+ All Categories
Home > Documents > Research Article An Iterative Regularization Method for...

Research Article An Iterative Regularization Method for...

Date post: 09-Oct-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
10
Research Article An Iterative Regularization Method for Identifying the Source Term in a Second Order Differential Equation Fairouz Zouyed and Sebti Djemoui Applied Math Lab, University Badji Mokhtar Annaba, P.O. Box. 12, 23000 Annaba, Algeria Correspondence should be addressed to Fairouz Zouyed; [email protected] Received 28 May 2015; Accepted 21 September 2015 Academic Editor: Peter Dabnichki Copyright © 2015 F. Zouyed and S. Djemoui. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper discusses the inverse problem of determining an unknown source in a second order differential equation from measured final data. is problem is ill-posed; that is, the solution (if it exists) does not depend continuously on the data. In order to solve the considered problem, an iterative method is proposed. Using this method a regularized solution is constructed and an a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method. 1. Introduction Let be a separable Hilbert space with the inner product (⋅, ⋅) and the norm ‖⋅‖. Consider the problem of finding the source term in the following system: () + 2 () + 2 () = , 0<<, (0) = 0, (0) = 0, (1) with the additional data () = , (2) where : () ⊂ → is a positive self-adjoint linear operator with a compact resolvent; we denote by () the spectrum of the operator . e problem (1) is an abstract version of the system (, ) − 2Δ (, ) + Δ 2 (, ) = () , 0 < < , ∈ Ω, (, ) = Δ (, ) = 0, 0 ≤ ≤ , ∈ Ω, (, 0) = (, 0) = 0, ∈ Ω, (3) which arises in the mathematical study of structural damped vibrations of string or a beam [1–3]. Also this problem can be considered as a biparabolic problem in the abstract setting. For physical motivation we cite the biparabolic model pro- posed in [4] for more adequate mathematical description of heat and diffusion processes than the classical heat equation. For other models we refer the reader to [5–7]. For most classical partial differential equations, the reconstruction of source functions from the final data or a partial boundary data is an inverse problem with many appli- cations in several branches of sciences and engineering, such as geophysical prospecting and pollutant detection [8–12]. e main difficulty of inverse source identification prob- lems is that they are ill-posed, that is, even if a solution exists, it does not depend continuously on the data; in other words, small error in the data measurement can induce enormous error to the solution. us, special regularization methods that restore the stability with respect to measurements errors are needed. In the present work, we focus on an iterative method proposed by Kozlov and Maz’ya [13, 14] for solving the problem; it is based on solving a sequence of well-posed boundary value problems such that the sequence of solutions converges to the solution for the original problem. It has been successfully used for solving various classes of ill-posed elliptic, parabolic, and hyperbolic problems [5, 15–21]. Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2015, Article ID 713403, 9 pages http://dx.doi.org/10.1155/2015/713403
Transcript
Page 1: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

Research ArticleAn Iterative Regularization Method for Identifying the SourceTerm in a Second Order Differential Equation

Fairouz Zouyed and Sebti Djemoui

Applied Math Lab University Badji Mokhtar Annaba PO Box 12 23000 Annaba Algeria

Correspondence should be addressed to Fairouz Zouyed fzouyedgmailcom

Received 28 May 2015 Accepted 21 September 2015

Academic Editor Peter Dabnichki

Copyright copy 2015 F Zouyed and S Djemoui This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

This paper discusses the inverse problem of determining an unknown source in a second order differential equation frommeasuredfinal data This problem is ill-posed that is the solution (if it exists) does not depend continuously on the data In order to solvethe considered problem an iterative method is proposed Using this method a regularized solution is constructed and an a priorierror estimate between the exact solution and its regularized approximation is obtained Moreover numerical results are presentedto illustrate the accuracy and efficiency of this method

1 Introduction

Let119867 be a separableHilbert space with the inner product (sdot sdot)and the norm sdot Consider the problem of finding the sourceterm 119891 isin 119867 in the following system

11990610158401015840

(119905) + 21198601199061015840

(119905) + 1198602119906 (119905) = 119891 0 lt 119905 lt 119879

119906 (0) = 0

1199061015840

(0) = 0

(1)

with the additional data119906 (119879) = 119892 (2)

where 119860 119863(119860) sub 119867 rarr 119867 is a positive self-adjoint linearoperator with a compact resolvent we denote by 120590(119860) thespectrum of the operator 119860

The problem (1) is an abstract version of the system

119906119905119905(119909 119905) minus 2Δ119906

119905(119909 119905) + Δ

2119906 (119909 119905) = 119891 (119909)

0 lt 119905 lt 119879 119909 isin Ω

119906 (119909 119905) = Δ119906 (119909 119905) = 0

0 le 119905 le 119879 119909 isin 120597Ω

119906 (119909 0) = 119906119905(119909 0) = 0 119909 isin Ω

(3)

which arises in the mathematical study of structural dampedvibrations of string or a beam [1ndash3] Also this problem can beconsidered as a biparabolic problem in the abstract settingFor physical motivation we cite the biparabolic model pro-posed in [4] for more adequate mathematical description ofheat and diffusion processes than the classical heat equationFor other models we refer the reader to [5ndash7]

For most classical partial differential equations thereconstruction of source functions from the final data or apartial boundary data is an inverse problemwithmany appli-cations in several branches of sciences and engineering suchas geophysical prospecting and pollutant detection [8ndash12]

The main difficulty of inverse source identification prob-lems is that they are ill-posed that is even if a solution existsit does not depend continuously on the data in other wordssmall error in the data measurement can induce enormouserror to the solution Thus special regularization methodsthat restore the stability with respect to measurements errorsare needed In the present work we focus on an iterativemethod proposed by Kozlov and Mazrsquoya [13 14] for solvingthe problem it is based on solving a sequence of well-posedboundary value problems such that the sequence of solutionsconverges to the solution for the original problem It hasbeen successfully used for solving various classes of ill-posedelliptic parabolic and hyperbolic problems [5 15ndash21]

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2015 Article ID 713403 9 pageshttpdxdoiorg1011552015713403

2 Mathematical Problems in Engineering

We note that although the interest in inverse problem hasrapidly increased during this decade the literature devoted tothe class of problems (1) is quite scarce

The paper is organized as follows Section 2 gives sometoolswhich are useful for this study in Section 3we introducesome basic results and we show the ill-posedness of theinverse problem Section 4 gives a regularization solutionand error estimation between the approximate solution andthe exact one the numerical implementation is describedin Section 5 to illustrate the accuracy and efficiency of thismethod

2 Preliminaries

Let (120593119899)119899ge1

sub 119867 be an orthonormal eigenbasis correspondingto the eigenvalues (120582

119899)119899ge1

such that

119860120593119899= 120582

119899120593

119899 119899 isin N

lowast

0 lt 1205821le 120582

2sdot sdot sdot le sdot sdot sdot lim

119899 rarr infin

120582119899= +infin

120585 =

infin

sum

119899=1

119864119899120585

119864119899120585 = (120585 120593

119899) 120593

119899 forall120585 isin 119867

(4)

We denote by 119879(119905) = 119890minus119905119860

119905ge0

the analytic semigroupgenerated by minus119860 on119867

119879 (119905) 120585 =

infin

sum

119899=1

119890minus120582119899119905119864

119899120585 forall120585 isin 119867 (5)

For 120572 gt 0 the space119867120572 is given by

119867120572= 120585 isin 119867

infin

sum

119899=1

(1 + 1205822

119899)

120572 10038171003817100381710038171198641198991205851003817100381710038171003817

2

ltinfin (6)

with the norm

10038171003817100381710038171205851003817100381710038171003817119867120572 = (

infin

sum

119899=1

(1 + 1205822

119899)

120572 10038171003817100381710038171198641198991205851003817100381710038171003817

2

)

12

120585 isin 119867120572 (7)

We achieve this section by a result concerning nonexpansiveoperators

Definition 1 A linear bounded operator 119871 119867 rarr 119867 is callednonexpansive if 119871 le 1

Let 119871 be an nonexpansive operator to solve the equation

(119868 minus 119871) 120593 = 120595 (8)

we state a convergence theorem for a successive approxima-tion method

Theorem 2 (see [22] p 66) Let 119871 be a nonexpansive self-adjoint positive operator on 119867 Let 120595 isin 119867 be such that (8)has a solution If 1 is not eigenvalue of 119871 then the successiveapproximations

120593119899+1

= 119871120593119899+ 120595 119899 = 0 1 2 (9)

converge to a solution to (8) for any initial data 1205930isin 119867

Moreover 119871119899120593 rarr 0 for every 120593 isin 119867 as 119899 rarr infin

3 Basic Results

31 The Direct Problem Let 119885 = 119863(119860) times 119867 with the norm119880

2

119885= 119860120585

1

2+ 120585

2

2 119880 = (1205851

1205852

) isin 119885For a given 119891 isin 119867 consider the direct problem

11990810158401015840

(119905) + 21198601199081015840

(119905) + 1198602119908 (119905) = 119891 0 lt 119905 lt 119879

119908 (0) = 0

1199081015840

(0) = 0

(10)

Making the change of variable1199081015840= V we canwrite the second

order equation in (10) as a first order system in the space119885 asfollows

1199111015840

(119905) = A119911 (119905) + 119865 0 lt 119905 lt 119879

119911 (0) = 0

(11)

where 119911 = (119908

V ) 119865 = (0

119891) andA = (

0 119868

minus1198602

minus2119860)

The linear operator A is unbounded with the domain119863(A) = 119863(119860

2) times 119863(119860) and it is the infinitesimal generator

of strongly continuous semigroup 119878(119905) = 119890119905A119905ge0

Moreover119878(119905)

119905ge0is analytic (see [1]) and it admits the following

explicit form

119878 (119905) 119880 =

infin

sum

119899=1

119890119905119861119899119875

119899119880 119880 = (

1205851

1205852

) isin 119885 (12)

where 119861119899= (

0 1

minus1205822

119899minus2120582119899

) and 119875119899119899ge1

is a complete family oforthogonal projections in 119885 given by 119875

119899= diag(119864

119899 119864

119899)

Using matrix algebra we obtain

119890119905119861119899 = (

119890minus120582119899119905+ 120582

119899119905119890

minus120582119899119905

119905119890minus120582119899119905

minus1205822

119899119905119890

minus120582119899119905

minus120582119899119905119890

minus120582119899119905+ 119890

minus120582119899119905) (13)

From the semigroup theory (see [23]) the problem (11)admits a unique solution 119911 isin 119862([0 119879) 119885) given by

119911 = int

119905

0

119878 (119905 minus 119904) 119865 119889119904 (14)

Hence

119911 = int

119905

0

infin

sum

119899=1

119890(119905minus119904)119861

119899119875119899119865119889119904

= int

119905

0

infin

sum

119899=1

(

1205901

119899(119905 119904) 120590

2

119899(119905 119904)

1205903

119899(119905 119904) 120590

4

119899(119905 119904)

) sdot (

0

(119891 120593119899) 120593

119899

)119889119904

(15)

such that

1205901

119899(119905 119904) = 119890

minus120582119899(119905minus119904)

+ 120582119899(119905 minus 119904) 119890

minus120582119899(119905minuss)

1205902

119899(119905 119904) = (119905 minus 119904) 119890

minus120582119899(119905minus119904)

1205903

119899(119905 119904) = minus120582

2

119899(119905 minus 119904) 119890

minus120582119899(119905minus119904)

1205904

119899(119905 119904) = minus120582

119899(119905 minus 119904) 119890

minus120582119899(119905minus119904)

+ 119890minus120582119899(119905minus119904)

(16)

As a consequence we obtain the following theorem

Mathematical Problems in Engineering 3

Theorem 3 The problem (10) admits a unique solution 119908 isin

119862([0 119879) 119863(119860)) cap 1198621([0 119879)119867) given by

119908 (119905) = 119870 (119905) 119891 = 119860minus2(119868 minus (119868 + 119905119860) 119890

minus119905119860) 119891

=

infin

sum

119899=1

(1 minus (1 + 119905120582119899) 119890

minus119905120582119899)

1205822

119899

(119891 120593119899) 120593

119899

(17)

32 Ill-Posedness of the Inverse Problem Now we wish tosolve the inverse problem that is find the source term 119891 inthe system (1) Making use of the supplementary condition(2) and defining the operator 119870(119879) 119891 rarr 119892 we have

119892 = 119906 (119879) = 119870 (119879) 119891 =

infin

sum

119899=1

120590119899119864

119899119891 (18)

where 120590119899= (1 minus (1 + 119879120582

119899)119890

minus119879120582119899)120582

2

119899

It is easy to see that 119870(119879) is a self-adjoint compact linearoperator On the other hand

119892 =

infin

sum

119899=1

119864119899119892 =

infin

sum

119899=1

120590119899119864

119899119891 (19)

so

120590119899119864

119899119891 = 119864

119899119892 (20)

which implies

119864119899119891 =

1

120590119899

119864119899119892 (21)

and therefore

119891 = 119870 (119879)minus1119892 =

infin

sum

119899=1

1

120590119899

119864119899119892 (22)

Note that 1120590119899rarr infin as 119899 rarr infin so the inverse problem is

ill-posed that is the solution does not depend continuouslyon the given data Hence this problem cannot be solved byusing classical numerical methods

Remark 4 As many boundary inverse value problems forpartial differential equations which are ill-posed the studyof the problem (1) is reduced to the study of the equation119870(119879)119891 = 119892 where 119870(119879) is a compact self-adjoint operatorin the Hilbert space119867 This equation can be rewritten in thefollowing way

119891 = (119868 minus 120574119870 (119879)) 119891 + 120574119892 = 119871119891 + 120574119892 (23)

where 120574 is a positive number satisfying 120574 lt 1119870(119879)In the next section we will show that the operator 119871 is

nonexpansive and 1 is not eigenvalue of 119871 so it follows fromTheorem 2 that (119891

119899)119899isinNlowast converges and (119868 minus 120574119870(119879))

119899119891 rarr 0

for every 119891 isin 119867 as 119899 rarr infin

4 Iterative Procedure andConvergence Results

The alternating iterative method is based on reducing theill-posed problem (1) to a sequence of well-posed boundaryvalue problems and consists of the following steps

First we start by letting 1198910isin 119867 be arbitrary the initial

approximation 1199060is the solution to the direct problem

11990610158401015840

0+ 2119860119906

1015840

0+ 119860

2119906

0= 119891

0 0 lt 119905 lt 119879

1199060(0) = 0

1199061015840

0(0) = 0

(24)

Then if the pair (119891119896 119906

119896) has been constructed let

119891119896+1

= 119891119896minus 120574 (119906

119896(119879) minus 119892) (25)

where 120574 is such that

0 lt 120574 lt1

119870 (119879) (26)

and 119870(119879) = sup119899isinNlowast(1 minus (1 + 119879120582119899

)119890minus120582119899119879)120582

2

119899

Finally we get 119906119896+1

by solving the problem

11990610158401015840

119896+1+ 2119860119906

1015840

119896+1+ 119860

2119906

119896+1= 119891

119896+1 0 lt 119905 lt 119879

119906119896+1

(0) = 0

1199061015840

119896+1(0) = 0

(27)

Let us iterate backwards in (25) to obtain

119891119896+1

= 119891119896minus 120574119870 (119879) 119891

119896+ 120574119892 = (119868 minus 120574119870 (119879)) 119891

119896+ 120574119892

= (119868 minus 120574119870 (119879))119896+1

1198910+ 120574

119896

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892

(28)

Now we introduce some properties and tools which areuseful for our main theorems

Lemma 5 The norm of the operator 119870(119905) is given by

119870 (119905) = sup119899isinNlowast

(1 minus (1 + 119905120582119899) 119890

minus120582119899119905)

1205822

119899

=

(1 minus (1 + 1199051205821) 119890

minus1205821119905)

1205822

1

(29)

Proof We aim to find the supremum of the function(1 minus (1 + 119905120582

119899)119890

minus120582119899119905)120582

2

119899 119899 isin Nlowast and for this purpose fix 119905

let 120583 = 120582119905 and define the function

1198661(120583) =

(1 minus (1 + 120583) 119890minus120583)

1205832 for 120583 ge 120583

1= 120582

1119905 (30)

We compute

1198661015840

1(120583) =

(1205832+ 2120583 + 2) 119890

minus120583minus 2

1205833 (31)

4 Mathematical Problems in Engineering

Put

ℎ (120583) = (1205832+ 2120583 + 2) 119890

minus120583minus 2 (32)

Hence

1198661015840

1(120583) =

ℎ (120583)

1205833 (33)

To study the monotony of1198661 it suffices to determine the sign

of ℎ We have

ℎ1015840(120583) = minus120583

2119890

minus120583lt 0 forall120583 gt 0 (34)

and then ℎ is decreasing moreover ℎ(120583) sub ] minus 2 0[forall120583 gt 0 Hence 1198661015840

1(120583) lt 0 forall120583 ge 120583

1 which implies that 119866

1

is decreasing and

sup120583ge1205831

1198661(120583) = 119866

1(120583

1) (35)

Therefore

sup119899ge1

(1 minus (1 + 120582119899119905) 119890

minus120582119899119905)

1205822

119899

=

(1 minus (1 + 1205821119905) 119890

minus1205821119905)

1205822

1

(36)

Proposition 6 For the linear operator 119871 = 119868minus120574119870(119879) one hasthe following properties

(1) 119871 is positive and self-adjoint(2) 119871 is nonexpansive(3) 1 is not an eigenvalue of 119871

Proof Form properties of operator 119860 and the definition of119871 it follows that 119871 is self-adjoint and nonexpansive positiveoperator and from the inequality

0 lt 1 minus 120574

(1 minus (1 + 119879120582) 119890minus120582119879

)

1205822lt 1 for 120582 isin 120590 (119860) (37)

it follows that the point spectrum of 119871 120590119901(119871) sub ]0 1[ Then 1

is not eigenvalue of the operator 119871

Lemma 7 If 120582 gt 0 one has the estimates

1

1 + 1205822le max( 3

1198792 1)

(1 minus (1 + 119879120582) 119890minus120582119879

)

1205822 (38)

0 lt

(1 minus (1 + 119905120582) 119890minus120582119905)

1205822lt 119879

2 forall119905 isin [0 119879] (39)

Proof To establish (38) let us first prove that

1

3 + 1205832le(1 minus (1 + 120583) 119890

minus120583)

1205832 forall120583 gt 0 (40)

which is equivalent to prove that

1198662(120583) = 3 minus (3 + 120583

2) (1 + 120583) 119890

minus120583ge 0 forall120583 gt 0 (41)

We have

1198661015840

2(120583) = 120583 (120583 minus 1)

2

119890minus120583

ge 0 forall120583 gt 0 (42)

Then 1198662is nondecreasing and it follows that 119866

2(120583) sub ]0 3[

So 1198662(120583) ge 0 forall120583 gt 0

Choosing 120583 = 119879120582 in (40) we obtain

1

3 + (119879120582)2le

(1 minus (119879120582 + 1) 119890minus119879120582

)

(119879120582)2

(43)

So

1198792

max (3 1198792) (1 + 1205822)le

(1 minus (1 + 119879120582) 119890minus119879120582

)

1205822 (44)

From (44) we deduce (38)Now we prove the estimate (39) It is easy to verify that

1198663(120583) = (1 minus (1 + 120583) 119890

minus120583) minus 120583

2lt 0 forall120583 gt 0 (45)

Then if we choose 120583 = 119905120582 we get

(1 minus (1 + 119905120582) 119890minus119905120582) lt 119905

2120582

2 forall120582 gt 0 forall119905 isin [0 119879] (46)

Hence from (46) (39) follows

Theorem 8 Let 119906 be a solution to the inverse problem (1) Let119891

0isin 119867 be an arbitrary initial data element for the iterative

procedure proposed above and let 119906119896be the 119896th approximate

solution Then

(i) The method converges that is

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 997888rarr 0 as 119896 997888rarr infin (47)

(ii) Moreover if for some 120572 = 1 + 120579 120579 gt 0 1198910minus 119891 isin 119867

120572that is 119891

0minus 119891

119867120572 le 119864 then the rate of convergence of

the method is given by

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864119896

minus1205722 (48)

where 119862 is a positive constant independent of 119896

Proof (i) From (28) we get

119891119896= (119868 minus 120574119870 (119879))

119896

1198910

+ (119868 minus (119868 minus 120574119870 (119879))119896

) (119870 (119879))minus1119892

(49)

and then

119891119896= (119868 minus 120574119870 (119879))

119896

(1198910minus 119891) + 119891 (50)

which implies that

119906119896(119905) minus 119906 (119905) = 119870 (119905) (119891

119896minus 119891)

= 119870 (119905) (119868 minus 120574119870 (119879))119896

(1198910minus 119891)

(51)

Mathematical Problems in Engineering 5

Hence

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 119870 (119905)100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817 (52)

From Lemma 5 and (39) we have

sup119905isin[0119879]

119870 (119905) = sup119905isin[0119879]

(1 minus (1 + 1199051205821) 119890

minus1199051205821)

1205822

1

lt 1198792 (53)

Combining (52) and (53) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817

997888rarr 0 as 119896 997888rarr infin

(54)

(ii) By part (i) we have

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot1003816100381610038161003816(1198910

minus 119891 120593119899)1003816100381610038161003816

2

(55)

and hence1003817100381710038171003817119906119896

(119905) minus 119906 (119905)1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot (1 + 1205822

119899)

minus120572

(1 + 1205822

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(56)

Using the inequality (38) we obtain

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max( 3

1198792 1))

120572

sdot

infin

sum

119899=1

(1 minus 120574120573119899)2119896

120573120572

119899(1 + 120582

2

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(57)

where 120573119899= ((1 minus (1 + 120582

119899119879)119890

minus120582119899119879)120582

2

119899)

So it follows that

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max ( 3

1198792 1))

120572

sdot sup0le120573119899le1198792

(1 minus 120574120573119899)2119896

120573120572

119899

10038171003817100381710038171198910minus 119891

1003817100381710038171003817

2

119867120572

(58)

Put

120601 (120573) = (1 minus 120574120573)2119896

120573120572 0 le 120573 le 119879

2 (59)

We compute

1206011015840(120573) = (1 minus 120574120573)

2119896minus1

120573120572minus1

(minus120574 (2119896 + 120572) 120573 + 120572) (60)

Setting 1206011015840(120573) = 0 it follows that 120573lowast

= 120572(2119896 + 120572)120574 is thecritical point of 120601 It is easy to see that the maximum of 120601 isattained at 120573lowast So

sup0le120573le119879

2

120601 (120573) le 120601 (120573lowast) = (1 minus 120574120573

lowast)2119896

(120573lowast)120572

le (120573lowast)120572

= (120572

(2119896 + 120572) 120574)

120572

(61)

and hence

sup0le120573le119879

2

120601 (120573) le (120572

2120574)

120572

119896minus120572 (62)

Combining (58) and (62) we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(120572

2120574max ( 3

1198792 1))

120572

(1

119896)

120572

1198642

(63)

Since in practice the measured data 119892 is never knownexactly but only up to an error of say 120575 gt 0 it is our aimto solve the equation 119870(119879)119891 = 119892 from the knowledge of aperturbed right-hand side 119892120575 satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817lt 120575 (64)

where 120575 gt 0 denotes a noise level In the following theoremwe consider the case of inexact data

Theorem 9 Let 120572 = 1 + 120579 (120579 gt 0) 1198910be an arbitrary initial

data element for the iterative procedure proposed above suchthat (119891

0minus119891) isin 119867

120572 let119906119896be the 119896th approximations solution for

the exact data 119892 and let 119906120575

119896be the 119896th approximations solution

corresponding to the perturbed data 119892120575 such that (64) holdsThen one has the following estimate

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792(120575120574119896 + 119862119864(

1

119896)

1205722

) (65)

Proof Let

119891119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892

119906119896(119905) = 119870 (119905) 119891

119896

119891120575

119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892120575

119906120575

119896(119905) = 119870 (119905) 119891

120575

119896

(66)

Using the triangle inequality we obtain

10038171003817100381710038171003817119906

120575

119896minus 119906

10038171003817100381710038171003817le10038171003817100381710038171003817119906

120575

119896minus 119906

119896

10038171003817100381710038171003817+1003817100381710038171003817119906119896

minus 1199061003817100381710038171003817

(67)

6 Mathematical Problems in Engineering

FromTheorem 8 we have

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864(

1

119896)

1205722

(68)

On the other hand10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817=10038171003817100381710038171003817119870 (119905) (119891

120575

119896minus 119891

119896)10038171003817100381710038171003817

le 1198792120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

(119892120575minus 119892)

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

119896minus1

sum

119895=0

1003817100381710038171003817(119868 minus 120574119870 (119879))1003817100381710038171003817

119895

(69)

Since1003817100381710038171003817(119868 minus 120574119870 (119879))

1003817100381710038171003817 le 1 (70)

it follows that

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817le 119879

2120575120574119896 (71)

Combining (68) and (71) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain the estimate (65)

Remark 10 If we choose the number of the iterations 119896(120575) sothat 119896(120575) rarr 0 as 120575 rarr 0 we obtain

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906 (119905)

10038171003817100381710038171003817997888rarr 0 as 119896 997888rarr +infin (72)

5 Numerical Implementation

In this section an example is devised for verifying theeffectiveness of the proposed method Consider the problemof finding a pair of functions (119906(119909 119905) 119891(119909)) in the system

1205972

1205971199052119906 (119909 119905) minus 2

1205972

1205971199092(120597

120597119905119906 (119909 119905)) +

1205974

1205971199094119906 (119909 119905)

= 119891 (119909) (119905 119909) isin (0 1) times (0 1)

119906 (0 119905) = 119906 (1 119905) = 0 119905 isin (0 1)

119906 (119909 0) = 119906119905(119909 0) = 0 119909 isin (0 1)

119906 (119909 1) = 119892 (119909) 119909 isin (0 1)

(73)

Denote

119860 = minus120597

2

1205971199092

with D (119860) = 1198671

0(0 1) cap 119867

2

(0 1) sub 119867 = 1198712

(0 1)

120582119899= 119899

2120587

2

120593119899= radic2 sin (119899120587119909) 119899 = 1 2

(74)

are eigenvalues and orthonormal eigenfunctions which forma basis for119867

The solution of the above problem is given by

119906 (119909 119905) =

infin

sum

119899=1

(

1 minus (1 + (119899120587)2119905) 119890

minus(119899120587)2

119905

(119899120587)4

)119891119899120593

119899 (75)

where 119891119899= (119891 120593

119899) = radic2int

1

0119891(119904)sin(119899120587119904)119889119904 119899 = 1 2

Now to solve the inverse problem making use of thesupplementary condition and defining the operator119870 119891 rarr

119892 we have

119892 (119909) = 119906 (119909 1) = 119870119891 (119909)

= 2

infin

sum

119899=1

(

1 minus (1 + (119899120587)2) 119890

minus(119899120587)2

(119899120587)4

)

sdot (int

1

0

119891 (119904) sin (119899120587119904) 119889119904) sin (119899120587119909)

(76)

Example 11 In the following we first selected the exactsolution 119891(119909) and obtained the exact data function 119892(119909)

through solving the forward problem Then we added anormally distributed perturbation to each data function andobtained vectors119892120575

(119909) Finallywe obtained the regularizationsolutions through solving the inverse problemwith noisy data119892

120575(119909) satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817(1198712(01))2le 120575 (77)

It is easy to see that if 119891(119909) = sin120587119909 then

119906 (119909 119905) =

(1 minus (1 + 1205872119905) 119890

minus1205872

119905)

1205874sin (120587119909) (78)

is the exact solution of the problem (73) Consequently119892(119909) = ((1 minus (1 + 120587

2)119890

minus1205872

)1205874)sin(120587119909)

Now we propose to approximate the first and secondspace derivatives by using central difference and we consideran equidistant grid points to a spatial step size 119909

0= 0 lt 119909

1lt

sdot sdot sdot lt 119909119873+1

= 1 (ℎ = 1(119873+1)) where119873 is a positive integerWe get the following semidiscrete problem

11990610158401015840(119909

119894 119905) + 2119860

ℎ119906

1015840(119909

119894 119905) + 119860

2

ℎ119906 (119909

119894 119905) = 119891 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873 0 lt 119905 lt 1

119906 (0 119905) = 119906 (1 119905) = 0

0 lt 119905 lt 1

119906 (119909119894 0) = 119906

1015840(119909

119894 0) = 0

119909119894= 119894ℎ 119894 = 1 119873

119906 (119909119894 1) = 119892 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873

(79)

Mathematical Problems in Engineering 7

0

05

1

15

minus05

01 02 03 04 05 06 07 08 10 090

02

04

06

08

01 02 080705 10 0903 0604

Iterative regularization method

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 1 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus3

where 119860ℎis the discretisation matrix stemming from the

operator 119860 = minus1198892119889119909

2 and

119860ℎ=

1

ℎ2Tridiag (minus1 2 minus1) (80)

is a symmetric positive definite matrix with eigenvalues

120583119895= 4 (119873 + 1)

2 sin2119895120587

2 (119873 + 1) 119895 = 1 119873 (81)

and orthonormal eigenvalues

V119895= (sin

119898119895120587

(119873 + 1))

1le119898le119873

119895 = 1 119873 (82)

We assume that it is fine enough so that the discretizationerrors are small compared to the uncertainty 120575 of the datathis means that119860

ℎis a good approximation of the differential

operator119860whose unboundedness is reflected in a large normof 119860

ℎ(see [24])

Adding a random distributed perturbation to each datafunction we obtain

119892120575= 119892 + 120576randn (size (119892)) (83)

where 120576 indicates the noise level of the measurements dataand the function randn(sdot) generates arrays of random num-bers whose elements are normally distributed with mean 0variance1205902

= 1 and standard deviation120590 = 1 randn(size(119892))returns an array of random entries that is of the same size as119892The noise level 120575 can bemeasured in the sense of rootmeansquare error (RMSE) according to

120575 =10038171003817100381710038171003817119892

120575minus 119892

100381710038171003817100381710038171198972= (

1

119873 + 1

119873

sum

119894=0

(119892 (119909119894) minus 119892

120575(119909

119894))

2

)

12

(84)

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

Iterative regularization method

0

005

01

015

02

minus05

0

05

1

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 2 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus4

Table 1 Relative error RE(119891)

119873 119896 120576 RE(119891)60 4 10minus3 0203960 4 10minus4 0094560 5 10minus3 0303260 5 10minus4 00305

The relative error is given as follows

RE (119891) =10038171003817100381710038171003817119891approximate minus 119891exact

100381710038171003817100381710038171198972

1003817100381710038171003817119891exact10038171003817100381710038171198972

(85)

The discrete iterative approximation of (66) is given by

119891120575

119896(119909

119894) = (119868 minus 120574119870

ℎ)119896

1198910(119909

119894)

+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870ℎ)119895

119892120575(119909

119894) 119894 = 1 119873

(86)

where 119870ℎ

= 119860minus2

ℎ(119868

119873minus (119868

119873+ 119860

ℎ)119890

minus119860ℎ) and

120574 lt 1119870ℎ = (120583

2

1(1 minus (1 + 120583

1)119890

minus1205831))

Figures 1ndash4 display that as the amount of noise 120576

decreases the regularized solutions approximate better theexact solution

Table 1 shows that for 119896 = 4 or 119896 = 5 the relative errordecreases with the decease of epsilon which is consistent withour regularization

8 Mathematical Problems in Engineering

Iterative regularization method

0

02

04

06

08

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 3 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus3

Iterative regularization method

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

0

002

004

006

minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 4 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus4

6 Conclusion

In this paper we have extended the iterative method to iden-tify the unknown source term in a second order differentialequation convergence results were established and errorestimates have been obtained under an a priori bound of theexact solution Some numerical tests have been given to verifythe validity of the method

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

All authors read and approved the paper

Acknowledgments

The authors would like to thank the anonymous referees fortheir suggestions

References

[1] H Leiva ldquoA lemmaon1198620-semigroups and applicationsrdquoQuaes-

tiones Mathematicae vol 26 no 3 pp 247ndash265 2003[2] H Leiva Linear Reaction-Diffusion Systems Notas de Mathe-

matica No 185 Mereida 1999[3] L F de Oliveira ldquoOn reaction-diffusion systemsrdquo Electronic

Journal of Differential Equations vol 1998 no 24 10 pages 1998[4] V L Fushchich A S Galitsyn and A S Polubinskii ldquoA new

mathematical model of heat conduction processesrdquo UkrainianMathematical Journal vol 42 no 2 pp 210ndash216 1990

[5] G Bastay ldquoIterative methods for Ill-posed boundary valueproblems Linkoping studies in science and technologyrdquo Dis-sertations 392 Linkoping University Linkoping Sweden 1995

[6] A S Carasso ldquoBochner subordination logarithmic diffusionequations and blind deconvolution of hubble space telescopeimagery and other scientific datardquo SIAM Journal on ImagingSciences vol 3 no 4 pp 954ndash980 2010

[7] L Wang X Zhou and X Wei Heat Conduction MathematicalModels and Analytical Solutions Springer 2008

[8] M Andrle and A El Badia ldquoIdentification of multiple movingpollution sources in surface waters or atmospheric media withboundary observationsrdquo Inverse Problems vol 28 no 7 ArticleID 075009 2012

[9] H W Engl and C Groetsch Inverse and Ill-Posed Problemsvol 4 of Notes and Reports in Mathematics in Science andEngineering Academic press New York NY USA 1987

[10] A KirschAn Introduction to theMathematicalTheory of InverseProblems Springer Heidelberg Germany 1996

[11] D Mace and P Lailly ldquoSolution of the VSP one-dimensionalinverse problemrdquo Geophysical Prospecting vol 34 no 7 pp1002ndash1021 1986

[12] NMagnoli andGA Viano ldquoThe source identification problemin electromagnetic theoryrdquo Journal ofMathematical Physics vol38 no 5 pp 2366ndash2388 1997

[13] V A Kozlov and V G Mazrsquoya ldquoOn iterative proceduresfor solving ill-posed boundary value problems that preservedifferential equationsrdquo Lenningrad Mathematics Journal vol 1pp 1207ndash1228 1990

[14] V A Kozlov V G Mazrsquoya and A V Fomin ldquoAn iterativemethod for solving the Cauchy problem for elliptic equationsrdquoUSSR Computational Mathematics andMathematical Physicsvol 31 no 1 pp 45ndash52 1991

[15] A B Bakushinsky and M Y Kokurin Iterative Methods forApproximate Solution of Inverse Problems vol 577 ofMathemat-ics and Its Applications Springer Berlin Germany 2004

Mathematical Problems in Engineering 9

[16] J Baumeister and A Leitao ldquoOn iterative methods for solvingill-posed problems modeled by partial differential equationsrdquoJournal of Inverse and Ill-Posed Problems vol 9 no 1 pp 13ndash292001

[17] F Berntsson V A Kozlov LMpinganzima and B O TuressonldquoAn alternating iterative procedure for the Cauchy problemfor the Helmholtz equationrdquo Inverse Problems in Science andEngineering vol 22 no 1 pp 45ndash62 2014

[18] A Bouzitouna N Boussetila and F Rebbani ldquoTwo regulariza-tion methods for a class of inverse boundary value problemsof elliptic typerdquo Boundary Value Problems vol 2013 article 1782013

[19] A Lakhdari and N Boussetila ldquoAn iterative regularizationmethod for an abstract ill-posed biparabolic problemrdquo Bound-ary Value Problems vol 2015 article 55 2015

[20] J-GWang and TWei ldquoAn iterativemethod for backward time-fractional diffusion problemrdquo Numerical Methods for PartialDifferential Equations vol 30 no 6 pp 2029ndash2041 2014

[21] H W Zhang and T Wei ldquoTwo iterative methods for a Cauchyproblem of the elliptic equation with variable coefficients in astrip regionrdquo Numerical Algorithms vol 65 no 4 pp 875ndash8922014

[22] M A Krasnoselrsquoskii G M Vainikko P P Zabreiko and YU B Rutitskii Approximate Solutions of Operator EquationsWolters-Noordhoff Publishing Groningen The Netherlands1972

[23] A Pazy Semigroups of Linear Operators and Application toPartial Differential Equations Springer New York NY USA1983

[24] L Elden and V Simoncini ldquoA numerical solution of a Cauchyproblem for an elliptic equation by Krylov subspacesrdquo InverseProblems vol 25 no 6 Article ID 065002 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

2 Mathematical Problems in Engineering

We note that although the interest in inverse problem hasrapidly increased during this decade the literature devoted tothe class of problems (1) is quite scarce

The paper is organized as follows Section 2 gives sometoolswhich are useful for this study in Section 3we introducesome basic results and we show the ill-posedness of theinverse problem Section 4 gives a regularization solutionand error estimation between the approximate solution andthe exact one the numerical implementation is describedin Section 5 to illustrate the accuracy and efficiency of thismethod

2 Preliminaries

Let (120593119899)119899ge1

sub 119867 be an orthonormal eigenbasis correspondingto the eigenvalues (120582

119899)119899ge1

such that

119860120593119899= 120582

119899120593

119899 119899 isin N

lowast

0 lt 1205821le 120582

2sdot sdot sdot le sdot sdot sdot lim

119899 rarr infin

120582119899= +infin

120585 =

infin

sum

119899=1

119864119899120585

119864119899120585 = (120585 120593

119899) 120593

119899 forall120585 isin 119867

(4)

We denote by 119879(119905) = 119890minus119905119860

119905ge0

the analytic semigroupgenerated by minus119860 on119867

119879 (119905) 120585 =

infin

sum

119899=1

119890minus120582119899119905119864

119899120585 forall120585 isin 119867 (5)

For 120572 gt 0 the space119867120572 is given by

119867120572= 120585 isin 119867

infin

sum

119899=1

(1 + 1205822

119899)

120572 10038171003817100381710038171198641198991205851003817100381710038171003817

2

ltinfin (6)

with the norm

10038171003817100381710038171205851003817100381710038171003817119867120572 = (

infin

sum

119899=1

(1 + 1205822

119899)

120572 10038171003817100381710038171198641198991205851003817100381710038171003817

2

)

12

120585 isin 119867120572 (7)

We achieve this section by a result concerning nonexpansiveoperators

Definition 1 A linear bounded operator 119871 119867 rarr 119867 is callednonexpansive if 119871 le 1

Let 119871 be an nonexpansive operator to solve the equation

(119868 minus 119871) 120593 = 120595 (8)

we state a convergence theorem for a successive approxima-tion method

Theorem 2 (see [22] p 66) Let 119871 be a nonexpansive self-adjoint positive operator on 119867 Let 120595 isin 119867 be such that (8)has a solution If 1 is not eigenvalue of 119871 then the successiveapproximations

120593119899+1

= 119871120593119899+ 120595 119899 = 0 1 2 (9)

converge to a solution to (8) for any initial data 1205930isin 119867

Moreover 119871119899120593 rarr 0 for every 120593 isin 119867 as 119899 rarr infin

3 Basic Results

31 The Direct Problem Let 119885 = 119863(119860) times 119867 with the norm119880

2

119885= 119860120585

1

2+ 120585

2

2 119880 = (1205851

1205852

) isin 119885For a given 119891 isin 119867 consider the direct problem

11990810158401015840

(119905) + 21198601199081015840

(119905) + 1198602119908 (119905) = 119891 0 lt 119905 lt 119879

119908 (0) = 0

1199081015840

(0) = 0

(10)

Making the change of variable1199081015840= V we canwrite the second

order equation in (10) as a first order system in the space119885 asfollows

1199111015840

(119905) = A119911 (119905) + 119865 0 lt 119905 lt 119879

119911 (0) = 0

(11)

where 119911 = (119908

V ) 119865 = (0

119891) andA = (

0 119868

minus1198602

minus2119860)

The linear operator A is unbounded with the domain119863(A) = 119863(119860

2) times 119863(119860) and it is the infinitesimal generator

of strongly continuous semigroup 119878(119905) = 119890119905A119905ge0

Moreover119878(119905)

119905ge0is analytic (see [1]) and it admits the following

explicit form

119878 (119905) 119880 =

infin

sum

119899=1

119890119905119861119899119875

119899119880 119880 = (

1205851

1205852

) isin 119885 (12)

where 119861119899= (

0 1

minus1205822

119899minus2120582119899

) and 119875119899119899ge1

is a complete family oforthogonal projections in 119885 given by 119875

119899= diag(119864

119899 119864

119899)

Using matrix algebra we obtain

119890119905119861119899 = (

119890minus120582119899119905+ 120582

119899119905119890

minus120582119899119905

119905119890minus120582119899119905

minus1205822

119899119905119890

minus120582119899119905

minus120582119899119905119890

minus120582119899119905+ 119890

minus120582119899119905) (13)

From the semigroup theory (see [23]) the problem (11)admits a unique solution 119911 isin 119862([0 119879) 119885) given by

119911 = int

119905

0

119878 (119905 minus 119904) 119865 119889119904 (14)

Hence

119911 = int

119905

0

infin

sum

119899=1

119890(119905minus119904)119861

119899119875119899119865119889119904

= int

119905

0

infin

sum

119899=1

(

1205901

119899(119905 119904) 120590

2

119899(119905 119904)

1205903

119899(119905 119904) 120590

4

119899(119905 119904)

) sdot (

0

(119891 120593119899) 120593

119899

)119889119904

(15)

such that

1205901

119899(119905 119904) = 119890

minus120582119899(119905minus119904)

+ 120582119899(119905 minus 119904) 119890

minus120582119899(119905minuss)

1205902

119899(119905 119904) = (119905 minus 119904) 119890

minus120582119899(119905minus119904)

1205903

119899(119905 119904) = minus120582

2

119899(119905 minus 119904) 119890

minus120582119899(119905minus119904)

1205904

119899(119905 119904) = minus120582

119899(119905 minus 119904) 119890

minus120582119899(119905minus119904)

+ 119890minus120582119899(119905minus119904)

(16)

As a consequence we obtain the following theorem

Mathematical Problems in Engineering 3

Theorem 3 The problem (10) admits a unique solution 119908 isin

119862([0 119879) 119863(119860)) cap 1198621([0 119879)119867) given by

119908 (119905) = 119870 (119905) 119891 = 119860minus2(119868 minus (119868 + 119905119860) 119890

minus119905119860) 119891

=

infin

sum

119899=1

(1 minus (1 + 119905120582119899) 119890

minus119905120582119899)

1205822

119899

(119891 120593119899) 120593

119899

(17)

32 Ill-Posedness of the Inverse Problem Now we wish tosolve the inverse problem that is find the source term 119891 inthe system (1) Making use of the supplementary condition(2) and defining the operator 119870(119879) 119891 rarr 119892 we have

119892 = 119906 (119879) = 119870 (119879) 119891 =

infin

sum

119899=1

120590119899119864

119899119891 (18)

where 120590119899= (1 minus (1 + 119879120582

119899)119890

minus119879120582119899)120582

2

119899

It is easy to see that 119870(119879) is a self-adjoint compact linearoperator On the other hand

119892 =

infin

sum

119899=1

119864119899119892 =

infin

sum

119899=1

120590119899119864

119899119891 (19)

so

120590119899119864

119899119891 = 119864

119899119892 (20)

which implies

119864119899119891 =

1

120590119899

119864119899119892 (21)

and therefore

119891 = 119870 (119879)minus1119892 =

infin

sum

119899=1

1

120590119899

119864119899119892 (22)

Note that 1120590119899rarr infin as 119899 rarr infin so the inverse problem is

ill-posed that is the solution does not depend continuouslyon the given data Hence this problem cannot be solved byusing classical numerical methods

Remark 4 As many boundary inverse value problems forpartial differential equations which are ill-posed the studyof the problem (1) is reduced to the study of the equation119870(119879)119891 = 119892 where 119870(119879) is a compact self-adjoint operatorin the Hilbert space119867 This equation can be rewritten in thefollowing way

119891 = (119868 minus 120574119870 (119879)) 119891 + 120574119892 = 119871119891 + 120574119892 (23)

where 120574 is a positive number satisfying 120574 lt 1119870(119879)In the next section we will show that the operator 119871 is

nonexpansive and 1 is not eigenvalue of 119871 so it follows fromTheorem 2 that (119891

119899)119899isinNlowast converges and (119868 minus 120574119870(119879))

119899119891 rarr 0

for every 119891 isin 119867 as 119899 rarr infin

4 Iterative Procedure andConvergence Results

The alternating iterative method is based on reducing theill-posed problem (1) to a sequence of well-posed boundaryvalue problems and consists of the following steps

First we start by letting 1198910isin 119867 be arbitrary the initial

approximation 1199060is the solution to the direct problem

11990610158401015840

0+ 2119860119906

1015840

0+ 119860

2119906

0= 119891

0 0 lt 119905 lt 119879

1199060(0) = 0

1199061015840

0(0) = 0

(24)

Then if the pair (119891119896 119906

119896) has been constructed let

119891119896+1

= 119891119896minus 120574 (119906

119896(119879) minus 119892) (25)

where 120574 is such that

0 lt 120574 lt1

119870 (119879) (26)

and 119870(119879) = sup119899isinNlowast(1 minus (1 + 119879120582119899

)119890minus120582119899119879)120582

2

119899

Finally we get 119906119896+1

by solving the problem

11990610158401015840

119896+1+ 2119860119906

1015840

119896+1+ 119860

2119906

119896+1= 119891

119896+1 0 lt 119905 lt 119879

119906119896+1

(0) = 0

1199061015840

119896+1(0) = 0

(27)

Let us iterate backwards in (25) to obtain

119891119896+1

= 119891119896minus 120574119870 (119879) 119891

119896+ 120574119892 = (119868 minus 120574119870 (119879)) 119891

119896+ 120574119892

= (119868 minus 120574119870 (119879))119896+1

1198910+ 120574

119896

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892

(28)

Now we introduce some properties and tools which areuseful for our main theorems

Lemma 5 The norm of the operator 119870(119905) is given by

119870 (119905) = sup119899isinNlowast

(1 minus (1 + 119905120582119899) 119890

minus120582119899119905)

1205822

119899

=

(1 minus (1 + 1199051205821) 119890

minus1205821119905)

1205822

1

(29)

Proof We aim to find the supremum of the function(1 minus (1 + 119905120582

119899)119890

minus120582119899119905)120582

2

119899 119899 isin Nlowast and for this purpose fix 119905

let 120583 = 120582119905 and define the function

1198661(120583) =

(1 minus (1 + 120583) 119890minus120583)

1205832 for 120583 ge 120583

1= 120582

1119905 (30)

We compute

1198661015840

1(120583) =

(1205832+ 2120583 + 2) 119890

minus120583minus 2

1205833 (31)

4 Mathematical Problems in Engineering

Put

ℎ (120583) = (1205832+ 2120583 + 2) 119890

minus120583minus 2 (32)

Hence

1198661015840

1(120583) =

ℎ (120583)

1205833 (33)

To study the monotony of1198661 it suffices to determine the sign

of ℎ We have

ℎ1015840(120583) = minus120583

2119890

minus120583lt 0 forall120583 gt 0 (34)

and then ℎ is decreasing moreover ℎ(120583) sub ] minus 2 0[forall120583 gt 0 Hence 1198661015840

1(120583) lt 0 forall120583 ge 120583

1 which implies that 119866

1

is decreasing and

sup120583ge1205831

1198661(120583) = 119866

1(120583

1) (35)

Therefore

sup119899ge1

(1 minus (1 + 120582119899119905) 119890

minus120582119899119905)

1205822

119899

=

(1 minus (1 + 1205821119905) 119890

minus1205821119905)

1205822

1

(36)

Proposition 6 For the linear operator 119871 = 119868minus120574119870(119879) one hasthe following properties

(1) 119871 is positive and self-adjoint(2) 119871 is nonexpansive(3) 1 is not an eigenvalue of 119871

Proof Form properties of operator 119860 and the definition of119871 it follows that 119871 is self-adjoint and nonexpansive positiveoperator and from the inequality

0 lt 1 minus 120574

(1 minus (1 + 119879120582) 119890minus120582119879

)

1205822lt 1 for 120582 isin 120590 (119860) (37)

it follows that the point spectrum of 119871 120590119901(119871) sub ]0 1[ Then 1

is not eigenvalue of the operator 119871

Lemma 7 If 120582 gt 0 one has the estimates

1

1 + 1205822le max( 3

1198792 1)

(1 minus (1 + 119879120582) 119890minus120582119879

)

1205822 (38)

0 lt

(1 minus (1 + 119905120582) 119890minus120582119905)

1205822lt 119879

2 forall119905 isin [0 119879] (39)

Proof To establish (38) let us first prove that

1

3 + 1205832le(1 minus (1 + 120583) 119890

minus120583)

1205832 forall120583 gt 0 (40)

which is equivalent to prove that

1198662(120583) = 3 minus (3 + 120583

2) (1 + 120583) 119890

minus120583ge 0 forall120583 gt 0 (41)

We have

1198661015840

2(120583) = 120583 (120583 minus 1)

2

119890minus120583

ge 0 forall120583 gt 0 (42)

Then 1198662is nondecreasing and it follows that 119866

2(120583) sub ]0 3[

So 1198662(120583) ge 0 forall120583 gt 0

Choosing 120583 = 119879120582 in (40) we obtain

1

3 + (119879120582)2le

(1 minus (119879120582 + 1) 119890minus119879120582

)

(119879120582)2

(43)

So

1198792

max (3 1198792) (1 + 1205822)le

(1 minus (1 + 119879120582) 119890minus119879120582

)

1205822 (44)

From (44) we deduce (38)Now we prove the estimate (39) It is easy to verify that

1198663(120583) = (1 minus (1 + 120583) 119890

minus120583) minus 120583

2lt 0 forall120583 gt 0 (45)

Then if we choose 120583 = 119905120582 we get

(1 minus (1 + 119905120582) 119890minus119905120582) lt 119905

2120582

2 forall120582 gt 0 forall119905 isin [0 119879] (46)

Hence from (46) (39) follows

Theorem 8 Let 119906 be a solution to the inverse problem (1) Let119891

0isin 119867 be an arbitrary initial data element for the iterative

procedure proposed above and let 119906119896be the 119896th approximate

solution Then

(i) The method converges that is

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 997888rarr 0 as 119896 997888rarr infin (47)

(ii) Moreover if for some 120572 = 1 + 120579 120579 gt 0 1198910minus 119891 isin 119867

120572that is 119891

0minus 119891

119867120572 le 119864 then the rate of convergence of

the method is given by

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864119896

minus1205722 (48)

where 119862 is a positive constant independent of 119896

Proof (i) From (28) we get

119891119896= (119868 minus 120574119870 (119879))

119896

1198910

+ (119868 minus (119868 minus 120574119870 (119879))119896

) (119870 (119879))minus1119892

(49)

and then

119891119896= (119868 minus 120574119870 (119879))

119896

(1198910minus 119891) + 119891 (50)

which implies that

119906119896(119905) minus 119906 (119905) = 119870 (119905) (119891

119896minus 119891)

= 119870 (119905) (119868 minus 120574119870 (119879))119896

(1198910minus 119891)

(51)

Mathematical Problems in Engineering 5

Hence

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 119870 (119905)100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817 (52)

From Lemma 5 and (39) we have

sup119905isin[0119879]

119870 (119905) = sup119905isin[0119879]

(1 minus (1 + 1199051205821) 119890

minus1199051205821)

1205822

1

lt 1198792 (53)

Combining (52) and (53) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817

997888rarr 0 as 119896 997888rarr infin

(54)

(ii) By part (i) we have

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot1003816100381610038161003816(1198910

minus 119891 120593119899)1003816100381610038161003816

2

(55)

and hence1003817100381710038171003817119906119896

(119905) minus 119906 (119905)1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot (1 + 1205822

119899)

minus120572

(1 + 1205822

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(56)

Using the inequality (38) we obtain

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max( 3

1198792 1))

120572

sdot

infin

sum

119899=1

(1 minus 120574120573119899)2119896

120573120572

119899(1 + 120582

2

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(57)

where 120573119899= ((1 minus (1 + 120582

119899119879)119890

minus120582119899119879)120582

2

119899)

So it follows that

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max ( 3

1198792 1))

120572

sdot sup0le120573119899le1198792

(1 minus 120574120573119899)2119896

120573120572

119899

10038171003817100381710038171198910minus 119891

1003817100381710038171003817

2

119867120572

(58)

Put

120601 (120573) = (1 minus 120574120573)2119896

120573120572 0 le 120573 le 119879

2 (59)

We compute

1206011015840(120573) = (1 minus 120574120573)

2119896minus1

120573120572minus1

(minus120574 (2119896 + 120572) 120573 + 120572) (60)

Setting 1206011015840(120573) = 0 it follows that 120573lowast

= 120572(2119896 + 120572)120574 is thecritical point of 120601 It is easy to see that the maximum of 120601 isattained at 120573lowast So

sup0le120573le119879

2

120601 (120573) le 120601 (120573lowast) = (1 minus 120574120573

lowast)2119896

(120573lowast)120572

le (120573lowast)120572

= (120572

(2119896 + 120572) 120574)

120572

(61)

and hence

sup0le120573le119879

2

120601 (120573) le (120572

2120574)

120572

119896minus120572 (62)

Combining (58) and (62) we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(120572

2120574max ( 3

1198792 1))

120572

(1

119896)

120572

1198642

(63)

Since in practice the measured data 119892 is never knownexactly but only up to an error of say 120575 gt 0 it is our aimto solve the equation 119870(119879)119891 = 119892 from the knowledge of aperturbed right-hand side 119892120575 satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817lt 120575 (64)

where 120575 gt 0 denotes a noise level In the following theoremwe consider the case of inexact data

Theorem 9 Let 120572 = 1 + 120579 (120579 gt 0) 1198910be an arbitrary initial

data element for the iterative procedure proposed above suchthat (119891

0minus119891) isin 119867

120572 let119906119896be the 119896th approximations solution for

the exact data 119892 and let 119906120575

119896be the 119896th approximations solution

corresponding to the perturbed data 119892120575 such that (64) holdsThen one has the following estimate

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792(120575120574119896 + 119862119864(

1

119896)

1205722

) (65)

Proof Let

119891119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892

119906119896(119905) = 119870 (119905) 119891

119896

119891120575

119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892120575

119906120575

119896(119905) = 119870 (119905) 119891

120575

119896

(66)

Using the triangle inequality we obtain

10038171003817100381710038171003817119906

120575

119896minus 119906

10038171003817100381710038171003817le10038171003817100381710038171003817119906

120575

119896minus 119906

119896

10038171003817100381710038171003817+1003817100381710038171003817119906119896

minus 1199061003817100381710038171003817

(67)

6 Mathematical Problems in Engineering

FromTheorem 8 we have

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864(

1

119896)

1205722

(68)

On the other hand10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817=10038171003817100381710038171003817119870 (119905) (119891

120575

119896minus 119891

119896)10038171003817100381710038171003817

le 1198792120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

(119892120575minus 119892)

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

119896minus1

sum

119895=0

1003817100381710038171003817(119868 minus 120574119870 (119879))1003817100381710038171003817

119895

(69)

Since1003817100381710038171003817(119868 minus 120574119870 (119879))

1003817100381710038171003817 le 1 (70)

it follows that

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817le 119879

2120575120574119896 (71)

Combining (68) and (71) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain the estimate (65)

Remark 10 If we choose the number of the iterations 119896(120575) sothat 119896(120575) rarr 0 as 120575 rarr 0 we obtain

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906 (119905)

10038171003817100381710038171003817997888rarr 0 as 119896 997888rarr +infin (72)

5 Numerical Implementation

In this section an example is devised for verifying theeffectiveness of the proposed method Consider the problemof finding a pair of functions (119906(119909 119905) 119891(119909)) in the system

1205972

1205971199052119906 (119909 119905) minus 2

1205972

1205971199092(120597

120597119905119906 (119909 119905)) +

1205974

1205971199094119906 (119909 119905)

= 119891 (119909) (119905 119909) isin (0 1) times (0 1)

119906 (0 119905) = 119906 (1 119905) = 0 119905 isin (0 1)

119906 (119909 0) = 119906119905(119909 0) = 0 119909 isin (0 1)

119906 (119909 1) = 119892 (119909) 119909 isin (0 1)

(73)

Denote

119860 = minus120597

2

1205971199092

with D (119860) = 1198671

0(0 1) cap 119867

2

(0 1) sub 119867 = 1198712

(0 1)

120582119899= 119899

2120587

2

120593119899= radic2 sin (119899120587119909) 119899 = 1 2

(74)

are eigenvalues and orthonormal eigenfunctions which forma basis for119867

The solution of the above problem is given by

119906 (119909 119905) =

infin

sum

119899=1

(

1 minus (1 + (119899120587)2119905) 119890

minus(119899120587)2

119905

(119899120587)4

)119891119899120593

119899 (75)

where 119891119899= (119891 120593

119899) = radic2int

1

0119891(119904)sin(119899120587119904)119889119904 119899 = 1 2

Now to solve the inverse problem making use of thesupplementary condition and defining the operator119870 119891 rarr

119892 we have

119892 (119909) = 119906 (119909 1) = 119870119891 (119909)

= 2

infin

sum

119899=1

(

1 minus (1 + (119899120587)2) 119890

minus(119899120587)2

(119899120587)4

)

sdot (int

1

0

119891 (119904) sin (119899120587119904) 119889119904) sin (119899120587119909)

(76)

Example 11 In the following we first selected the exactsolution 119891(119909) and obtained the exact data function 119892(119909)

through solving the forward problem Then we added anormally distributed perturbation to each data function andobtained vectors119892120575

(119909) Finallywe obtained the regularizationsolutions through solving the inverse problemwith noisy data119892

120575(119909) satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817(1198712(01))2le 120575 (77)

It is easy to see that if 119891(119909) = sin120587119909 then

119906 (119909 119905) =

(1 minus (1 + 1205872119905) 119890

minus1205872

119905)

1205874sin (120587119909) (78)

is the exact solution of the problem (73) Consequently119892(119909) = ((1 minus (1 + 120587

2)119890

minus1205872

)1205874)sin(120587119909)

Now we propose to approximate the first and secondspace derivatives by using central difference and we consideran equidistant grid points to a spatial step size 119909

0= 0 lt 119909

1lt

sdot sdot sdot lt 119909119873+1

= 1 (ℎ = 1(119873+1)) where119873 is a positive integerWe get the following semidiscrete problem

11990610158401015840(119909

119894 119905) + 2119860

ℎ119906

1015840(119909

119894 119905) + 119860

2

ℎ119906 (119909

119894 119905) = 119891 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873 0 lt 119905 lt 1

119906 (0 119905) = 119906 (1 119905) = 0

0 lt 119905 lt 1

119906 (119909119894 0) = 119906

1015840(119909

119894 0) = 0

119909119894= 119894ℎ 119894 = 1 119873

119906 (119909119894 1) = 119892 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873

(79)

Mathematical Problems in Engineering 7

0

05

1

15

minus05

01 02 03 04 05 06 07 08 10 090

02

04

06

08

01 02 080705 10 0903 0604

Iterative regularization method

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 1 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus3

where 119860ℎis the discretisation matrix stemming from the

operator 119860 = minus1198892119889119909

2 and

119860ℎ=

1

ℎ2Tridiag (minus1 2 minus1) (80)

is a symmetric positive definite matrix with eigenvalues

120583119895= 4 (119873 + 1)

2 sin2119895120587

2 (119873 + 1) 119895 = 1 119873 (81)

and orthonormal eigenvalues

V119895= (sin

119898119895120587

(119873 + 1))

1le119898le119873

119895 = 1 119873 (82)

We assume that it is fine enough so that the discretizationerrors are small compared to the uncertainty 120575 of the datathis means that119860

ℎis a good approximation of the differential

operator119860whose unboundedness is reflected in a large normof 119860

ℎ(see [24])

Adding a random distributed perturbation to each datafunction we obtain

119892120575= 119892 + 120576randn (size (119892)) (83)

where 120576 indicates the noise level of the measurements dataand the function randn(sdot) generates arrays of random num-bers whose elements are normally distributed with mean 0variance1205902

= 1 and standard deviation120590 = 1 randn(size(119892))returns an array of random entries that is of the same size as119892The noise level 120575 can bemeasured in the sense of rootmeansquare error (RMSE) according to

120575 =10038171003817100381710038171003817119892

120575minus 119892

100381710038171003817100381710038171198972= (

1

119873 + 1

119873

sum

119894=0

(119892 (119909119894) minus 119892

120575(119909

119894))

2

)

12

(84)

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

Iterative regularization method

0

005

01

015

02

minus05

0

05

1

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 2 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus4

Table 1 Relative error RE(119891)

119873 119896 120576 RE(119891)60 4 10minus3 0203960 4 10minus4 0094560 5 10minus3 0303260 5 10minus4 00305

The relative error is given as follows

RE (119891) =10038171003817100381710038171003817119891approximate minus 119891exact

100381710038171003817100381710038171198972

1003817100381710038171003817119891exact10038171003817100381710038171198972

(85)

The discrete iterative approximation of (66) is given by

119891120575

119896(119909

119894) = (119868 minus 120574119870

ℎ)119896

1198910(119909

119894)

+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870ℎ)119895

119892120575(119909

119894) 119894 = 1 119873

(86)

where 119870ℎ

= 119860minus2

ℎ(119868

119873minus (119868

119873+ 119860

ℎ)119890

minus119860ℎ) and

120574 lt 1119870ℎ = (120583

2

1(1 minus (1 + 120583

1)119890

minus1205831))

Figures 1ndash4 display that as the amount of noise 120576

decreases the regularized solutions approximate better theexact solution

Table 1 shows that for 119896 = 4 or 119896 = 5 the relative errordecreases with the decease of epsilon which is consistent withour regularization

8 Mathematical Problems in Engineering

Iterative regularization method

0

02

04

06

08

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 3 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus3

Iterative regularization method

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

0

002

004

006

minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 4 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus4

6 Conclusion

In this paper we have extended the iterative method to iden-tify the unknown source term in a second order differentialequation convergence results were established and errorestimates have been obtained under an a priori bound of theexact solution Some numerical tests have been given to verifythe validity of the method

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

All authors read and approved the paper

Acknowledgments

The authors would like to thank the anonymous referees fortheir suggestions

References

[1] H Leiva ldquoA lemmaon1198620-semigroups and applicationsrdquoQuaes-

tiones Mathematicae vol 26 no 3 pp 247ndash265 2003[2] H Leiva Linear Reaction-Diffusion Systems Notas de Mathe-

matica No 185 Mereida 1999[3] L F de Oliveira ldquoOn reaction-diffusion systemsrdquo Electronic

Journal of Differential Equations vol 1998 no 24 10 pages 1998[4] V L Fushchich A S Galitsyn and A S Polubinskii ldquoA new

mathematical model of heat conduction processesrdquo UkrainianMathematical Journal vol 42 no 2 pp 210ndash216 1990

[5] G Bastay ldquoIterative methods for Ill-posed boundary valueproblems Linkoping studies in science and technologyrdquo Dis-sertations 392 Linkoping University Linkoping Sweden 1995

[6] A S Carasso ldquoBochner subordination logarithmic diffusionequations and blind deconvolution of hubble space telescopeimagery and other scientific datardquo SIAM Journal on ImagingSciences vol 3 no 4 pp 954ndash980 2010

[7] L Wang X Zhou and X Wei Heat Conduction MathematicalModels and Analytical Solutions Springer 2008

[8] M Andrle and A El Badia ldquoIdentification of multiple movingpollution sources in surface waters or atmospheric media withboundary observationsrdquo Inverse Problems vol 28 no 7 ArticleID 075009 2012

[9] H W Engl and C Groetsch Inverse and Ill-Posed Problemsvol 4 of Notes and Reports in Mathematics in Science andEngineering Academic press New York NY USA 1987

[10] A KirschAn Introduction to theMathematicalTheory of InverseProblems Springer Heidelberg Germany 1996

[11] D Mace and P Lailly ldquoSolution of the VSP one-dimensionalinverse problemrdquo Geophysical Prospecting vol 34 no 7 pp1002ndash1021 1986

[12] NMagnoli andGA Viano ldquoThe source identification problemin electromagnetic theoryrdquo Journal ofMathematical Physics vol38 no 5 pp 2366ndash2388 1997

[13] V A Kozlov and V G Mazrsquoya ldquoOn iterative proceduresfor solving ill-posed boundary value problems that preservedifferential equationsrdquo Lenningrad Mathematics Journal vol 1pp 1207ndash1228 1990

[14] V A Kozlov V G Mazrsquoya and A V Fomin ldquoAn iterativemethod for solving the Cauchy problem for elliptic equationsrdquoUSSR Computational Mathematics andMathematical Physicsvol 31 no 1 pp 45ndash52 1991

[15] A B Bakushinsky and M Y Kokurin Iterative Methods forApproximate Solution of Inverse Problems vol 577 ofMathemat-ics and Its Applications Springer Berlin Germany 2004

Mathematical Problems in Engineering 9

[16] J Baumeister and A Leitao ldquoOn iterative methods for solvingill-posed problems modeled by partial differential equationsrdquoJournal of Inverse and Ill-Posed Problems vol 9 no 1 pp 13ndash292001

[17] F Berntsson V A Kozlov LMpinganzima and B O TuressonldquoAn alternating iterative procedure for the Cauchy problemfor the Helmholtz equationrdquo Inverse Problems in Science andEngineering vol 22 no 1 pp 45ndash62 2014

[18] A Bouzitouna N Boussetila and F Rebbani ldquoTwo regulariza-tion methods for a class of inverse boundary value problemsof elliptic typerdquo Boundary Value Problems vol 2013 article 1782013

[19] A Lakhdari and N Boussetila ldquoAn iterative regularizationmethod for an abstract ill-posed biparabolic problemrdquo Bound-ary Value Problems vol 2015 article 55 2015

[20] J-GWang and TWei ldquoAn iterativemethod for backward time-fractional diffusion problemrdquo Numerical Methods for PartialDifferential Equations vol 30 no 6 pp 2029ndash2041 2014

[21] H W Zhang and T Wei ldquoTwo iterative methods for a Cauchyproblem of the elliptic equation with variable coefficients in astrip regionrdquo Numerical Algorithms vol 65 no 4 pp 875ndash8922014

[22] M A Krasnoselrsquoskii G M Vainikko P P Zabreiko and YU B Rutitskii Approximate Solutions of Operator EquationsWolters-Noordhoff Publishing Groningen The Netherlands1972

[23] A Pazy Semigroups of Linear Operators and Application toPartial Differential Equations Springer New York NY USA1983

[24] L Elden and V Simoncini ldquoA numerical solution of a Cauchyproblem for an elliptic equation by Krylov subspacesrdquo InverseProblems vol 25 no 6 Article ID 065002 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

Mathematical Problems in Engineering 3

Theorem 3 The problem (10) admits a unique solution 119908 isin

119862([0 119879) 119863(119860)) cap 1198621([0 119879)119867) given by

119908 (119905) = 119870 (119905) 119891 = 119860minus2(119868 minus (119868 + 119905119860) 119890

minus119905119860) 119891

=

infin

sum

119899=1

(1 minus (1 + 119905120582119899) 119890

minus119905120582119899)

1205822

119899

(119891 120593119899) 120593

119899

(17)

32 Ill-Posedness of the Inverse Problem Now we wish tosolve the inverse problem that is find the source term 119891 inthe system (1) Making use of the supplementary condition(2) and defining the operator 119870(119879) 119891 rarr 119892 we have

119892 = 119906 (119879) = 119870 (119879) 119891 =

infin

sum

119899=1

120590119899119864

119899119891 (18)

where 120590119899= (1 minus (1 + 119879120582

119899)119890

minus119879120582119899)120582

2

119899

It is easy to see that 119870(119879) is a self-adjoint compact linearoperator On the other hand

119892 =

infin

sum

119899=1

119864119899119892 =

infin

sum

119899=1

120590119899119864

119899119891 (19)

so

120590119899119864

119899119891 = 119864

119899119892 (20)

which implies

119864119899119891 =

1

120590119899

119864119899119892 (21)

and therefore

119891 = 119870 (119879)minus1119892 =

infin

sum

119899=1

1

120590119899

119864119899119892 (22)

Note that 1120590119899rarr infin as 119899 rarr infin so the inverse problem is

ill-posed that is the solution does not depend continuouslyon the given data Hence this problem cannot be solved byusing classical numerical methods

Remark 4 As many boundary inverse value problems forpartial differential equations which are ill-posed the studyof the problem (1) is reduced to the study of the equation119870(119879)119891 = 119892 where 119870(119879) is a compact self-adjoint operatorin the Hilbert space119867 This equation can be rewritten in thefollowing way

119891 = (119868 minus 120574119870 (119879)) 119891 + 120574119892 = 119871119891 + 120574119892 (23)

where 120574 is a positive number satisfying 120574 lt 1119870(119879)In the next section we will show that the operator 119871 is

nonexpansive and 1 is not eigenvalue of 119871 so it follows fromTheorem 2 that (119891

119899)119899isinNlowast converges and (119868 minus 120574119870(119879))

119899119891 rarr 0

for every 119891 isin 119867 as 119899 rarr infin

4 Iterative Procedure andConvergence Results

The alternating iterative method is based on reducing theill-posed problem (1) to a sequence of well-posed boundaryvalue problems and consists of the following steps

First we start by letting 1198910isin 119867 be arbitrary the initial

approximation 1199060is the solution to the direct problem

11990610158401015840

0+ 2119860119906

1015840

0+ 119860

2119906

0= 119891

0 0 lt 119905 lt 119879

1199060(0) = 0

1199061015840

0(0) = 0

(24)

Then if the pair (119891119896 119906

119896) has been constructed let

119891119896+1

= 119891119896minus 120574 (119906

119896(119879) minus 119892) (25)

where 120574 is such that

0 lt 120574 lt1

119870 (119879) (26)

and 119870(119879) = sup119899isinNlowast(1 minus (1 + 119879120582119899

)119890minus120582119899119879)120582

2

119899

Finally we get 119906119896+1

by solving the problem

11990610158401015840

119896+1+ 2119860119906

1015840

119896+1+ 119860

2119906

119896+1= 119891

119896+1 0 lt 119905 lt 119879

119906119896+1

(0) = 0

1199061015840

119896+1(0) = 0

(27)

Let us iterate backwards in (25) to obtain

119891119896+1

= 119891119896minus 120574119870 (119879) 119891

119896+ 120574119892 = (119868 minus 120574119870 (119879)) 119891

119896+ 120574119892

= (119868 minus 120574119870 (119879))119896+1

1198910+ 120574

119896

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892

(28)

Now we introduce some properties and tools which areuseful for our main theorems

Lemma 5 The norm of the operator 119870(119905) is given by

119870 (119905) = sup119899isinNlowast

(1 minus (1 + 119905120582119899) 119890

minus120582119899119905)

1205822

119899

=

(1 minus (1 + 1199051205821) 119890

minus1205821119905)

1205822

1

(29)

Proof We aim to find the supremum of the function(1 minus (1 + 119905120582

119899)119890

minus120582119899119905)120582

2

119899 119899 isin Nlowast and for this purpose fix 119905

let 120583 = 120582119905 and define the function

1198661(120583) =

(1 minus (1 + 120583) 119890minus120583)

1205832 for 120583 ge 120583

1= 120582

1119905 (30)

We compute

1198661015840

1(120583) =

(1205832+ 2120583 + 2) 119890

minus120583minus 2

1205833 (31)

4 Mathematical Problems in Engineering

Put

ℎ (120583) = (1205832+ 2120583 + 2) 119890

minus120583minus 2 (32)

Hence

1198661015840

1(120583) =

ℎ (120583)

1205833 (33)

To study the monotony of1198661 it suffices to determine the sign

of ℎ We have

ℎ1015840(120583) = minus120583

2119890

minus120583lt 0 forall120583 gt 0 (34)

and then ℎ is decreasing moreover ℎ(120583) sub ] minus 2 0[forall120583 gt 0 Hence 1198661015840

1(120583) lt 0 forall120583 ge 120583

1 which implies that 119866

1

is decreasing and

sup120583ge1205831

1198661(120583) = 119866

1(120583

1) (35)

Therefore

sup119899ge1

(1 minus (1 + 120582119899119905) 119890

minus120582119899119905)

1205822

119899

=

(1 minus (1 + 1205821119905) 119890

minus1205821119905)

1205822

1

(36)

Proposition 6 For the linear operator 119871 = 119868minus120574119870(119879) one hasthe following properties

(1) 119871 is positive and self-adjoint(2) 119871 is nonexpansive(3) 1 is not an eigenvalue of 119871

Proof Form properties of operator 119860 and the definition of119871 it follows that 119871 is self-adjoint and nonexpansive positiveoperator and from the inequality

0 lt 1 minus 120574

(1 minus (1 + 119879120582) 119890minus120582119879

)

1205822lt 1 for 120582 isin 120590 (119860) (37)

it follows that the point spectrum of 119871 120590119901(119871) sub ]0 1[ Then 1

is not eigenvalue of the operator 119871

Lemma 7 If 120582 gt 0 one has the estimates

1

1 + 1205822le max( 3

1198792 1)

(1 minus (1 + 119879120582) 119890minus120582119879

)

1205822 (38)

0 lt

(1 minus (1 + 119905120582) 119890minus120582119905)

1205822lt 119879

2 forall119905 isin [0 119879] (39)

Proof To establish (38) let us first prove that

1

3 + 1205832le(1 minus (1 + 120583) 119890

minus120583)

1205832 forall120583 gt 0 (40)

which is equivalent to prove that

1198662(120583) = 3 minus (3 + 120583

2) (1 + 120583) 119890

minus120583ge 0 forall120583 gt 0 (41)

We have

1198661015840

2(120583) = 120583 (120583 minus 1)

2

119890minus120583

ge 0 forall120583 gt 0 (42)

Then 1198662is nondecreasing and it follows that 119866

2(120583) sub ]0 3[

So 1198662(120583) ge 0 forall120583 gt 0

Choosing 120583 = 119879120582 in (40) we obtain

1

3 + (119879120582)2le

(1 minus (119879120582 + 1) 119890minus119879120582

)

(119879120582)2

(43)

So

1198792

max (3 1198792) (1 + 1205822)le

(1 minus (1 + 119879120582) 119890minus119879120582

)

1205822 (44)

From (44) we deduce (38)Now we prove the estimate (39) It is easy to verify that

1198663(120583) = (1 minus (1 + 120583) 119890

minus120583) minus 120583

2lt 0 forall120583 gt 0 (45)

Then if we choose 120583 = 119905120582 we get

(1 minus (1 + 119905120582) 119890minus119905120582) lt 119905

2120582

2 forall120582 gt 0 forall119905 isin [0 119879] (46)

Hence from (46) (39) follows

Theorem 8 Let 119906 be a solution to the inverse problem (1) Let119891

0isin 119867 be an arbitrary initial data element for the iterative

procedure proposed above and let 119906119896be the 119896th approximate

solution Then

(i) The method converges that is

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 997888rarr 0 as 119896 997888rarr infin (47)

(ii) Moreover if for some 120572 = 1 + 120579 120579 gt 0 1198910minus 119891 isin 119867

120572that is 119891

0minus 119891

119867120572 le 119864 then the rate of convergence of

the method is given by

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864119896

minus1205722 (48)

where 119862 is a positive constant independent of 119896

Proof (i) From (28) we get

119891119896= (119868 minus 120574119870 (119879))

119896

1198910

+ (119868 minus (119868 minus 120574119870 (119879))119896

) (119870 (119879))minus1119892

(49)

and then

119891119896= (119868 minus 120574119870 (119879))

119896

(1198910minus 119891) + 119891 (50)

which implies that

119906119896(119905) minus 119906 (119905) = 119870 (119905) (119891

119896minus 119891)

= 119870 (119905) (119868 minus 120574119870 (119879))119896

(1198910minus 119891)

(51)

Mathematical Problems in Engineering 5

Hence

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 119870 (119905)100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817 (52)

From Lemma 5 and (39) we have

sup119905isin[0119879]

119870 (119905) = sup119905isin[0119879]

(1 minus (1 + 1199051205821) 119890

minus1199051205821)

1205822

1

lt 1198792 (53)

Combining (52) and (53) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817

997888rarr 0 as 119896 997888rarr infin

(54)

(ii) By part (i) we have

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot1003816100381610038161003816(1198910

minus 119891 120593119899)1003816100381610038161003816

2

(55)

and hence1003817100381710038171003817119906119896

(119905) minus 119906 (119905)1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot (1 + 1205822

119899)

minus120572

(1 + 1205822

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(56)

Using the inequality (38) we obtain

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max( 3

1198792 1))

120572

sdot

infin

sum

119899=1

(1 minus 120574120573119899)2119896

120573120572

119899(1 + 120582

2

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(57)

where 120573119899= ((1 minus (1 + 120582

119899119879)119890

minus120582119899119879)120582

2

119899)

So it follows that

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max ( 3

1198792 1))

120572

sdot sup0le120573119899le1198792

(1 minus 120574120573119899)2119896

120573120572

119899

10038171003817100381710038171198910minus 119891

1003817100381710038171003817

2

119867120572

(58)

Put

120601 (120573) = (1 minus 120574120573)2119896

120573120572 0 le 120573 le 119879

2 (59)

We compute

1206011015840(120573) = (1 minus 120574120573)

2119896minus1

120573120572minus1

(minus120574 (2119896 + 120572) 120573 + 120572) (60)

Setting 1206011015840(120573) = 0 it follows that 120573lowast

= 120572(2119896 + 120572)120574 is thecritical point of 120601 It is easy to see that the maximum of 120601 isattained at 120573lowast So

sup0le120573le119879

2

120601 (120573) le 120601 (120573lowast) = (1 minus 120574120573

lowast)2119896

(120573lowast)120572

le (120573lowast)120572

= (120572

(2119896 + 120572) 120574)

120572

(61)

and hence

sup0le120573le119879

2

120601 (120573) le (120572

2120574)

120572

119896minus120572 (62)

Combining (58) and (62) we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(120572

2120574max ( 3

1198792 1))

120572

(1

119896)

120572

1198642

(63)

Since in practice the measured data 119892 is never knownexactly but only up to an error of say 120575 gt 0 it is our aimto solve the equation 119870(119879)119891 = 119892 from the knowledge of aperturbed right-hand side 119892120575 satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817lt 120575 (64)

where 120575 gt 0 denotes a noise level In the following theoremwe consider the case of inexact data

Theorem 9 Let 120572 = 1 + 120579 (120579 gt 0) 1198910be an arbitrary initial

data element for the iterative procedure proposed above suchthat (119891

0minus119891) isin 119867

120572 let119906119896be the 119896th approximations solution for

the exact data 119892 and let 119906120575

119896be the 119896th approximations solution

corresponding to the perturbed data 119892120575 such that (64) holdsThen one has the following estimate

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792(120575120574119896 + 119862119864(

1

119896)

1205722

) (65)

Proof Let

119891119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892

119906119896(119905) = 119870 (119905) 119891

119896

119891120575

119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892120575

119906120575

119896(119905) = 119870 (119905) 119891

120575

119896

(66)

Using the triangle inequality we obtain

10038171003817100381710038171003817119906

120575

119896minus 119906

10038171003817100381710038171003817le10038171003817100381710038171003817119906

120575

119896minus 119906

119896

10038171003817100381710038171003817+1003817100381710038171003817119906119896

minus 1199061003817100381710038171003817

(67)

6 Mathematical Problems in Engineering

FromTheorem 8 we have

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864(

1

119896)

1205722

(68)

On the other hand10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817=10038171003817100381710038171003817119870 (119905) (119891

120575

119896minus 119891

119896)10038171003817100381710038171003817

le 1198792120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

(119892120575minus 119892)

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

119896minus1

sum

119895=0

1003817100381710038171003817(119868 minus 120574119870 (119879))1003817100381710038171003817

119895

(69)

Since1003817100381710038171003817(119868 minus 120574119870 (119879))

1003817100381710038171003817 le 1 (70)

it follows that

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817le 119879

2120575120574119896 (71)

Combining (68) and (71) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain the estimate (65)

Remark 10 If we choose the number of the iterations 119896(120575) sothat 119896(120575) rarr 0 as 120575 rarr 0 we obtain

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906 (119905)

10038171003817100381710038171003817997888rarr 0 as 119896 997888rarr +infin (72)

5 Numerical Implementation

In this section an example is devised for verifying theeffectiveness of the proposed method Consider the problemof finding a pair of functions (119906(119909 119905) 119891(119909)) in the system

1205972

1205971199052119906 (119909 119905) minus 2

1205972

1205971199092(120597

120597119905119906 (119909 119905)) +

1205974

1205971199094119906 (119909 119905)

= 119891 (119909) (119905 119909) isin (0 1) times (0 1)

119906 (0 119905) = 119906 (1 119905) = 0 119905 isin (0 1)

119906 (119909 0) = 119906119905(119909 0) = 0 119909 isin (0 1)

119906 (119909 1) = 119892 (119909) 119909 isin (0 1)

(73)

Denote

119860 = minus120597

2

1205971199092

with D (119860) = 1198671

0(0 1) cap 119867

2

(0 1) sub 119867 = 1198712

(0 1)

120582119899= 119899

2120587

2

120593119899= radic2 sin (119899120587119909) 119899 = 1 2

(74)

are eigenvalues and orthonormal eigenfunctions which forma basis for119867

The solution of the above problem is given by

119906 (119909 119905) =

infin

sum

119899=1

(

1 minus (1 + (119899120587)2119905) 119890

minus(119899120587)2

119905

(119899120587)4

)119891119899120593

119899 (75)

where 119891119899= (119891 120593

119899) = radic2int

1

0119891(119904)sin(119899120587119904)119889119904 119899 = 1 2

Now to solve the inverse problem making use of thesupplementary condition and defining the operator119870 119891 rarr

119892 we have

119892 (119909) = 119906 (119909 1) = 119870119891 (119909)

= 2

infin

sum

119899=1

(

1 minus (1 + (119899120587)2) 119890

minus(119899120587)2

(119899120587)4

)

sdot (int

1

0

119891 (119904) sin (119899120587119904) 119889119904) sin (119899120587119909)

(76)

Example 11 In the following we first selected the exactsolution 119891(119909) and obtained the exact data function 119892(119909)

through solving the forward problem Then we added anormally distributed perturbation to each data function andobtained vectors119892120575

(119909) Finallywe obtained the regularizationsolutions through solving the inverse problemwith noisy data119892

120575(119909) satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817(1198712(01))2le 120575 (77)

It is easy to see that if 119891(119909) = sin120587119909 then

119906 (119909 119905) =

(1 minus (1 + 1205872119905) 119890

minus1205872

119905)

1205874sin (120587119909) (78)

is the exact solution of the problem (73) Consequently119892(119909) = ((1 minus (1 + 120587

2)119890

minus1205872

)1205874)sin(120587119909)

Now we propose to approximate the first and secondspace derivatives by using central difference and we consideran equidistant grid points to a spatial step size 119909

0= 0 lt 119909

1lt

sdot sdot sdot lt 119909119873+1

= 1 (ℎ = 1(119873+1)) where119873 is a positive integerWe get the following semidiscrete problem

11990610158401015840(119909

119894 119905) + 2119860

ℎ119906

1015840(119909

119894 119905) + 119860

2

ℎ119906 (119909

119894 119905) = 119891 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873 0 lt 119905 lt 1

119906 (0 119905) = 119906 (1 119905) = 0

0 lt 119905 lt 1

119906 (119909119894 0) = 119906

1015840(119909

119894 0) = 0

119909119894= 119894ℎ 119894 = 1 119873

119906 (119909119894 1) = 119892 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873

(79)

Mathematical Problems in Engineering 7

0

05

1

15

minus05

01 02 03 04 05 06 07 08 10 090

02

04

06

08

01 02 080705 10 0903 0604

Iterative regularization method

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 1 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus3

where 119860ℎis the discretisation matrix stemming from the

operator 119860 = minus1198892119889119909

2 and

119860ℎ=

1

ℎ2Tridiag (minus1 2 minus1) (80)

is a symmetric positive definite matrix with eigenvalues

120583119895= 4 (119873 + 1)

2 sin2119895120587

2 (119873 + 1) 119895 = 1 119873 (81)

and orthonormal eigenvalues

V119895= (sin

119898119895120587

(119873 + 1))

1le119898le119873

119895 = 1 119873 (82)

We assume that it is fine enough so that the discretizationerrors are small compared to the uncertainty 120575 of the datathis means that119860

ℎis a good approximation of the differential

operator119860whose unboundedness is reflected in a large normof 119860

ℎ(see [24])

Adding a random distributed perturbation to each datafunction we obtain

119892120575= 119892 + 120576randn (size (119892)) (83)

where 120576 indicates the noise level of the measurements dataand the function randn(sdot) generates arrays of random num-bers whose elements are normally distributed with mean 0variance1205902

= 1 and standard deviation120590 = 1 randn(size(119892))returns an array of random entries that is of the same size as119892The noise level 120575 can bemeasured in the sense of rootmeansquare error (RMSE) according to

120575 =10038171003817100381710038171003817119892

120575minus 119892

100381710038171003817100381710038171198972= (

1

119873 + 1

119873

sum

119894=0

(119892 (119909119894) minus 119892

120575(119909

119894))

2

)

12

(84)

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

Iterative regularization method

0

005

01

015

02

minus05

0

05

1

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 2 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus4

Table 1 Relative error RE(119891)

119873 119896 120576 RE(119891)60 4 10minus3 0203960 4 10minus4 0094560 5 10minus3 0303260 5 10minus4 00305

The relative error is given as follows

RE (119891) =10038171003817100381710038171003817119891approximate minus 119891exact

100381710038171003817100381710038171198972

1003817100381710038171003817119891exact10038171003817100381710038171198972

(85)

The discrete iterative approximation of (66) is given by

119891120575

119896(119909

119894) = (119868 minus 120574119870

ℎ)119896

1198910(119909

119894)

+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870ℎ)119895

119892120575(119909

119894) 119894 = 1 119873

(86)

where 119870ℎ

= 119860minus2

ℎ(119868

119873minus (119868

119873+ 119860

ℎ)119890

minus119860ℎ) and

120574 lt 1119870ℎ = (120583

2

1(1 minus (1 + 120583

1)119890

minus1205831))

Figures 1ndash4 display that as the amount of noise 120576

decreases the regularized solutions approximate better theexact solution

Table 1 shows that for 119896 = 4 or 119896 = 5 the relative errordecreases with the decease of epsilon which is consistent withour regularization

8 Mathematical Problems in Engineering

Iterative regularization method

0

02

04

06

08

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 3 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus3

Iterative regularization method

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

0

002

004

006

minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 4 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus4

6 Conclusion

In this paper we have extended the iterative method to iden-tify the unknown source term in a second order differentialequation convergence results were established and errorestimates have been obtained under an a priori bound of theexact solution Some numerical tests have been given to verifythe validity of the method

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

All authors read and approved the paper

Acknowledgments

The authors would like to thank the anonymous referees fortheir suggestions

References

[1] H Leiva ldquoA lemmaon1198620-semigroups and applicationsrdquoQuaes-

tiones Mathematicae vol 26 no 3 pp 247ndash265 2003[2] H Leiva Linear Reaction-Diffusion Systems Notas de Mathe-

matica No 185 Mereida 1999[3] L F de Oliveira ldquoOn reaction-diffusion systemsrdquo Electronic

Journal of Differential Equations vol 1998 no 24 10 pages 1998[4] V L Fushchich A S Galitsyn and A S Polubinskii ldquoA new

mathematical model of heat conduction processesrdquo UkrainianMathematical Journal vol 42 no 2 pp 210ndash216 1990

[5] G Bastay ldquoIterative methods for Ill-posed boundary valueproblems Linkoping studies in science and technologyrdquo Dis-sertations 392 Linkoping University Linkoping Sweden 1995

[6] A S Carasso ldquoBochner subordination logarithmic diffusionequations and blind deconvolution of hubble space telescopeimagery and other scientific datardquo SIAM Journal on ImagingSciences vol 3 no 4 pp 954ndash980 2010

[7] L Wang X Zhou and X Wei Heat Conduction MathematicalModels and Analytical Solutions Springer 2008

[8] M Andrle and A El Badia ldquoIdentification of multiple movingpollution sources in surface waters or atmospheric media withboundary observationsrdquo Inverse Problems vol 28 no 7 ArticleID 075009 2012

[9] H W Engl and C Groetsch Inverse and Ill-Posed Problemsvol 4 of Notes and Reports in Mathematics in Science andEngineering Academic press New York NY USA 1987

[10] A KirschAn Introduction to theMathematicalTheory of InverseProblems Springer Heidelberg Germany 1996

[11] D Mace and P Lailly ldquoSolution of the VSP one-dimensionalinverse problemrdquo Geophysical Prospecting vol 34 no 7 pp1002ndash1021 1986

[12] NMagnoli andGA Viano ldquoThe source identification problemin electromagnetic theoryrdquo Journal ofMathematical Physics vol38 no 5 pp 2366ndash2388 1997

[13] V A Kozlov and V G Mazrsquoya ldquoOn iterative proceduresfor solving ill-posed boundary value problems that preservedifferential equationsrdquo Lenningrad Mathematics Journal vol 1pp 1207ndash1228 1990

[14] V A Kozlov V G Mazrsquoya and A V Fomin ldquoAn iterativemethod for solving the Cauchy problem for elliptic equationsrdquoUSSR Computational Mathematics andMathematical Physicsvol 31 no 1 pp 45ndash52 1991

[15] A B Bakushinsky and M Y Kokurin Iterative Methods forApproximate Solution of Inverse Problems vol 577 ofMathemat-ics and Its Applications Springer Berlin Germany 2004

Mathematical Problems in Engineering 9

[16] J Baumeister and A Leitao ldquoOn iterative methods for solvingill-posed problems modeled by partial differential equationsrdquoJournal of Inverse and Ill-Posed Problems vol 9 no 1 pp 13ndash292001

[17] F Berntsson V A Kozlov LMpinganzima and B O TuressonldquoAn alternating iterative procedure for the Cauchy problemfor the Helmholtz equationrdquo Inverse Problems in Science andEngineering vol 22 no 1 pp 45ndash62 2014

[18] A Bouzitouna N Boussetila and F Rebbani ldquoTwo regulariza-tion methods for a class of inverse boundary value problemsof elliptic typerdquo Boundary Value Problems vol 2013 article 1782013

[19] A Lakhdari and N Boussetila ldquoAn iterative regularizationmethod for an abstract ill-posed biparabolic problemrdquo Bound-ary Value Problems vol 2015 article 55 2015

[20] J-GWang and TWei ldquoAn iterativemethod for backward time-fractional diffusion problemrdquo Numerical Methods for PartialDifferential Equations vol 30 no 6 pp 2029ndash2041 2014

[21] H W Zhang and T Wei ldquoTwo iterative methods for a Cauchyproblem of the elliptic equation with variable coefficients in astrip regionrdquo Numerical Algorithms vol 65 no 4 pp 875ndash8922014

[22] M A Krasnoselrsquoskii G M Vainikko P P Zabreiko and YU B Rutitskii Approximate Solutions of Operator EquationsWolters-Noordhoff Publishing Groningen The Netherlands1972

[23] A Pazy Semigroups of Linear Operators and Application toPartial Differential Equations Springer New York NY USA1983

[24] L Elden and V Simoncini ldquoA numerical solution of a Cauchyproblem for an elliptic equation by Krylov subspacesrdquo InverseProblems vol 25 no 6 Article ID 065002 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

4 Mathematical Problems in Engineering

Put

ℎ (120583) = (1205832+ 2120583 + 2) 119890

minus120583minus 2 (32)

Hence

1198661015840

1(120583) =

ℎ (120583)

1205833 (33)

To study the monotony of1198661 it suffices to determine the sign

of ℎ We have

ℎ1015840(120583) = minus120583

2119890

minus120583lt 0 forall120583 gt 0 (34)

and then ℎ is decreasing moreover ℎ(120583) sub ] minus 2 0[forall120583 gt 0 Hence 1198661015840

1(120583) lt 0 forall120583 ge 120583

1 which implies that 119866

1

is decreasing and

sup120583ge1205831

1198661(120583) = 119866

1(120583

1) (35)

Therefore

sup119899ge1

(1 minus (1 + 120582119899119905) 119890

minus120582119899119905)

1205822

119899

=

(1 minus (1 + 1205821119905) 119890

minus1205821119905)

1205822

1

(36)

Proposition 6 For the linear operator 119871 = 119868minus120574119870(119879) one hasthe following properties

(1) 119871 is positive and self-adjoint(2) 119871 is nonexpansive(3) 1 is not an eigenvalue of 119871

Proof Form properties of operator 119860 and the definition of119871 it follows that 119871 is self-adjoint and nonexpansive positiveoperator and from the inequality

0 lt 1 minus 120574

(1 minus (1 + 119879120582) 119890minus120582119879

)

1205822lt 1 for 120582 isin 120590 (119860) (37)

it follows that the point spectrum of 119871 120590119901(119871) sub ]0 1[ Then 1

is not eigenvalue of the operator 119871

Lemma 7 If 120582 gt 0 one has the estimates

1

1 + 1205822le max( 3

1198792 1)

(1 minus (1 + 119879120582) 119890minus120582119879

)

1205822 (38)

0 lt

(1 minus (1 + 119905120582) 119890minus120582119905)

1205822lt 119879

2 forall119905 isin [0 119879] (39)

Proof To establish (38) let us first prove that

1

3 + 1205832le(1 minus (1 + 120583) 119890

minus120583)

1205832 forall120583 gt 0 (40)

which is equivalent to prove that

1198662(120583) = 3 minus (3 + 120583

2) (1 + 120583) 119890

minus120583ge 0 forall120583 gt 0 (41)

We have

1198661015840

2(120583) = 120583 (120583 minus 1)

2

119890minus120583

ge 0 forall120583 gt 0 (42)

Then 1198662is nondecreasing and it follows that 119866

2(120583) sub ]0 3[

So 1198662(120583) ge 0 forall120583 gt 0

Choosing 120583 = 119879120582 in (40) we obtain

1

3 + (119879120582)2le

(1 minus (119879120582 + 1) 119890minus119879120582

)

(119879120582)2

(43)

So

1198792

max (3 1198792) (1 + 1205822)le

(1 minus (1 + 119879120582) 119890minus119879120582

)

1205822 (44)

From (44) we deduce (38)Now we prove the estimate (39) It is easy to verify that

1198663(120583) = (1 minus (1 + 120583) 119890

minus120583) minus 120583

2lt 0 forall120583 gt 0 (45)

Then if we choose 120583 = 119905120582 we get

(1 minus (1 + 119905120582) 119890minus119905120582) lt 119905

2120582

2 forall120582 gt 0 forall119905 isin [0 119879] (46)

Hence from (46) (39) follows

Theorem 8 Let 119906 be a solution to the inverse problem (1) Let119891

0isin 119867 be an arbitrary initial data element for the iterative

procedure proposed above and let 119906119896be the 119896th approximate

solution Then

(i) The method converges that is

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 997888rarr 0 as 119896 997888rarr infin (47)

(ii) Moreover if for some 120572 = 1 + 120579 120579 gt 0 1198910minus 119891 isin 119867

120572that is 119891

0minus 119891

119867120572 le 119864 then the rate of convergence of

the method is given by

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864119896

minus1205722 (48)

where 119862 is a positive constant independent of 119896

Proof (i) From (28) we get

119891119896= (119868 minus 120574119870 (119879))

119896

1198910

+ (119868 minus (119868 minus 120574119870 (119879))119896

) (119870 (119879))minus1119892

(49)

and then

119891119896= (119868 minus 120574119870 (119879))

119896

(1198910minus 119891) + 119891 (50)

which implies that

119906119896(119905) minus 119906 (119905) = 119870 (119905) (119891

119896minus 119891)

= 119870 (119905) (119868 minus 120574119870 (119879))119896

(1198910minus 119891)

(51)

Mathematical Problems in Engineering 5

Hence

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 119870 (119905)100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817 (52)

From Lemma 5 and (39) we have

sup119905isin[0119879]

119870 (119905) = sup119905isin[0119879]

(1 minus (1 + 1199051205821) 119890

minus1199051205821)

1205822

1

lt 1198792 (53)

Combining (52) and (53) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817

997888rarr 0 as 119896 997888rarr infin

(54)

(ii) By part (i) we have

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot1003816100381610038161003816(1198910

minus 119891 120593119899)1003816100381610038161003816

2

(55)

and hence1003817100381710038171003817119906119896

(119905) minus 119906 (119905)1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot (1 + 1205822

119899)

minus120572

(1 + 1205822

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(56)

Using the inequality (38) we obtain

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max( 3

1198792 1))

120572

sdot

infin

sum

119899=1

(1 minus 120574120573119899)2119896

120573120572

119899(1 + 120582

2

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(57)

where 120573119899= ((1 minus (1 + 120582

119899119879)119890

minus120582119899119879)120582

2

119899)

So it follows that

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max ( 3

1198792 1))

120572

sdot sup0le120573119899le1198792

(1 minus 120574120573119899)2119896

120573120572

119899

10038171003817100381710038171198910minus 119891

1003817100381710038171003817

2

119867120572

(58)

Put

120601 (120573) = (1 minus 120574120573)2119896

120573120572 0 le 120573 le 119879

2 (59)

We compute

1206011015840(120573) = (1 minus 120574120573)

2119896minus1

120573120572minus1

(minus120574 (2119896 + 120572) 120573 + 120572) (60)

Setting 1206011015840(120573) = 0 it follows that 120573lowast

= 120572(2119896 + 120572)120574 is thecritical point of 120601 It is easy to see that the maximum of 120601 isattained at 120573lowast So

sup0le120573le119879

2

120601 (120573) le 120601 (120573lowast) = (1 minus 120574120573

lowast)2119896

(120573lowast)120572

le (120573lowast)120572

= (120572

(2119896 + 120572) 120574)

120572

(61)

and hence

sup0le120573le119879

2

120601 (120573) le (120572

2120574)

120572

119896minus120572 (62)

Combining (58) and (62) we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(120572

2120574max ( 3

1198792 1))

120572

(1

119896)

120572

1198642

(63)

Since in practice the measured data 119892 is never knownexactly but only up to an error of say 120575 gt 0 it is our aimto solve the equation 119870(119879)119891 = 119892 from the knowledge of aperturbed right-hand side 119892120575 satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817lt 120575 (64)

where 120575 gt 0 denotes a noise level In the following theoremwe consider the case of inexact data

Theorem 9 Let 120572 = 1 + 120579 (120579 gt 0) 1198910be an arbitrary initial

data element for the iterative procedure proposed above suchthat (119891

0minus119891) isin 119867

120572 let119906119896be the 119896th approximations solution for

the exact data 119892 and let 119906120575

119896be the 119896th approximations solution

corresponding to the perturbed data 119892120575 such that (64) holdsThen one has the following estimate

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792(120575120574119896 + 119862119864(

1

119896)

1205722

) (65)

Proof Let

119891119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892

119906119896(119905) = 119870 (119905) 119891

119896

119891120575

119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892120575

119906120575

119896(119905) = 119870 (119905) 119891

120575

119896

(66)

Using the triangle inequality we obtain

10038171003817100381710038171003817119906

120575

119896minus 119906

10038171003817100381710038171003817le10038171003817100381710038171003817119906

120575

119896minus 119906

119896

10038171003817100381710038171003817+1003817100381710038171003817119906119896

minus 1199061003817100381710038171003817

(67)

6 Mathematical Problems in Engineering

FromTheorem 8 we have

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864(

1

119896)

1205722

(68)

On the other hand10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817=10038171003817100381710038171003817119870 (119905) (119891

120575

119896minus 119891

119896)10038171003817100381710038171003817

le 1198792120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

(119892120575minus 119892)

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

119896minus1

sum

119895=0

1003817100381710038171003817(119868 minus 120574119870 (119879))1003817100381710038171003817

119895

(69)

Since1003817100381710038171003817(119868 minus 120574119870 (119879))

1003817100381710038171003817 le 1 (70)

it follows that

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817le 119879

2120575120574119896 (71)

Combining (68) and (71) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain the estimate (65)

Remark 10 If we choose the number of the iterations 119896(120575) sothat 119896(120575) rarr 0 as 120575 rarr 0 we obtain

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906 (119905)

10038171003817100381710038171003817997888rarr 0 as 119896 997888rarr +infin (72)

5 Numerical Implementation

In this section an example is devised for verifying theeffectiveness of the proposed method Consider the problemof finding a pair of functions (119906(119909 119905) 119891(119909)) in the system

1205972

1205971199052119906 (119909 119905) minus 2

1205972

1205971199092(120597

120597119905119906 (119909 119905)) +

1205974

1205971199094119906 (119909 119905)

= 119891 (119909) (119905 119909) isin (0 1) times (0 1)

119906 (0 119905) = 119906 (1 119905) = 0 119905 isin (0 1)

119906 (119909 0) = 119906119905(119909 0) = 0 119909 isin (0 1)

119906 (119909 1) = 119892 (119909) 119909 isin (0 1)

(73)

Denote

119860 = minus120597

2

1205971199092

with D (119860) = 1198671

0(0 1) cap 119867

2

(0 1) sub 119867 = 1198712

(0 1)

120582119899= 119899

2120587

2

120593119899= radic2 sin (119899120587119909) 119899 = 1 2

(74)

are eigenvalues and orthonormal eigenfunctions which forma basis for119867

The solution of the above problem is given by

119906 (119909 119905) =

infin

sum

119899=1

(

1 minus (1 + (119899120587)2119905) 119890

minus(119899120587)2

119905

(119899120587)4

)119891119899120593

119899 (75)

where 119891119899= (119891 120593

119899) = radic2int

1

0119891(119904)sin(119899120587119904)119889119904 119899 = 1 2

Now to solve the inverse problem making use of thesupplementary condition and defining the operator119870 119891 rarr

119892 we have

119892 (119909) = 119906 (119909 1) = 119870119891 (119909)

= 2

infin

sum

119899=1

(

1 minus (1 + (119899120587)2) 119890

minus(119899120587)2

(119899120587)4

)

sdot (int

1

0

119891 (119904) sin (119899120587119904) 119889119904) sin (119899120587119909)

(76)

Example 11 In the following we first selected the exactsolution 119891(119909) and obtained the exact data function 119892(119909)

through solving the forward problem Then we added anormally distributed perturbation to each data function andobtained vectors119892120575

(119909) Finallywe obtained the regularizationsolutions through solving the inverse problemwith noisy data119892

120575(119909) satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817(1198712(01))2le 120575 (77)

It is easy to see that if 119891(119909) = sin120587119909 then

119906 (119909 119905) =

(1 minus (1 + 1205872119905) 119890

minus1205872

119905)

1205874sin (120587119909) (78)

is the exact solution of the problem (73) Consequently119892(119909) = ((1 minus (1 + 120587

2)119890

minus1205872

)1205874)sin(120587119909)

Now we propose to approximate the first and secondspace derivatives by using central difference and we consideran equidistant grid points to a spatial step size 119909

0= 0 lt 119909

1lt

sdot sdot sdot lt 119909119873+1

= 1 (ℎ = 1(119873+1)) where119873 is a positive integerWe get the following semidiscrete problem

11990610158401015840(119909

119894 119905) + 2119860

ℎ119906

1015840(119909

119894 119905) + 119860

2

ℎ119906 (119909

119894 119905) = 119891 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873 0 lt 119905 lt 1

119906 (0 119905) = 119906 (1 119905) = 0

0 lt 119905 lt 1

119906 (119909119894 0) = 119906

1015840(119909

119894 0) = 0

119909119894= 119894ℎ 119894 = 1 119873

119906 (119909119894 1) = 119892 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873

(79)

Mathematical Problems in Engineering 7

0

05

1

15

minus05

01 02 03 04 05 06 07 08 10 090

02

04

06

08

01 02 080705 10 0903 0604

Iterative regularization method

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 1 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus3

where 119860ℎis the discretisation matrix stemming from the

operator 119860 = minus1198892119889119909

2 and

119860ℎ=

1

ℎ2Tridiag (minus1 2 minus1) (80)

is a symmetric positive definite matrix with eigenvalues

120583119895= 4 (119873 + 1)

2 sin2119895120587

2 (119873 + 1) 119895 = 1 119873 (81)

and orthonormal eigenvalues

V119895= (sin

119898119895120587

(119873 + 1))

1le119898le119873

119895 = 1 119873 (82)

We assume that it is fine enough so that the discretizationerrors are small compared to the uncertainty 120575 of the datathis means that119860

ℎis a good approximation of the differential

operator119860whose unboundedness is reflected in a large normof 119860

ℎ(see [24])

Adding a random distributed perturbation to each datafunction we obtain

119892120575= 119892 + 120576randn (size (119892)) (83)

where 120576 indicates the noise level of the measurements dataand the function randn(sdot) generates arrays of random num-bers whose elements are normally distributed with mean 0variance1205902

= 1 and standard deviation120590 = 1 randn(size(119892))returns an array of random entries that is of the same size as119892The noise level 120575 can bemeasured in the sense of rootmeansquare error (RMSE) according to

120575 =10038171003817100381710038171003817119892

120575minus 119892

100381710038171003817100381710038171198972= (

1

119873 + 1

119873

sum

119894=0

(119892 (119909119894) minus 119892

120575(119909

119894))

2

)

12

(84)

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

Iterative regularization method

0

005

01

015

02

minus05

0

05

1

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 2 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus4

Table 1 Relative error RE(119891)

119873 119896 120576 RE(119891)60 4 10minus3 0203960 4 10minus4 0094560 5 10minus3 0303260 5 10minus4 00305

The relative error is given as follows

RE (119891) =10038171003817100381710038171003817119891approximate minus 119891exact

100381710038171003817100381710038171198972

1003817100381710038171003817119891exact10038171003817100381710038171198972

(85)

The discrete iterative approximation of (66) is given by

119891120575

119896(119909

119894) = (119868 minus 120574119870

ℎ)119896

1198910(119909

119894)

+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870ℎ)119895

119892120575(119909

119894) 119894 = 1 119873

(86)

where 119870ℎ

= 119860minus2

ℎ(119868

119873minus (119868

119873+ 119860

ℎ)119890

minus119860ℎ) and

120574 lt 1119870ℎ = (120583

2

1(1 minus (1 + 120583

1)119890

minus1205831))

Figures 1ndash4 display that as the amount of noise 120576

decreases the regularized solutions approximate better theexact solution

Table 1 shows that for 119896 = 4 or 119896 = 5 the relative errordecreases with the decease of epsilon which is consistent withour regularization

8 Mathematical Problems in Engineering

Iterative regularization method

0

02

04

06

08

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 3 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus3

Iterative regularization method

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

0

002

004

006

minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 4 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus4

6 Conclusion

In this paper we have extended the iterative method to iden-tify the unknown source term in a second order differentialequation convergence results were established and errorestimates have been obtained under an a priori bound of theexact solution Some numerical tests have been given to verifythe validity of the method

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

All authors read and approved the paper

Acknowledgments

The authors would like to thank the anonymous referees fortheir suggestions

References

[1] H Leiva ldquoA lemmaon1198620-semigroups and applicationsrdquoQuaes-

tiones Mathematicae vol 26 no 3 pp 247ndash265 2003[2] H Leiva Linear Reaction-Diffusion Systems Notas de Mathe-

matica No 185 Mereida 1999[3] L F de Oliveira ldquoOn reaction-diffusion systemsrdquo Electronic

Journal of Differential Equations vol 1998 no 24 10 pages 1998[4] V L Fushchich A S Galitsyn and A S Polubinskii ldquoA new

mathematical model of heat conduction processesrdquo UkrainianMathematical Journal vol 42 no 2 pp 210ndash216 1990

[5] G Bastay ldquoIterative methods for Ill-posed boundary valueproblems Linkoping studies in science and technologyrdquo Dis-sertations 392 Linkoping University Linkoping Sweden 1995

[6] A S Carasso ldquoBochner subordination logarithmic diffusionequations and blind deconvolution of hubble space telescopeimagery and other scientific datardquo SIAM Journal on ImagingSciences vol 3 no 4 pp 954ndash980 2010

[7] L Wang X Zhou and X Wei Heat Conduction MathematicalModels and Analytical Solutions Springer 2008

[8] M Andrle and A El Badia ldquoIdentification of multiple movingpollution sources in surface waters or atmospheric media withboundary observationsrdquo Inverse Problems vol 28 no 7 ArticleID 075009 2012

[9] H W Engl and C Groetsch Inverse and Ill-Posed Problemsvol 4 of Notes and Reports in Mathematics in Science andEngineering Academic press New York NY USA 1987

[10] A KirschAn Introduction to theMathematicalTheory of InverseProblems Springer Heidelberg Germany 1996

[11] D Mace and P Lailly ldquoSolution of the VSP one-dimensionalinverse problemrdquo Geophysical Prospecting vol 34 no 7 pp1002ndash1021 1986

[12] NMagnoli andGA Viano ldquoThe source identification problemin electromagnetic theoryrdquo Journal ofMathematical Physics vol38 no 5 pp 2366ndash2388 1997

[13] V A Kozlov and V G Mazrsquoya ldquoOn iterative proceduresfor solving ill-posed boundary value problems that preservedifferential equationsrdquo Lenningrad Mathematics Journal vol 1pp 1207ndash1228 1990

[14] V A Kozlov V G Mazrsquoya and A V Fomin ldquoAn iterativemethod for solving the Cauchy problem for elliptic equationsrdquoUSSR Computational Mathematics andMathematical Physicsvol 31 no 1 pp 45ndash52 1991

[15] A B Bakushinsky and M Y Kokurin Iterative Methods forApproximate Solution of Inverse Problems vol 577 ofMathemat-ics and Its Applications Springer Berlin Germany 2004

Mathematical Problems in Engineering 9

[16] J Baumeister and A Leitao ldquoOn iterative methods for solvingill-posed problems modeled by partial differential equationsrdquoJournal of Inverse and Ill-Posed Problems vol 9 no 1 pp 13ndash292001

[17] F Berntsson V A Kozlov LMpinganzima and B O TuressonldquoAn alternating iterative procedure for the Cauchy problemfor the Helmholtz equationrdquo Inverse Problems in Science andEngineering vol 22 no 1 pp 45ndash62 2014

[18] A Bouzitouna N Boussetila and F Rebbani ldquoTwo regulariza-tion methods for a class of inverse boundary value problemsof elliptic typerdquo Boundary Value Problems vol 2013 article 1782013

[19] A Lakhdari and N Boussetila ldquoAn iterative regularizationmethod for an abstract ill-posed biparabolic problemrdquo Bound-ary Value Problems vol 2015 article 55 2015

[20] J-GWang and TWei ldquoAn iterativemethod for backward time-fractional diffusion problemrdquo Numerical Methods for PartialDifferential Equations vol 30 no 6 pp 2029ndash2041 2014

[21] H W Zhang and T Wei ldquoTwo iterative methods for a Cauchyproblem of the elliptic equation with variable coefficients in astrip regionrdquo Numerical Algorithms vol 65 no 4 pp 875ndash8922014

[22] M A Krasnoselrsquoskii G M Vainikko P P Zabreiko and YU B Rutitskii Approximate Solutions of Operator EquationsWolters-Noordhoff Publishing Groningen The Netherlands1972

[23] A Pazy Semigroups of Linear Operators and Application toPartial Differential Equations Springer New York NY USA1983

[24] L Elden and V Simoncini ldquoA numerical solution of a Cauchyproblem for an elliptic equation by Krylov subspacesrdquo InverseProblems vol 25 no 6 Article ID 065002 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

Mathematical Problems in Engineering 5

Hence

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 119870 (119905)100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817 (52)

From Lemma 5 and (39) we have

sup119905isin[0119879]

119870 (119905) = sup119905isin[0119879]

(1 minus (1 + 1199051205821) 119890

minus1199051205821)

1205822

1

lt 1198792 (53)

Combining (52) and (53) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792100381710038171003817100381710038171003817(119868 minus 120574119870 (119879))

119896

(1198910minus 119891)

100381710038171003817100381710038171003817

997888rarr 0 as 119896 997888rarr infin

(54)

(ii) By part (i) we have

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot1003816100381610038161003816(1198910

minus 119891 120593119899)1003816100381610038161003816

2

(55)

and hence1003817100381710038171003817119906119896

(119905) minus 119906 (119905)1003817100381710038171003817

2

le 1198794

infin

sum

119899=1

(1 minus 120574(1 minus (1 + 120582

119899119879) 119890

minus120582119899119879

1205822

119899

))

2119896

sdot (1 + 1205822

119899)

minus120572

(1 + 1205822

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(56)

Using the inequality (38) we obtain

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max( 3

1198792 1))

120572

sdot

infin

sum

119899=1

(1 minus 120574120573119899)2119896

120573120572

119899(1 + 120582

2

119899)

120572 1003816100381610038161003816(1198910minus 119891 120593

119899)1003816100381610038161003816

2

(57)

where 120573119899= ((1 minus (1 + 120582

119899119879)119890

minus120582119899119879)120582

2

119899)

So it follows that

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(max ( 3

1198792 1))

120572

sdot sup0le120573119899le1198792

(1 minus 120574120573119899)2119896

120573120572

119899

10038171003817100381710038171198910minus 119891

1003817100381710038171003817

2

119867120572

(58)

Put

120601 (120573) = (1 minus 120574120573)2119896

120573120572 0 le 120573 le 119879

2 (59)

We compute

1206011015840(120573) = (1 minus 120574120573)

2119896minus1

120573120572minus1

(minus120574 (2119896 + 120572) 120573 + 120572) (60)

Setting 1206011015840(120573) = 0 it follows that 120573lowast

= 120572(2119896 + 120572)120574 is thecritical point of 120601 It is easy to see that the maximum of 120601 isattained at 120573lowast So

sup0le120573le119879

2

120601 (120573) le 120601 (120573lowast) = (1 minus 120574120573

lowast)2119896

(120573lowast)120572

le (120573lowast)120572

= (120572

(2119896 + 120572) 120574)

120572

(61)

and hence

sup0le120573le119879

2

120601 (120573) le (120572

2120574)

120572

119896minus120572 (62)

Combining (58) and (62) we obtain

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817

2

le 1198794(120572

2120574max ( 3

1198792 1))

120572

(1

119896)

120572

1198642

(63)

Since in practice the measured data 119892 is never knownexactly but only up to an error of say 120575 gt 0 it is our aimto solve the equation 119870(119879)119891 = 119892 from the knowledge of aperturbed right-hand side 119892120575 satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817lt 120575 (64)

where 120575 gt 0 denotes a noise level In the following theoremwe consider the case of inexact data

Theorem 9 Let 120572 = 1 + 120579 (120579 gt 0) 1198910be an arbitrary initial

data element for the iterative procedure proposed above suchthat (119891

0minus119891) isin 119867

120572 let119906119896be the 119896th approximations solution for

the exact data 119892 and let 119906120575

119896be the 119896th approximations solution

corresponding to the perturbed data 119892120575 such that (64) holdsThen one has the following estimate

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792(120575120574119896 + 119862119864(

1

119896)

1205722

) (65)

Proof Let

119891119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892

119906119896(119905) = 119870 (119905) 119891

119896

119891120575

119896= (119868 minus 120574119870 (119879))

119896

1198910+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

119892120575

119906120575

119896(119905) = 119870 (119905) 119891

120575

119896

(66)

Using the triangle inequality we obtain

10038171003817100381710038171003817119906

120575

119896minus 119906

10038171003817100381710038171003817le10038171003817100381710038171003817119906

120575

119896minus 119906

119896

10038171003817100381710038171003817+1003817100381710038171003817119906119896

minus 1199061003817100381710038171003817

(67)

6 Mathematical Problems in Engineering

FromTheorem 8 we have

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864(

1

119896)

1205722

(68)

On the other hand10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817=10038171003817100381710038171003817119870 (119905) (119891

120575

119896minus 119891

119896)10038171003817100381710038171003817

le 1198792120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

(119892120575minus 119892)

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

119896minus1

sum

119895=0

1003817100381710038171003817(119868 minus 120574119870 (119879))1003817100381710038171003817

119895

(69)

Since1003817100381710038171003817(119868 minus 120574119870 (119879))

1003817100381710038171003817 le 1 (70)

it follows that

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817le 119879

2120575120574119896 (71)

Combining (68) and (71) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain the estimate (65)

Remark 10 If we choose the number of the iterations 119896(120575) sothat 119896(120575) rarr 0 as 120575 rarr 0 we obtain

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906 (119905)

10038171003817100381710038171003817997888rarr 0 as 119896 997888rarr +infin (72)

5 Numerical Implementation

In this section an example is devised for verifying theeffectiveness of the proposed method Consider the problemof finding a pair of functions (119906(119909 119905) 119891(119909)) in the system

1205972

1205971199052119906 (119909 119905) minus 2

1205972

1205971199092(120597

120597119905119906 (119909 119905)) +

1205974

1205971199094119906 (119909 119905)

= 119891 (119909) (119905 119909) isin (0 1) times (0 1)

119906 (0 119905) = 119906 (1 119905) = 0 119905 isin (0 1)

119906 (119909 0) = 119906119905(119909 0) = 0 119909 isin (0 1)

119906 (119909 1) = 119892 (119909) 119909 isin (0 1)

(73)

Denote

119860 = minus120597

2

1205971199092

with D (119860) = 1198671

0(0 1) cap 119867

2

(0 1) sub 119867 = 1198712

(0 1)

120582119899= 119899

2120587

2

120593119899= radic2 sin (119899120587119909) 119899 = 1 2

(74)

are eigenvalues and orthonormal eigenfunctions which forma basis for119867

The solution of the above problem is given by

119906 (119909 119905) =

infin

sum

119899=1

(

1 minus (1 + (119899120587)2119905) 119890

minus(119899120587)2

119905

(119899120587)4

)119891119899120593

119899 (75)

where 119891119899= (119891 120593

119899) = radic2int

1

0119891(119904)sin(119899120587119904)119889119904 119899 = 1 2

Now to solve the inverse problem making use of thesupplementary condition and defining the operator119870 119891 rarr

119892 we have

119892 (119909) = 119906 (119909 1) = 119870119891 (119909)

= 2

infin

sum

119899=1

(

1 minus (1 + (119899120587)2) 119890

minus(119899120587)2

(119899120587)4

)

sdot (int

1

0

119891 (119904) sin (119899120587119904) 119889119904) sin (119899120587119909)

(76)

Example 11 In the following we first selected the exactsolution 119891(119909) and obtained the exact data function 119892(119909)

through solving the forward problem Then we added anormally distributed perturbation to each data function andobtained vectors119892120575

(119909) Finallywe obtained the regularizationsolutions through solving the inverse problemwith noisy data119892

120575(119909) satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817(1198712(01))2le 120575 (77)

It is easy to see that if 119891(119909) = sin120587119909 then

119906 (119909 119905) =

(1 minus (1 + 1205872119905) 119890

minus1205872

119905)

1205874sin (120587119909) (78)

is the exact solution of the problem (73) Consequently119892(119909) = ((1 minus (1 + 120587

2)119890

minus1205872

)1205874)sin(120587119909)

Now we propose to approximate the first and secondspace derivatives by using central difference and we consideran equidistant grid points to a spatial step size 119909

0= 0 lt 119909

1lt

sdot sdot sdot lt 119909119873+1

= 1 (ℎ = 1(119873+1)) where119873 is a positive integerWe get the following semidiscrete problem

11990610158401015840(119909

119894 119905) + 2119860

ℎ119906

1015840(119909

119894 119905) + 119860

2

ℎ119906 (119909

119894 119905) = 119891 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873 0 lt 119905 lt 1

119906 (0 119905) = 119906 (1 119905) = 0

0 lt 119905 lt 1

119906 (119909119894 0) = 119906

1015840(119909

119894 0) = 0

119909119894= 119894ℎ 119894 = 1 119873

119906 (119909119894 1) = 119892 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873

(79)

Mathematical Problems in Engineering 7

0

05

1

15

minus05

01 02 03 04 05 06 07 08 10 090

02

04

06

08

01 02 080705 10 0903 0604

Iterative regularization method

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 1 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus3

where 119860ℎis the discretisation matrix stemming from the

operator 119860 = minus1198892119889119909

2 and

119860ℎ=

1

ℎ2Tridiag (minus1 2 minus1) (80)

is a symmetric positive definite matrix with eigenvalues

120583119895= 4 (119873 + 1)

2 sin2119895120587

2 (119873 + 1) 119895 = 1 119873 (81)

and orthonormal eigenvalues

V119895= (sin

119898119895120587

(119873 + 1))

1le119898le119873

119895 = 1 119873 (82)

We assume that it is fine enough so that the discretizationerrors are small compared to the uncertainty 120575 of the datathis means that119860

ℎis a good approximation of the differential

operator119860whose unboundedness is reflected in a large normof 119860

ℎ(see [24])

Adding a random distributed perturbation to each datafunction we obtain

119892120575= 119892 + 120576randn (size (119892)) (83)

where 120576 indicates the noise level of the measurements dataand the function randn(sdot) generates arrays of random num-bers whose elements are normally distributed with mean 0variance1205902

= 1 and standard deviation120590 = 1 randn(size(119892))returns an array of random entries that is of the same size as119892The noise level 120575 can bemeasured in the sense of rootmeansquare error (RMSE) according to

120575 =10038171003817100381710038171003817119892

120575minus 119892

100381710038171003817100381710038171198972= (

1

119873 + 1

119873

sum

119894=0

(119892 (119909119894) minus 119892

120575(119909

119894))

2

)

12

(84)

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

Iterative regularization method

0

005

01

015

02

minus05

0

05

1

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 2 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus4

Table 1 Relative error RE(119891)

119873 119896 120576 RE(119891)60 4 10minus3 0203960 4 10minus4 0094560 5 10minus3 0303260 5 10minus4 00305

The relative error is given as follows

RE (119891) =10038171003817100381710038171003817119891approximate minus 119891exact

100381710038171003817100381710038171198972

1003817100381710038171003817119891exact10038171003817100381710038171198972

(85)

The discrete iterative approximation of (66) is given by

119891120575

119896(119909

119894) = (119868 minus 120574119870

ℎ)119896

1198910(119909

119894)

+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870ℎ)119895

119892120575(119909

119894) 119894 = 1 119873

(86)

where 119870ℎ

= 119860minus2

ℎ(119868

119873minus (119868

119873+ 119860

ℎ)119890

minus119860ℎ) and

120574 lt 1119870ℎ = (120583

2

1(1 minus (1 + 120583

1)119890

minus1205831))

Figures 1ndash4 display that as the amount of noise 120576

decreases the regularized solutions approximate better theexact solution

Table 1 shows that for 119896 = 4 or 119896 = 5 the relative errordecreases with the decease of epsilon which is consistent withour regularization

8 Mathematical Problems in Engineering

Iterative regularization method

0

02

04

06

08

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 3 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus3

Iterative regularization method

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

0

002

004

006

minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 4 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus4

6 Conclusion

In this paper we have extended the iterative method to iden-tify the unknown source term in a second order differentialequation convergence results were established and errorestimates have been obtained under an a priori bound of theexact solution Some numerical tests have been given to verifythe validity of the method

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

All authors read and approved the paper

Acknowledgments

The authors would like to thank the anonymous referees fortheir suggestions

References

[1] H Leiva ldquoA lemmaon1198620-semigroups and applicationsrdquoQuaes-

tiones Mathematicae vol 26 no 3 pp 247ndash265 2003[2] H Leiva Linear Reaction-Diffusion Systems Notas de Mathe-

matica No 185 Mereida 1999[3] L F de Oliveira ldquoOn reaction-diffusion systemsrdquo Electronic

Journal of Differential Equations vol 1998 no 24 10 pages 1998[4] V L Fushchich A S Galitsyn and A S Polubinskii ldquoA new

mathematical model of heat conduction processesrdquo UkrainianMathematical Journal vol 42 no 2 pp 210ndash216 1990

[5] G Bastay ldquoIterative methods for Ill-posed boundary valueproblems Linkoping studies in science and technologyrdquo Dis-sertations 392 Linkoping University Linkoping Sweden 1995

[6] A S Carasso ldquoBochner subordination logarithmic diffusionequations and blind deconvolution of hubble space telescopeimagery and other scientific datardquo SIAM Journal on ImagingSciences vol 3 no 4 pp 954ndash980 2010

[7] L Wang X Zhou and X Wei Heat Conduction MathematicalModels and Analytical Solutions Springer 2008

[8] M Andrle and A El Badia ldquoIdentification of multiple movingpollution sources in surface waters or atmospheric media withboundary observationsrdquo Inverse Problems vol 28 no 7 ArticleID 075009 2012

[9] H W Engl and C Groetsch Inverse and Ill-Posed Problemsvol 4 of Notes and Reports in Mathematics in Science andEngineering Academic press New York NY USA 1987

[10] A KirschAn Introduction to theMathematicalTheory of InverseProblems Springer Heidelberg Germany 1996

[11] D Mace and P Lailly ldquoSolution of the VSP one-dimensionalinverse problemrdquo Geophysical Prospecting vol 34 no 7 pp1002ndash1021 1986

[12] NMagnoli andGA Viano ldquoThe source identification problemin electromagnetic theoryrdquo Journal ofMathematical Physics vol38 no 5 pp 2366ndash2388 1997

[13] V A Kozlov and V G Mazrsquoya ldquoOn iterative proceduresfor solving ill-posed boundary value problems that preservedifferential equationsrdquo Lenningrad Mathematics Journal vol 1pp 1207ndash1228 1990

[14] V A Kozlov V G Mazrsquoya and A V Fomin ldquoAn iterativemethod for solving the Cauchy problem for elliptic equationsrdquoUSSR Computational Mathematics andMathematical Physicsvol 31 no 1 pp 45ndash52 1991

[15] A B Bakushinsky and M Y Kokurin Iterative Methods forApproximate Solution of Inverse Problems vol 577 ofMathemat-ics and Its Applications Springer Berlin Germany 2004

Mathematical Problems in Engineering 9

[16] J Baumeister and A Leitao ldquoOn iterative methods for solvingill-posed problems modeled by partial differential equationsrdquoJournal of Inverse and Ill-Posed Problems vol 9 no 1 pp 13ndash292001

[17] F Berntsson V A Kozlov LMpinganzima and B O TuressonldquoAn alternating iterative procedure for the Cauchy problemfor the Helmholtz equationrdquo Inverse Problems in Science andEngineering vol 22 no 1 pp 45ndash62 2014

[18] A Bouzitouna N Boussetila and F Rebbani ldquoTwo regulariza-tion methods for a class of inverse boundary value problemsof elliptic typerdquo Boundary Value Problems vol 2013 article 1782013

[19] A Lakhdari and N Boussetila ldquoAn iterative regularizationmethod for an abstract ill-posed biparabolic problemrdquo Bound-ary Value Problems vol 2015 article 55 2015

[20] J-GWang and TWei ldquoAn iterativemethod for backward time-fractional diffusion problemrdquo Numerical Methods for PartialDifferential Equations vol 30 no 6 pp 2029ndash2041 2014

[21] H W Zhang and T Wei ldquoTwo iterative methods for a Cauchyproblem of the elliptic equation with variable coefficients in astrip regionrdquo Numerical Algorithms vol 65 no 4 pp 875ndash8922014

[22] M A Krasnoselrsquoskii G M Vainikko P P Zabreiko and YU B Rutitskii Approximate Solutions of Operator EquationsWolters-Noordhoff Publishing Groningen The Netherlands1972

[23] A Pazy Semigroups of Linear Operators and Application toPartial Differential Equations Springer New York NY USA1983

[24] L Elden and V Simoncini ldquoA numerical solution of a Cauchyproblem for an elliptic equation by Krylov subspacesrdquo InverseProblems vol 25 no 6 Article ID 065002 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

6 Mathematical Problems in Engineering

FromTheorem 8 we have

sup119905isin[0119879]

1003817100381710038171003817119906119896(119905) minus 119906 (119905)

1003817100381710038171003817 le 1198792119862119864(

1

119896)

1205722

(68)

On the other hand10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817=10038171003817100381710038171003817119870 (119905) (119891

120575

119896minus 119891

119896)10038171003817100381710038171003817

le 1198792120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

(119892120575minus 119892)

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

10038171003817100381710038171003817100381710038171003817100381710038171003817

119896minus1

sum

119895=0

(119868 minus 120574119870 (119879))119895

10038171003817100381710038171003817100381710038171003817100381710038171003817

le 1198792120575120574

119896minus1

sum

119895=0

1003817100381710038171003817(119868 minus 120574119870 (119879))1003817100381710038171003817

119895

(69)

Since1003817100381710038171003817(119868 minus 120574119870 (119879))

1003817100381710038171003817 le 1 (70)

it follows that

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906

119896(119905)10038171003817100381710038171003817le 119879

2120575120574119896 (71)

Combining (68) and (71) and passing to the supremum withrespect to 119905 isin [0 119879] we obtain the estimate (65)

Remark 10 If we choose the number of the iterations 119896(120575) sothat 119896(120575) rarr 0 as 120575 rarr 0 we obtain

sup119905isin[0119879]

10038171003817100381710038171003817119906

120575

119896(119905) minus 119906 (119905)

10038171003817100381710038171003817997888rarr 0 as 119896 997888rarr +infin (72)

5 Numerical Implementation

In this section an example is devised for verifying theeffectiveness of the proposed method Consider the problemof finding a pair of functions (119906(119909 119905) 119891(119909)) in the system

1205972

1205971199052119906 (119909 119905) minus 2

1205972

1205971199092(120597

120597119905119906 (119909 119905)) +

1205974

1205971199094119906 (119909 119905)

= 119891 (119909) (119905 119909) isin (0 1) times (0 1)

119906 (0 119905) = 119906 (1 119905) = 0 119905 isin (0 1)

119906 (119909 0) = 119906119905(119909 0) = 0 119909 isin (0 1)

119906 (119909 1) = 119892 (119909) 119909 isin (0 1)

(73)

Denote

119860 = minus120597

2

1205971199092

with D (119860) = 1198671

0(0 1) cap 119867

2

(0 1) sub 119867 = 1198712

(0 1)

120582119899= 119899

2120587

2

120593119899= radic2 sin (119899120587119909) 119899 = 1 2

(74)

are eigenvalues and orthonormal eigenfunctions which forma basis for119867

The solution of the above problem is given by

119906 (119909 119905) =

infin

sum

119899=1

(

1 minus (1 + (119899120587)2119905) 119890

minus(119899120587)2

119905

(119899120587)4

)119891119899120593

119899 (75)

where 119891119899= (119891 120593

119899) = radic2int

1

0119891(119904)sin(119899120587119904)119889119904 119899 = 1 2

Now to solve the inverse problem making use of thesupplementary condition and defining the operator119870 119891 rarr

119892 we have

119892 (119909) = 119906 (119909 1) = 119870119891 (119909)

= 2

infin

sum

119899=1

(

1 minus (1 + (119899120587)2) 119890

minus(119899120587)2

(119899120587)4

)

sdot (int

1

0

119891 (119904) sin (119899120587119904) 119889119904) sin (119899120587119909)

(76)

Example 11 In the following we first selected the exactsolution 119891(119909) and obtained the exact data function 119892(119909)

through solving the forward problem Then we added anormally distributed perturbation to each data function andobtained vectors119892120575

(119909) Finallywe obtained the regularizationsolutions through solving the inverse problemwith noisy data119892

120575(119909) satisfying

10038171003817100381710038171003817119892 minus 119892

12057510038171003817100381710038171003817(1198712(01))2le 120575 (77)

It is easy to see that if 119891(119909) = sin120587119909 then

119906 (119909 119905) =

(1 minus (1 + 1205872119905) 119890

minus1205872

119905)

1205874sin (120587119909) (78)

is the exact solution of the problem (73) Consequently119892(119909) = ((1 minus (1 + 120587

2)119890

minus1205872

)1205874)sin(120587119909)

Now we propose to approximate the first and secondspace derivatives by using central difference and we consideran equidistant grid points to a spatial step size 119909

0= 0 lt 119909

1lt

sdot sdot sdot lt 119909119873+1

= 1 (ℎ = 1(119873+1)) where119873 is a positive integerWe get the following semidiscrete problem

11990610158401015840(119909

119894 119905) + 2119860

ℎ119906

1015840(119909

119894 119905) + 119860

2

ℎ119906 (119909

119894 119905) = 119891 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873 0 lt 119905 lt 1

119906 (0 119905) = 119906 (1 119905) = 0

0 lt 119905 lt 1

119906 (119909119894 0) = 119906

1015840(119909

119894 0) = 0

119909119894= 119894ℎ 119894 = 1 119873

119906 (119909119894 1) = 119892 (119909

119894)

119909119894= 119894ℎ 119894 = 1 119873

(79)

Mathematical Problems in Engineering 7

0

05

1

15

minus05

01 02 03 04 05 06 07 08 10 090

02

04

06

08

01 02 080705 10 0903 0604

Iterative regularization method

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 1 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus3

where 119860ℎis the discretisation matrix stemming from the

operator 119860 = minus1198892119889119909

2 and

119860ℎ=

1

ℎ2Tridiag (minus1 2 minus1) (80)

is a symmetric positive definite matrix with eigenvalues

120583119895= 4 (119873 + 1)

2 sin2119895120587

2 (119873 + 1) 119895 = 1 119873 (81)

and orthonormal eigenvalues

V119895= (sin

119898119895120587

(119873 + 1))

1le119898le119873

119895 = 1 119873 (82)

We assume that it is fine enough so that the discretizationerrors are small compared to the uncertainty 120575 of the datathis means that119860

ℎis a good approximation of the differential

operator119860whose unboundedness is reflected in a large normof 119860

ℎ(see [24])

Adding a random distributed perturbation to each datafunction we obtain

119892120575= 119892 + 120576randn (size (119892)) (83)

where 120576 indicates the noise level of the measurements dataand the function randn(sdot) generates arrays of random num-bers whose elements are normally distributed with mean 0variance1205902

= 1 and standard deviation120590 = 1 randn(size(119892))returns an array of random entries that is of the same size as119892The noise level 120575 can bemeasured in the sense of rootmeansquare error (RMSE) according to

120575 =10038171003817100381710038171003817119892

120575minus 119892

100381710038171003817100381710038171198972= (

1

119873 + 1

119873

sum

119894=0

(119892 (119909119894) minus 119892

120575(119909

119894))

2

)

12

(84)

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

Iterative regularization method

0

005

01

015

02

minus05

0

05

1

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 2 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus4

Table 1 Relative error RE(119891)

119873 119896 120576 RE(119891)60 4 10minus3 0203960 4 10minus4 0094560 5 10minus3 0303260 5 10minus4 00305

The relative error is given as follows

RE (119891) =10038171003817100381710038171003817119891approximate minus 119891exact

100381710038171003817100381710038171198972

1003817100381710038171003817119891exact10038171003817100381710038171198972

(85)

The discrete iterative approximation of (66) is given by

119891120575

119896(119909

119894) = (119868 minus 120574119870

ℎ)119896

1198910(119909

119894)

+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870ℎ)119895

119892120575(119909

119894) 119894 = 1 119873

(86)

where 119870ℎ

= 119860minus2

ℎ(119868

119873minus (119868

119873+ 119860

ℎ)119890

minus119860ℎ) and

120574 lt 1119870ℎ = (120583

2

1(1 minus (1 + 120583

1)119890

minus1205831))

Figures 1ndash4 display that as the amount of noise 120576

decreases the regularized solutions approximate better theexact solution

Table 1 shows that for 119896 = 4 or 119896 = 5 the relative errordecreases with the decease of epsilon which is consistent withour regularization

8 Mathematical Problems in Engineering

Iterative regularization method

0

02

04

06

08

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 3 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus3

Iterative regularization method

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

0

002

004

006

minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 4 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus4

6 Conclusion

In this paper we have extended the iterative method to iden-tify the unknown source term in a second order differentialequation convergence results were established and errorestimates have been obtained under an a priori bound of theexact solution Some numerical tests have been given to verifythe validity of the method

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

All authors read and approved the paper

Acknowledgments

The authors would like to thank the anonymous referees fortheir suggestions

References

[1] H Leiva ldquoA lemmaon1198620-semigroups and applicationsrdquoQuaes-

tiones Mathematicae vol 26 no 3 pp 247ndash265 2003[2] H Leiva Linear Reaction-Diffusion Systems Notas de Mathe-

matica No 185 Mereida 1999[3] L F de Oliveira ldquoOn reaction-diffusion systemsrdquo Electronic

Journal of Differential Equations vol 1998 no 24 10 pages 1998[4] V L Fushchich A S Galitsyn and A S Polubinskii ldquoA new

mathematical model of heat conduction processesrdquo UkrainianMathematical Journal vol 42 no 2 pp 210ndash216 1990

[5] G Bastay ldquoIterative methods for Ill-posed boundary valueproblems Linkoping studies in science and technologyrdquo Dis-sertations 392 Linkoping University Linkoping Sweden 1995

[6] A S Carasso ldquoBochner subordination logarithmic diffusionequations and blind deconvolution of hubble space telescopeimagery and other scientific datardquo SIAM Journal on ImagingSciences vol 3 no 4 pp 954ndash980 2010

[7] L Wang X Zhou and X Wei Heat Conduction MathematicalModels and Analytical Solutions Springer 2008

[8] M Andrle and A El Badia ldquoIdentification of multiple movingpollution sources in surface waters or atmospheric media withboundary observationsrdquo Inverse Problems vol 28 no 7 ArticleID 075009 2012

[9] H W Engl and C Groetsch Inverse and Ill-Posed Problemsvol 4 of Notes and Reports in Mathematics in Science andEngineering Academic press New York NY USA 1987

[10] A KirschAn Introduction to theMathematicalTheory of InverseProblems Springer Heidelberg Germany 1996

[11] D Mace and P Lailly ldquoSolution of the VSP one-dimensionalinverse problemrdquo Geophysical Prospecting vol 34 no 7 pp1002ndash1021 1986

[12] NMagnoli andGA Viano ldquoThe source identification problemin electromagnetic theoryrdquo Journal ofMathematical Physics vol38 no 5 pp 2366ndash2388 1997

[13] V A Kozlov and V G Mazrsquoya ldquoOn iterative proceduresfor solving ill-posed boundary value problems that preservedifferential equationsrdquo Lenningrad Mathematics Journal vol 1pp 1207ndash1228 1990

[14] V A Kozlov V G Mazrsquoya and A V Fomin ldquoAn iterativemethod for solving the Cauchy problem for elliptic equationsrdquoUSSR Computational Mathematics andMathematical Physicsvol 31 no 1 pp 45ndash52 1991

[15] A B Bakushinsky and M Y Kokurin Iterative Methods forApproximate Solution of Inverse Problems vol 577 ofMathemat-ics and Its Applications Springer Berlin Germany 2004

Mathematical Problems in Engineering 9

[16] J Baumeister and A Leitao ldquoOn iterative methods for solvingill-posed problems modeled by partial differential equationsrdquoJournal of Inverse and Ill-Posed Problems vol 9 no 1 pp 13ndash292001

[17] F Berntsson V A Kozlov LMpinganzima and B O TuressonldquoAn alternating iterative procedure for the Cauchy problemfor the Helmholtz equationrdquo Inverse Problems in Science andEngineering vol 22 no 1 pp 45ndash62 2014

[18] A Bouzitouna N Boussetila and F Rebbani ldquoTwo regulariza-tion methods for a class of inverse boundary value problemsof elliptic typerdquo Boundary Value Problems vol 2013 article 1782013

[19] A Lakhdari and N Boussetila ldquoAn iterative regularizationmethod for an abstract ill-posed biparabolic problemrdquo Bound-ary Value Problems vol 2015 article 55 2015

[20] J-GWang and TWei ldquoAn iterativemethod for backward time-fractional diffusion problemrdquo Numerical Methods for PartialDifferential Equations vol 30 no 6 pp 2029ndash2041 2014

[21] H W Zhang and T Wei ldquoTwo iterative methods for a Cauchyproblem of the elliptic equation with variable coefficients in astrip regionrdquo Numerical Algorithms vol 65 no 4 pp 875ndash8922014

[22] M A Krasnoselrsquoskii G M Vainikko P P Zabreiko and YU B Rutitskii Approximate Solutions of Operator EquationsWolters-Noordhoff Publishing Groningen The Netherlands1972

[23] A Pazy Semigroups of Linear Operators and Application toPartial Differential Equations Springer New York NY USA1983

[24] L Elden and V Simoncini ldquoA numerical solution of a Cauchyproblem for an elliptic equation by Krylov subspacesrdquo InverseProblems vol 25 no 6 Article ID 065002 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

Mathematical Problems in Engineering 7

0

05

1

15

minus05

01 02 03 04 05 06 07 08 10 090

02

04

06

08

01 02 080705 10 0903 0604

Iterative regularization method

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 1 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus3

where 119860ℎis the discretisation matrix stemming from the

operator 119860 = minus1198892119889119909

2 and

119860ℎ=

1

ℎ2Tridiag (minus1 2 minus1) (80)

is a symmetric positive definite matrix with eigenvalues

120583119895= 4 (119873 + 1)

2 sin2119895120587

2 (119873 + 1) 119895 = 1 119873 (81)

and orthonormal eigenvalues

V119895= (sin

119898119895120587

(119873 + 1))

1le119898le119873

119895 = 1 119873 (82)

We assume that it is fine enough so that the discretizationerrors are small compared to the uncertainty 120575 of the datathis means that119860

ℎis a good approximation of the differential

operator119860whose unboundedness is reflected in a large normof 119860

ℎ(see [24])

Adding a random distributed perturbation to each datafunction we obtain

119892120575= 119892 + 120576randn (size (119892)) (83)

where 120576 indicates the noise level of the measurements dataand the function randn(sdot) generates arrays of random num-bers whose elements are normally distributed with mean 0variance1205902

= 1 and standard deviation120590 = 1 randn(size(119892))returns an array of random entries that is of the same size as119892The noise level 120575 can bemeasured in the sense of rootmeansquare error (RMSE) according to

120575 =10038171003817100381710038171003817119892

120575minus 119892

100381710038171003817100381710038171198972= (

1

119873 + 1

119873

sum

119894=0

(119892 (119909119894) minus 119892

120575(119909

119894))

2

)

12

(84)

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

Iterative regularization method

0

005

01

015

02

minus05

0

05

1

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 2 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 4 and noisy level

120576 = 10minus4

Table 1 Relative error RE(119891)

119873 119896 120576 RE(119891)60 4 10minus3 0203960 4 10minus4 0094560 5 10minus3 0303260 5 10minus4 00305

The relative error is given as follows

RE (119891) =10038171003817100381710038171003817119891approximate minus 119891exact

100381710038171003817100381710038171198972

1003817100381710038171003817119891exact10038171003817100381710038171198972

(85)

The discrete iterative approximation of (66) is given by

119891120575

119896(119909

119894) = (119868 minus 120574119870

ℎ)119896

1198910(119909

119894)

+ 120574

119896minus1

sum

119895=0

(119868 minus 120574119870ℎ)119895

119892120575(119909

119894) 119894 = 1 119873

(86)

where 119870ℎ

= 119860minus2

ℎ(119868

119873minus (119868

119873+ 119860

ℎ)119890

minus119860ℎ) and

120574 lt 1119870ℎ = (120583

2

1(1 minus (1 + 120583

1)119890

minus1205831))

Figures 1ndash4 display that as the amount of noise 120576

decreases the regularized solutions approximate better theexact solution

Table 1 shows that for 119896 = 4 or 119896 = 5 the relative errordecreases with the decease of epsilon which is consistent withour regularization

8 Mathematical Problems in Engineering

Iterative regularization method

0

02

04

06

08

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 3 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus3

Iterative regularization method

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

0

002

004

006

minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 4 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus4

6 Conclusion

In this paper we have extended the iterative method to iden-tify the unknown source term in a second order differentialequation convergence results were established and errorestimates have been obtained under an a priori bound of theexact solution Some numerical tests have been given to verifythe validity of the method

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

All authors read and approved the paper

Acknowledgments

The authors would like to thank the anonymous referees fortheir suggestions

References

[1] H Leiva ldquoA lemmaon1198620-semigroups and applicationsrdquoQuaes-

tiones Mathematicae vol 26 no 3 pp 247ndash265 2003[2] H Leiva Linear Reaction-Diffusion Systems Notas de Mathe-

matica No 185 Mereida 1999[3] L F de Oliveira ldquoOn reaction-diffusion systemsrdquo Electronic

Journal of Differential Equations vol 1998 no 24 10 pages 1998[4] V L Fushchich A S Galitsyn and A S Polubinskii ldquoA new

mathematical model of heat conduction processesrdquo UkrainianMathematical Journal vol 42 no 2 pp 210ndash216 1990

[5] G Bastay ldquoIterative methods for Ill-posed boundary valueproblems Linkoping studies in science and technologyrdquo Dis-sertations 392 Linkoping University Linkoping Sweden 1995

[6] A S Carasso ldquoBochner subordination logarithmic diffusionequations and blind deconvolution of hubble space telescopeimagery and other scientific datardquo SIAM Journal on ImagingSciences vol 3 no 4 pp 954ndash980 2010

[7] L Wang X Zhou and X Wei Heat Conduction MathematicalModels and Analytical Solutions Springer 2008

[8] M Andrle and A El Badia ldquoIdentification of multiple movingpollution sources in surface waters or atmospheric media withboundary observationsrdquo Inverse Problems vol 28 no 7 ArticleID 075009 2012

[9] H W Engl and C Groetsch Inverse and Ill-Posed Problemsvol 4 of Notes and Reports in Mathematics in Science andEngineering Academic press New York NY USA 1987

[10] A KirschAn Introduction to theMathematicalTheory of InverseProblems Springer Heidelberg Germany 1996

[11] D Mace and P Lailly ldquoSolution of the VSP one-dimensionalinverse problemrdquo Geophysical Prospecting vol 34 no 7 pp1002ndash1021 1986

[12] NMagnoli andGA Viano ldquoThe source identification problemin electromagnetic theoryrdquo Journal ofMathematical Physics vol38 no 5 pp 2366ndash2388 1997

[13] V A Kozlov and V G Mazrsquoya ldquoOn iterative proceduresfor solving ill-posed boundary value problems that preservedifferential equationsrdquo Lenningrad Mathematics Journal vol 1pp 1207ndash1228 1990

[14] V A Kozlov V G Mazrsquoya and A V Fomin ldquoAn iterativemethod for solving the Cauchy problem for elliptic equationsrdquoUSSR Computational Mathematics andMathematical Physicsvol 31 no 1 pp 45ndash52 1991

[15] A B Bakushinsky and M Y Kokurin Iterative Methods forApproximate Solution of Inverse Problems vol 577 ofMathemat-ics and Its Applications Springer Berlin Germany 2004

Mathematical Problems in Engineering 9

[16] J Baumeister and A Leitao ldquoOn iterative methods for solvingill-posed problems modeled by partial differential equationsrdquoJournal of Inverse and Ill-Posed Problems vol 9 no 1 pp 13ndash292001

[17] F Berntsson V A Kozlov LMpinganzima and B O TuressonldquoAn alternating iterative procedure for the Cauchy problemfor the Helmholtz equationrdquo Inverse Problems in Science andEngineering vol 22 no 1 pp 45ndash62 2014

[18] A Bouzitouna N Boussetila and F Rebbani ldquoTwo regulariza-tion methods for a class of inverse boundary value problemsof elliptic typerdquo Boundary Value Problems vol 2013 article 1782013

[19] A Lakhdari and N Boussetila ldquoAn iterative regularizationmethod for an abstract ill-posed biparabolic problemrdquo Bound-ary Value Problems vol 2015 article 55 2015

[20] J-GWang and TWei ldquoAn iterativemethod for backward time-fractional diffusion problemrdquo Numerical Methods for PartialDifferential Equations vol 30 no 6 pp 2029ndash2041 2014

[21] H W Zhang and T Wei ldquoTwo iterative methods for a Cauchyproblem of the elliptic equation with variable coefficients in astrip regionrdquo Numerical Algorithms vol 65 no 4 pp 875ndash8922014

[22] M A Krasnoselrsquoskii G M Vainikko P P Zabreiko and YU B Rutitskii Approximate Solutions of Operator EquationsWolters-Noordhoff Publishing Groningen The Netherlands1972

[23] A Pazy Semigroups of Linear Operators and Application toPartial Differential Equations Springer New York NY USA1983

[24] L Elden and V Simoncini ldquoA numerical solution of a Cauchyproblem for an elliptic equation by Krylov subspacesrdquo InverseProblems vol 25 no 6 Article ID 065002 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

8 Mathematical Problems in Engineering

Iterative regularization method

0

02

04

06

08

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 3 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus3

Iterative regularization method

01 02 03 04 05 06 07 08 10 09

01 02 080705 10 0903 0604

0

002

004

006

minus05

0

05

1

15

Error = |exact solution minus approximate solution|

f

e

f

a

e

r

Figure 4 The comparison between the exact solution 119891119890and its

computed approximations 119891119886for 119873 = 60 119896 = 5 and noisy level

120576 = 10minus4

6 Conclusion

In this paper we have extended the iterative method to iden-tify the unknown source term in a second order differentialequation convergence results were established and errorestimates have been obtained under an a priori bound of theexact solution Some numerical tests have been given to verifythe validity of the method

Conflict of Interests

The authors declare that they have no conflict of interests

Authorsrsquo Contribution

All authors read and approved the paper

Acknowledgments

The authors would like to thank the anonymous referees fortheir suggestions

References

[1] H Leiva ldquoA lemmaon1198620-semigroups and applicationsrdquoQuaes-

tiones Mathematicae vol 26 no 3 pp 247ndash265 2003[2] H Leiva Linear Reaction-Diffusion Systems Notas de Mathe-

matica No 185 Mereida 1999[3] L F de Oliveira ldquoOn reaction-diffusion systemsrdquo Electronic

Journal of Differential Equations vol 1998 no 24 10 pages 1998[4] V L Fushchich A S Galitsyn and A S Polubinskii ldquoA new

mathematical model of heat conduction processesrdquo UkrainianMathematical Journal vol 42 no 2 pp 210ndash216 1990

[5] G Bastay ldquoIterative methods for Ill-posed boundary valueproblems Linkoping studies in science and technologyrdquo Dis-sertations 392 Linkoping University Linkoping Sweden 1995

[6] A S Carasso ldquoBochner subordination logarithmic diffusionequations and blind deconvolution of hubble space telescopeimagery and other scientific datardquo SIAM Journal on ImagingSciences vol 3 no 4 pp 954ndash980 2010

[7] L Wang X Zhou and X Wei Heat Conduction MathematicalModels and Analytical Solutions Springer 2008

[8] M Andrle and A El Badia ldquoIdentification of multiple movingpollution sources in surface waters or atmospheric media withboundary observationsrdquo Inverse Problems vol 28 no 7 ArticleID 075009 2012

[9] H W Engl and C Groetsch Inverse and Ill-Posed Problemsvol 4 of Notes and Reports in Mathematics in Science andEngineering Academic press New York NY USA 1987

[10] A KirschAn Introduction to theMathematicalTheory of InverseProblems Springer Heidelberg Germany 1996

[11] D Mace and P Lailly ldquoSolution of the VSP one-dimensionalinverse problemrdquo Geophysical Prospecting vol 34 no 7 pp1002ndash1021 1986

[12] NMagnoli andGA Viano ldquoThe source identification problemin electromagnetic theoryrdquo Journal ofMathematical Physics vol38 no 5 pp 2366ndash2388 1997

[13] V A Kozlov and V G Mazrsquoya ldquoOn iterative proceduresfor solving ill-posed boundary value problems that preservedifferential equationsrdquo Lenningrad Mathematics Journal vol 1pp 1207ndash1228 1990

[14] V A Kozlov V G Mazrsquoya and A V Fomin ldquoAn iterativemethod for solving the Cauchy problem for elliptic equationsrdquoUSSR Computational Mathematics andMathematical Physicsvol 31 no 1 pp 45ndash52 1991

[15] A B Bakushinsky and M Y Kokurin Iterative Methods forApproximate Solution of Inverse Problems vol 577 ofMathemat-ics and Its Applications Springer Berlin Germany 2004

Mathematical Problems in Engineering 9

[16] J Baumeister and A Leitao ldquoOn iterative methods for solvingill-posed problems modeled by partial differential equationsrdquoJournal of Inverse and Ill-Posed Problems vol 9 no 1 pp 13ndash292001

[17] F Berntsson V A Kozlov LMpinganzima and B O TuressonldquoAn alternating iterative procedure for the Cauchy problemfor the Helmholtz equationrdquo Inverse Problems in Science andEngineering vol 22 no 1 pp 45ndash62 2014

[18] A Bouzitouna N Boussetila and F Rebbani ldquoTwo regulariza-tion methods for a class of inverse boundary value problemsof elliptic typerdquo Boundary Value Problems vol 2013 article 1782013

[19] A Lakhdari and N Boussetila ldquoAn iterative regularizationmethod for an abstract ill-posed biparabolic problemrdquo Bound-ary Value Problems vol 2015 article 55 2015

[20] J-GWang and TWei ldquoAn iterativemethod for backward time-fractional diffusion problemrdquo Numerical Methods for PartialDifferential Equations vol 30 no 6 pp 2029ndash2041 2014

[21] H W Zhang and T Wei ldquoTwo iterative methods for a Cauchyproblem of the elliptic equation with variable coefficients in astrip regionrdquo Numerical Algorithms vol 65 no 4 pp 875ndash8922014

[22] M A Krasnoselrsquoskii G M Vainikko P P Zabreiko and YU B Rutitskii Approximate Solutions of Operator EquationsWolters-Noordhoff Publishing Groningen The Netherlands1972

[23] A Pazy Semigroups of Linear Operators and Application toPartial Differential Equations Springer New York NY USA1983

[24] L Elden and V Simoncini ldquoA numerical solution of a Cauchyproblem for an elliptic equation by Krylov subspacesrdquo InverseProblems vol 25 no 6 Article ID 065002 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

Mathematical Problems in Engineering 9

[16] J Baumeister and A Leitao ldquoOn iterative methods for solvingill-posed problems modeled by partial differential equationsrdquoJournal of Inverse and Ill-Posed Problems vol 9 no 1 pp 13ndash292001

[17] F Berntsson V A Kozlov LMpinganzima and B O TuressonldquoAn alternating iterative procedure for the Cauchy problemfor the Helmholtz equationrdquo Inverse Problems in Science andEngineering vol 22 no 1 pp 45ndash62 2014

[18] A Bouzitouna N Boussetila and F Rebbani ldquoTwo regulariza-tion methods for a class of inverse boundary value problemsof elliptic typerdquo Boundary Value Problems vol 2013 article 1782013

[19] A Lakhdari and N Boussetila ldquoAn iterative regularizationmethod for an abstract ill-posed biparabolic problemrdquo Bound-ary Value Problems vol 2015 article 55 2015

[20] J-GWang and TWei ldquoAn iterativemethod for backward time-fractional diffusion problemrdquo Numerical Methods for PartialDifferential Equations vol 30 no 6 pp 2029ndash2041 2014

[21] H W Zhang and T Wei ldquoTwo iterative methods for a Cauchyproblem of the elliptic equation with variable coefficients in astrip regionrdquo Numerical Algorithms vol 65 no 4 pp 875ndash8922014

[22] M A Krasnoselrsquoskii G M Vainikko P P Zabreiko and YU B Rutitskii Approximate Solutions of Operator EquationsWolters-Noordhoff Publishing Groningen The Netherlands1972

[23] A Pazy Semigroups of Linear Operators and Application toPartial Differential Equations Springer New York NY USA1983

[24] L Elden and V Simoncini ldquoA numerical solution of a Cauchyproblem for an elliptic equation by Krylov subspacesrdquo InverseProblems vol 25 no 6 Article ID 065002 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article An Iterative Regularization Method for ...downloads.hindawi.com/journals/mpe/2015/713403.pdforthogonal projections in 3 givenby 9 = diag ( , ). Using matrix algebra,

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended