+ All Categories
Home > Documents > Research Article Analytic Continuation of Euler ...

Research Article Analytic Continuation of Euler ...

Date post: 18-Dec-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
7
Research Article Analytic Continuation of Euler Polynomials and the Euler Zeta Function C. S. Ryoo Department of Mathematics, Hannam University, Daejeon 306-791, Republic of Korea Correspondence should be addressed to C. S. Ryoo; [email protected] Received 10 January 2014; Accepted 10 March 2014; Published 3 April 2014 Academic Editor: Binggen Zhang Copyright © 2014 C. S. Ryoo. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study that the Euler numbers and Euler polynomials () are analytically continued to () and (, ). We investigate the new concept of dynamics of the zeros of analytica continued polynomials. Finally, we observe an interesting phenomenon of “scattering” of the zeros of (, ). 1. Introduction roughout this paper, Z, R, and C will denote the ring of integers, the field of real numbers, and the complex numbers, respectively. Recently, many mathematicians have studied different kinds of the Euler, Bernoulli, and Genocchi numbers and polynomials (see [119]). e computing environment would make more and more rapid progress and there has been increasing interest in solving mathematical problems with the aid of computers. By using soſtware, mathematicians can explore concepts much more easily than in the past. e ability to create and manipulate figures on the computer screen enables mathematicians to quickly visualize and pro- duce many problems, examine properties of the figures, look for patterns, and make conjectures. is capability is espe- cially exciting because these steps are essential for most math- ematicians to truly understand even basic concept. Numeri- cal experiments of Bernoulli polynomials, Euler polynomials, and Genocchi polynomials have been the subject of extensive study in recent years and much progress has been made both mathematically and computationally. Using computer, a real- istic study for Euler polynomials () is very interesting. It is the aim of this paper to observe an interesting phenomenon of “scattering” of the zeros of the Euler polynomials () in complex plane. First, we introduce the Euler numbers and Euler polynomials. As a well-known definition, the Euler numbers are defined by 2 +1 = =0 ! . (1) Here is the list of the first Euler numbers: 0 = 1, 1 =− 1 2 , 2 = 0, 3 = 1 4 , 4 = 0, 5 =− 1 2 , 6 = 0, 7 = 17 8 , 8 = 0, 9 =− 31 2 , 10 = 0, 11 = 691 4 , 12 = 0, 13 =− 5461 2 , 14 = 0, 15 = 929569 16 , 16 = 0, 17 =− 3202291 2 , 18 = 0, 19 = 221930581 4 , 20 = 0, 21 =− 4722116521 2 , 22 = 0, 23 = 968383680827 8 , 24 = 0, 25 =− 14717667114151 2 , Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 2014, Article ID 568129, 6 pages http://dx.doi.org/10.1155/2014/568129
Transcript

Research ArticleAnalytic Continuation of Euler Polynomialsand the Euler Zeta Function

C S Ryoo

Department of Mathematics Hannam University Daejeon 306-791 Republic of Korea

Correspondence should be addressed to C S Ryoo ryoocshnukr

Received 10 January 2014 Accepted 10 March 2014 Published 3 April 2014

Academic Editor Binggen Zhang

Copyright copy 2014 C S Ryoo This is an open access article distributed under the Creative Commons Attribution License whichpermits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

We study that the Euler numbers 119864119899and Euler polynomials 119864

119899(119911) are analytically continued to 119864 (119904) and 119864(119904 119908) We investigate

the new concept of dynamics of the zeros of analytica continued polynomials Finally we observe an interesting phenomenon ofldquoscatteringrdquo of the zeros of 119864(119904 119908)

1 Introduction

Throughout this paper Z R and C will denote the ring ofintegers the field of real numbers and the complex numbersrespectively Recently many mathematicians have studieddifferent kinds of the Euler Bernoulli andGenocchi numbersand polynomials (see [1ndash19]) The computing environmentwould make more and more rapid progress and there hasbeen increasing interest in solving mathematical problemswith the aid of computers By using software mathematicianscan explore concepts much more easily than in the pastThe ability to create and manipulate figures on the computerscreen enables mathematicians to quickly visualize and pro-duce many problems examine properties of the figures lookfor patterns and make conjectures This capability is espe-cially exciting because these steps are essential formostmath-ematicians to truly understand even basic concept Numeri-cal experiments of Bernoulli polynomials Euler polynomialsand Genocchi polynomials have been the subject of extensivestudy in recent years and much progress has been made bothmathematically and computationally Using computer a real-istic study for Euler polynomials119864

119899(119909) is very interesting It is

the aim of this paper to observe an interesting phenomenonof ldquoscatteringrdquo of the zeros of the Euler polynomials 119864

119899(119909) in

complex plane First we introduce the Euler numbers andEuler polynomials As a well-known definition the Eulernumbers 119864

119899are defined by

2

119890119905 + 1=

infin

sum

119899=0

119864119899

119905119899

119899 (1)

Here is the list of the first Euler numbers

1198640= 1 119864

1= minus

1

2 119864

2= 0 119864

3=1

4

1198644= 0 119864

5= minus

1

2 119864

6= 0 119864

7=17

8

1198648= 0 119864

9= minus

31

2 119864

10= 0 119864

11=691

4

11986412= 0 119864

13= minus

5461

2 119864

14= 0

11986415=929569

16 119864

16= 0

11986417= minus

3202291

2 119864

18= 0

11986419=221930581

4 119864

20= 0

11986421= minus

4722116521

2 119864

22= 0

11986423=968383680827

8

11986424= 0

11986425= minus

14717667114151

2

Hindawi Publishing CorporationDiscrete Dynamics in Nature and SocietyVolume 2014 Article ID 568129 6 pageshttpdxdoiorg1011552014568129

2 Discrete Dynamics in Nature and Society

11986426= 0

11986427=2093660879252671

4

11986428= 0

(2)

The Euler polynomials 119864119899(119909) are defined by the generat-

ing function

119865 (119909 119905) =

infin

sum

119899=0

119864119899(119909)

119905119899

119899= (

2

119890119905 + 1) 119890119909119905

(3)

where we use the technique method notation by replacing119864(119909)119899 by 119864

119899(119909) symbolically

Because

120597119865

120597119909(119909 119905) = 119905119865 (119909 119905) =

infin

sum

119899=0

119889119864119899

119889119909(119909)

119905119899

119899 (4)

an important relation follows

119889119864119896

119889119909(119909) = 119896119864

119896minus1(119909) (5)

Then it is easy to deduce that119864119896(119909) are polynomials of degree

119896 Here is the list of the first Euler polynomials

1198640(119909) = 1 119864

1(119909) = 119909 minus

1

2

1198642(119909) = 119909

2

minus 119909 1198643(119909) = 119909

3

minus31199092

2+1

4

1198644(119909) = 119909

4

minus 21199093

+ 119909 1198645(119909) = 119909

5

minus51199092

2minus1

2

1198646(119909) = 119909

6

minus 31199095

+ 51199093

minus 3119909

1198647(119909) = 119909

7

minus71199096

2+351199094

4minus211199092

2+17

8

1198648(119909) = 119909

8

minus 41199097

+ 141199095

minus 281199093

+ 17119909

1198649(119909) = 119909

9

minus91199098

2+ 21119909

6

minus 631199094

+1531199092

2minus31

2

11986410(119909) = 119909

10

minus 51199099

+ 301199097

minus 1261199095

+ 2551199093

minus 155119909

(6)

2 Generating Euler Polynomials and Numbers

Sinceinfin

sum

119899=0

119864119899(119909)

119905119899

119899=

2

119890119905 + 1119890119909119905

= 119890119864119905

119890119909119905

= 119890(119864+119909)119905

=

infin

sum

119899=0

(119864 + 119909)119899119905119899

119899

(7)

we have the following theorem

Theorem 1 For 119899 one has

119864119899(119909) =

119899

sum

119896=0

(119899

119896)119864119896119909119899minus119896

(8)

Definition 2 For 119904 isin C with Re(119904) gt 0 define the Euler zetafunction by

120577119864(119904) = 2

infin

sum

119899=1

(minus1)119899

119899119904 (9)

see [7ndash10]

Notice that the Euler zeta function can be analyticallycontinued to the whole complex plane and these zeta func-tions have the values of the Euler numbers at negative inte-gers That is Euler numbers are related to the Euler zetafunction as

120577119864(minus119899) = 119864

119899 (10)

Definition 3 We define the Hurwitz zeta function 120577119864(119904 119909) for

119904 isin C with Re(119904) gt 0 and 119909 isin R with 0 le 119909 lt 1 by

120577119864(119904 119909) = 2

infin

sum

119899=0

(minus1)119899

(119899 + 119909)119904 (11)

see [3 7ndash10 12]

Euler polynomials are related to the Hurwitz zeta func-tion as

120577119864(minus119899 119909) = 119864

119899(119909) (12)

We now consider the function119864(119904) as the analytic contin-uation of Euler numbers From the above analytic continua-tion of Euler numbers we consider

119864119899997891997888rarr 119864 (119904) 120577

119864(minus119899) = 119864

119899997891997888rarr 120577119864(minus119904) = 119864 (119904)

(13)

All the Euler numbers 119864119899agree with 119864(119899) the analytic

continuation of Euler numbers evaluated at 119899 (see Figure 1)

119864119899= 119864 (119899) for 119899 ge 1 (14)

except 119864 (0) = minus1 but 1198640= 1 (15)

In fact we can express 1198641015840(119904) in terms of 1205771015840119864(119904) the deriva-

tive of 120577119864(119904)

119864 (119904) = 120577119864(minus119904) 119864

1015840

(119904) = minus1205771015840

119864(minus119904)

1198641015840

(2119899 + 1) = minus1205771015840

119864(minus2119899 minus 1) for 119899 isin N cup 0

(16)

From relation (16) we can define the other analyticcontinued half of Euler numbers as

119864 (119904) = 120577119864(minus119904)

119864 (minus119904) = 120577119864(119904) 997904rArr 119864 (minus119899) = 120577

119864(119899) 119899 isin N

(17)

By (17) we have

lim119899rarrinfin

119864minus119899= 120577119864(119899) = minus2 (18)

The curve 119864(119904) runs through the points 119864minus119899= 119864(minus119899) and

grows sim minus2 asymptotically as minus119899 rarr infin (see Figure 2)

Discrete Dynamics in Nature and Society 3

0 2 4 6 8

0

1

2

minus1

minus

E(s)

s

Figure 1The curve 119864(119904) runs through the points of all 119864119899except 119864

0

E (s)

s

minus15 minus125 minus10 minus75 minus5 minus25 0

minus2

minus19

minus18

minus17

minus16

minus15

minus14

Figure 2 The curve 119864(119904) runs through the points 119864minus119899

3 Analytic Continuation of Euler Polynomials

Looking back at (1) and (3) we can see that the sign con-vention of 119864

0was actually arbitrary Equation (15) suggests

that consistent definition of Euler numbers should really havebeen

infin

sum

119899=0

(minus1)119899+1

119864119899

119905119899

119899=

2

119890119905 + 1 |119905| lt 120587 119899 = 0 1 2 isin N cup 0

(19)

which only changes the sign in the conventional definition ofthe only nonzero even Euler numbers 119864

0 from 119864

0= 1 to

1198640= 119864(0) = minus1By using Cauchy product we have

infin

sum

119899=0

(minus1)119899+1

119864119899(119909)

119905119899

119899= (

2

119890119905 + 1) 119890119909119905

= (

infin

sum

119896=0

(minus1)119896+1

119864119899

119905119896

119896)(

infin

sum

119898=0

119909119898119905119898

119898)

=

infin

sum

119899=0

(

119899

sum

119896=0

(119899

119896) (minus1)

119896+1

119864119896119909119899minus119896

)119905119899

119899

(20)

For consistency with the redefinition of 119864119899= 119864(119899) in (19)

Euler polynomials should be analogously redefined as

119864119899(119909) =

119899

sum

119899=0

(minus1)119899+119896

(119899

119896)119864119896119909119899minus119896

(21)

The analytic continuation can be then obtained as

119899 997891997888rarr 119904 isin R 119909 997891997888rarr 119908 isin C

119864119896997891997888rarr 119864 (119896 + 119904 minus [119904]) = 120577

119864(minus (119896 + (119904 minus [119904])))

(119899

119896) 997891997888rarr

Γ (1 + 119904)

Γ (1 + 119896 + (119904 minus [119904])) Γ (1 + [119904] minus 119896)

997904rArr 119864119899(119909) 997891997888rarr 119864 (119904 119908)

=

[119904]

sum

119896=minus1

(minus1)119896+[119904]

Γ (1 + 119904) 119864 (119896 + 119904 minus [119904]) 119908[119904]minus119896

Γ (1 + 119896 + (119904 minus [119904])) Γ (1 + [119904] minus 119896)

=

[119904]+1

sum

119896=0

(minus1)119896minus1+[119904]

Γ (1 + 119904) 119864 ((119896 minus 1) + 119904 minus [119904]) 119908[119904]+1minus119896

Γ (119896 + (119904 minus [119904])) Γ (2 + [119904] minus 119896)

(22)

where [119904] gives the integer part of 119904 and so 119904minus[119904] gives the fra-ctional part

By (22) we obtain analytic continuation of Euler polyno-mials

1198640(119908) = minus1 119864

1(119908) = 119864 (1 119908) = minus05 + 119908

1198642(119908) = 119864 (2 119908) = 119908 minus 119908

2

4 Discrete Dynamics in Nature and Society

119864 (22 119908) asymp 00799175 + 0866594119908

minus 1197651541199082

+ 01161341199083

119864 (24 119908) asymp 0147412 + 0693349119908

minus 1361161199082

+ 02795031199083

119864 (26 119908) asymp 0199873 + 0485705119908

minus 1475471199082

+ 04869151199083

119864 (28 119908) asymp 0234806 + 0251271119908

minus 1526091199082

+ 07310151199083

1198643(119908) = 119864 (3 119908) = 025 minus 15119908

2

+ 1199083

(23)

By using (23) we plot the deformation of the curve119864(2 119908) into the curve of 119864(3 119908) via the real analytic contin-uation 119864(119904 119908) 2 le 119904 le 3 119908 isin R (see Figure 3)

Next we investigate the beautiful zeros of the 119864(119904 119908)by using a computer We plot the zeros of 119864(119904 119908) for 119904 =9 96 98 10 and 119908 isin C (Figure 4)

In Figure 4(a) we choose 119904 = 9 In Figure 4(b) we choose119904 = 96 In Figure 4(c) we choose 119904 = 98 In Figure 4(d) wechoose 119904 = 10

Sinceinfin

sum

119899=0

119864119899(1 minus 119909)

(minus1)119899

119905119899

119899= 119865 (1 minus 119909 minus119905)

=2

119890minus119905 + 1119890(1minus119909)(minus119905)

=2

119890119905 + 1119890119909119905

= 119865 (119909 119905) =

infin

sum

119899=0

119864119899(119909)

119905119899

119899

(24)

we obtain

119864119899(119909) = (minus1)

119899

119864119899(1 minus 119909) (25)

Hence we have the following theorem

Theorem 4 If 119899 equiv 1 (mod 2) then 119864119899(12) = 0 for 119899 isin N

The question is what happens with the reflexive symme-try (25) when one considers Euler polynomials Prove that119864119899(119909) 119909 isin C has Re(119909) = 12 reflection symmetry in addi-

tion to the usual Im(119909) = 0 reflection symmetry analyticcomplex functions However we observe that 119864(119904 119908)119908 isin Cdoes not have Re(119908) = 12 reflection symmetry analyticcomplex functions (Figure 4)

Our numerical results for approximate solutions of realzeros of 119864(119904 119908) are displayed We observe a remarkably reg-ular structure of the complex roots of Euler polynomials Wehope to verify a remarkably regular structure of the complexroots of Euler polynomials (Table 1) Next we calculated anapproximate solution satisfying 119864(119904 119908) 119908 isin R The resultsare given in Table 2

0

minus05 minus04 minus03 minus02 minus01 0 01

02

minus08

minus06

minus04

minus02

w

E(sw

)

E(3 w)

E(2 w)

Figure 3 The curve of 119864(119904 119908) 2 le 119904 le 3 minus05 le 119908 le 02

Table 1 Numbers of real and complex zeros of 119864(119904 119908)

119904 Real zeros Complex zeros15 2 025 3 035 4 045 5 055 2 465 3 475 4 485 5 49 5 496 6 498 6 410 6 4

Table 2 Approximate solutions of 119864(119904 119908) = 0 119908 isin R

119904 119908

6 00000 1000

65 minus024986 0749547 694675

7 minus049773 049999 149773

75 minus0731622 0249968 123584 786641

8 minus093231 minus00000242346 100002 193232

85 minus109269 minus0250159 0750199 164301 878539

9 minus121928 minus0501115 0500956 149919 222008

96 minus132375 minus0810502 0206935 119507 190363 744777

98 minus134314 minus0922069 0112954 108884 190735 456809

10 minus134708 minus10482 00238982 097898 203661 235464

Discrete Dynamics in Nature and Society 5

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(a)

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

0

1

(b)

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(c)

0

1

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

(d)

Figure 4 Zeros of 119864(119904 119908) for 119904 = 9 96 98 10

Euler polynomials 119864119899(119908) are polynomials of degree 119899

Thus 119864119899(119908) has 119899 zeros and 119864

119899+1(119908) has 119899 + 1 zeros When

discrete 119899 is analytically continued to continuous parameter 119904it naturally leads to the following question how does 119864(119904 119908)the analytic continuation of119864

119899(119908) pick up an additional zero

as 119904 increases continuously by oneThis introduces the exciting concept of the dynamics

of the zeros of analytic continued polynomials the idea oflooking at how the zeros move about in the 119908 complex plane

as we vary the parameter 119904 For more studies and results inthis subject you may see [11 14ndash16]

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

6 Discrete Dynamics in Nature and Society

References

[1] S Araci and M Acikgoz ldquoA note on the Frobenius-Eulernumbers and polynomials associated with Bernstein polynomi-alsrdquoAdvanced Studies inContemporaryMathematics vol 22 pp399ndash406 2012

[2] R Ayoub ldquoEuler zeta functionrdquo The American MathematicalMonthly vol 81 pp 1067ndash1086 1974

[3] A Bayad ldquoModular properties of elliptic Bernoulli and EulerfunctionsrdquoAdvanced Studies inContemporaryMathematics vol20 no 3 pp 389ndash401 2010

[4] I N Cangul H Ozden and Y Simsek ldquoA new approach to q-Genocchi numbers and their interpolation functionsrdquo Nonlin-ear Analysis Theory Methods and Applications vol 71 no 12pp e793ndashe799 2009

[5] L-C Jang ldquoOn multiple generalized 120596-Genocchi polynomialsand their applicationsrdquo Mathematical Problems in Engineeringvol 2010 Article ID 316870 8 pages 2010

[6] J Y Kang H Y Lee and N S Jung ldquoSome relations of thetwisted q-Genocchi numbers and polynomials with weight 120572and weak Weight 120573rdquo Abstract and Applied Analysis vol 2012Article ID 860921 9 pages 2012

[7] M S Kim and S Hu ldquoOn p-adic Hurwitz-type Euler Zeta func-tionsrdquo Journal of Number Theory no 132 pp 2977ndash3015 2012

[8] T Kim ldquoBarnes-type multiple q-zeta functions and q-Eulerpolynomialsrdquo Journal of Physics A Mathematical and Theoret-ical vol 43 Article ID 255201 11 pages 2010

[9] T Kim ldquoNote on the Euler q-zeta functionsrdquo Journal of NumberTheory vol 129 no 7 pp 1798ndash1804 2009

[10] T Kim ldquoOn p-adic interpolating function for q-Euler numbersand its derivativesrdquo Journal of Mathematical Analysis and Appli-cations vol 339 no 1 pp 598ndash608 2008

[11] T Kim C S Ryoo L C Jang and S H Rim ldquoExploring the q-riemann zeta function and q-bernoulli polynomialsrdquo DiscreteDynamics in Nature and Society vol 2005 no 2 pp 171ndash1812005

[12] H Ozden and Y Simsek ldquoA new extension of q-Euler num-bers and polynomials related to their interpolation functionsrdquoApplied Mathematics Letters vol 21 no 9 pp 934ndash939 2008

[13] K H Park S-H Rim and E J Moon ldquoOn Genocchi numbersandpolynomialsrdquoAbstract andAppliedAnalysis vol 2008Arti-cle ID 898471 7 pages 2008

[14] C S Ryoo ldquoA numerical computation on the structure of theroots of q-extension of Genocchi polynomialsrdquo Applied Mathe-matics Letters vol 21 no 4 pp 348ndash354 2008

[15] C S Ryoo ldquoCalculating zeros of the second kind Euler polyno-mialsrdquo Journal of Computational Analysis and Applications vol12 pp 828ndash833 2010

[16] C S Ryoo T Kim and R P Agarwal ldquoA numerical investi-gation of the roots of q-polynomialsrdquo International Journal ofComputer Mathematics vol 83 no 2 pp 223ndash234 2006

[17] Y Simsek ldquoGenerating functions of the twisted Bernoulli Num-bers and polynomials associated with their interpolation func-tionsrdquo Advanced Studies in Contemporary Mathematics vol 16no 2 pp 251ndash257 2008

[18] Y Simsek ldquoTwisted (h q)-Bernoulli numbers and polynomialsrelated to twisted (h q)-zeta function andL-functionrdquo Journal ofMathematical Analysis and Applications vol 324 no 2 pp 790ndash804 2006

[19] Y Simsek V Kurt and D Kim ldquoNew approach to the completesum of products of the twisted (h q)-Bernoulli numbers andpolynomialsrdquo Journal ofNonlinearMathematical Physics vol 14no 1 pp 44ndash56 2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

2 Discrete Dynamics in Nature and Society

11986426= 0

11986427=2093660879252671

4

11986428= 0

(2)

The Euler polynomials 119864119899(119909) are defined by the generat-

ing function

119865 (119909 119905) =

infin

sum

119899=0

119864119899(119909)

119905119899

119899= (

2

119890119905 + 1) 119890119909119905

(3)

where we use the technique method notation by replacing119864(119909)119899 by 119864

119899(119909) symbolically

Because

120597119865

120597119909(119909 119905) = 119905119865 (119909 119905) =

infin

sum

119899=0

119889119864119899

119889119909(119909)

119905119899

119899 (4)

an important relation follows

119889119864119896

119889119909(119909) = 119896119864

119896minus1(119909) (5)

Then it is easy to deduce that119864119896(119909) are polynomials of degree

119896 Here is the list of the first Euler polynomials

1198640(119909) = 1 119864

1(119909) = 119909 minus

1

2

1198642(119909) = 119909

2

minus 119909 1198643(119909) = 119909

3

minus31199092

2+1

4

1198644(119909) = 119909

4

minus 21199093

+ 119909 1198645(119909) = 119909

5

minus51199092

2minus1

2

1198646(119909) = 119909

6

minus 31199095

+ 51199093

minus 3119909

1198647(119909) = 119909

7

minus71199096

2+351199094

4minus211199092

2+17

8

1198648(119909) = 119909

8

minus 41199097

+ 141199095

minus 281199093

+ 17119909

1198649(119909) = 119909

9

minus91199098

2+ 21119909

6

minus 631199094

+1531199092

2minus31

2

11986410(119909) = 119909

10

minus 51199099

+ 301199097

minus 1261199095

+ 2551199093

minus 155119909

(6)

2 Generating Euler Polynomials and Numbers

Sinceinfin

sum

119899=0

119864119899(119909)

119905119899

119899=

2

119890119905 + 1119890119909119905

= 119890119864119905

119890119909119905

= 119890(119864+119909)119905

=

infin

sum

119899=0

(119864 + 119909)119899119905119899

119899

(7)

we have the following theorem

Theorem 1 For 119899 one has

119864119899(119909) =

119899

sum

119896=0

(119899

119896)119864119896119909119899minus119896

(8)

Definition 2 For 119904 isin C with Re(119904) gt 0 define the Euler zetafunction by

120577119864(119904) = 2

infin

sum

119899=1

(minus1)119899

119899119904 (9)

see [7ndash10]

Notice that the Euler zeta function can be analyticallycontinued to the whole complex plane and these zeta func-tions have the values of the Euler numbers at negative inte-gers That is Euler numbers are related to the Euler zetafunction as

120577119864(minus119899) = 119864

119899 (10)

Definition 3 We define the Hurwitz zeta function 120577119864(119904 119909) for

119904 isin C with Re(119904) gt 0 and 119909 isin R with 0 le 119909 lt 1 by

120577119864(119904 119909) = 2

infin

sum

119899=0

(minus1)119899

(119899 + 119909)119904 (11)

see [3 7ndash10 12]

Euler polynomials are related to the Hurwitz zeta func-tion as

120577119864(minus119899 119909) = 119864

119899(119909) (12)

We now consider the function119864(119904) as the analytic contin-uation of Euler numbers From the above analytic continua-tion of Euler numbers we consider

119864119899997891997888rarr 119864 (119904) 120577

119864(minus119899) = 119864

119899997891997888rarr 120577119864(minus119904) = 119864 (119904)

(13)

All the Euler numbers 119864119899agree with 119864(119899) the analytic

continuation of Euler numbers evaluated at 119899 (see Figure 1)

119864119899= 119864 (119899) for 119899 ge 1 (14)

except 119864 (0) = minus1 but 1198640= 1 (15)

In fact we can express 1198641015840(119904) in terms of 1205771015840119864(119904) the deriva-

tive of 120577119864(119904)

119864 (119904) = 120577119864(minus119904) 119864

1015840

(119904) = minus1205771015840

119864(minus119904)

1198641015840

(2119899 + 1) = minus1205771015840

119864(minus2119899 minus 1) for 119899 isin N cup 0

(16)

From relation (16) we can define the other analyticcontinued half of Euler numbers as

119864 (119904) = 120577119864(minus119904)

119864 (minus119904) = 120577119864(119904) 997904rArr 119864 (minus119899) = 120577

119864(119899) 119899 isin N

(17)

By (17) we have

lim119899rarrinfin

119864minus119899= 120577119864(119899) = minus2 (18)

The curve 119864(119904) runs through the points 119864minus119899= 119864(minus119899) and

grows sim minus2 asymptotically as minus119899 rarr infin (see Figure 2)

Discrete Dynamics in Nature and Society 3

0 2 4 6 8

0

1

2

minus1

minus

E(s)

s

Figure 1The curve 119864(119904) runs through the points of all 119864119899except 119864

0

E (s)

s

minus15 minus125 minus10 minus75 minus5 minus25 0

minus2

minus19

minus18

minus17

minus16

minus15

minus14

Figure 2 The curve 119864(119904) runs through the points 119864minus119899

3 Analytic Continuation of Euler Polynomials

Looking back at (1) and (3) we can see that the sign con-vention of 119864

0was actually arbitrary Equation (15) suggests

that consistent definition of Euler numbers should really havebeen

infin

sum

119899=0

(minus1)119899+1

119864119899

119905119899

119899=

2

119890119905 + 1 |119905| lt 120587 119899 = 0 1 2 isin N cup 0

(19)

which only changes the sign in the conventional definition ofthe only nonzero even Euler numbers 119864

0 from 119864

0= 1 to

1198640= 119864(0) = minus1By using Cauchy product we have

infin

sum

119899=0

(minus1)119899+1

119864119899(119909)

119905119899

119899= (

2

119890119905 + 1) 119890119909119905

= (

infin

sum

119896=0

(minus1)119896+1

119864119899

119905119896

119896)(

infin

sum

119898=0

119909119898119905119898

119898)

=

infin

sum

119899=0

(

119899

sum

119896=0

(119899

119896) (minus1)

119896+1

119864119896119909119899minus119896

)119905119899

119899

(20)

For consistency with the redefinition of 119864119899= 119864(119899) in (19)

Euler polynomials should be analogously redefined as

119864119899(119909) =

119899

sum

119899=0

(minus1)119899+119896

(119899

119896)119864119896119909119899minus119896

(21)

The analytic continuation can be then obtained as

119899 997891997888rarr 119904 isin R 119909 997891997888rarr 119908 isin C

119864119896997891997888rarr 119864 (119896 + 119904 minus [119904]) = 120577

119864(minus (119896 + (119904 minus [119904])))

(119899

119896) 997891997888rarr

Γ (1 + 119904)

Γ (1 + 119896 + (119904 minus [119904])) Γ (1 + [119904] minus 119896)

997904rArr 119864119899(119909) 997891997888rarr 119864 (119904 119908)

=

[119904]

sum

119896=minus1

(minus1)119896+[119904]

Γ (1 + 119904) 119864 (119896 + 119904 minus [119904]) 119908[119904]minus119896

Γ (1 + 119896 + (119904 minus [119904])) Γ (1 + [119904] minus 119896)

=

[119904]+1

sum

119896=0

(minus1)119896minus1+[119904]

Γ (1 + 119904) 119864 ((119896 minus 1) + 119904 minus [119904]) 119908[119904]+1minus119896

Γ (119896 + (119904 minus [119904])) Γ (2 + [119904] minus 119896)

(22)

where [119904] gives the integer part of 119904 and so 119904minus[119904] gives the fra-ctional part

By (22) we obtain analytic continuation of Euler polyno-mials

1198640(119908) = minus1 119864

1(119908) = 119864 (1 119908) = minus05 + 119908

1198642(119908) = 119864 (2 119908) = 119908 minus 119908

2

4 Discrete Dynamics in Nature and Society

119864 (22 119908) asymp 00799175 + 0866594119908

minus 1197651541199082

+ 01161341199083

119864 (24 119908) asymp 0147412 + 0693349119908

minus 1361161199082

+ 02795031199083

119864 (26 119908) asymp 0199873 + 0485705119908

minus 1475471199082

+ 04869151199083

119864 (28 119908) asymp 0234806 + 0251271119908

minus 1526091199082

+ 07310151199083

1198643(119908) = 119864 (3 119908) = 025 minus 15119908

2

+ 1199083

(23)

By using (23) we plot the deformation of the curve119864(2 119908) into the curve of 119864(3 119908) via the real analytic contin-uation 119864(119904 119908) 2 le 119904 le 3 119908 isin R (see Figure 3)

Next we investigate the beautiful zeros of the 119864(119904 119908)by using a computer We plot the zeros of 119864(119904 119908) for 119904 =9 96 98 10 and 119908 isin C (Figure 4)

In Figure 4(a) we choose 119904 = 9 In Figure 4(b) we choose119904 = 96 In Figure 4(c) we choose 119904 = 98 In Figure 4(d) wechoose 119904 = 10

Sinceinfin

sum

119899=0

119864119899(1 minus 119909)

(minus1)119899

119905119899

119899= 119865 (1 minus 119909 minus119905)

=2

119890minus119905 + 1119890(1minus119909)(minus119905)

=2

119890119905 + 1119890119909119905

= 119865 (119909 119905) =

infin

sum

119899=0

119864119899(119909)

119905119899

119899

(24)

we obtain

119864119899(119909) = (minus1)

119899

119864119899(1 minus 119909) (25)

Hence we have the following theorem

Theorem 4 If 119899 equiv 1 (mod 2) then 119864119899(12) = 0 for 119899 isin N

The question is what happens with the reflexive symme-try (25) when one considers Euler polynomials Prove that119864119899(119909) 119909 isin C has Re(119909) = 12 reflection symmetry in addi-

tion to the usual Im(119909) = 0 reflection symmetry analyticcomplex functions However we observe that 119864(119904 119908)119908 isin Cdoes not have Re(119908) = 12 reflection symmetry analyticcomplex functions (Figure 4)

Our numerical results for approximate solutions of realzeros of 119864(119904 119908) are displayed We observe a remarkably reg-ular structure of the complex roots of Euler polynomials Wehope to verify a remarkably regular structure of the complexroots of Euler polynomials (Table 1) Next we calculated anapproximate solution satisfying 119864(119904 119908) 119908 isin R The resultsare given in Table 2

0

minus05 minus04 minus03 minus02 minus01 0 01

02

minus08

minus06

minus04

minus02

w

E(sw

)

E(3 w)

E(2 w)

Figure 3 The curve of 119864(119904 119908) 2 le 119904 le 3 minus05 le 119908 le 02

Table 1 Numbers of real and complex zeros of 119864(119904 119908)

119904 Real zeros Complex zeros15 2 025 3 035 4 045 5 055 2 465 3 475 4 485 5 49 5 496 6 498 6 410 6 4

Table 2 Approximate solutions of 119864(119904 119908) = 0 119908 isin R

119904 119908

6 00000 1000

65 minus024986 0749547 694675

7 minus049773 049999 149773

75 minus0731622 0249968 123584 786641

8 minus093231 minus00000242346 100002 193232

85 minus109269 minus0250159 0750199 164301 878539

9 minus121928 minus0501115 0500956 149919 222008

96 minus132375 minus0810502 0206935 119507 190363 744777

98 minus134314 minus0922069 0112954 108884 190735 456809

10 minus134708 minus10482 00238982 097898 203661 235464

Discrete Dynamics in Nature and Society 5

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(a)

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

0

1

(b)

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(c)

0

1

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

(d)

Figure 4 Zeros of 119864(119904 119908) for 119904 = 9 96 98 10

Euler polynomials 119864119899(119908) are polynomials of degree 119899

Thus 119864119899(119908) has 119899 zeros and 119864

119899+1(119908) has 119899 + 1 zeros When

discrete 119899 is analytically continued to continuous parameter 119904it naturally leads to the following question how does 119864(119904 119908)the analytic continuation of119864

119899(119908) pick up an additional zero

as 119904 increases continuously by oneThis introduces the exciting concept of the dynamics

of the zeros of analytic continued polynomials the idea oflooking at how the zeros move about in the 119908 complex plane

as we vary the parameter 119904 For more studies and results inthis subject you may see [11 14ndash16]

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

6 Discrete Dynamics in Nature and Society

References

[1] S Araci and M Acikgoz ldquoA note on the Frobenius-Eulernumbers and polynomials associated with Bernstein polynomi-alsrdquoAdvanced Studies inContemporaryMathematics vol 22 pp399ndash406 2012

[2] R Ayoub ldquoEuler zeta functionrdquo The American MathematicalMonthly vol 81 pp 1067ndash1086 1974

[3] A Bayad ldquoModular properties of elliptic Bernoulli and EulerfunctionsrdquoAdvanced Studies inContemporaryMathematics vol20 no 3 pp 389ndash401 2010

[4] I N Cangul H Ozden and Y Simsek ldquoA new approach to q-Genocchi numbers and their interpolation functionsrdquo Nonlin-ear Analysis Theory Methods and Applications vol 71 no 12pp e793ndashe799 2009

[5] L-C Jang ldquoOn multiple generalized 120596-Genocchi polynomialsand their applicationsrdquo Mathematical Problems in Engineeringvol 2010 Article ID 316870 8 pages 2010

[6] J Y Kang H Y Lee and N S Jung ldquoSome relations of thetwisted q-Genocchi numbers and polynomials with weight 120572and weak Weight 120573rdquo Abstract and Applied Analysis vol 2012Article ID 860921 9 pages 2012

[7] M S Kim and S Hu ldquoOn p-adic Hurwitz-type Euler Zeta func-tionsrdquo Journal of Number Theory no 132 pp 2977ndash3015 2012

[8] T Kim ldquoBarnes-type multiple q-zeta functions and q-Eulerpolynomialsrdquo Journal of Physics A Mathematical and Theoret-ical vol 43 Article ID 255201 11 pages 2010

[9] T Kim ldquoNote on the Euler q-zeta functionsrdquo Journal of NumberTheory vol 129 no 7 pp 1798ndash1804 2009

[10] T Kim ldquoOn p-adic interpolating function for q-Euler numbersand its derivativesrdquo Journal of Mathematical Analysis and Appli-cations vol 339 no 1 pp 598ndash608 2008

[11] T Kim C S Ryoo L C Jang and S H Rim ldquoExploring the q-riemann zeta function and q-bernoulli polynomialsrdquo DiscreteDynamics in Nature and Society vol 2005 no 2 pp 171ndash1812005

[12] H Ozden and Y Simsek ldquoA new extension of q-Euler num-bers and polynomials related to their interpolation functionsrdquoApplied Mathematics Letters vol 21 no 9 pp 934ndash939 2008

[13] K H Park S-H Rim and E J Moon ldquoOn Genocchi numbersandpolynomialsrdquoAbstract andAppliedAnalysis vol 2008Arti-cle ID 898471 7 pages 2008

[14] C S Ryoo ldquoA numerical computation on the structure of theroots of q-extension of Genocchi polynomialsrdquo Applied Mathe-matics Letters vol 21 no 4 pp 348ndash354 2008

[15] C S Ryoo ldquoCalculating zeros of the second kind Euler polyno-mialsrdquo Journal of Computational Analysis and Applications vol12 pp 828ndash833 2010

[16] C S Ryoo T Kim and R P Agarwal ldquoA numerical investi-gation of the roots of q-polynomialsrdquo International Journal ofComputer Mathematics vol 83 no 2 pp 223ndash234 2006

[17] Y Simsek ldquoGenerating functions of the twisted Bernoulli Num-bers and polynomials associated with their interpolation func-tionsrdquo Advanced Studies in Contemporary Mathematics vol 16no 2 pp 251ndash257 2008

[18] Y Simsek ldquoTwisted (h q)-Bernoulli numbers and polynomialsrelated to twisted (h q)-zeta function andL-functionrdquo Journal ofMathematical Analysis and Applications vol 324 no 2 pp 790ndash804 2006

[19] Y Simsek V Kurt and D Kim ldquoNew approach to the completesum of products of the twisted (h q)-Bernoulli numbers andpolynomialsrdquo Journal ofNonlinearMathematical Physics vol 14no 1 pp 44ndash56 2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Discrete Dynamics in Nature and Society 3

0 2 4 6 8

0

1

2

minus1

minus

E(s)

s

Figure 1The curve 119864(119904) runs through the points of all 119864119899except 119864

0

E (s)

s

minus15 minus125 minus10 minus75 minus5 minus25 0

minus2

minus19

minus18

minus17

minus16

minus15

minus14

Figure 2 The curve 119864(119904) runs through the points 119864minus119899

3 Analytic Continuation of Euler Polynomials

Looking back at (1) and (3) we can see that the sign con-vention of 119864

0was actually arbitrary Equation (15) suggests

that consistent definition of Euler numbers should really havebeen

infin

sum

119899=0

(minus1)119899+1

119864119899

119905119899

119899=

2

119890119905 + 1 |119905| lt 120587 119899 = 0 1 2 isin N cup 0

(19)

which only changes the sign in the conventional definition ofthe only nonzero even Euler numbers 119864

0 from 119864

0= 1 to

1198640= 119864(0) = minus1By using Cauchy product we have

infin

sum

119899=0

(minus1)119899+1

119864119899(119909)

119905119899

119899= (

2

119890119905 + 1) 119890119909119905

= (

infin

sum

119896=0

(minus1)119896+1

119864119899

119905119896

119896)(

infin

sum

119898=0

119909119898119905119898

119898)

=

infin

sum

119899=0

(

119899

sum

119896=0

(119899

119896) (minus1)

119896+1

119864119896119909119899minus119896

)119905119899

119899

(20)

For consistency with the redefinition of 119864119899= 119864(119899) in (19)

Euler polynomials should be analogously redefined as

119864119899(119909) =

119899

sum

119899=0

(minus1)119899+119896

(119899

119896)119864119896119909119899minus119896

(21)

The analytic continuation can be then obtained as

119899 997891997888rarr 119904 isin R 119909 997891997888rarr 119908 isin C

119864119896997891997888rarr 119864 (119896 + 119904 minus [119904]) = 120577

119864(minus (119896 + (119904 minus [119904])))

(119899

119896) 997891997888rarr

Γ (1 + 119904)

Γ (1 + 119896 + (119904 minus [119904])) Γ (1 + [119904] minus 119896)

997904rArr 119864119899(119909) 997891997888rarr 119864 (119904 119908)

=

[119904]

sum

119896=minus1

(minus1)119896+[119904]

Γ (1 + 119904) 119864 (119896 + 119904 minus [119904]) 119908[119904]minus119896

Γ (1 + 119896 + (119904 minus [119904])) Γ (1 + [119904] minus 119896)

=

[119904]+1

sum

119896=0

(minus1)119896minus1+[119904]

Γ (1 + 119904) 119864 ((119896 minus 1) + 119904 minus [119904]) 119908[119904]+1minus119896

Γ (119896 + (119904 minus [119904])) Γ (2 + [119904] minus 119896)

(22)

where [119904] gives the integer part of 119904 and so 119904minus[119904] gives the fra-ctional part

By (22) we obtain analytic continuation of Euler polyno-mials

1198640(119908) = minus1 119864

1(119908) = 119864 (1 119908) = minus05 + 119908

1198642(119908) = 119864 (2 119908) = 119908 minus 119908

2

4 Discrete Dynamics in Nature and Society

119864 (22 119908) asymp 00799175 + 0866594119908

minus 1197651541199082

+ 01161341199083

119864 (24 119908) asymp 0147412 + 0693349119908

minus 1361161199082

+ 02795031199083

119864 (26 119908) asymp 0199873 + 0485705119908

minus 1475471199082

+ 04869151199083

119864 (28 119908) asymp 0234806 + 0251271119908

minus 1526091199082

+ 07310151199083

1198643(119908) = 119864 (3 119908) = 025 minus 15119908

2

+ 1199083

(23)

By using (23) we plot the deformation of the curve119864(2 119908) into the curve of 119864(3 119908) via the real analytic contin-uation 119864(119904 119908) 2 le 119904 le 3 119908 isin R (see Figure 3)

Next we investigate the beautiful zeros of the 119864(119904 119908)by using a computer We plot the zeros of 119864(119904 119908) for 119904 =9 96 98 10 and 119908 isin C (Figure 4)

In Figure 4(a) we choose 119904 = 9 In Figure 4(b) we choose119904 = 96 In Figure 4(c) we choose 119904 = 98 In Figure 4(d) wechoose 119904 = 10

Sinceinfin

sum

119899=0

119864119899(1 minus 119909)

(minus1)119899

119905119899

119899= 119865 (1 minus 119909 minus119905)

=2

119890minus119905 + 1119890(1minus119909)(minus119905)

=2

119890119905 + 1119890119909119905

= 119865 (119909 119905) =

infin

sum

119899=0

119864119899(119909)

119905119899

119899

(24)

we obtain

119864119899(119909) = (minus1)

119899

119864119899(1 minus 119909) (25)

Hence we have the following theorem

Theorem 4 If 119899 equiv 1 (mod 2) then 119864119899(12) = 0 for 119899 isin N

The question is what happens with the reflexive symme-try (25) when one considers Euler polynomials Prove that119864119899(119909) 119909 isin C has Re(119909) = 12 reflection symmetry in addi-

tion to the usual Im(119909) = 0 reflection symmetry analyticcomplex functions However we observe that 119864(119904 119908)119908 isin Cdoes not have Re(119908) = 12 reflection symmetry analyticcomplex functions (Figure 4)

Our numerical results for approximate solutions of realzeros of 119864(119904 119908) are displayed We observe a remarkably reg-ular structure of the complex roots of Euler polynomials Wehope to verify a remarkably regular structure of the complexroots of Euler polynomials (Table 1) Next we calculated anapproximate solution satisfying 119864(119904 119908) 119908 isin R The resultsare given in Table 2

0

minus05 minus04 minus03 minus02 minus01 0 01

02

minus08

minus06

minus04

minus02

w

E(sw

)

E(3 w)

E(2 w)

Figure 3 The curve of 119864(119904 119908) 2 le 119904 le 3 minus05 le 119908 le 02

Table 1 Numbers of real and complex zeros of 119864(119904 119908)

119904 Real zeros Complex zeros15 2 025 3 035 4 045 5 055 2 465 3 475 4 485 5 49 5 496 6 498 6 410 6 4

Table 2 Approximate solutions of 119864(119904 119908) = 0 119908 isin R

119904 119908

6 00000 1000

65 minus024986 0749547 694675

7 minus049773 049999 149773

75 minus0731622 0249968 123584 786641

8 minus093231 minus00000242346 100002 193232

85 minus109269 minus0250159 0750199 164301 878539

9 minus121928 minus0501115 0500956 149919 222008

96 minus132375 minus0810502 0206935 119507 190363 744777

98 minus134314 minus0922069 0112954 108884 190735 456809

10 minus134708 minus10482 00238982 097898 203661 235464

Discrete Dynamics in Nature and Society 5

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(a)

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

0

1

(b)

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(c)

0

1

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

(d)

Figure 4 Zeros of 119864(119904 119908) for 119904 = 9 96 98 10

Euler polynomials 119864119899(119908) are polynomials of degree 119899

Thus 119864119899(119908) has 119899 zeros and 119864

119899+1(119908) has 119899 + 1 zeros When

discrete 119899 is analytically continued to continuous parameter 119904it naturally leads to the following question how does 119864(119904 119908)the analytic continuation of119864

119899(119908) pick up an additional zero

as 119904 increases continuously by oneThis introduces the exciting concept of the dynamics

of the zeros of analytic continued polynomials the idea oflooking at how the zeros move about in the 119908 complex plane

as we vary the parameter 119904 For more studies and results inthis subject you may see [11 14ndash16]

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

6 Discrete Dynamics in Nature and Society

References

[1] S Araci and M Acikgoz ldquoA note on the Frobenius-Eulernumbers and polynomials associated with Bernstein polynomi-alsrdquoAdvanced Studies inContemporaryMathematics vol 22 pp399ndash406 2012

[2] R Ayoub ldquoEuler zeta functionrdquo The American MathematicalMonthly vol 81 pp 1067ndash1086 1974

[3] A Bayad ldquoModular properties of elliptic Bernoulli and EulerfunctionsrdquoAdvanced Studies inContemporaryMathematics vol20 no 3 pp 389ndash401 2010

[4] I N Cangul H Ozden and Y Simsek ldquoA new approach to q-Genocchi numbers and their interpolation functionsrdquo Nonlin-ear Analysis Theory Methods and Applications vol 71 no 12pp e793ndashe799 2009

[5] L-C Jang ldquoOn multiple generalized 120596-Genocchi polynomialsand their applicationsrdquo Mathematical Problems in Engineeringvol 2010 Article ID 316870 8 pages 2010

[6] J Y Kang H Y Lee and N S Jung ldquoSome relations of thetwisted q-Genocchi numbers and polynomials with weight 120572and weak Weight 120573rdquo Abstract and Applied Analysis vol 2012Article ID 860921 9 pages 2012

[7] M S Kim and S Hu ldquoOn p-adic Hurwitz-type Euler Zeta func-tionsrdquo Journal of Number Theory no 132 pp 2977ndash3015 2012

[8] T Kim ldquoBarnes-type multiple q-zeta functions and q-Eulerpolynomialsrdquo Journal of Physics A Mathematical and Theoret-ical vol 43 Article ID 255201 11 pages 2010

[9] T Kim ldquoNote on the Euler q-zeta functionsrdquo Journal of NumberTheory vol 129 no 7 pp 1798ndash1804 2009

[10] T Kim ldquoOn p-adic interpolating function for q-Euler numbersand its derivativesrdquo Journal of Mathematical Analysis and Appli-cations vol 339 no 1 pp 598ndash608 2008

[11] T Kim C S Ryoo L C Jang and S H Rim ldquoExploring the q-riemann zeta function and q-bernoulli polynomialsrdquo DiscreteDynamics in Nature and Society vol 2005 no 2 pp 171ndash1812005

[12] H Ozden and Y Simsek ldquoA new extension of q-Euler num-bers and polynomials related to their interpolation functionsrdquoApplied Mathematics Letters vol 21 no 9 pp 934ndash939 2008

[13] K H Park S-H Rim and E J Moon ldquoOn Genocchi numbersandpolynomialsrdquoAbstract andAppliedAnalysis vol 2008Arti-cle ID 898471 7 pages 2008

[14] C S Ryoo ldquoA numerical computation on the structure of theroots of q-extension of Genocchi polynomialsrdquo Applied Mathe-matics Letters vol 21 no 4 pp 348ndash354 2008

[15] C S Ryoo ldquoCalculating zeros of the second kind Euler polyno-mialsrdquo Journal of Computational Analysis and Applications vol12 pp 828ndash833 2010

[16] C S Ryoo T Kim and R P Agarwal ldquoA numerical investi-gation of the roots of q-polynomialsrdquo International Journal ofComputer Mathematics vol 83 no 2 pp 223ndash234 2006

[17] Y Simsek ldquoGenerating functions of the twisted Bernoulli Num-bers and polynomials associated with their interpolation func-tionsrdquo Advanced Studies in Contemporary Mathematics vol 16no 2 pp 251ndash257 2008

[18] Y Simsek ldquoTwisted (h q)-Bernoulli numbers and polynomialsrelated to twisted (h q)-zeta function andL-functionrdquo Journal ofMathematical Analysis and Applications vol 324 no 2 pp 790ndash804 2006

[19] Y Simsek V Kurt and D Kim ldquoNew approach to the completesum of products of the twisted (h q)-Bernoulli numbers andpolynomialsrdquo Journal ofNonlinearMathematical Physics vol 14no 1 pp 44ndash56 2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

4 Discrete Dynamics in Nature and Society

119864 (22 119908) asymp 00799175 + 0866594119908

minus 1197651541199082

+ 01161341199083

119864 (24 119908) asymp 0147412 + 0693349119908

minus 1361161199082

+ 02795031199083

119864 (26 119908) asymp 0199873 + 0485705119908

minus 1475471199082

+ 04869151199083

119864 (28 119908) asymp 0234806 + 0251271119908

minus 1526091199082

+ 07310151199083

1198643(119908) = 119864 (3 119908) = 025 minus 15119908

2

+ 1199083

(23)

By using (23) we plot the deformation of the curve119864(2 119908) into the curve of 119864(3 119908) via the real analytic contin-uation 119864(119904 119908) 2 le 119904 le 3 119908 isin R (see Figure 3)

Next we investigate the beautiful zeros of the 119864(119904 119908)by using a computer We plot the zeros of 119864(119904 119908) for 119904 =9 96 98 10 and 119908 isin C (Figure 4)

In Figure 4(a) we choose 119904 = 9 In Figure 4(b) we choose119904 = 96 In Figure 4(c) we choose 119904 = 98 In Figure 4(d) wechoose 119904 = 10

Sinceinfin

sum

119899=0

119864119899(1 minus 119909)

(minus1)119899

119905119899

119899= 119865 (1 minus 119909 minus119905)

=2

119890minus119905 + 1119890(1minus119909)(minus119905)

=2

119890119905 + 1119890119909119905

= 119865 (119909 119905) =

infin

sum

119899=0

119864119899(119909)

119905119899

119899

(24)

we obtain

119864119899(119909) = (minus1)

119899

119864119899(1 minus 119909) (25)

Hence we have the following theorem

Theorem 4 If 119899 equiv 1 (mod 2) then 119864119899(12) = 0 for 119899 isin N

The question is what happens with the reflexive symme-try (25) when one considers Euler polynomials Prove that119864119899(119909) 119909 isin C has Re(119909) = 12 reflection symmetry in addi-

tion to the usual Im(119909) = 0 reflection symmetry analyticcomplex functions However we observe that 119864(119904 119908)119908 isin Cdoes not have Re(119908) = 12 reflection symmetry analyticcomplex functions (Figure 4)

Our numerical results for approximate solutions of realzeros of 119864(119904 119908) are displayed We observe a remarkably reg-ular structure of the complex roots of Euler polynomials Wehope to verify a remarkably regular structure of the complexroots of Euler polynomials (Table 1) Next we calculated anapproximate solution satisfying 119864(119904 119908) 119908 isin R The resultsare given in Table 2

0

minus05 minus04 minus03 minus02 minus01 0 01

02

minus08

minus06

minus04

minus02

w

E(sw

)

E(3 w)

E(2 w)

Figure 3 The curve of 119864(119904 119908) 2 le 119904 le 3 minus05 le 119908 le 02

Table 1 Numbers of real and complex zeros of 119864(119904 119908)

119904 Real zeros Complex zeros15 2 025 3 035 4 045 5 055 2 465 3 475 4 485 5 49 5 496 6 498 6 410 6 4

Table 2 Approximate solutions of 119864(119904 119908) = 0 119908 isin R

119904 119908

6 00000 1000

65 minus024986 0749547 694675

7 minus049773 049999 149773

75 minus0731622 0249968 123584 786641

8 minus093231 minus00000242346 100002 193232

85 minus109269 minus0250159 0750199 164301 878539

9 minus121928 minus0501115 0500956 149919 222008

96 minus132375 minus0810502 0206935 119507 190363 744777

98 minus134314 minus0922069 0112954 108884 190735 456809

10 minus134708 minus10482 00238982 097898 203661 235464

Discrete Dynamics in Nature and Society 5

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(a)

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

0

1

(b)

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(c)

0

1

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

(d)

Figure 4 Zeros of 119864(119904 119908) for 119904 = 9 96 98 10

Euler polynomials 119864119899(119908) are polynomials of degree 119899

Thus 119864119899(119908) has 119899 zeros and 119864

119899+1(119908) has 119899 + 1 zeros When

discrete 119899 is analytically continued to continuous parameter 119904it naturally leads to the following question how does 119864(119904 119908)the analytic continuation of119864

119899(119908) pick up an additional zero

as 119904 increases continuously by oneThis introduces the exciting concept of the dynamics

of the zeros of analytic continued polynomials the idea oflooking at how the zeros move about in the 119908 complex plane

as we vary the parameter 119904 For more studies and results inthis subject you may see [11 14ndash16]

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

6 Discrete Dynamics in Nature and Society

References

[1] S Araci and M Acikgoz ldquoA note on the Frobenius-Eulernumbers and polynomials associated with Bernstein polynomi-alsrdquoAdvanced Studies inContemporaryMathematics vol 22 pp399ndash406 2012

[2] R Ayoub ldquoEuler zeta functionrdquo The American MathematicalMonthly vol 81 pp 1067ndash1086 1974

[3] A Bayad ldquoModular properties of elliptic Bernoulli and EulerfunctionsrdquoAdvanced Studies inContemporaryMathematics vol20 no 3 pp 389ndash401 2010

[4] I N Cangul H Ozden and Y Simsek ldquoA new approach to q-Genocchi numbers and their interpolation functionsrdquo Nonlin-ear Analysis Theory Methods and Applications vol 71 no 12pp e793ndashe799 2009

[5] L-C Jang ldquoOn multiple generalized 120596-Genocchi polynomialsand their applicationsrdquo Mathematical Problems in Engineeringvol 2010 Article ID 316870 8 pages 2010

[6] J Y Kang H Y Lee and N S Jung ldquoSome relations of thetwisted q-Genocchi numbers and polynomials with weight 120572and weak Weight 120573rdquo Abstract and Applied Analysis vol 2012Article ID 860921 9 pages 2012

[7] M S Kim and S Hu ldquoOn p-adic Hurwitz-type Euler Zeta func-tionsrdquo Journal of Number Theory no 132 pp 2977ndash3015 2012

[8] T Kim ldquoBarnes-type multiple q-zeta functions and q-Eulerpolynomialsrdquo Journal of Physics A Mathematical and Theoret-ical vol 43 Article ID 255201 11 pages 2010

[9] T Kim ldquoNote on the Euler q-zeta functionsrdquo Journal of NumberTheory vol 129 no 7 pp 1798ndash1804 2009

[10] T Kim ldquoOn p-adic interpolating function for q-Euler numbersand its derivativesrdquo Journal of Mathematical Analysis and Appli-cations vol 339 no 1 pp 598ndash608 2008

[11] T Kim C S Ryoo L C Jang and S H Rim ldquoExploring the q-riemann zeta function and q-bernoulli polynomialsrdquo DiscreteDynamics in Nature and Society vol 2005 no 2 pp 171ndash1812005

[12] H Ozden and Y Simsek ldquoA new extension of q-Euler num-bers and polynomials related to their interpolation functionsrdquoApplied Mathematics Letters vol 21 no 9 pp 934ndash939 2008

[13] K H Park S-H Rim and E J Moon ldquoOn Genocchi numbersandpolynomialsrdquoAbstract andAppliedAnalysis vol 2008Arti-cle ID 898471 7 pages 2008

[14] C S Ryoo ldquoA numerical computation on the structure of theroots of q-extension of Genocchi polynomialsrdquo Applied Mathe-matics Letters vol 21 no 4 pp 348ndash354 2008

[15] C S Ryoo ldquoCalculating zeros of the second kind Euler polyno-mialsrdquo Journal of Computational Analysis and Applications vol12 pp 828ndash833 2010

[16] C S Ryoo T Kim and R P Agarwal ldquoA numerical investi-gation of the roots of q-polynomialsrdquo International Journal ofComputer Mathematics vol 83 no 2 pp 223ndash234 2006

[17] Y Simsek ldquoGenerating functions of the twisted Bernoulli Num-bers and polynomials associated with their interpolation func-tionsrdquo Advanced Studies in Contemporary Mathematics vol 16no 2 pp 251ndash257 2008

[18] Y Simsek ldquoTwisted (h q)-Bernoulli numbers and polynomialsrelated to twisted (h q)-zeta function andL-functionrdquo Journal ofMathematical Analysis and Applications vol 324 no 2 pp 790ndash804 2006

[19] Y Simsek V Kurt and D Kim ldquoNew approach to the completesum of products of the twisted (h q)-Bernoulli numbers andpolynomialsrdquo Journal ofNonlinearMathematical Physics vol 14no 1 pp 44ndash56 2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Discrete Dynamics in Nature and Society 5

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(a)

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

0

1

(b)

0 2 4 6 8

minus1

minus05

0

05

1

15

Im(w

)

Re(w)

(c)

0

1

0 2 4 6 8

minus1

minus05

05

15

Im(w

)

Re(w)

(d)

Figure 4 Zeros of 119864(119904 119908) for 119904 = 9 96 98 10

Euler polynomials 119864119899(119908) are polynomials of degree 119899

Thus 119864119899(119908) has 119899 zeros and 119864

119899+1(119908) has 119899 + 1 zeros When

discrete 119899 is analytically continued to continuous parameter 119904it naturally leads to the following question how does 119864(119904 119908)the analytic continuation of119864

119899(119908) pick up an additional zero

as 119904 increases continuously by oneThis introduces the exciting concept of the dynamics

of the zeros of analytic continued polynomials the idea oflooking at how the zeros move about in the 119908 complex plane

as we vary the parameter 119904 For more studies and results inthis subject you may see [11 14ndash16]

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

6 Discrete Dynamics in Nature and Society

References

[1] S Araci and M Acikgoz ldquoA note on the Frobenius-Eulernumbers and polynomials associated with Bernstein polynomi-alsrdquoAdvanced Studies inContemporaryMathematics vol 22 pp399ndash406 2012

[2] R Ayoub ldquoEuler zeta functionrdquo The American MathematicalMonthly vol 81 pp 1067ndash1086 1974

[3] A Bayad ldquoModular properties of elliptic Bernoulli and EulerfunctionsrdquoAdvanced Studies inContemporaryMathematics vol20 no 3 pp 389ndash401 2010

[4] I N Cangul H Ozden and Y Simsek ldquoA new approach to q-Genocchi numbers and their interpolation functionsrdquo Nonlin-ear Analysis Theory Methods and Applications vol 71 no 12pp e793ndashe799 2009

[5] L-C Jang ldquoOn multiple generalized 120596-Genocchi polynomialsand their applicationsrdquo Mathematical Problems in Engineeringvol 2010 Article ID 316870 8 pages 2010

[6] J Y Kang H Y Lee and N S Jung ldquoSome relations of thetwisted q-Genocchi numbers and polynomials with weight 120572and weak Weight 120573rdquo Abstract and Applied Analysis vol 2012Article ID 860921 9 pages 2012

[7] M S Kim and S Hu ldquoOn p-adic Hurwitz-type Euler Zeta func-tionsrdquo Journal of Number Theory no 132 pp 2977ndash3015 2012

[8] T Kim ldquoBarnes-type multiple q-zeta functions and q-Eulerpolynomialsrdquo Journal of Physics A Mathematical and Theoret-ical vol 43 Article ID 255201 11 pages 2010

[9] T Kim ldquoNote on the Euler q-zeta functionsrdquo Journal of NumberTheory vol 129 no 7 pp 1798ndash1804 2009

[10] T Kim ldquoOn p-adic interpolating function for q-Euler numbersand its derivativesrdquo Journal of Mathematical Analysis and Appli-cations vol 339 no 1 pp 598ndash608 2008

[11] T Kim C S Ryoo L C Jang and S H Rim ldquoExploring the q-riemann zeta function and q-bernoulli polynomialsrdquo DiscreteDynamics in Nature and Society vol 2005 no 2 pp 171ndash1812005

[12] H Ozden and Y Simsek ldquoA new extension of q-Euler num-bers and polynomials related to their interpolation functionsrdquoApplied Mathematics Letters vol 21 no 9 pp 934ndash939 2008

[13] K H Park S-H Rim and E J Moon ldquoOn Genocchi numbersandpolynomialsrdquoAbstract andAppliedAnalysis vol 2008Arti-cle ID 898471 7 pages 2008

[14] C S Ryoo ldquoA numerical computation on the structure of theroots of q-extension of Genocchi polynomialsrdquo Applied Mathe-matics Letters vol 21 no 4 pp 348ndash354 2008

[15] C S Ryoo ldquoCalculating zeros of the second kind Euler polyno-mialsrdquo Journal of Computational Analysis and Applications vol12 pp 828ndash833 2010

[16] C S Ryoo T Kim and R P Agarwal ldquoA numerical investi-gation of the roots of q-polynomialsrdquo International Journal ofComputer Mathematics vol 83 no 2 pp 223ndash234 2006

[17] Y Simsek ldquoGenerating functions of the twisted Bernoulli Num-bers and polynomials associated with their interpolation func-tionsrdquo Advanced Studies in Contemporary Mathematics vol 16no 2 pp 251ndash257 2008

[18] Y Simsek ldquoTwisted (h q)-Bernoulli numbers and polynomialsrelated to twisted (h q)-zeta function andL-functionrdquo Journal ofMathematical Analysis and Applications vol 324 no 2 pp 790ndash804 2006

[19] Y Simsek V Kurt and D Kim ldquoNew approach to the completesum of products of the twisted (h q)-Bernoulli numbers andpolynomialsrdquo Journal ofNonlinearMathematical Physics vol 14no 1 pp 44ndash56 2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

6 Discrete Dynamics in Nature and Society

References

[1] S Araci and M Acikgoz ldquoA note on the Frobenius-Eulernumbers and polynomials associated with Bernstein polynomi-alsrdquoAdvanced Studies inContemporaryMathematics vol 22 pp399ndash406 2012

[2] R Ayoub ldquoEuler zeta functionrdquo The American MathematicalMonthly vol 81 pp 1067ndash1086 1974

[3] A Bayad ldquoModular properties of elliptic Bernoulli and EulerfunctionsrdquoAdvanced Studies inContemporaryMathematics vol20 no 3 pp 389ndash401 2010

[4] I N Cangul H Ozden and Y Simsek ldquoA new approach to q-Genocchi numbers and their interpolation functionsrdquo Nonlin-ear Analysis Theory Methods and Applications vol 71 no 12pp e793ndashe799 2009

[5] L-C Jang ldquoOn multiple generalized 120596-Genocchi polynomialsand their applicationsrdquo Mathematical Problems in Engineeringvol 2010 Article ID 316870 8 pages 2010

[6] J Y Kang H Y Lee and N S Jung ldquoSome relations of thetwisted q-Genocchi numbers and polynomials with weight 120572and weak Weight 120573rdquo Abstract and Applied Analysis vol 2012Article ID 860921 9 pages 2012

[7] M S Kim and S Hu ldquoOn p-adic Hurwitz-type Euler Zeta func-tionsrdquo Journal of Number Theory no 132 pp 2977ndash3015 2012

[8] T Kim ldquoBarnes-type multiple q-zeta functions and q-Eulerpolynomialsrdquo Journal of Physics A Mathematical and Theoret-ical vol 43 Article ID 255201 11 pages 2010

[9] T Kim ldquoNote on the Euler q-zeta functionsrdquo Journal of NumberTheory vol 129 no 7 pp 1798ndash1804 2009

[10] T Kim ldquoOn p-adic interpolating function for q-Euler numbersand its derivativesrdquo Journal of Mathematical Analysis and Appli-cations vol 339 no 1 pp 598ndash608 2008

[11] T Kim C S Ryoo L C Jang and S H Rim ldquoExploring the q-riemann zeta function and q-bernoulli polynomialsrdquo DiscreteDynamics in Nature and Society vol 2005 no 2 pp 171ndash1812005

[12] H Ozden and Y Simsek ldquoA new extension of q-Euler num-bers and polynomials related to their interpolation functionsrdquoApplied Mathematics Letters vol 21 no 9 pp 934ndash939 2008

[13] K H Park S-H Rim and E J Moon ldquoOn Genocchi numbersandpolynomialsrdquoAbstract andAppliedAnalysis vol 2008Arti-cle ID 898471 7 pages 2008

[14] C S Ryoo ldquoA numerical computation on the structure of theroots of q-extension of Genocchi polynomialsrdquo Applied Mathe-matics Letters vol 21 no 4 pp 348ndash354 2008

[15] C S Ryoo ldquoCalculating zeros of the second kind Euler polyno-mialsrdquo Journal of Computational Analysis and Applications vol12 pp 828ndash833 2010

[16] C S Ryoo T Kim and R P Agarwal ldquoA numerical investi-gation of the roots of q-polynomialsrdquo International Journal ofComputer Mathematics vol 83 no 2 pp 223ndash234 2006

[17] Y Simsek ldquoGenerating functions of the twisted Bernoulli Num-bers and polynomials associated with their interpolation func-tionsrdquo Advanced Studies in Contemporary Mathematics vol 16no 2 pp 251ndash257 2008

[18] Y Simsek ldquoTwisted (h q)-Bernoulli numbers and polynomialsrelated to twisted (h q)-zeta function andL-functionrdquo Journal ofMathematical Analysis and Applications vol 324 no 2 pp 790ndash804 2006

[19] Y Simsek V Kurt and D Kim ldquoNew approach to the completesum of products of the twisted (h q)-Bernoulli numbers andpolynomialsrdquo Journal ofNonlinearMathematical Physics vol 14no 1 pp 44ndash56 2007

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended