Concrete : C25/30 = 2.38 m3 Cover top = 3 cm
bottom = 3 cm Level Story 2 Subject: MUKAHIGIRO M.Claire
Element: Plate107
V2 P2 V3
200 2250 200
240
80
26
310 830 3
Tel. Fax Concrete : C20/25 = 0.153 m3
Formwork = 2.04 m2
Side cover 3 cm

Recommended