+ All Categories
Home > Documents > RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et...

RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et...

Date post: 18-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
8
Global Journal of Medicinal Plant Research 2016. 4(4): 1-8 ISSN: 2074-0883 Journal home page: http://www.aensiweb.com/GJMPR/ RESARCH ARTICLE Open Access Journal Published BY AENSI Publication © 2016 AENSI Publisher All rights reserved This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ To Cite This Article: Sayım Aktürk, Sevil Toroğlu, Sadık Dinçer, Menderes Çenet, Antimicrobial Activities and Palynological Studies on Gladiolus kotschyanus Boiss. (Iridaceae) from Turkey. Glob. J. Med. Plant Res, 4(4): 1-8, 2016 Antimicrobial Activities and Palynological Studies on Gladiolus kotschyanus Boiss. (Iridaceae) from Turkey 1 Sayım Aktürk, 2 Sevil Toroğlu, 1 Sadık Dinçer, 3 Menderes Çenet 1 Cukurova University, Department of Biology, Faculty of Arts and Science, Balcalı 01330- Adana, Turkey, 2 Kahramanmaraş Sütcü İmam University, Department of Biology, Faculty of Arts and Science, Kahramanmaras 46100- Kahramanmaras, Turkey, 3 Osmaniye Korkut Ata University, Department of Biology, Faculty of Arts and Science, 80000- Osmaniye, Turkey ABSTRACT The genus Gladiolus includes 260 species of a perennial herb, and commonly called sword lily belonging to lily family Iridaceae. Total of 9 Gladiolus species are grown in various region of Turkey, 4 of which are endemic to the country. The aim of this study is to verify and estimate if the parts of Gladiolus kotschyanus have any antimicrobial activities; and to show out pollen featuresof this plant, with a view to gaining some insight into the scientific basis for the use of this plant material in Turkey. In the study, methanol, DMSO, ethylacetate n- Hexan and chloroform extracts of flowers, leaves, branches and corms of the G. kotschyanus obtained from Aladağlar Mountain (Kayseri–Turkey), were tested for antimicrobial effect and pollen features. Antimicrobial activities were studied by disc diffusion method. These extracts were tested against fourteen bacteria and one fungi. The results showed that the DMSO extracts of G.kotschyanus corms (GKC) were active against all tested microorganisms except B. subtilis, but relatively the methanol, ethylacetate, n- Hexan and chloroform extracts of them were inactive against to all tested microorganisms. Interestingly, results of this study showed that the n-Hexan extracts of G.kotschyanus leaves (GKL) showed more antibacterial activity against Pseudomonas aeruginosa (clinic) (16mm 50 μl -1 ) than standart antibiotic (Amp:30 μg/disc). Palynological researches carried out on these plants materials and photomicrographs of pollen grains were produced using by using light microscopes, Olympus CX21FS1 and Euromex PB4161 microscopes. G.kotschyanus polen size 74-60 μm, polen shape 1.23 subprolate, aperture monosulcate, sulcus membrane two banded opeculum, polen wall type tectate-columellate, ornamentation spinulate perforate. G.kotschyanus contain antimicrobial components against different microorganisms, which could be in various pharmaceutical preparations. But, the presence of cardiac glycosides in Gladiolus sp. for caution in its use. Key words: Iridaceae, Gladiolus kotschyanus, antimicrobial activity, palynology, Aladağlar mountains (Yahyalı/Kayseri-TURKEY) Address for Correspondence: Sevil Toroğlu, Kahramanmaraş Sütcü İmam University, Department of Biology, Faculty of Arts and Science, Kahramanmaras 46100 - Kahramanmaras, Turkey E-mail:[email protected] Received 3 July 2016; accepted 16 September 2016; published 26 September 2016 INTRODUCTION Gladiolus L. (Iridaceae) is a large genus that occurs in Africa, the Mediterranean basin and Western asia, a member of Iridaceae, subfamily Crocoideae and comprises approximately 260 species (Ameh et al., 2010). The species of Gladiolus are of great horticultural value and are used in gardening and cut-flower production (Emek and Erdağ., 2007). There are nine Gladiolus species in Turkey and are grown in various regions of Turkey, four of which are endemic to the country (Üzen, 1999) : Gladiolus anatolicus (Boiss.) Stapf., G. humilis Stapf., G. micranthus Stapf., G. halophilus Boiss. and Heldr., G. italicus Miller, G. antakiensis A.P. Hamilton, G. kotschyanus Boiss., G. illyricus W. Koch., G. atroviolaceus Boiss. (Erol et al., 2006).
Transcript
Page 1: RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016 The genus

Global Journal of Medicinal Plant Research

2016. 4(4): 1-8 ISSN: 2074-0883

Journal home page: http://www.aensiweb.com/GJMPR/

RESARCH ARTICLE

Open Access Journal Published BY AENSI Publication © 2016 AENSI Publisher All rights reserved This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

To Cite This Article: Sayım Aktürk, Sevil Toroğlu, Sadık Dinçer, Menderes Çenet, Antimicrobial Activities and Palynological Studies on Gladiolus kotschyanus Boiss. (Iridaceae) from Turkey. Glob. J. Med. Plant Res, 4(4): 1-8, 2016

Antimicrobial Activities and Palynological Studies on Gladiolus kotschyanus Boiss. (Iridaceae) from Turkey

1Sayım Aktürk, 2Sevil Toroğlu, 1Sadık Dinçer, 3Menderes Çenet

1Cukurova University, Department of Biology, Faculty of Arts and Science, Balcalı 01330- Adana, Turkey,

2Kahramanmaraş Sütcü İmam University, Department of Biology, Faculty of Arts and Science, Kahramanmaras 46100- Kahramanmaras, Turkey, 3Osmaniye Korkut Ata University, Department of Biology, Faculty of Arts and Science, 80000- Osmaniye, Turkey

ABSTRACT The genus Gladiolus includes 260 species of a perennial herb, and commonly called sword lily belonging to lily family – Iridaceae. Total of 9 Gladiolus species are grown in various region of Turkey, 4 of which are endemic to the country. The aim of this study is to verify and estimate if the parts of Gladiolus kotschyanus have any antimicrobial activities; and to show out pollen featuresof this plant, with a view to gaining some insight into the scientific basis for the use of this plant material in Turkey. In the study, methanol, DMSO, ethylacetate n- Hexan and chloroform extracts of flowers, leaves, branches and corms of the G. kotschyanus obtained from Aladağlar Mountain (Kayseri–Turkey), were tested for antimicrobial effect and pollen features. Antimicrobial activities were studied by disc diffusion method. These extracts were tested against fourteen bacteria and one fungi. The results showed that the DMSO extracts of G.kotschyanus corms (GKC) were active against all tested microorganisms except B. subtilis, but relatively the methanol, ethylacetate, n- Hexan and chloroform extracts of them were inactive against to all tested microorganisms. Interestingly, results of this study showed that the n-Hexan extracts of G.kotschyanus leaves (GKL) showed more antibacterial activity against Pseudomonas aeruginosa (clinic) (16mm 50 µl-1) than standart antibiotic (Amp:30 µg/disc). Palynological researches carried out on these plants materials and photomicrographs of pollen grains were produced using by using light microscopes, Olympus CX21FS1 and Euromex PB4161 microscopes. G.kotschyanus polen size 74-60 µm, polen shape 1.23 subprolate, aperture monosulcate, sulcus membrane two banded opeculum, polen wall type tectate-columellate, ornamentation spinulate perforate. G.kotschyanus contain antimicrobial components against different microorganisms, which could be in various pharmaceutical preparations. But, the presence of cardiac glycosides in Gladiolus sp. for caution in its use. Key words: Iridaceae, Gladiolus kotschyanus, antimicrobial activity, palynology, Aladağlar mountains (Yahyalı/Kayseri-TURKEY) Address for Correspondence: Sevil Toroğlu, Kahramanmaraş Sütcü İmam University, Department of Biology, Faculty of Arts and Science, Kahramanmaras 46100- Kahramanmaras, Turkey

E-mail:[email protected] Received 3 July 2016; accepted 16 September 2016; published 26 September 2016

INTRODUCTION

Gladiolus L. (Iridaceae) is a large genus that occurs in Africa, the Mediterranean basin and Western asia, a

member of Iridaceae, subfamily Crocoideae and comprises approximately 260 species (Ameh et al., 2010). The

species of Gladiolus are of great horticultural value and are used in gardening and cut-flower production

(Emek and Erdağ., 2007).

There are nine Gladiolus species in Turkey and are grown in various regions of Turkey, four of which are

endemic to the country (Üzen, 1999) : Gladiolus anatolicus (Boiss.) Stapf., G. humilis Stapf., G. micranthus

Stapf., G. halophilus Boiss. and Heldr., G. italicus Miller, G. antakiensis A.P. Hamilton, G. kotschyanus Boiss.,

G. illyricus W. Koch., G. atroviolaceus Boiss. (Erol et al., 2006).

Page 2: RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016 The genus

2 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016

The genus Gladiolus kotschyanus (Iridaceae) is one of the nine genera in the Iridaceae (Davis, 1982).

Gladiolus consists of small and fairly tall herbs and thrive mainly in seasonally dry habitats in Turkey.

Gladiolus kotschyanus is the perennial herb. The corms of Gladiolus species are ovate or globose to flattened

and enclosed by several layers of brownish fibrous tunics. Lowest leaves are reduced to a subterranean

sheathing cataphyll and cauline leaves may be two or many. Flowers of this genus are densely or laxly dipersed

and they are either secund or not (Erol et al., 2006) and may be white, pink, purple or orange (Ameh et al.,

2011).

In Ghana, Nigeria, Cameroon and Bostwana, Gladiolus corms are used either alone or in combination with

other plant materials and used in food, and in ethnomedicines for treating infections of the skin, gut, urogenital

system, and upper respiratory tract (Nguedia et al., 2004). In South West Nigeria the corms called “baka” are

used in treating gonorrhea, dysentery and other infectious conditions. In Ghana the corms used to treat dysentery

and a potent evacuate for constipation (the corms are mixed with ginger). In Idomaland, Benue State, Nigeria,

corms of Gladiolus are used in the preparation of a non-alcoholic drink (Ameh et al., 2010). Bulb extracts of G.

dalenii are one of the plants used by local communities in Kenyan Lake Victoria Basin to treat different

infections such as meningitis, malaria, diarrhoea, ulcers and HIV related fungal infections (Odhiambo et al.,

2010).

Gladiolus can also be considered here in the light of the review of operculate pollen in the monocotyledons

by Furness and Rudall (2003). Gladiolus pollen grains monosulcate, heteropolar, elliptical in polar view,

medium to large in size. Exine pattern spinulose-perforate; exine tectate-columellate. Intine thickness, thicker in

aperture region, Sulcus extends full length of grain, wide, almost equal to the short axis of grain, exine extends

irregularly towards sulcus; a two-banded operculum, bands (Dönmez and Işık, 2008). Tan and Edmondson

(1984) made studies of Turkish Gladiolus and described nine species.

There is no report on antimicrobial activity and palynogical study of G. kotschyanus from Aladağlar

mountain (Turkey). In the light data obtained, in the present research, antimicrobial activities and palynogical

features of G. kotschyanus were investigated.

MATERIALS AND METHODS

Palynological studies:

For LM observations, the polen of Gladiolus kotschyanus was first treated with 70% ethyl alcohol to

remove oily substances, and then embedded in glycerine-jelly, stained with safranin. The following parameters

were measured: pollen size – long axis (LA), short axis (SA), and diameter; exine thickness and intine thickness.

Palynological researches carried out on these plants materials and photomicrographs were produced using by

using light microscopes, Olympus CX21FS1 and Euromex PB4161 microscopes. The photomicrographs of

pollen grains identified in are shown in Figure I. Palynological studies were carried out according to Erdtman

(1952) with at least 25-40 measurement for each character. Polen terminology used according to Erdtman

(1952); Faegri and Iversen (1964); Walker and Doyle (1976).

Plant collection and preparation of extracts:

Gladiolus kotschyanus Boiss. was collected by Dr. E. Toroğlu from a step area in Aladağlar Mountain

(Kayseri–Turkey), Gökoluk plateau (upland) at an altitude of 2000-2500 meter during the flowering stage in

July 2006. The plant was identified by Dr. M. Çenet. A voucher specimen was deposited in the Herbarium of

the Department of Biology, Osmaniye Korkut Ata University, Osmaniye, Turkey (Voucher no: 1808 OKUH).

The plants were dried in the shade at ambient temperature. Morphological properties of Gladiolus kotschyanus

were determined using stereo microscope (Nikon SMZ 1000 model) and the present results were compared with

the previous data from the flora of Turkey (Davis et al. 1982).

The plant parts (flowers, leaves, branches and corms) used were broken into small pieces under sterile

conditions, and 20 g of this plant was extracted with 150 mL of methanol, DMSO, ethylacetate n- Hexan and

chloroform extracts (Merck, Darmstadt) for 24 h by Soxhlet appartaus (Khan et al., 1988). Prepared extracts

were dried at 30oC using a rotary evaporator until amount of each extracts was 1 mL.

Microorganisms and media:

Fourteen bacteria (1-Escherichia coli K-12 (Standard), 2-Staphylococcus aureus ATTC 29213 (Standard),

3-Bacillus subtilis B-354 (Standard), 4-Pseudomonas aeruginosa (Clinic), 5-Klebsiella spp.1 (Clinic), 6-

Escherichia coli 9539994 (Standard), 7- Staphylococcus aureus ATTC 6538 (Standard), 8- Staphylococcus

epidermidis B-4268 (Standard), 9-Vancomycin-resistant Enterococcus (VRE) (Clinic), 10-Methicillin-resistant

Staphylococcus aureus (MRSA) (BaL) (Clinic), 11-Enterobacter cloacea (2.6) (Natural), 12- Staphylococcus

epidermidis (Clinic), 13- Escherichia coli (Clinic), 14- Pseudomonas aeruginosa (Natural)) were obtained from

the Biology Department of Cukurova University, Science and Arts Faculty. Cultures of these bacteria were

Page 3: RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016 The genus

3 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016

grown in Nutrient Broth (NB) (Difco) at 37±0.1 ˚C for 24 h. One fungus (Candida albicans (Clinic). Cultures of

that fungi was grown in Sabouraud Dextrose Broth (SDB) (Difco) at 25±0.1 ˚C for 24 h.

Antibacterial activity:

The disc assay described by Bauer et al., (1966). was used for antibacterial activity. All of the extracts

individually were injected into empty sterilized antibiotic discs having a diameter of 6 mm (Schleicher & Schül

No:2668, Germany) in the amount of 50 μL. Discs injected with pure methanol, DMSO, ethylacetate n- Hexan

and chloroform served as negative controls. The bacteria were incubated in Nutrient Broth (NB) (Difco) at

37±0.1oC for 24h, and then inoculated [106 mL

-1 (NCCLS, 2000)] into petri dishes containing homogenously

distributed 15 mL of streilized Muller-Hinton agar (MHA, Oxoid) (NCCLS, 2000). Disc injected with extracts

were applied on the solid agar medium by pressing slightly. The treated petri disheswere placed at 4oC for 1-2 h

and then the injected plates with bacteria were incubated at 37±0.1oC for 18-24 h (Collins et al., 1989;

Bradshaw, 1992; NCCLS, 2000; Toroglu, 2007). Ampicillin (30 µg/disc) discs were used as standard antibiotics

(as positive control). After incubation, all plates were observed for zones of growth inhibition, and the diameters

of these zones were measured in millimeters. The experiments were conducted three times.

Antifungal activity:

Antifungal assay was performed using disc diffusion method (Bauer et al., 1966). The respective fungal

cultures were inoculated [105 mL-1 (NCCLS, 2000)] into petri dishes containing homogenously distributed

sterilized Saboraud Dextrose Agar (SDA) (NCCLS, 2000). Discs injected with extracts were applied on the

solid agar medium by pressing slightly. The treated petri dishes were placed at 4oC for 1-2 h and then the

injected plates with fungi were incubated at 25±0.1oC for 48 h. Nystatin 100 Units (10 μg/disc) discs were used

as positive control. Different plant extracts were used to saturate the disc and placed on the seeded plates.

Respective solvents act as a negative controls. After incubation period, the antifungal activity was evaluated by

measuring the zone of inhibition against test organisms. The experiments were conducted three times.

RESULTS AND DISCUSSION

Antimicrobial activity:

The results of antimicrobial screening reveal that five different solvent extracts of Gladiolus kotschyanus

Boiss. Flowers, leaves, branches and corms possess antimicrobial activities as shown in Table I.

The methanol, DMSO, ethylacetate, n- Hexan and chloroform used as negative controls did not show

antimicrobial activity against the all tested microorganism.

The methanol, n- Hexan and chloroform extracts of Gladiolus kotschyanus flowers (GKF) showed no

inhibition zone against all tested microorganisms.

The ethylacetate extracts of (GKF) showed antibacterial activity against only one bacterium, namely

Klebsiella spp.1 (7mm 50 µl-1

). But, the DMSO extracts of (GKF) showed the best antibacterial activity against

to Methicillin-resistant Staphylococcus aureus (MRSA) (BaL) (10mm 50 µl-1

). At the same time, the DMSO

extracts of (GKF) displayed antibacterial activity against to Escherichia coli 9539994, Staphylococcus aureus

ATTC 6538, Vancomycin-resistant Enterococcus (VRE), Enterobacter cloacea (2.6), Escherichia coli (9mm 50

µl-1

) and Pseudomonas aeruginosa (8mm 50 µl-1

) and Staphylococcus aureus ATTC 29213 (7mm 50 µl-1

).

The methanol, ethylacetate and chloroform extracts of Gladiolus kotschyanus leaves (GKL) showed no

inhibition zone against all tested microorganisms.

The DMSO extracts of GKL showed the best antibacterial activity against to Escherichia coli 9539994 and

Methicillin-resistant Staphylococcus aureus (MRSA) (BaL) (10mm 50 µl-1

). And they displayed antibacterial

activity against to Pseudomonas aeruginosa, Klebsiella spp.1., Staphylococcus aureus ATTC 6538,

Staphylococcus epidermidis B-4268, Enterobacter cloacea (2.6), Escherichia coli (9mm 50 µl-1

) and

Staphylococcus aureus ATTC 29213, Pseudomonas aeruginosa (8mm 50 µl-1

) and Escherichia coli K-12 (7mm

50 µl-1

).

The n- Hexan extracts of GKL showed the best antibacterial activity against to Pseudomonas aeruginosa

(16mm 50 µl-1

). At the same time, they displayed antibacterial activity against to Escherichia coli K-12 (10mm

50 µl-1

), and Klebsiella spp.1, Staphylococcus epidermidis, Escherichia coli (9mm 50 µl-1

), and Bacillus subtilis

B-354, Staphylococcus aureus ATTC 6538, Staphylococcus epidermidis B-4268, Vancomycin-resistant

Enterococcus (VRE), Methicillin-resistant Staphylococcus aureus (MRSA) (BaL), Pseudomonas aeruginosa

(8mm 50 µl-1

) and Staphylococcus aureus ATTC 29213 (7mm 50 µl-1

).

The methanol, ethylacetate and chloroform extracts of Gladiolus kotschyanus branches (GKB) showed no

inhibition zone against all tested microorganisms.

The DMSO extracts of GKB showed the best antibacterial activity against to Escherichia coli 9539994 and

Enterobacter cloacea (2.6) (9mm 50 µl-1

). The DMSO extracts of GKB displayed antibacterial activity against

to Pseudomonas aeruginosa, Klebsiella spp.1, Staphylococcus aureus ATTC 6538, Staphylococcus epidermidis

Page 4: RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016 The genus

4 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016

B-4268, Escherichia coli (8mm 50 µl-1

) and Escherichia coli K-12, Staphylococcus aureus ATTC 29213 (7mm

50 µl-1

). The n- Hexan extracts of GKB showed antibacterial activity against only one bacterium, namely

Pseudomonas aeruginosa (8mm 50 µl-1

).

Although the DMSO extracts of Gladiolus kotschyanus corms (GKC) showed inhibition zones against to all

tested microorganisms except B. subtilis, the methanol, ethylacetate, n- Hexan and chloroform extracts of them

showed no inhibition zones against to all tested microorganisms.

The DMSO extracts of (GKC) showed the best antibacterial activity against to Escherichia coli 9539994

and Staphylococcus aureus ATTC 6538 (10mm 50 µl-1

). And only the DMSO extracts of (GKC) showed

antifungal activity against Candida albicans (8mm 50 µl-1

). When we compared to antimicrobial activities of

(GKC), the DMSO extracts of (GKC) showed antimicrobial activity against to Klebsiella spp.1, Vancomycin-

resistant Enterococcus (VRE), Staphylococcus epidermidis, Escherichia coli (9mm 50 µl-1

) and Methicillin-

resistant Staphylococcus aureus (MRSA) (BaL), Enterobacter cloacea (2.6), Pseudomonas aeruginosa (8mm

50 µl-1

) and Escherichia coli K-12, Staphylococcus aureus ATTC 29213, Pseudomonas aeruginosa,

Staphylococcus epidermidis B-4268 (7mm 50 µl-1

).

It is important to investigate scientifically those plants which have been used in traditional medicines as

potential sources of antimicrobial compounds (Ameh et al., 2010; Ameh et al., 2011; Assob et al., 2011).

Recently our group and various publications have documented the antimicrobial activity of essential oils and

plant extracts (Keskin and Toroglu, 2011;Toroglu, 2007; Toroglu,2011).

Ameh et al., (2010) reported that the major components in aqueous extracts of the Gladiolus corm obtained

in Benue State of Nigeria were alkaloids, tannins, saponins, cardiac glycosides, flavonoids and carbohydrate.

Separation of the constituents was attempted by thin layer chromatograpphy. In their study, it has become clear

that the extracts of Gladiolus corm were active against Pseudomonas aeruginosa and Aspergillus niger, but

relatively inactive against the other microbes, namely, Escherichia coli, Staphylococcus aureus, Listeria

monocytogenes, Candida albicans, Trichophyton mentagrophyte.

Odhiambo et al., (2009) reported that Dichloromethane(CH2CL2) and Methanol(MeOH) extracts of

Gladiolus dalenii possess antifungal activity against Aspergillus niger. Steenkamp et al., (2007) reported that no

activity of water and methanol bulb extracts of this Gladiolus against Staphylococcus aureus and S. epidermidis

bacteria. But, Fawole et al., (2008) reported that dichloromethane extracts of this plant were active against

Bacillus subtilis and S. aureus, while ethanol extracts were active against Candida albicans but inactive against

Escherichia coli.

Assob et al. 2011) reported that hexane, ethylacetate and methanol extracts of Gladiolus gregasius showed

only mild antibacterial and antifungal activities (on Candida albicans and Candida krusei) and its methanolic

extract was not active on P. mirabilis, S. flexneri, P. aeruginosa and K. pneumonia. In contrast, Assob et al

(2004) informed that bulb extract of this plant was fungicidal with no antibacterial activity.

They reported that the antimicrobial activity of extracts of Gladiolus sp. against bacteria and fungus

dissimilar our study. The difference may be due to species of Gladiolus, harvesting periods and solvent used in

the extraction of the this plant (Ncube et al., 2008).

Antiamoebic activity of bulb extracts of this plant has also been reported by Moundipa et al., (2005). The

antimicrobial activity studies reported verify why extracts of this Gladiolus is used in traditional medicine to

treat wounds, eye infections, ear infections, headache, dysentery, diarrhoea, stomach upset and gonorrhoea

(Odhiambo et al., (2009).

Fig. I: Photomicrographs of Pollen Gladiolus kotschyanus

ABC equatorial views

DEF polar views

(light microscopy). Scale bars __ 10 mµ

Page 5: RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016 The genus

5 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016

Table 1: Antimicrobial activity of five different solvent extracts of Gladiolus kotschyanus Boiss. (Iridaceae) flowers, leaves, branches and

corms.

Microorganis

ms

Inhibition zone (mm)* (50µl/disc)

Flowers Leaves Branches Corms

Standard

Antibiotics

(µg/disc)

Contr

ol

Discs

A B C D E A B C D E A B C D E A B C D E Amp

30

N1

0 ABC

D

1-

Escherichia

coli

K-12

0 0 0 0 0 0 7 0 1

0 0 0 7 0 0 0 0 7 0 0 0 11 NT 0

2-

Staphylococc

us aureus

ATTC 29213

0 7 0 0 0 0 8 0 7 0 0 7 0 0 0 0 7 0 0 0 11 NT 0

3- Bacillus

subtilis

B-354

0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 18 NT 0

4-

Pseudomona

s aeruginosa

0 8 0 0 0 0 9 0 1

6 0 0 8 0 8 0 0 7 0 0 0 12 NT 0

5- Klebsiella

spp.1 0 0 7 0 0 0 9 0 9 0 0 8 0 0 0 0 9 0 0 0 0 NT 0

6-

Escherichia

coli 9539994

0 9 0 0 0 0 1

0 0 0 0 0 9 0 0 0 0

1

0 0 0 0 0 NT 0

7-

Staphylococc

us aureus

ATTC 6538

0 9 0 0 0 0 9 0 8 0 0 8 0 0 0 0 1

0 0 0 0 11 NT 0

8-

Staphylococc

us

epidermidis

B-4268

0 0 0 0 0 0 9 0 8 0 0 8 0 0 0 0 7 0 0 0 11 NT 0

9-

Vancomycin-

resistant

Enterococcus

(VRE)

0 9 0 0 0 0 0 0 8 0 0 0 0 0 0 0 9 0 0 0 12 NT 0

10-

Methicillin-

resistant

Staphylococc

us aureus

(MRSA)

(BaL)

0 1

0 0 0 0 0

1

0 0 8 0 0 0 0 0 0 0 8 0 0 0 0 NT 0

11-

Enterobacter

cloacea (2.6)

0 9 0 0 0 0 9 0 0 0 0 9 0 0 0 0 8 0 0 0 0 NT 0

12-

Staphylococc

us

epidermidis

0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 9 0 0 0 0 NT 0

13-

Escherichia

coli

0 9 0 0 0 0 9 0 9 0 0 8 0 0 0 0 9 0 0 0 0 NT 0

14-

Pseudomona

s aeruginosa

0 0 0 0 0 0 8 0 8 0 0 0 0 0 0 0 8 0 0 0 0 NT 0

1-Candida

albicans 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 NT 18 0

A: Methanol, B: DMSO, C: Ethylacetate D: n- Hexan E: Chloroform; Amp (30 µg/disc), Nystatin 100 Units (10 µg/disc) NT: Not tested

discs

Palynology:

In this study; Pollen characterisrtic of the Gladiolus kotschyanus ; pollen grains monosulcate, subprolate

(eliptical), long axis 74 µm, short axis 60 µm, ornamentation spinulate perforate, exine 1.53 µm tectate

columellate, intine 1.26 µm thicker in aperture region up to 1.4 µm, sulcus extends full length of grain, sulcus

Page 6: RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016 The genus

6 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016

width almost equel to short axis of grain, a two banded operculum, inter operculate distance 5-23µm. (Can be

seen Table II).

Table II: Pollen characteristics of the Gladiolus kotschyanus

Characters Gladiolus kotschyanus

(µm)

Variation

(µm)

pollen size short axis 60.30 56 -68

pollen size long axis 74.40 70-86

sulcus width 12.26 10-17

sulcus length 57.25 54-64

Amb. diameter 61.52 59-66

exin thickness 1.53 1.3-2.4

intin thickness 1.26 1.1-1.4

ornamentation spinulate perforate

polen wall type tectate columellate

aperture monosulcate

Sulcus membrane two banded opeculum

Polen shape (P/E) 1.23 subprolate

In this study Gladiolus kotschyanus polen size 74-60 µm, aperture monosulcate, sulcus membrane two

banded opeculum, polen wall type tectate-columellate, ornamentation spinulate perforate, polen shape 1.23

subprolate.

Comparison of palinologycal studies of Gladiolus kotschyanus of this study (from Aladağlar

(Yahyalı/Kayseri) and another study was done by Oybak Dönmez and Işık (2008) (from Sivas: Şerefiye-Su

Şehri: A. Dönmez 9349 (HUB) and from Van: Bahçesaray: M. Fırat 1802 (VANF): (Can be seen Table III).

Pollens of Aladağlar (Yahyalı/Kayseri)’s populations is bigger than dimensions (Sivas and Van)’s

populations. In addition to, even though pollen shape of Aladağlar (Yahyalı/Kayseri)’s populations is elliptic,

pollen shape of (Sivas and Van)’s populations is orbicular.

Table III: Comparison of palinologycal studies of Gladiolus kotschyanus

Palinologycal studies Aladağlar (Yahyalı/Kayseri)

Populations

Oybak Dönmez and Işık (2008)

(Sivas and Van)

Populations

Characters

Gladiolus kotschyanus (µm) Gladiolus kotschyanus (µm)

pollen size short axis 60.30 62

pollen size long axis 74.40 68

sulcus width 12.26

sulcus length 57.25

Amb. diameter 61.52

exin thickness 1.53 1.25-2.25

intin thickness 1.26 1-2.5

ornamentation spinulate perforate spinulate perforate

polen wall type tectate columellate tectate columellate

aperture monosulcate monosulcate

Sulcus membrane two banded opeculum two banded opeculum

Polen shape (P/E) 1.23 subprolate 1.096 prolate

Conclusıons:

In vitro antimicrobial activities of Gladiolus kotschyanus methanol, DMSO, ethylacetate n- Hexan and

chloroform extracts have not been reported earlier. While the the DMSO extracts of Gladiolus kotschyanus corms

(GKC) showed inhibition zones against to all tested microorganisms except B. subtilis, the methanol,

ethylacetate, n- Hexan and chloroform extracts of them showed no inhibition zones against to all tested

microorganisms. The DMSO extracts of Gladiolus kotschyanus flowers, leaves, branches and corms showed

antimicrobial activity against most of the tested microorganisms, DMSO seemed to be better solvent for

extracting the antimicrobial substances from G. kotschyanus used in this work. The results of this research

reported that the antibacterial and antifungal activity vary with plant parts and used extracts. In addition, the

results from the present study have reported the scientific basis for traditional uses of the genus Gladiolus in the

treatment of some illness. Further, isolation, identification and characterization of active phytochemical

components have done by researchers. And also in vitro and in vivo studies should be done for their safety. After,

it can be produced commercially.

Page 7: RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016 The genus

7 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016

ACKNOWLEDGEMENT

First:

This project presented by Aktürk, S., Dinçer, S., Cenet, M., Toroğlu, S., “Aladağlar’da (Yahyalı-Kayseri)

Yetişen Gladiolus kotschyanus Boiss. Bitkisinin Antimikrobiyal Aktivite ve Polen Çalışmaları”. I. Ulusal Yahyalı

Sempozyumu Bildirileri 2012, Yahyalı, Kayseri, Turkey, as oral presentation.

Second:

The authors thank to Dr. E. Toroğlu for collecting plant used in this study.

REFERENCES

Ameh, S.J., N.A. Ochekpe, E.I. Okoliko, P.O. Olorunfemi, 2010. Basis for Ethnomedical use of Gladiolus

corm (Family: Iridaceae) in West Africa. Asian J. Exp. Biol. Sci., 1(4): 902-906.

Ameh S.J., O.O. Obodozie, P.O. Olorunfemi, I.E. Okoliko, N.A. Ochekpe, 2011. Potential of Gladiolus

corms as an antimicrobial agent in food processing and tradional medicine. J. Microbiol. Antimicrob., 3(1): 8-

12.

Assob, J., J.C. Nguedia, F-X. Etoa, B.V. Penlap, D. Lonsti, V. Kuete, M.R.S omo, 2004. Anti-candidal

propety and acute toxicity of Gladiolus gregasius Baker (Iridaceae). Pharm. Med. Trad. Afr., 13: 149-159.

Assob, J.C.N., H.L.F. Kamga, D.S. Nsagha, A.L. Njunda, P.F. Nde, E.A. Asongalem, A.J. Njouendou, B.

Sandjon, V.B. Penlap, 2011. Antimicrobial and toxicological activities of five medicinal plant species from

Cameroon Traditional Medicine. BMC Complementary & Alternative Medicine., 70: 1-11.

Bauer, A.W., W.M.M. Kirby, J.C. Sherris, M. Turck, 1966. Antibiot ic susceptibility testing by a

standardized single disc method. Am J Clin Pathol., 45: 493-496.

Bradshaw, L.J., 1992. Laboratory Microbiology, 4th edition. Saunders College Publishing. Fort worth,

Philadelphia, USA.

Collins, C.H., P.M. Lyne, J.M. Grange, 1989. Microbiological methods. 6thEdn. pp. 410. Butterworths,

London.

Davis, P.H., R.R. Mill, K. Tan, 1982. Flora of Turkey and the east Aegean Islands. Edinburgh Univ. Pres.,

8: 441–450.

Emek, Y. and B. Erdag, 2007. In vitro propagation of Gladiolus anatolicus (Boiss) Stapf. Pak. J. Bot., 39(1):

23-30.

Erdtman, G., 1952. Pollen morphology and plant taxonomy. Angiosperms (An introduction to palynology.

I). Almqvist & Wiksell, Stockholm.

Erol, O., E. Uzen, O. Kucuker, 2006. Preliminary SEM Observations on the Seed Testa Structure of

Gladiolus L. Species from Turkey. Int. J. Botany., 2(2): 125-127.

Faegri, K. and J. Iversen, 1964. Text Book of Pollen Analysis. 2nd ed. Munksgaard, Copenhagen.

Fawole, O.A., J.F. Finnie, Van, J. Staden, 2009. Antimicrobial activity and mutagenic effects of twelve

traditional medicinal plants used to treat ailments related to the gastro-intestinal tract in South Africa. S. Afr. J.

Botany., 75: 356-362.

Furness, C.A. and P.J.R udall, 2003. Aperture with lids: Distribution and significance of operculate pollen

in monocotyledons. Int. J. Pl. Sci., 164: 835-854.

KHAN, N.H., M.S.A. NUR-E KAMAL, M. RAHMAN, 1988. Antibacterial activity of Euphorbia

thymifolia Linn. Ind J Med Res., 87: 395-397.

Moundipa, P.F., K.G. Melanie Flore, C.F. Bilong, I. Bruchhauus, 2005. In vitro amoebicidal activity of some

medicinal plants of Bamun Region (Cameroon). Afr. J. Trad. CAM., 2(2): 113-121.

NCCLS., 2000. National commitee for clinical laboratory standarts. Performance Standarts for

Antimicrobial Disc Suspectibility Tests, 7th edition. Approved Standart M2-A7 NCCLS, Pennsyvania, USA.

Ncube, N.S., A.J. Afolayan, A. Okoh, 2008. Assessment techniques of antimicrobial properties of natural

compounds of plant origin: current methods and future trends. Afr. J. Biotech., 7: 1797-1806.

Nguedia, J.C.A., F.X. Etoa, V.P. Benga, D. Lonsti, Y. Kuete, R.S. Moyou, 2004. Anti-candidal property and

acute toxicity of Gladiolus gregasius Baker (Iridaceae). Pharm. Med. Trad. Afr., 13: 149-159.

Odhiambo, J.A., G.M. Siboe, C.W.L ukhoba, S.F. Dossaji, 2010. Antifungal Activity of Crude Extracts of

Gladiolus dalenii Van Geel (Iridaceae). Afr. J. Trad. CAM., 7(1): 53-58.

Oybak-Dönmez, E., S. Isik, 2008. Pollen morphology of Turkish Amaryllidaceae, Ixioliriaceae and

Iridaceae. Grana., 47(1): 15-38.

Steenkamp, V., C. Anthony, A.C. Fernandes, C.E.J. Van Rensburg, 2007. Antibacterial activity of Venda

medicinal plants. Fitoterapia., 78(7-8): 561-564.

Tan, K., J.R. Edmondson, 1984. Gladiolus L. Flora of Turkey and the east Aegean islands.(ed. In P. H.

Davis, 8: 441–450). Edinburgh: Edinburgh Univ., Press.

Page 8: RESARCH ARTICLE Antimicrobial Activities and Palynological ...Oct 01, 2016  · 2 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016 The genus

8 Sayım Aktürk et al., 2016/ Global Journal of Medicinal Plant Research, 4(4): 1-8, 2016

Toroglu, S., 2007. In-vitro antimicrobial activity and antagonistic effect of essential oils from plant species.

J Environ Biol., 289: 551-559.

Toroglu, S., 2011. In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between

antibiotics and some spice essential oils. J Environ Biol., 32: 23-29.

Uzen, E., 1999. Some of Turkey Gladiolus (Iridaceae) varieties studies on the Biosistematik. PhD. Thesis,

I.U. Deparment of Biology, İstanbul.

Walker, J.W., J.A. Doyle, 1976. The basis of Angiosperm phylogeny: Palynology. Ann. Mo. Bot. Gard. 62:

666-723.


Recommended