+ All Categories
Home > Documents > Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid...

Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid...

Date post: 24-Jan-2021
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
24
Research Article Design and Synthesis of Novel Hybrid Molecules against Malaria Melanie Lödige and Luisa Hiersch Institute of Organic Chemistry, University of W¨ urzburg, Am Hubland, 97074 W¨ urzburg, Germany Correspondence should be addressed to Melanie L¨ odige; [email protected] Received 8 September 2014; Revised 5 December 2014; Accepted 10 December 2014 Academic Editor: Maria Cristina Breschi Copyright © 2015 M. L¨ odige and L. Hiersch. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e effective treatment of malaria can be very complex: Plasmodium parasites develop in multiple stages within a complex life cycle between mosquitoes as vectors and vertebrates as hosts. For the full and effective elimination of parasites, an effective drug should be active against the earliest stages of the Plasmodium infection: liver stages (reduce the progress of the infection), blood stages (cure the clinical symptoms), and gametocytes (inhibit the transmission cycle). Towards this goal, here we report the design, the synthetic methodology, and the characterization of novel hybrid agents with combined activity against Plasmodium liver stages and blood stages and gametocytes. e divergent synthetic approach allows the access to differently linked primaquine-chloroquine hybrid templates in up to eight steps. 1. Introduction Malaria is still one of the most menacing infectious diseases worldwide with estimated 207 million clinical cases and 627,000 death cases (WHO; [1]). e treatment of malaria is complicated by the increasing development of resistance to the currently used medicaments and by the pathogen’s unique biological characteristics [2]. e intracellular and unicellular Plasmodium parasites [3] develop within a complex life cycle between mosquitoes as vectors and vertebrates as hosts [4]. Plasmodium sporozoites are transmitted through the bite of anopheles mosquitoes to humans [5, 6] and are transported by the bloodstream to the liver cells. erein, they develop into preerythrocytic forms [6] and finally transform into erythrocytes infecting [4, 7] merozoites [8]. ese merozoites mature into schizonts, followed by the rupture of red corpus- cles and the release of thousands of merozoites that reinfect erythrocytes and in the end continue the circle of asexual reproduction [9]. A few merozoites develop into gametocytes that are transmitted back to the female anopheles mosquitoes during the blood meal [10], finally completing the malaria transmission cycle [6]. All clinical symptoms such as fever, anemia, splenomegaly [9], and neurological impairment are associated with the parasitic blood stages [7], and the severity of symptoms depends on the patients’ immune status [9]. Among the human pathogenic malarial parasites, Plas- modium falciparum is the most dangerous one [11], respon- sible for more than 90% of all death cases [12]. Unlike P. falci- parum, Plasmodium vivax and Plasmodium ovale have a par- ticular characteristic: they produce hypnozoites [11, 13]. e hypnozoites remain quiescent in the liver cells [14] for several weeks up to several years until their activation causes a relapse without a new infectious bite [6]. Plasmodium parasites have another peculiar characteristic: their surface antigens are different in many parts in each developmental stage. With this complex life cycle, in each stage the parasites can be consid- ered as a different organism, although all stages are attributed to the same genome [15]. is complicates the treatment of malaria that should be active against as many stages as possi- ble; thus finding new effective compounds will help current therapies. Taking this into account, we have reported here the design, synthesis, and characterization of novel hybrid molecules consisting of the well-known antimalarial drugs Hindawi Publishing Corporation International Journal of Medicinal Chemistry Volume 2015, Article ID 458319, 23 pages http://dx.doi.org/10.1155/2015/458319
Transcript
Page 1: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

Research ArticleDesign and Synthesis of Novel HybridMolecules against Malaria

Melanie Loumldige and Luisa Hiersch

Institute of Organic Chemistry University of Wurzburg Am Hubland 97074 Wurzburg Germany

Correspondence should be addressed to Melanie Lodige mloedigeupennedu

Received 8 September 2014 Revised 5 December 2014 Accepted 10 December 2014

Academic Editor Maria Cristina Breschi

Copyright copy 2015 M Lodige and L Hiersch This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

The effective treatment of malaria can be very complex Plasmodium parasites develop in multiple stages within a complex life cyclebetween mosquitoes as vectors and vertebrates as hosts For the full and effective elimination of parasites an effective drug shouldbe active against the earliest stages of the Plasmodium infection liver stages (reduce the progress of the infection) blood stages (curethe clinical symptoms) and gametocytes (inhibit the transmission cycle) Towards this goal here we report the design the syntheticmethodology and the characterization of novel hybrid agents with combined activity against Plasmodium liver stages and bloodstages and gametocytes The divergent synthetic approach allows the access to differently linked primaquine-chloroquine hybridtemplates in up to eight steps

1 Introduction

Malaria is still one of the most menacing infectious diseasesworldwide with estimated 207 million clinical cases and627000 death cases (WHO [1]) The treatment of malaria iscomplicated by the increasing development of resistance tothe currently usedmedicaments and by the pathogenrsquos uniquebiological characteristics [2]The intracellular and unicellularPlasmodium parasites [3] develop within a complex life cyclebetween mosquitoes as vectors and vertebrates as hosts [4]Plasmodium sporozoites are transmitted through the bite ofanopheles mosquitoes to humans [5 6] and are transportedby the bloodstream to the liver cells Therein they developinto preerythrocytic forms [6] and finally transform intoerythrocytes infecting [4 7] merozoites [8]Thesemerozoitesmature into schizonts followed by the rupture of red corpus-cles and the release of thousands of merozoites that reinfecterythrocytes and in the end continue the circle of asexualreproduction [9] A fewmerozoites develop into gametocytesthat are transmitted back to the female anopheles mosquitoesduring the blood meal [10] finally completing the malariatransmission cycle [6] All clinical symptoms such as fever

anemia splenomegaly [9] and neurological impairment areassociated with the parasitic blood stages [7] and the severityof symptoms depends on the patientsrsquo immune status [9]

Among the human pathogenic malarial parasites Plas-modium falciparum is the most dangerous one [11] respon-sible for more than 90 of all death cases [12] Unlike P falci-parum Plasmodium vivax and Plasmodium ovale have a par-ticular characteristic they produce hypnozoites [11 13] Thehypnozoites remain quiescent in the liver cells [14] for severalweeks up to several years until their activation causes a relapsewithout a new infectious bite [6] Plasmodium parasites haveanother peculiar characteristic their surface antigens aredifferent inmany parts in each developmental stageWith thiscomplex life cycle in each stage the parasites can be consid-ered as a different organism although all stages are attributedto the same genome [15] This complicates the treatment ofmalaria that should be active against as many stages as possi-ble thus finding new effective compounds will help currenttherapies

Taking this into account we have reported here thedesign synthesis and characterization of novel hybridmolecules consisting of the well-known antimalarial drugs

Hindawi Publishing CorporationInternational Journal of Medicinal ChemistryVolume 2015 Article ID 458319 23 pageshttpdxdoiorg1011552015458319

2 International Journal of Medicinal Chemistry

primaquine (1) and chloroquine (2) The most active hybridcompounds of our study are potential new drug templatesfor the treatment of malaria and show activities againstthe Plasmodium liver stages and blood stages and againstgametocytes [16 17]The syntheticmethodology uses a diver-gent synthetic approach to differently linked primaquine-chloroquine hybrid templates resulting in several moleculesbased on one key intermediate (12)

The new hybrids reported in this work showed goodto excellent biological activity against the liver stages (Pberghei) blood stages (P falciparum strains 3D7 Dd2 andK1) and gametocytes (P falciparum) the activity is betterthan the activity of the parent drugs primaquine (1) andchloroquine (2) combinedThe detailed biological results arepart of a more comprehensive study described and publishedin our patent application [16 17]

2 Results and Discussion

21 Basic Considerations for the Design of Hybrid Moleculesagainst Malaria Sporozoites and liver stages are fascinatingtargets for the development of new drugs Effective drugmolecules against the earliest stages would decrease or evenavoid the occurrence of blood stages and consequently ofclinical symptoms (prophylactic effectiveness) [14] In addi-tion active compounds against gametocytes would fullyeradicate the parasites thereby efficiently preventing thetransmission cycle [14] However more than 90 of thecurrent drug research projects worldwide aim at targeting theblood stages [6] At present there is nomedicament availableequally active against all stages of the life cycle and againstall Plasmodium species [18] In order to improve the malariatreatment the World Health Organization recommendedin 2001 to combine antimalarial drugs and to avoid themonotherapeutic treatment [19] Combination therapy mayovercome pharmacodynamic disadvantages [20] but resis-tancemay develop when the drugs have different half-life val-ues or have in general long half-lives thus reaching subther-apeutic blood concentrations [21ndash24] Additionally patientsoften do not comply with complex treatment schemes ofmultiple medicaments [25]

The hybrid concept gained importance in the last decadeThe synthesis of hybrid molecules of two or more [26]established drugs (full or partial molecules) and of naturalproduct structures was used more and more and resulted insynergistic effectiveness especially against resistant organ-isms by these new structures [27] A hybrid drug has a singlepharmacokinetic profile easy to predict and control [28 29]thus superior to a standard combination therapy [30] hybriddrugs are absorbed distributed metabolized and excreted atone single rate [20] With hybrid drugs there is no competi-tion for plasma protein binding as in the case of single drugs[20] thus reducing the risk of drug interactions [31]The ratioof the single drugs is determined by the hybrid structureand doses cannot be as flexibly administered as in the caseof single drugs [32] In addition pharmacokinetic character-istics can be controlled by the linkage moiety [33] For a suc-cessful hybrid drug the activities of each single drug should

bewithin the same concentration range to prevent the activityof only one moiety [20] In conclusion hybrid molecules canoffer the advantages of a combination therapy along withimproved pharmacokinetic profiles and potential activityagainst resistant strains by these new structures but have thedisadvantage of a less flexible administration

The use of established drugs can result in a rapid thera-peutic progress with low economical risk [34 35] To avoidthe vicious circle of a Plasmodium infection an ideal drugwould have good activity against sporozoites (prophylacticactivity) [36] preerythrocytic liver stages (causal-prophy-lactic) [37 38] blood stages (suppressive-prophylactic andtherapeutic activity) and gametocytes [39 40] as well asagainst hypnozoites to avoid relapses [41]

The drugs primaquine (1) and chloroquine (2) have beensuccessfully used in combination for the weekly chemo-prophylaxis against malaria during the Vietnam War [42ndash44] Both are approved and low-priced drugs [45] and theyare active against most stages of the Plasmodium infectionin humans Primaquine (1) has a very short half-life [4146] and accumulates potentially harmful metabolites [4748] However primaquine has been safe and an effectiveprophylactic agent for nonpregnant women and travelerswith a normal glucose-6-phosphate dehydrogenase level [42]in endemic malaria regions up to 20 of the patients onaverage suffer from such a deficiency [49] Chloroquine has along terminal half-life with a higher risk to develop resistantstrains under subtherapeutic concentrations [50 51] and isa safe medicament in therapeutic doses [52] In additionprimaquine can reduce the chloroquine efflux transport (aresistancemechanism) by binding to the PfCRTchannels [53]and support the activity of chloroquine [54]

The goal of our study was to design and synthesize com-pounds active against different Plasmodium infection stagesby the combination of structural motives of both compoundsin one hybrid molecule

22 Chemistry Hybrid molecules of primaquine (1) andchloroquine (2) pharmacophores were designed and synthe-sized with different types of linkage with an authentic linkerpart without a linkage moiety with an elongated piperazinediamide or diamine linker bond and with an aromatic-typelinkage (Figures 1 and 2) [16 17]

221 Primaquine-ChloroquineHybridMolecules withAuthen-tic Linkage Thefirst dualmoleculeswere synthesizedwith anauthentic linkage part in order to avoid additional structuralmoieties on the pharmacodynamic and pharmacokineticproperties of the hybrid compounds Earlier examples of pri-maquine derivatives showed that the linkage of primaquinecan be performed via the primary amine without loss ofactivity [55 56] Therefore hybrid structures of primaquine(1) and a chloroquine moiety (3) were synthesized with alinker using original side chain of primaquine with a phar-macophore ratio of 1 1 and 1 2 of primaquine (1) to chloro-quine (2) Since a Buchwald-Hartwig amination protocolleads merely to low yields (a decomposition of the palladium

International Journal of Medicinal Chemistry 3

NH

N Cl

Me

(rac)-Chloroquine (2 3)

N

MeO

HN

Me

(rac)-Primaquine (1 4)

NHN

MeO

NH

N Cl

Primaquinemotif

Chloroquinemotif

Linker8 4lowast

lowastEt2N

NH2

Figure 1 The first component of the hybrid drugs (rac)-primaquine (1) and its pharmacophore moiety (in green 4) as well as the seconddrug (rac)-chloroquine (2) and the corresponding pharmacophore structure (in blue 3)

N

MeO

HN NNH

OKey intermediate 12

N

MeO

HN N

N

O

N

Cl

13(62)

N

MeO

HN NN

N

Cl

14(9)

N

MeO

HN NN

O

O

NH

N

Cl

N

MeO

N NN

O

O

NH

NCl

N

Cl

15(11)

17(10)

N

MeO

HNN

N

NH

N

Cl

N

MeO

N NN N

H

N

ClN

Cl

16(3)

(3)18

HNNH

11

4 steps(51)

4 steps

1 step

4 steps 4 steps

2 steps

4 steps

Figure 2 Overall view of the piperazine-linked hybrid compounds 13 to 18 which were synthesized by the divergent synthetic route startingfrom piperazine (11)

catalyst was observed) a nucleophilic substitution reaction ofprimaquine (1) and 47-dichloroquinoline was performed at120∘C under neat conditions to obtain the hybrid molecules(rac)-5 (82 yield) and (rac)-6 (77 Scheme 1) [57]

222 Primaquine-Chloroquine Hybrid Molecules withoutLinkage Additional derivatives consisting of the aromaticpharmacophore were prepared by a direct linkage of bothmotives in a ratio of 1 1 and 1 2 of primaquine (4) to chloro-quine (3) moiety

The commercially available 6-methoxy-8-nitroquinoline(7) was hydrogenated by hydrogen gas and PdC as catalystin MeOH (dry) to give the amine 4 in 95 yield Thisprimaquine motif was allowed to react with 47-dichloro-quinoline at 120∘C under neat conditions to give the hybridmolecules 9 in 95 and 10 in 25 yield (Scheme 2)

223 Divergent Synthetic Route to Piperazine-Linked Prima-quine-Chloroquine Hybrid Molecules The diamine piper-azine (11) can link the pharmacophore moieties 3 and 4 in

4 International Journal of Medicinal Chemistry

NMeO

HNNH

Me

N Cl

(rac)-5 (82)

N

MeO

HN

Me

(rac)-Primaquine (1)

N

MeO

N

NHMe

N Cl

N

Cl(rac)-6 (77)

lowast

lowastlowast

NH2

(a) (b)

Scheme 1 Synthesis of the primaquine-chloroquine hybrid molecules (ratio 1 1 [57] and ratio 1 2) with an authentic linkage part ofprimaquine (1) Reagents and conditions (a) 47-dichloroquinoline (05 equivalents) neat 120∘C (b) 47-dichloroquinoline (3 equivalents)neat 120∘C

9 (95)

4 (95)

10 (25)

N

MeO

N

MeO

NH

N

Cl

N

MeO

N

N

Cl

N

Cl

N

MeO

7

NH2NO2

(a)

(b)

(c)

Scheme 2 Synthesis of the hybrid compounds 9 and 10 Reagents and conditions (a) H2

(g) PdC MeOH (dry) 25∘C (b) 47-dichloro-quinoline (07 equivalents) neat 120∘C (c) 47-dichloroquinoline (3 equivalents) neat 120∘C

different ways through one or both nitrogen atoms andthrough amide or amine bonds By using a divergent syn-thetic route six hybrid molecules (13 to 18) were obtainedstarting from the same educt piperazine (11 Figure 2) inup to eight steps The synthesized hybrid molecules differin their number of nitrogen atoms and in their type ofbond (amide or amine bond) that determines their basicmolecular properties The dual molecules consist at least oftwo quinoline nitrogen atoms of two anilinic nitrogen atomsand of either one or two basic tertiary piperazine aminefunctionalities (14 16 and 18) or of one and two nonbasictertiary piperazine amide functions (13 15 and 17)Thus thecompounds differ in the possibility to be enriched by pro-tonation in acidic compartments (described for chloroquine[58]) thus influencing the bioactivity against the parasiticstages

All piperazine-linked hybrid molecules contained a C3spacer between the primaquine pharmacophore and the

piperazine part The required acyl chloride 19 for the spacerpart was produced in 63 yield by the reflux of 3-bro-mopropionic acid with thionyl chloride [59] The sequencestarted with piperazine which was first protected by a Bocgroup using Boc

2O in DCM (dry) at 0∘C to obtain the

monoprotected piperazine 20 in 78 yield Compound 20was further converted into the bromine derivative 21 in 91yield by slowly dropping 19 into a solution of 20 in DCM(dry) at temperatures from 0∘C to 25∘C (Scheme 3) [60]

6-Methoxy-8-aminoquinoline (4) was deprotonated usingNaH in DMF (dry) at 0∘C and was allowed to react with thebromine-substituted linker part 21 at temperatures from 0∘Cup to 25∘C to obtain compound 23 in good yields (74) andthe disubstituted side product 24 in 17 yield Performing theBoc deprotection of amine 23 using TFA the free amine andkey intermediate 12 of the divergent route was obtained in98 yield and was linked to 47-dichloroquinoline at 120∘Cunder neat conditions to give hybrid 13 in 62 (Scheme 3)

International Journal of Medicinal Chemistry 5

Br Cl

O

HN

BocNNBoc

N

O

BrHN

NH

+

1120 (78)

22 (9)

19 (63)

N

MeO

HN N

NBocNBoc

NBoc

O

+

MeO

NH

NONBoc

N

O

BocN

23 (74)

24 (17)

N

MeO

HN NNH

O

N

MeO

HN N

N

O

N

Cl

12 (98)

13 (62)

21 (91)

Br OH

O

(d)

(e)

(f)

N+

Brminus

(a)

(b)

(c)

Scheme 3 Synthetic route for hybrid molecule 13 a piperazine-linked primaquine-chloroquine dual molecule Reagents and conditions (a)Boc2

O DCM (dry) 0∘C (b) SOCl2

80∘C (c) NaOAc DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaH DMF (dry) 0ndash25∘C(e) TFA DCM 25∘C (f) 47-dichloroquinoline neat 120∘C

The key intermediate 12 was reduced by LiAlH4in THF

(dry) to obtain compound25 in low yields of 30 (Scheme 4)Multiple reasons for the low reduction yields of primaquineanalogs have been described earlier [61] formation of numer-ous soluble and stable complexes of the primaquine moietywith the reducing agent LiAlH

4at room temperature [61]

which complicates the detection of the complete consump-tion of the starting material during the reaction Further-more a splitting of the 8-amine-carbon bond by reduc-ing agent LiAlH

4and a partial reduction of the pyridinic

moiety to the corresponding tetrahydroisoquinoline mighthave caused low yields [61] Conversion of 25 with 47-dichloroquinoline at 120∘C under neat conditions gave com-pound 14 in 41 yield

The synthesis of hybrid molecules with a further elon-gated C3-piperazine-C3 linkage started with the introductionof the additional C3 part to the key intermediate 12 whichwas allowed to react with the acyl chloride 19 at minus20∘C

to give amide 26 in 69 yield (Scheme 5) and the twoadditional regioisomers as well as the corresponding elimina-tion product of amide 26 The azide function was introducedto 26 using NaN

3to obtain the azide 27 in 92 yield

followed by the reduction to the amine 28 in 81 yield usingthe Staudinger reaction The linkage of amine 28 with 47-dichloroquinoline gave the dual molecule 15 or the disubsti-tuted hybrid 17 (depending on the number of equivalents of47-dichloroquinoline) in low yields of 30 (15) and 28 (17)respectively

Starting from the azide 27 two further hybrid molecules(16 18) were obtained Azide 27was reduced using LiAlH

4in

34 yield to amine 29 with two tertiary and basic piperazinenitrogen atoms that might influence the bioactivity values byenrichment in acidic compartmentsThe free amine functionof compound 29was linkedwith 47-dichloroquinoline to themonosubstituted 16 and the disubstituted 18 in 17 and 23yield respectively (Scheme 6)

6 International Journal of Medicinal Chemistry

N

MeO

HN NNH

O

N

MeO

HN NNH

N

MeO

HN N

N

N

Cl

14 (41)25 (30)12

(a) (b)

Scheme 4 Synthesis of the hybrid substance 14 starting with the reduction of the key intermediate 12 and followed by the linkage to thechloroquine motif Reagents and conditions (a) LiAlH

4

THF (dry) 80∘C (b) 47-dichloroquinoline neat 120∘C

N

MeO

HN NNH

O

N

MeO

HN NN

O

O

Br

N

MeO

HN N

N

O

O

N

MeO

HN NN

O

O

NH

N

Cl

N

MeO

N NN

O

O

NH

N

ClN

Cl

12 26 (69)

28 (81)

15 (30)

17 (28)

N

MeO

HN N

N

O

O

27 (92)

NH2

N3(a) (b)

(c)

(d)

(e)

Scheme 5 Synthesis of the hybrid compound 15 (ratio 1 1) and of substance 17 (ratio 1 2) by the divergent synthetic route using a C3-piperazine-C3 linkage Reagents and conditions (a) 3-bromopropionyl chloride (19) NaOAc DCM (dry) minus20∘C (b) NaN

3

DMF (dry)25∘C (c) PPh

3

MeOH (dry) 25∘C (d) 47-dichloroquinoline (075 equivalents) neat 120∘C (e) 47-dichloroquinoline (3 equivalents) neat120∘C

224 Synthetic Route toHybridMolecule 30with anAromatic-Type Linkage The influence of the linkage composition onthe bioactivity values was further investigated and a hybridmolecule with a nonbasic plain aromatic linker moiety wasdesigned and synthesized The distance between the linkagepositions of the primaquine pharmacophore and of thechloroquine pharmacophore moieties corresponded approx-imately to the distance in the genuine hybrid molecule 5 Thenumber of nitrogen atoms was not changed but the lipophil-icity was expected to be higher than that for the genuinecompound 5 due to the formal para-xylene part

The first attempts to synthesize 30 from the less expen-sive chloroquine moiety were not successful Therefore thesynthesis was started from the primaquine building block

The protecting group free protocol started with thecommercially available 14-benzenedimethanol which wasconverted by the use of 12-dibromotetrachloroethane andPPh3to the monobrominated product 31 in 63 yield and

to the side product the double brominated compound 32in 35 yield (Scheme 7) The introduction of the azidefunction by NaN

3gave 99 of compound 33 followed by the

tosylationwith p-toluenesulfonyl chloride to compound 34 in71 yield and by the linkage to the primaquine motif 4 yield-ing compound 35 (41) The key intermediate 35 was alsoobtained by the linkage of the brominated derivative 31 with6-methoxy-8-aminoquinoline (4) in 68 yield followed bythe azide introduction using DPPA andDBU in toluene (dry)at room temperature in 75 yield [62] The first route overfour steps resulted in the key intermediate 35 with an overallyield of 18 the second route over three steps resulted inintermediate 35 with a yield of 32

Compound 35 was reduced to amine 37 (95) by Staud-inger conditions the amine 37 was finally linked to the sec-ond pharmacophore moiety using 47-dichloroquinoline at120∘C under neat conditions yielding the target hybridmole-cule 38 in 43

International Journal of Medicinal Chemistry 7

N

MeO

HN NN

O

O

N

MeO

HN N

N NH

N

Cl

N

MeO

N N

N NH

N

Cl

N

Cl

27

16 (17) 18 (23)

N

MeO

HN N

N

29 (34)

(a)

(b) (c)

N3 NH2

Scheme 6 Synthetic route of the hybrid molecules 16 and 18 with higher basic molecule properties Reagents and conditions (a) LiAlH4

THF (dry) 80∘C (b) 47-dichloroquinoline (08 equivalents) neat 120∘C (c) 47-dichloroquinoline (five equivalents) neat 120∘C

23 Discussion Hybrid 5 showed a significant effect on themorphology of the liver and on the total number of liver stageparasites (P berghei) which were reduced by a concentrationsignificantly lower than that of primaquine (1) required forthe same activity All additional hybrid molecules showed aninfluence on the size of liver stages in comparison with theparasite wildtype and on the number of liver stages after 24hours (Scheme 8)

Amide 13 compared with amine 14 showed a decreasednumber of liver stages and a greater influence on the growthwith a smaller diameter of the parasitic stages The numberof liver stages and the parasite growth were slightly decreasedusing the elongated amide 15 comparedwith the 14with a sec-ond C3 linker in comparison with 15 the amine 16 showeda stronger increase in the number of parasites whereas thediameter did not alter significantly The introduction of thesecond elongating linker part as well as the variation of thebasic molecule properties of the four investigated molecules(13 to 16) had very little influence on the activity againstthe number and the diameter of parasites The introductionof two chloroquine motives resulted in molecules that wereless effective against the growth compared with the previousmonosubstituted derivatives amide 17 and the correspond-ing amine 18 showed a comparable weak effect on the growthof parasites but after 24 hours 17 and 18 as well as 16 and 38showed the lowest number of liver stages In this case as wella modification of the basic molecule property values did notinfluence the activity against liver stages

The hybrid molecules were tested against the followingstrains of P falciparum 3D7 (chloroquine and pyrimetham-ine sensitive strain) [63 64] Dd2 (resistant against chloro-quine mefloquine and pyrimethamine) [65] and K1 (resis-tant against pyrimethamine [63 66] and one of the mostresistant strains against chloroquine) [67] The equimolarcombination of primaquine (1) and chloroquine (2) and theequimolar combination of both the chloroquine (3) and the

primaquine motives (4) were measured in comparison withthe hybrid compounds

Almost all of the investigated hybrid molecules showedimproved activity against blood stages of P falciparum (3D7Dd2 and K1) Against strain 3D7 hybrid molecule 5 showedlower activity than chloroquine but 5 was still very activeat a concentration lower than 1 120583M also in comparison withprimaquine and to the chloroquine motif 3 The primaquinemoiety 4was not activeThe combination of both the chloro-quine and primaquine motifs 3 and 4 showed activity in therange of the chloroquine motif alone and hence had no addi-tional or synergistic effect on each other Also the equimolarcombination of primaquine (1) and chloroquine (2) showedactivity in the concentration range of chloroquine

Against strain Dd2 hybrid 5 showed a slightly improvedactivity compared with 3D7 Chloroquine (2) was less activeagainst Dd2 than against 3D7 and primaquine (1) had only aweak effect The primaquine motif 4 showed no activity butthe chloroquine motif 3 surprisingly showed a better activitycompared with 3D7 This was also confirmed by the equimo-lar combination of both motives 3 and 4 The equimolarcombination of chloroquine (2) and primaquine (1) showedenhanced activity compared with only chloroquine (2) thushinting the chloroquine resistance-reversing effect of pri-maquine (1) [54]

Against strain K1 the equimolar combination of chloro-quine (2) and primaquine (1) showed a better activity thanagainst the strainDd2 Chloroquine (2) showed a comparableactivity in comparison with Dd2 and the order of efficacy ofprimaquine (1) was 3D7 lt Dd2 lt K1 Also the hybrid com-pound 5 showed the best activity against the K1 strain Theorder of activity of compound 5 was 3D7 asymp Dd2 lt K1 (fivetimes higher than Dd2 and 3D7) This higher activity againstK1 strain than against the other strains can be probably due tothe resistance-reversing effect of primaquine [54] combinedwith the better activity of primaquine on its own The

8 International Journal of Medicinal Chemistry

NN

N

N

MeOMeO

MeO

MeO

HNHN

HN

HN

N

NH

Cl

N3

N3

N3

NH2

Br

Br

BrHO

HOHO

OH

OH

31 (63)

32 (35)

35 (f 75) 35 (d 41)36 (68)

37 (95)

33 (99)

34 (71)

38 (43)

TsO

+(a) (b)

(c)

(d)

(e)

(h)

(g)

(f)

Scheme 7 Two variants of the protecting group free synthesis of the aromatic-type linker moiety to obtain the key intermediate azide 35Reagents and conditions (a) (CBrCl

2

)2

PPh3

DCM (dry) 0ndash25∘C (b) NaN3

DMF (dry) 25∘C (c) TsCl NaH DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (e) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (f) DPPA DBUtoluene (dry) 25∘C (g) PPh

3

MeOH (dry) 25∘C (h) 47-dichloroquinoline neat 120∘C

primaquinemoiety 4was inactive against K1 but surprisinglythe chloroquine motif 3 showed its best activity against K1The combination of both motifs 3 and 4 showed effectivenessagainst K1 in the same range as 3 against K1 due to presenceof the chloroquine motif

Both compounds 9 and 10 showed good activities againstall strains but were slightly less active than the first repre-sentative 5 The derivative 6 showed improved bioactivitiesin the submicromolar range and had a similar linkage ascompound 5 originating from the primaquine side chain butwith a pharmacophore ratio of primaquine to chloroquinemoiety of 1 2 This might be due to not only the number ofpharmacophores but also an increased lipophilicity correlat-ing with an enhanced membrane permeability an increasedbasicity with a higher enrichment in acidic compartments or

an increased planar aromatic system capable of shielding thesurface of hemozoin from further growth

The piperazine-linked amide 13 and the amine 14 showedthe lowest activities against the blood stages Only 14 showedvery good activity against strain K1 (lower than 1 120583M) Thelow activity of both these molecules could be due to the lackof a strong basic center such as the tertiary nitrogen atom likein compound 16

Compounds 15 and 16 elongated piperazine derivativeswith a second C3 linker showed improved activities against3D7 andDd2whereby the diamine 16 with higher basic prop-erties was significantly active against strain K1Thismight beinfluenced by a higher total flexibility of compounds 15 and 16due to two C3 linkers the basic properties of the diamide 15and the diamine 16 might not be the cause of their higher

International Journal of Medicinal Chemistry 9

NHN

MeO

NH

N Cl

Linker

Authenticlinker

HNNH

Me

Nolinker

Piperazinelinker

Xylenelinker

NN

O

O

NN

O

NN

NN

3D7

Reference drugs(1) Primaquine(2) Chloroquine

(3) Chloroquine motif(4) Primaquine motif

Dd2

K1

Gametocytaemia

Liver stage-number [ compared to wildtype]

Liver stage-diameter [ compared to wildtype]

2 = 6 gt (1 + 2 15x) gt 17(20x) = 18 gt 30(15x) = 15 gt 16(11x) gt 5(64x) gt 10(17x) gt 9(16x) gt 1(18x)gt 3(13x) gt (3 + 4 12x) sim 14(11x) gt 13(11) gt 4 (inactive)2 = 6 gt (1 + 2 15x) gt 13(185x)2 = 6 gt (3 + 4 246x) gt 13(11x)

6 = 17 gt 16(15x) gt 30(12x) gt 18(14x) gt 15(12x) gt (1 + 2 16x) gt 2(14x) gt 5(22x) gt 1(20x) gt 9(15x)gt (3 + 4 14x) gt 3(11x) gt 13(12x) gt 14(11x) gt 10(12) gt 4 (inactive)6 = 17 gt (1 + 2 48x) gt 10(20x)6 = 17 gt (3 + 4 60x) gt 10(16x)

6 = 18 gt 16(20x) = 17 gt 30(35x) gt 5(13x) gt 15(16x) gt (1 + 2 12x) gt 2(12x) gt 14(15x) gt 1(20x)gt (3 + 4 11x) sim 3 gt 10(25x) gt 9(13x) gt 13(11) gt 4 (inactive)6 = 18 gt (1 + 2 170x) gt 13(149x)6 = 18 gt (3 + 4 68x) gt 10(37x)

5 sim 1 gt 9(13x) = 14 gt 13(13x) = 10 sim 18 sim 6 sim 16 sim 15 gt 17(11x) sim 30 gt 2(15x)5 sim 1 gt 10(17x) gt 30(12x) gt 2(15x)

sim 15 gt 14(11x) gt 3(12x)18 = 30 gt (1 + 2 3 + 4 14x) gt 14(17x)

13 gt 30(12x) gt 15(12x) gt 1(11x) = 16 sim 5 gt 3(11x) = (1 + 2) sim 4(11x) sim (3 + 4) sim 14 gt 17(11x)gt 18(11x) sim 2 gt wildtype (11x)

13 gt (1 + 2 16x) gt 2(13x)13 gt (3 + 4 17x) gt 2(12x)

18 = 30 gt 16(11x) gt 1(11x) gt 17(11x) sim 5 gt (1 + 2 11x) sim 13 sim (3 + 4) sim 4 gt wildtype (14x) sim 2(142x)

lowast

Scheme 8 Bioactive molecules of the study reference drugs (1 2 3 and 4) and their combinations (1 + 2 3 + 4) in order from the highestto the lowest activities (referring to IC

50

values for 3D7 Dd2 and K1 gametocytaemia and number and diameter of the liver stages resp)in brackets the ratios of activities of the compounds compared to the former substances

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 2: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

2 International Journal of Medicinal Chemistry

primaquine (1) and chloroquine (2) The most active hybridcompounds of our study are potential new drug templatesfor the treatment of malaria and show activities againstthe Plasmodium liver stages and blood stages and againstgametocytes [16 17]The syntheticmethodology uses a diver-gent synthetic approach to differently linked primaquine-chloroquine hybrid templates resulting in several moleculesbased on one key intermediate (12)

The new hybrids reported in this work showed goodto excellent biological activity against the liver stages (Pberghei) blood stages (P falciparum strains 3D7 Dd2 andK1) and gametocytes (P falciparum) the activity is betterthan the activity of the parent drugs primaquine (1) andchloroquine (2) combinedThe detailed biological results arepart of a more comprehensive study described and publishedin our patent application [16 17]

2 Results and Discussion

21 Basic Considerations for the Design of Hybrid Moleculesagainst Malaria Sporozoites and liver stages are fascinatingtargets for the development of new drugs Effective drugmolecules against the earliest stages would decrease or evenavoid the occurrence of blood stages and consequently ofclinical symptoms (prophylactic effectiveness) [14] In addi-tion active compounds against gametocytes would fullyeradicate the parasites thereby efficiently preventing thetransmission cycle [14] However more than 90 of thecurrent drug research projects worldwide aim at targeting theblood stages [6] At present there is nomedicament availableequally active against all stages of the life cycle and againstall Plasmodium species [18] In order to improve the malariatreatment the World Health Organization recommendedin 2001 to combine antimalarial drugs and to avoid themonotherapeutic treatment [19] Combination therapy mayovercome pharmacodynamic disadvantages [20] but resis-tancemay develop when the drugs have different half-life val-ues or have in general long half-lives thus reaching subther-apeutic blood concentrations [21ndash24] Additionally patientsoften do not comply with complex treatment schemes ofmultiple medicaments [25]

The hybrid concept gained importance in the last decadeThe synthesis of hybrid molecules of two or more [26]established drugs (full or partial molecules) and of naturalproduct structures was used more and more and resulted insynergistic effectiveness especially against resistant organ-isms by these new structures [27] A hybrid drug has a singlepharmacokinetic profile easy to predict and control [28 29]thus superior to a standard combination therapy [30] hybriddrugs are absorbed distributed metabolized and excreted atone single rate [20] With hybrid drugs there is no competi-tion for plasma protein binding as in the case of single drugs[20] thus reducing the risk of drug interactions [31]The ratioof the single drugs is determined by the hybrid structureand doses cannot be as flexibly administered as in the caseof single drugs [32] In addition pharmacokinetic character-istics can be controlled by the linkage moiety [33] For a suc-cessful hybrid drug the activities of each single drug should

bewithin the same concentration range to prevent the activityof only one moiety [20] In conclusion hybrid molecules canoffer the advantages of a combination therapy along withimproved pharmacokinetic profiles and potential activityagainst resistant strains by these new structures but have thedisadvantage of a less flexible administration

The use of established drugs can result in a rapid thera-peutic progress with low economical risk [34 35] To avoidthe vicious circle of a Plasmodium infection an ideal drugwould have good activity against sporozoites (prophylacticactivity) [36] preerythrocytic liver stages (causal-prophy-lactic) [37 38] blood stages (suppressive-prophylactic andtherapeutic activity) and gametocytes [39 40] as well asagainst hypnozoites to avoid relapses [41]

The drugs primaquine (1) and chloroquine (2) have beensuccessfully used in combination for the weekly chemo-prophylaxis against malaria during the Vietnam War [42ndash44] Both are approved and low-priced drugs [45] and theyare active against most stages of the Plasmodium infectionin humans Primaquine (1) has a very short half-life [4146] and accumulates potentially harmful metabolites [4748] However primaquine has been safe and an effectiveprophylactic agent for nonpregnant women and travelerswith a normal glucose-6-phosphate dehydrogenase level [42]in endemic malaria regions up to 20 of the patients onaverage suffer from such a deficiency [49] Chloroquine has along terminal half-life with a higher risk to develop resistantstrains under subtherapeutic concentrations [50 51] and isa safe medicament in therapeutic doses [52] In additionprimaquine can reduce the chloroquine efflux transport (aresistancemechanism) by binding to the PfCRTchannels [53]and support the activity of chloroquine [54]

The goal of our study was to design and synthesize com-pounds active against different Plasmodium infection stagesby the combination of structural motives of both compoundsin one hybrid molecule

22 Chemistry Hybrid molecules of primaquine (1) andchloroquine (2) pharmacophores were designed and synthe-sized with different types of linkage with an authentic linkerpart without a linkage moiety with an elongated piperazinediamide or diamine linker bond and with an aromatic-typelinkage (Figures 1 and 2) [16 17]

221 Primaquine-ChloroquineHybridMolecules withAuthen-tic Linkage Thefirst dualmoleculeswere synthesizedwith anauthentic linkage part in order to avoid additional structuralmoieties on the pharmacodynamic and pharmacokineticproperties of the hybrid compounds Earlier examples of pri-maquine derivatives showed that the linkage of primaquinecan be performed via the primary amine without loss ofactivity [55 56] Therefore hybrid structures of primaquine(1) and a chloroquine moiety (3) were synthesized with alinker using original side chain of primaquine with a phar-macophore ratio of 1 1 and 1 2 of primaquine (1) to chloro-quine (2) Since a Buchwald-Hartwig amination protocolleads merely to low yields (a decomposition of the palladium

International Journal of Medicinal Chemistry 3

NH

N Cl

Me

(rac)-Chloroquine (2 3)

N

MeO

HN

Me

(rac)-Primaquine (1 4)

NHN

MeO

NH

N Cl

Primaquinemotif

Chloroquinemotif

Linker8 4lowast

lowastEt2N

NH2

Figure 1 The first component of the hybrid drugs (rac)-primaquine (1) and its pharmacophore moiety (in green 4) as well as the seconddrug (rac)-chloroquine (2) and the corresponding pharmacophore structure (in blue 3)

N

MeO

HN NNH

OKey intermediate 12

N

MeO

HN N

N

O

N

Cl

13(62)

N

MeO

HN NN

N

Cl

14(9)

N

MeO

HN NN

O

O

NH

N

Cl

N

MeO

N NN

O

O

NH

NCl

N

Cl

15(11)

17(10)

N

MeO

HNN

N

NH

N

Cl

N

MeO

N NN N

H

N

ClN

Cl

16(3)

(3)18

HNNH

11

4 steps(51)

4 steps

1 step

4 steps 4 steps

2 steps

4 steps

Figure 2 Overall view of the piperazine-linked hybrid compounds 13 to 18 which were synthesized by the divergent synthetic route startingfrom piperazine (11)

catalyst was observed) a nucleophilic substitution reaction ofprimaquine (1) and 47-dichloroquinoline was performed at120∘C under neat conditions to obtain the hybrid molecules(rac)-5 (82 yield) and (rac)-6 (77 Scheme 1) [57]

222 Primaquine-Chloroquine Hybrid Molecules withoutLinkage Additional derivatives consisting of the aromaticpharmacophore were prepared by a direct linkage of bothmotives in a ratio of 1 1 and 1 2 of primaquine (4) to chloro-quine (3) moiety

The commercially available 6-methoxy-8-nitroquinoline(7) was hydrogenated by hydrogen gas and PdC as catalystin MeOH (dry) to give the amine 4 in 95 yield Thisprimaquine motif was allowed to react with 47-dichloro-quinoline at 120∘C under neat conditions to give the hybridmolecules 9 in 95 and 10 in 25 yield (Scheme 2)

223 Divergent Synthetic Route to Piperazine-Linked Prima-quine-Chloroquine Hybrid Molecules The diamine piper-azine (11) can link the pharmacophore moieties 3 and 4 in

4 International Journal of Medicinal Chemistry

NMeO

HNNH

Me

N Cl

(rac)-5 (82)

N

MeO

HN

Me

(rac)-Primaquine (1)

N

MeO

N

NHMe

N Cl

N

Cl(rac)-6 (77)

lowast

lowastlowast

NH2

(a) (b)

Scheme 1 Synthesis of the primaquine-chloroquine hybrid molecules (ratio 1 1 [57] and ratio 1 2) with an authentic linkage part ofprimaquine (1) Reagents and conditions (a) 47-dichloroquinoline (05 equivalents) neat 120∘C (b) 47-dichloroquinoline (3 equivalents)neat 120∘C

9 (95)

4 (95)

10 (25)

N

MeO

N

MeO

NH

N

Cl

N

MeO

N

N

Cl

N

Cl

N

MeO

7

NH2NO2

(a)

(b)

(c)

Scheme 2 Synthesis of the hybrid compounds 9 and 10 Reagents and conditions (a) H2

(g) PdC MeOH (dry) 25∘C (b) 47-dichloro-quinoline (07 equivalents) neat 120∘C (c) 47-dichloroquinoline (3 equivalents) neat 120∘C

different ways through one or both nitrogen atoms andthrough amide or amine bonds By using a divergent syn-thetic route six hybrid molecules (13 to 18) were obtainedstarting from the same educt piperazine (11 Figure 2) inup to eight steps The synthesized hybrid molecules differin their number of nitrogen atoms and in their type ofbond (amide or amine bond) that determines their basicmolecular properties The dual molecules consist at least oftwo quinoline nitrogen atoms of two anilinic nitrogen atomsand of either one or two basic tertiary piperazine aminefunctionalities (14 16 and 18) or of one and two nonbasictertiary piperazine amide functions (13 15 and 17)Thus thecompounds differ in the possibility to be enriched by pro-tonation in acidic compartments (described for chloroquine[58]) thus influencing the bioactivity against the parasiticstages

All piperazine-linked hybrid molecules contained a C3spacer between the primaquine pharmacophore and the

piperazine part The required acyl chloride 19 for the spacerpart was produced in 63 yield by the reflux of 3-bro-mopropionic acid with thionyl chloride [59] The sequencestarted with piperazine which was first protected by a Bocgroup using Boc

2O in DCM (dry) at 0∘C to obtain the

monoprotected piperazine 20 in 78 yield Compound 20was further converted into the bromine derivative 21 in 91yield by slowly dropping 19 into a solution of 20 in DCM(dry) at temperatures from 0∘C to 25∘C (Scheme 3) [60]

6-Methoxy-8-aminoquinoline (4) was deprotonated usingNaH in DMF (dry) at 0∘C and was allowed to react with thebromine-substituted linker part 21 at temperatures from 0∘Cup to 25∘C to obtain compound 23 in good yields (74) andthe disubstituted side product 24 in 17 yield Performing theBoc deprotection of amine 23 using TFA the free amine andkey intermediate 12 of the divergent route was obtained in98 yield and was linked to 47-dichloroquinoline at 120∘Cunder neat conditions to give hybrid 13 in 62 (Scheme 3)

International Journal of Medicinal Chemistry 5

Br Cl

O

HN

BocNNBoc

N

O

BrHN

NH

+

1120 (78)

22 (9)

19 (63)

N

MeO

HN N

NBocNBoc

NBoc

O

+

MeO

NH

NONBoc

N

O

BocN

23 (74)

24 (17)

N

MeO

HN NNH

O

N

MeO

HN N

N

O

N

Cl

12 (98)

13 (62)

21 (91)

Br OH

O

(d)

(e)

(f)

N+

Brminus

(a)

(b)

(c)

Scheme 3 Synthetic route for hybrid molecule 13 a piperazine-linked primaquine-chloroquine dual molecule Reagents and conditions (a)Boc2

O DCM (dry) 0∘C (b) SOCl2

80∘C (c) NaOAc DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaH DMF (dry) 0ndash25∘C(e) TFA DCM 25∘C (f) 47-dichloroquinoline neat 120∘C

The key intermediate 12 was reduced by LiAlH4in THF

(dry) to obtain compound25 in low yields of 30 (Scheme 4)Multiple reasons for the low reduction yields of primaquineanalogs have been described earlier [61] formation of numer-ous soluble and stable complexes of the primaquine moietywith the reducing agent LiAlH

4at room temperature [61]

which complicates the detection of the complete consump-tion of the starting material during the reaction Further-more a splitting of the 8-amine-carbon bond by reduc-ing agent LiAlH

4and a partial reduction of the pyridinic

moiety to the corresponding tetrahydroisoquinoline mighthave caused low yields [61] Conversion of 25 with 47-dichloroquinoline at 120∘C under neat conditions gave com-pound 14 in 41 yield

The synthesis of hybrid molecules with a further elon-gated C3-piperazine-C3 linkage started with the introductionof the additional C3 part to the key intermediate 12 whichwas allowed to react with the acyl chloride 19 at minus20∘C

to give amide 26 in 69 yield (Scheme 5) and the twoadditional regioisomers as well as the corresponding elimina-tion product of amide 26 The azide function was introducedto 26 using NaN

3to obtain the azide 27 in 92 yield

followed by the reduction to the amine 28 in 81 yield usingthe Staudinger reaction The linkage of amine 28 with 47-dichloroquinoline gave the dual molecule 15 or the disubsti-tuted hybrid 17 (depending on the number of equivalents of47-dichloroquinoline) in low yields of 30 (15) and 28 (17)respectively

Starting from the azide 27 two further hybrid molecules(16 18) were obtained Azide 27was reduced using LiAlH

4in

34 yield to amine 29 with two tertiary and basic piperazinenitrogen atoms that might influence the bioactivity values byenrichment in acidic compartmentsThe free amine functionof compound 29was linkedwith 47-dichloroquinoline to themonosubstituted 16 and the disubstituted 18 in 17 and 23yield respectively (Scheme 6)

6 International Journal of Medicinal Chemistry

N

MeO

HN NNH

O

N

MeO

HN NNH

N

MeO

HN N

N

N

Cl

14 (41)25 (30)12

(a) (b)

Scheme 4 Synthesis of the hybrid substance 14 starting with the reduction of the key intermediate 12 and followed by the linkage to thechloroquine motif Reagents and conditions (a) LiAlH

4

THF (dry) 80∘C (b) 47-dichloroquinoline neat 120∘C

N

MeO

HN NNH

O

N

MeO

HN NN

O

O

Br

N

MeO

HN N

N

O

O

N

MeO

HN NN

O

O

NH

N

Cl

N

MeO

N NN

O

O

NH

N

ClN

Cl

12 26 (69)

28 (81)

15 (30)

17 (28)

N

MeO

HN N

N

O

O

27 (92)

NH2

N3(a) (b)

(c)

(d)

(e)

Scheme 5 Synthesis of the hybrid compound 15 (ratio 1 1) and of substance 17 (ratio 1 2) by the divergent synthetic route using a C3-piperazine-C3 linkage Reagents and conditions (a) 3-bromopropionyl chloride (19) NaOAc DCM (dry) minus20∘C (b) NaN

3

DMF (dry)25∘C (c) PPh

3

MeOH (dry) 25∘C (d) 47-dichloroquinoline (075 equivalents) neat 120∘C (e) 47-dichloroquinoline (3 equivalents) neat120∘C

224 Synthetic Route toHybridMolecule 30with anAromatic-Type Linkage The influence of the linkage composition onthe bioactivity values was further investigated and a hybridmolecule with a nonbasic plain aromatic linker moiety wasdesigned and synthesized The distance between the linkagepositions of the primaquine pharmacophore and of thechloroquine pharmacophore moieties corresponded approx-imately to the distance in the genuine hybrid molecule 5 Thenumber of nitrogen atoms was not changed but the lipophil-icity was expected to be higher than that for the genuinecompound 5 due to the formal para-xylene part

The first attempts to synthesize 30 from the less expen-sive chloroquine moiety were not successful Therefore thesynthesis was started from the primaquine building block

The protecting group free protocol started with thecommercially available 14-benzenedimethanol which wasconverted by the use of 12-dibromotetrachloroethane andPPh3to the monobrominated product 31 in 63 yield and

to the side product the double brominated compound 32in 35 yield (Scheme 7) The introduction of the azidefunction by NaN

3gave 99 of compound 33 followed by the

tosylationwith p-toluenesulfonyl chloride to compound 34 in71 yield and by the linkage to the primaquine motif 4 yield-ing compound 35 (41) The key intermediate 35 was alsoobtained by the linkage of the brominated derivative 31 with6-methoxy-8-aminoquinoline (4) in 68 yield followed bythe azide introduction using DPPA andDBU in toluene (dry)at room temperature in 75 yield [62] The first route overfour steps resulted in the key intermediate 35 with an overallyield of 18 the second route over three steps resulted inintermediate 35 with a yield of 32

Compound 35 was reduced to amine 37 (95) by Staud-inger conditions the amine 37 was finally linked to the sec-ond pharmacophore moiety using 47-dichloroquinoline at120∘C under neat conditions yielding the target hybridmole-cule 38 in 43

International Journal of Medicinal Chemistry 7

N

MeO

HN NN

O

O

N

MeO

HN N

N NH

N

Cl

N

MeO

N N

N NH

N

Cl

N

Cl

27

16 (17) 18 (23)

N

MeO

HN N

N

29 (34)

(a)

(b) (c)

N3 NH2

Scheme 6 Synthetic route of the hybrid molecules 16 and 18 with higher basic molecule properties Reagents and conditions (a) LiAlH4

THF (dry) 80∘C (b) 47-dichloroquinoline (08 equivalents) neat 120∘C (c) 47-dichloroquinoline (five equivalents) neat 120∘C

23 Discussion Hybrid 5 showed a significant effect on themorphology of the liver and on the total number of liver stageparasites (P berghei) which were reduced by a concentrationsignificantly lower than that of primaquine (1) required forthe same activity All additional hybrid molecules showed aninfluence on the size of liver stages in comparison with theparasite wildtype and on the number of liver stages after 24hours (Scheme 8)

Amide 13 compared with amine 14 showed a decreasednumber of liver stages and a greater influence on the growthwith a smaller diameter of the parasitic stages The numberof liver stages and the parasite growth were slightly decreasedusing the elongated amide 15 comparedwith the 14with a sec-ond C3 linker in comparison with 15 the amine 16 showeda stronger increase in the number of parasites whereas thediameter did not alter significantly The introduction of thesecond elongating linker part as well as the variation of thebasic molecule properties of the four investigated molecules(13 to 16) had very little influence on the activity againstthe number and the diameter of parasites The introductionof two chloroquine motives resulted in molecules that wereless effective against the growth compared with the previousmonosubstituted derivatives amide 17 and the correspond-ing amine 18 showed a comparable weak effect on the growthof parasites but after 24 hours 17 and 18 as well as 16 and 38showed the lowest number of liver stages In this case as wella modification of the basic molecule property values did notinfluence the activity against liver stages

The hybrid molecules were tested against the followingstrains of P falciparum 3D7 (chloroquine and pyrimetham-ine sensitive strain) [63 64] Dd2 (resistant against chloro-quine mefloquine and pyrimethamine) [65] and K1 (resis-tant against pyrimethamine [63 66] and one of the mostresistant strains against chloroquine) [67] The equimolarcombination of primaquine (1) and chloroquine (2) and theequimolar combination of both the chloroquine (3) and the

primaquine motives (4) were measured in comparison withthe hybrid compounds

Almost all of the investigated hybrid molecules showedimproved activity against blood stages of P falciparum (3D7Dd2 and K1) Against strain 3D7 hybrid molecule 5 showedlower activity than chloroquine but 5 was still very activeat a concentration lower than 1 120583M also in comparison withprimaquine and to the chloroquine motif 3 The primaquinemoiety 4was not activeThe combination of both the chloro-quine and primaquine motifs 3 and 4 showed activity in therange of the chloroquine motif alone and hence had no addi-tional or synergistic effect on each other Also the equimolarcombination of primaquine (1) and chloroquine (2) showedactivity in the concentration range of chloroquine

Against strain Dd2 hybrid 5 showed a slightly improvedactivity compared with 3D7 Chloroquine (2) was less activeagainst Dd2 than against 3D7 and primaquine (1) had only aweak effect The primaquine motif 4 showed no activity butthe chloroquine motif 3 surprisingly showed a better activitycompared with 3D7 This was also confirmed by the equimo-lar combination of both motives 3 and 4 The equimolarcombination of chloroquine (2) and primaquine (1) showedenhanced activity compared with only chloroquine (2) thushinting the chloroquine resistance-reversing effect of pri-maquine (1) [54]

Against strain K1 the equimolar combination of chloro-quine (2) and primaquine (1) showed a better activity thanagainst the strainDd2 Chloroquine (2) showed a comparableactivity in comparison with Dd2 and the order of efficacy ofprimaquine (1) was 3D7 lt Dd2 lt K1 Also the hybrid com-pound 5 showed the best activity against the K1 strain Theorder of activity of compound 5 was 3D7 asymp Dd2 lt K1 (fivetimes higher than Dd2 and 3D7) This higher activity againstK1 strain than against the other strains can be probably due tothe resistance-reversing effect of primaquine [54] combinedwith the better activity of primaquine on its own The

8 International Journal of Medicinal Chemistry

NN

N

N

MeOMeO

MeO

MeO

HNHN

HN

HN

N

NH

Cl

N3

N3

N3

NH2

Br

Br

BrHO

HOHO

OH

OH

31 (63)

32 (35)

35 (f 75) 35 (d 41)36 (68)

37 (95)

33 (99)

34 (71)

38 (43)

TsO

+(a) (b)

(c)

(d)

(e)

(h)

(g)

(f)

Scheme 7 Two variants of the protecting group free synthesis of the aromatic-type linker moiety to obtain the key intermediate azide 35Reagents and conditions (a) (CBrCl

2

)2

PPh3

DCM (dry) 0ndash25∘C (b) NaN3

DMF (dry) 25∘C (c) TsCl NaH DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (e) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (f) DPPA DBUtoluene (dry) 25∘C (g) PPh

3

MeOH (dry) 25∘C (h) 47-dichloroquinoline neat 120∘C

primaquinemoiety 4was inactive against K1 but surprisinglythe chloroquine motif 3 showed its best activity against K1The combination of both motifs 3 and 4 showed effectivenessagainst K1 in the same range as 3 against K1 due to presenceof the chloroquine motif

Both compounds 9 and 10 showed good activities againstall strains but were slightly less active than the first repre-sentative 5 The derivative 6 showed improved bioactivitiesin the submicromolar range and had a similar linkage ascompound 5 originating from the primaquine side chain butwith a pharmacophore ratio of primaquine to chloroquinemoiety of 1 2 This might be due to not only the number ofpharmacophores but also an increased lipophilicity correlat-ing with an enhanced membrane permeability an increasedbasicity with a higher enrichment in acidic compartments or

an increased planar aromatic system capable of shielding thesurface of hemozoin from further growth

The piperazine-linked amide 13 and the amine 14 showedthe lowest activities against the blood stages Only 14 showedvery good activity against strain K1 (lower than 1 120583M) Thelow activity of both these molecules could be due to the lackof a strong basic center such as the tertiary nitrogen atom likein compound 16

Compounds 15 and 16 elongated piperazine derivativeswith a second C3 linker showed improved activities against3D7 andDd2whereby the diamine 16 with higher basic prop-erties was significantly active against strain K1Thismight beinfluenced by a higher total flexibility of compounds 15 and 16due to two C3 linkers the basic properties of the diamide 15and the diamine 16 might not be the cause of their higher

International Journal of Medicinal Chemistry 9

NHN

MeO

NH

N Cl

Linker

Authenticlinker

HNNH

Me

Nolinker

Piperazinelinker

Xylenelinker

NN

O

O

NN

O

NN

NN

3D7

Reference drugs(1) Primaquine(2) Chloroquine

(3) Chloroquine motif(4) Primaquine motif

Dd2

K1

Gametocytaemia

Liver stage-number [ compared to wildtype]

Liver stage-diameter [ compared to wildtype]

2 = 6 gt (1 + 2 15x) gt 17(20x) = 18 gt 30(15x) = 15 gt 16(11x) gt 5(64x) gt 10(17x) gt 9(16x) gt 1(18x)gt 3(13x) gt (3 + 4 12x) sim 14(11x) gt 13(11) gt 4 (inactive)2 = 6 gt (1 + 2 15x) gt 13(185x)2 = 6 gt (3 + 4 246x) gt 13(11x)

6 = 17 gt 16(15x) gt 30(12x) gt 18(14x) gt 15(12x) gt (1 + 2 16x) gt 2(14x) gt 5(22x) gt 1(20x) gt 9(15x)gt (3 + 4 14x) gt 3(11x) gt 13(12x) gt 14(11x) gt 10(12) gt 4 (inactive)6 = 17 gt (1 + 2 48x) gt 10(20x)6 = 17 gt (3 + 4 60x) gt 10(16x)

6 = 18 gt 16(20x) = 17 gt 30(35x) gt 5(13x) gt 15(16x) gt (1 + 2 12x) gt 2(12x) gt 14(15x) gt 1(20x)gt (3 + 4 11x) sim 3 gt 10(25x) gt 9(13x) gt 13(11) gt 4 (inactive)6 = 18 gt (1 + 2 170x) gt 13(149x)6 = 18 gt (3 + 4 68x) gt 10(37x)

5 sim 1 gt 9(13x) = 14 gt 13(13x) = 10 sim 18 sim 6 sim 16 sim 15 gt 17(11x) sim 30 gt 2(15x)5 sim 1 gt 10(17x) gt 30(12x) gt 2(15x)

sim 15 gt 14(11x) gt 3(12x)18 = 30 gt (1 + 2 3 + 4 14x) gt 14(17x)

13 gt 30(12x) gt 15(12x) gt 1(11x) = 16 sim 5 gt 3(11x) = (1 + 2) sim 4(11x) sim (3 + 4) sim 14 gt 17(11x)gt 18(11x) sim 2 gt wildtype (11x)

13 gt (1 + 2 16x) gt 2(13x)13 gt (3 + 4 17x) gt 2(12x)

18 = 30 gt 16(11x) gt 1(11x) gt 17(11x) sim 5 gt (1 + 2 11x) sim 13 sim (3 + 4) sim 4 gt wildtype (14x) sim 2(142x)

lowast

Scheme 8 Bioactive molecules of the study reference drugs (1 2 3 and 4) and their combinations (1 + 2 3 + 4) in order from the highestto the lowest activities (referring to IC

50

values for 3D7 Dd2 and K1 gametocytaemia and number and diameter of the liver stages resp)in brackets the ratios of activities of the compounds compared to the former substances

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 3: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 3

NH

N Cl

Me

(rac)-Chloroquine (2 3)

N

MeO

HN

Me

(rac)-Primaquine (1 4)

NHN

MeO

NH

N Cl

Primaquinemotif

Chloroquinemotif

Linker8 4lowast

lowastEt2N

NH2

Figure 1 The first component of the hybrid drugs (rac)-primaquine (1) and its pharmacophore moiety (in green 4) as well as the seconddrug (rac)-chloroquine (2) and the corresponding pharmacophore structure (in blue 3)

N

MeO

HN NNH

OKey intermediate 12

N

MeO

HN N

N

O

N

Cl

13(62)

N

MeO

HN NN

N

Cl

14(9)

N

MeO

HN NN

O

O

NH

N

Cl

N

MeO

N NN

O

O

NH

NCl

N

Cl

15(11)

17(10)

N

MeO

HNN

N

NH

N

Cl

N

MeO

N NN N

H

N

ClN

Cl

16(3)

(3)18

HNNH

11

4 steps(51)

4 steps

1 step

4 steps 4 steps

2 steps

4 steps

Figure 2 Overall view of the piperazine-linked hybrid compounds 13 to 18 which were synthesized by the divergent synthetic route startingfrom piperazine (11)

catalyst was observed) a nucleophilic substitution reaction ofprimaquine (1) and 47-dichloroquinoline was performed at120∘C under neat conditions to obtain the hybrid molecules(rac)-5 (82 yield) and (rac)-6 (77 Scheme 1) [57]

222 Primaquine-Chloroquine Hybrid Molecules withoutLinkage Additional derivatives consisting of the aromaticpharmacophore were prepared by a direct linkage of bothmotives in a ratio of 1 1 and 1 2 of primaquine (4) to chloro-quine (3) moiety

The commercially available 6-methoxy-8-nitroquinoline(7) was hydrogenated by hydrogen gas and PdC as catalystin MeOH (dry) to give the amine 4 in 95 yield Thisprimaquine motif was allowed to react with 47-dichloro-quinoline at 120∘C under neat conditions to give the hybridmolecules 9 in 95 and 10 in 25 yield (Scheme 2)

223 Divergent Synthetic Route to Piperazine-Linked Prima-quine-Chloroquine Hybrid Molecules The diamine piper-azine (11) can link the pharmacophore moieties 3 and 4 in

4 International Journal of Medicinal Chemistry

NMeO

HNNH

Me

N Cl

(rac)-5 (82)

N

MeO

HN

Me

(rac)-Primaquine (1)

N

MeO

N

NHMe

N Cl

N

Cl(rac)-6 (77)

lowast

lowastlowast

NH2

(a) (b)

Scheme 1 Synthesis of the primaquine-chloroquine hybrid molecules (ratio 1 1 [57] and ratio 1 2) with an authentic linkage part ofprimaquine (1) Reagents and conditions (a) 47-dichloroquinoline (05 equivalents) neat 120∘C (b) 47-dichloroquinoline (3 equivalents)neat 120∘C

9 (95)

4 (95)

10 (25)

N

MeO

N

MeO

NH

N

Cl

N

MeO

N

N

Cl

N

Cl

N

MeO

7

NH2NO2

(a)

(b)

(c)

Scheme 2 Synthesis of the hybrid compounds 9 and 10 Reagents and conditions (a) H2

(g) PdC MeOH (dry) 25∘C (b) 47-dichloro-quinoline (07 equivalents) neat 120∘C (c) 47-dichloroquinoline (3 equivalents) neat 120∘C

different ways through one or both nitrogen atoms andthrough amide or amine bonds By using a divergent syn-thetic route six hybrid molecules (13 to 18) were obtainedstarting from the same educt piperazine (11 Figure 2) inup to eight steps The synthesized hybrid molecules differin their number of nitrogen atoms and in their type ofbond (amide or amine bond) that determines their basicmolecular properties The dual molecules consist at least oftwo quinoline nitrogen atoms of two anilinic nitrogen atomsand of either one or two basic tertiary piperazine aminefunctionalities (14 16 and 18) or of one and two nonbasictertiary piperazine amide functions (13 15 and 17)Thus thecompounds differ in the possibility to be enriched by pro-tonation in acidic compartments (described for chloroquine[58]) thus influencing the bioactivity against the parasiticstages

All piperazine-linked hybrid molecules contained a C3spacer between the primaquine pharmacophore and the

piperazine part The required acyl chloride 19 for the spacerpart was produced in 63 yield by the reflux of 3-bro-mopropionic acid with thionyl chloride [59] The sequencestarted with piperazine which was first protected by a Bocgroup using Boc

2O in DCM (dry) at 0∘C to obtain the

monoprotected piperazine 20 in 78 yield Compound 20was further converted into the bromine derivative 21 in 91yield by slowly dropping 19 into a solution of 20 in DCM(dry) at temperatures from 0∘C to 25∘C (Scheme 3) [60]

6-Methoxy-8-aminoquinoline (4) was deprotonated usingNaH in DMF (dry) at 0∘C and was allowed to react with thebromine-substituted linker part 21 at temperatures from 0∘Cup to 25∘C to obtain compound 23 in good yields (74) andthe disubstituted side product 24 in 17 yield Performing theBoc deprotection of amine 23 using TFA the free amine andkey intermediate 12 of the divergent route was obtained in98 yield and was linked to 47-dichloroquinoline at 120∘Cunder neat conditions to give hybrid 13 in 62 (Scheme 3)

International Journal of Medicinal Chemistry 5

Br Cl

O

HN

BocNNBoc

N

O

BrHN

NH

+

1120 (78)

22 (9)

19 (63)

N

MeO

HN N

NBocNBoc

NBoc

O

+

MeO

NH

NONBoc

N

O

BocN

23 (74)

24 (17)

N

MeO

HN NNH

O

N

MeO

HN N

N

O

N

Cl

12 (98)

13 (62)

21 (91)

Br OH

O

(d)

(e)

(f)

N+

Brminus

(a)

(b)

(c)

Scheme 3 Synthetic route for hybrid molecule 13 a piperazine-linked primaquine-chloroquine dual molecule Reagents and conditions (a)Boc2

O DCM (dry) 0∘C (b) SOCl2

80∘C (c) NaOAc DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaH DMF (dry) 0ndash25∘C(e) TFA DCM 25∘C (f) 47-dichloroquinoline neat 120∘C

The key intermediate 12 was reduced by LiAlH4in THF

(dry) to obtain compound25 in low yields of 30 (Scheme 4)Multiple reasons for the low reduction yields of primaquineanalogs have been described earlier [61] formation of numer-ous soluble and stable complexes of the primaquine moietywith the reducing agent LiAlH

4at room temperature [61]

which complicates the detection of the complete consump-tion of the starting material during the reaction Further-more a splitting of the 8-amine-carbon bond by reduc-ing agent LiAlH

4and a partial reduction of the pyridinic

moiety to the corresponding tetrahydroisoquinoline mighthave caused low yields [61] Conversion of 25 with 47-dichloroquinoline at 120∘C under neat conditions gave com-pound 14 in 41 yield

The synthesis of hybrid molecules with a further elon-gated C3-piperazine-C3 linkage started with the introductionof the additional C3 part to the key intermediate 12 whichwas allowed to react with the acyl chloride 19 at minus20∘C

to give amide 26 in 69 yield (Scheme 5) and the twoadditional regioisomers as well as the corresponding elimina-tion product of amide 26 The azide function was introducedto 26 using NaN

3to obtain the azide 27 in 92 yield

followed by the reduction to the amine 28 in 81 yield usingthe Staudinger reaction The linkage of amine 28 with 47-dichloroquinoline gave the dual molecule 15 or the disubsti-tuted hybrid 17 (depending on the number of equivalents of47-dichloroquinoline) in low yields of 30 (15) and 28 (17)respectively

Starting from the azide 27 two further hybrid molecules(16 18) were obtained Azide 27was reduced using LiAlH

4in

34 yield to amine 29 with two tertiary and basic piperazinenitrogen atoms that might influence the bioactivity values byenrichment in acidic compartmentsThe free amine functionof compound 29was linkedwith 47-dichloroquinoline to themonosubstituted 16 and the disubstituted 18 in 17 and 23yield respectively (Scheme 6)

6 International Journal of Medicinal Chemistry

N

MeO

HN NNH

O

N

MeO

HN NNH

N

MeO

HN N

N

N

Cl

14 (41)25 (30)12

(a) (b)

Scheme 4 Synthesis of the hybrid substance 14 starting with the reduction of the key intermediate 12 and followed by the linkage to thechloroquine motif Reagents and conditions (a) LiAlH

4

THF (dry) 80∘C (b) 47-dichloroquinoline neat 120∘C

N

MeO

HN NNH

O

N

MeO

HN NN

O

O

Br

N

MeO

HN N

N

O

O

N

MeO

HN NN

O

O

NH

N

Cl

N

MeO

N NN

O

O

NH

N

ClN

Cl

12 26 (69)

28 (81)

15 (30)

17 (28)

N

MeO

HN N

N

O

O

27 (92)

NH2

N3(a) (b)

(c)

(d)

(e)

Scheme 5 Synthesis of the hybrid compound 15 (ratio 1 1) and of substance 17 (ratio 1 2) by the divergent synthetic route using a C3-piperazine-C3 linkage Reagents and conditions (a) 3-bromopropionyl chloride (19) NaOAc DCM (dry) minus20∘C (b) NaN

3

DMF (dry)25∘C (c) PPh

3

MeOH (dry) 25∘C (d) 47-dichloroquinoline (075 equivalents) neat 120∘C (e) 47-dichloroquinoline (3 equivalents) neat120∘C

224 Synthetic Route toHybridMolecule 30with anAromatic-Type Linkage The influence of the linkage composition onthe bioactivity values was further investigated and a hybridmolecule with a nonbasic plain aromatic linker moiety wasdesigned and synthesized The distance between the linkagepositions of the primaquine pharmacophore and of thechloroquine pharmacophore moieties corresponded approx-imately to the distance in the genuine hybrid molecule 5 Thenumber of nitrogen atoms was not changed but the lipophil-icity was expected to be higher than that for the genuinecompound 5 due to the formal para-xylene part

The first attempts to synthesize 30 from the less expen-sive chloroquine moiety were not successful Therefore thesynthesis was started from the primaquine building block

The protecting group free protocol started with thecommercially available 14-benzenedimethanol which wasconverted by the use of 12-dibromotetrachloroethane andPPh3to the monobrominated product 31 in 63 yield and

to the side product the double brominated compound 32in 35 yield (Scheme 7) The introduction of the azidefunction by NaN

3gave 99 of compound 33 followed by the

tosylationwith p-toluenesulfonyl chloride to compound 34 in71 yield and by the linkage to the primaquine motif 4 yield-ing compound 35 (41) The key intermediate 35 was alsoobtained by the linkage of the brominated derivative 31 with6-methoxy-8-aminoquinoline (4) in 68 yield followed bythe azide introduction using DPPA andDBU in toluene (dry)at room temperature in 75 yield [62] The first route overfour steps resulted in the key intermediate 35 with an overallyield of 18 the second route over three steps resulted inintermediate 35 with a yield of 32

Compound 35 was reduced to amine 37 (95) by Staud-inger conditions the amine 37 was finally linked to the sec-ond pharmacophore moiety using 47-dichloroquinoline at120∘C under neat conditions yielding the target hybridmole-cule 38 in 43

International Journal of Medicinal Chemistry 7

N

MeO

HN NN

O

O

N

MeO

HN N

N NH

N

Cl

N

MeO

N N

N NH

N

Cl

N

Cl

27

16 (17) 18 (23)

N

MeO

HN N

N

29 (34)

(a)

(b) (c)

N3 NH2

Scheme 6 Synthetic route of the hybrid molecules 16 and 18 with higher basic molecule properties Reagents and conditions (a) LiAlH4

THF (dry) 80∘C (b) 47-dichloroquinoline (08 equivalents) neat 120∘C (c) 47-dichloroquinoline (five equivalents) neat 120∘C

23 Discussion Hybrid 5 showed a significant effect on themorphology of the liver and on the total number of liver stageparasites (P berghei) which were reduced by a concentrationsignificantly lower than that of primaquine (1) required forthe same activity All additional hybrid molecules showed aninfluence on the size of liver stages in comparison with theparasite wildtype and on the number of liver stages after 24hours (Scheme 8)

Amide 13 compared with amine 14 showed a decreasednumber of liver stages and a greater influence on the growthwith a smaller diameter of the parasitic stages The numberof liver stages and the parasite growth were slightly decreasedusing the elongated amide 15 comparedwith the 14with a sec-ond C3 linker in comparison with 15 the amine 16 showeda stronger increase in the number of parasites whereas thediameter did not alter significantly The introduction of thesecond elongating linker part as well as the variation of thebasic molecule properties of the four investigated molecules(13 to 16) had very little influence on the activity againstthe number and the diameter of parasites The introductionof two chloroquine motives resulted in molecules that wereless effective against the growth compared with the previousmonosubstituted derivatives amide 17 and the correspond-ing amine 18 showed a comparable weak effect on the growthof parasites but after 24 hours 17 and 18 as well as 16 and 38showed the lowest number of liver stages In this case as wella modification of the basic molecule property values did notinfluence the activity against liver stages

The hybrid molecules were tested against the followingstrains of P falciparum 3D7 (chloroquine and pyrimetham-ine sensitive strain) [63 64] Dd2 (resistant against chloro-quine mefloquine and pyrimethamine) [65] and K1 (resis-tant against pyrimethamine [63 66] and one of the mostresistant strains against chloroquine) [67] The equimolarcombination of primaquine (1) and chloroquine (2) and theequimolar combination of both the chloroquine (3) and the

primaquine motives (4) were measured in comparison withthe hybrid compounds

Almost all of the investigated hybrid molecules showedimproved activity against blood stages of P falciparum (3D7Dd2 and K1) Against strain 3D7 hybrid molecule 5 showedlower activity than chloroquine but 5 was still very activeat a concentration lower than 1 120583M also in comparison withprimaquine and to the chloroquine motif 3 The primaquinemoiety 4was not activeThe combination of both the chloro-quine and primaquine motifs 3 and 4 showed activity in therange of the chloroquine motif alone and hence had no addi-tional or synergistic effect on each other Also the equimolarcombination of primaquine (1) and chloroquine (2) showedactivity in the concentration range of chloroquine

Against strain Dd2 hybrid 5 showed a slightly improvedactivity compared with 3D7 Chloroquine (2) was less activeagainst Dd2 than against 3D7 and primaquine (1) had only aweak effect The primaquine motif 4 showed no activity butthe chloroquine motif 3 surprisingly showed a better activitycompared with 3D7 This was also confirmed by the equimo-lar combination of both motives 3 and 4 The equimolarcombination of chloroquine (2) and primaquine (1) showedenhanced activity compared with only chloroquine (2) thushinting the chloroquine resistance-reversing effect of pri-maquine (1) [54]

Against strain K1 the equimolar combination of chloro-quine (2) and primaquine (1) showed a better activity thanagainst the strainDd2 Chloroquine (2) showed a comparableactivity in comparison with Dd2 and the order of efficacy ofprimaquine (1) was 3D7 lt Dd2 lt K1 Also the hybrid com-pound 5 showed the best activity against the K1 strain Theorder of activity of compound 5 was 3D7 asymp Dd2 lt K1 (fivetimes higher than Dd2 and 3D7) This higher activity againstK1 strain than against the other strains can be probably due tothe resistance-reversing effect of primaquine [54] combinedwith the better activity of primaquine on its own The

8 International Journal of Medicinal Chemistry

NN

N

N

MeOMeO

MeO

MeO

HNHN

HN

HN

N

NH

Cl

N3

N3

N3

NH2

Br

Br

BrHO

HOHO

OH

OH

31 (63)

32 (35)

35 (f 75) 35 (d 41)36 (68)

37 (95)

33 (99)

34 (71)

38 (43)

TsO

+(a) (b)

(c)

(d)

(e)

(h)

(g)

(f)

Scheme 7 Two variants of the protecting group free synthesis of the aromatic-type linker moiety to obtain the key intermediate azide 35Reagents and conditions (a) (CBrCl

2

)2

PPh3

DCM (dry) 0ndash25∘C (b) NaN3

DMF (dry) 25∘C (c) TsCl NaH DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (e) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (f) DPPA DBUtoluene (dry) 25∘C (g) PPh

3

MeOH (dry) 25∘C (h) 47-dichloroquinoline neat 120∘C

primaquinemoiety 4was inactive against K1 but surprisinglythe chloroquine motif 3 showed its best activity against K1The combination of both motifs 3 and 4 showed effectivenessagainst K1 in the same range as 3 against K1 due to presenceof the chloroquine motif

Both compounds 9 and 10 showed good activities againstall strains but were slightly less active than the first repre-sentative 5 The derivative 6 showed improved bioactivitiesin the submicromolar range and had a similar linkage ascompound 5 originating from the primaquine side chain butwith a pharmacophore ratio of primaquine to chloroquinemoiety of 1 2 This might be due to not only the number ofpharmacophores but also an increased lipophilicity correlat-ing with an enhanced membrane permeability an increasedbasicity with a higher enrichment in acidic compartments or

an increased planar aromatic system capable of shielding thesurface of hemozoin from further growth

The piperazine-linked amide 13 and the amine 14 showedthe lowest activities against the blood stages Only 14 showedvery good activity against strain K1 (lower than 1 120583M) Thelow activity of both these molecules could be due to the lackof a strong basic center such as the tertiary nitrogen atom likein compound 16

Compounds 15 and 16 elongated piperazine derivativeswith a second C3 linker showed improved activities against3D7 andDd2whereby the diamine 16 with higher basic prop-erties was significantly active against strain K1Thismight beinfluenced by a higher total flexibility of compounds 15 and 16due to two C3 linkers the basic properties of the diamide 15and the diamine 16 might not be the cause of their higher

International Journal of Medicinal Chemistry 9

NHN

MeO

NH

N Cl

Linker

Authenticlinker

HNNH

Me

Nolinker

Piperazinelinker

Xylenelinker

NN

O

O

NN

O

NN

NN

3D7

Reference drugs(1) Primaquine(2) Chloroquine

(3) Chloroquine motif(4) Primaquine motif

Dd2

K1

Gametocytaemia

Liver stage-number [ compared to wildtype]

Liver stage-diameter [ compared to wildtype]

2 = 6 gt (1 + 2 15x) gt 17(20x) = 18 gt 30(15x) = 15 gt 16(11x) gt 5(64x) gt 10(17x) gt 9(16x) gt 1(18x)gt 3(13x) gt (3 + 4 12x) sim 14(11x) gt 13(11) gt 4 (inactive)2 = 6 gt (1 + 2 15x) gt 13(185x)2 = 6 gt (3 + 4 246x) gt 13(11x)

6 = 17 gt 16(15x) gt 30(12x) gt 18(14x) gt 15(12x) gt (1 + 2 16x) gt 2(14x) gt 5(22x) gt 1(20x) gt 9(15x)gt (3 + 4 14x) gt 3(11x) gt 13(12x) gt 14(11x) gt 10(12) gt 4 (inactive)6 = 17 gt (1 + 2 48x) gt 10(20x)6 = 17 gt (3 + 4 60x) gt 10(16x)

6 = 18 gt 16(20x) = 17 gt 30(35x) gt 5(13x) gt 15(16x) gt (1 + 2 12x) gt 2(12x) gt 14(15x) gt 1(20x)gt (3 + 4 11x) sim 3 gt 10(25x) gt 9(13x) gt 13(11) gt 4 (inactive)6 = 18 gt (1 + 2 170x) gt 13(149x)6 = 18 gt (3 + 4 68x) gt 10(37x)

5 sim 1 gt 9(13x) = 14 gt 13(13x) = 10 sim 18 sim 6 sim 16 sim 15 gt 17(11x) sim 30 gt 2(15x)5 sim 1 gt 10(17x) gt 30(12x) gt 2(15x)

sim 15 gt 14(11x) gt 3(12x)18 = 30 gt (1 + 2 3 + 4 14x) gt 14(17x)

13 gt 30(12x) gt 15(12x) gt 1(11x) = 16 sim 5 gt 3(11x) = (1 + 2) sim 4(11x) sim (3 + 4) sim 14 gt 17(11x)gt 18(11x) sim 2 gt wildtype (11x)

13 gt (1 + 2 16x) gt 2(13x)13 gt (3 + 4 17x) gt 2(12x)

18 = 30 gt 16(11x) gt 1(11x) gt 17(11x) sim 5 gt (1 + 2 11x) sim 13 sim (3 + 4) sim 4 gt wildtype (14x) sim 2(142x)

lowast

Scheme 8 Bioactive molecules of the study reference drugs (1 2 3 and 4) and their combinations (1 + 2 3 + 4) in order from the highestto the lowest activities (referring to IC

50

values for 3D7 Dd2 and K1 gametocytaemia and number and diameter of the liver stages resp)in brackets the ratios of activities of the compounds compared to the former substances

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 4: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

4 International Journal of Medicinal Chemistry

NMeO

HNNH

Me

N Cl

(rac)-5 (82)

N

MeO

HN

Me

(rac)-Primaquine (1)

N

MeO

N

NHMe

N Cl

N

Cl(rac)-6 (77)

lowast

lowastlowast

NH2

(a) (b)

Scheme 1 Synthesis of the primaquine-chloroquine hybrid molecules (ratio 1 1 [57] and ratio 1 2) with an authentic linkage part ofprimaquine (1) Reagents and conditions (a) 47-dichloroquinoline (05 equivalents) neat 120∘C (b) 47-dichloroquinoline (3 equivalents)neat 120∘C

9 (95)

4 (95)

10 (25)

N

MeO

N

MeO

NH

N

Cl

N

MeO

N

N

Cl

N

Cl

N

MeO

7

NH2NO2

(a)

(b)

(c)

Scheme 2 Synthesis of the hybrid compounds 9 and 10 Reagents and conditions (a) H2

(g) PdC MeOH (dry) 25∘C (b) 47-dichloro-quinoline (07 equivalents) neat 120∘C (c) 47-dichloroquinoline (3 equivalents) neat 120∘C

different ways through one or both nitrogen atoms andthrough amide or amine bonds By using a divergent syn-thetic route six hybrid molecules (13 to 18) were obtainedstarting from the same educt piperazine (11 Figure 2) inup to eight steps The synthesized hybrid molecules differin their number of nitrogen atoms and in their type ofbond (amide or amine bond) that determines their basicmolecular properties The dual molecules consist at least oftwo quinoline nitrogen atoms of two anilinic nitrogen atomsand of either one or two basic tertiary piperazine aminefunctionalities (14 16 and 18) or of one and two nonbasictertiary piperazine amide functions (13 15 and 17)Thus thecompounds differ in the possibility to be enriched by pro-tonation in acidic compartments (described for chloroquine[58]) thus influencing the bioactivity against the parasiticstages

All piperazine-linked hybrid molecules contained a C3spacer between the primaquine pharmacophore and the

piperazine part The required acyl chloride 19 for the spacerpart was produced in 63 yield by the reflux of 3-bro-mopropionic acid with thionyl chloride [59] The sequencestarted with piperazine which was first protected by a Bocgroup using Boc

2O in DCM (dry) at 0∘C to obtain the

monoprotected piperazine 20 in 78 yield Compound 20was further converted into the bromine derivative 21 in 91yield by slowly dropping 19 into a solution of 20 in DCM(dry) at temperatures from 0∘C to 25∘C (Scheme 3) [60]

6-Methoxy-8-aminoquinoline (4) was deprotonated usingNaH in DMF (dry) at 0∘C and was allowed to react with thebromine-substituted linker part 21 at temperatures from 0∘Cup to 25∘C to obtain compound 23 in good yields (74) andthe disubstituted side product 24 in 17 yield Performing theBoc deprotection of amine 23 using TFA the free amine andkey intermediate 12 of the divergent route was obtained in98 yield and was linked to 47-dichloroquinoline at 120∘Cunder neat conditions to give hybrid 13 in 62 (Scheme 3)

International Journal of Medicinal Chemistry 5

Br Cl

O

HN

BocNNBoc

N

O

BrHN

NH

+

1120 (78)

22 (9)

19 (63)

N

MeO

HN N

NBocNBoc

NBoc

O

+

MeO

NH

NONBoc

N

O

BocN

23 (74)

24 (17)

N

MeO

HN NNH

O

N

MeO

HN N

N

O

N

Cl

12 (98)

13 (62)

21 (91)

Br OH

O

(d)

(e)

(f)

N+

Brminus

(a)

(b)

(c)

Scheme 3 Synthetic route for hybrid molecule 13 a piperazine-linked primaquine-chloroquine dual molecule Reagents and conditions (a)Boc2

O DCM (dry) 0∘C (b) SOCl2

80∘C (c) NaOAc DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaH DMF (dry) 0ndash25∘C(e) TFA DCM 25∘C (f) 47-dichloroquinoline neat 120∘C

The key intermediate 12 was reduced by LiAlH4in THF

(dry) to obtain compound25 in low yields of 30 (Scheme 4)Multiple reasons for the low reduction yields of primaquineanalogs have been described earlier [61] formation of numer-ous soluble and stable complexes of the primaquine moietywith the reducing agent LiAlH

4at room temperature [61]

which complicates the detection of the complete consump-tion of the starting material during the reaction Further-more a splitting of the 8-amine-carbon bond by reduc-ing agent LiAlH

4and a partial reduction of the pyridinic

moiety to the corresponding tetrahydroisoquinoline mighthave caused low yields [61] Conversion of 25 with 47-dichloroquinoline at 120∘C under neat conditions gave com-pound 14 in 41 yield

The synthesis of hybrid molecules with a further elon-gated C3-piperazine-C3 linkage started with the introductionof the additional C3 part to the key intermediate 12 whichwas allowed to react with the acyl chloride 19 at minus20∘C

to give amide 26 in 69 yield (Scheme 5) and the twoadditional regioisomers as well as the corresponding elimina-tion product of amide 26 The azide function was introducedto 26 using NaN

3to obtain the azide 27 in 92 yield

followed by the reduction to the amine 28 in 81 yield usingthe Staudinger reaction The linkage of amine 28 with 47-dichloroquinoline gave the dual molecule 15 or the disubsti-tuted hybrid 17 (depending on the number of equivalents of47-dichloroquinoline) in low yields of 30 (15) and 28 (17)respectively

Starting from the azide 27 two further hybrid molecules(16 18) were obtained Azide 27was reduced using LiAlH

4in

34 yield to amine 29 with two tertiary and basic piperazinenitrogen atoms that might influence the bioactivity values byenrichment in acidic compartmentsThe free amine functionof compound 29was linkedwith 47-dichloroquinoline to themonosubstituted 16 and the disubstituted 18 in 17 and 23yield respectively (Scheme 6)

6 International Journal of Medicinal Chemistry

N

MeO

HN NNH

O

N

MeO

HN NNH

N

MeO

HN N

N

N

Cl

14 (41)25 (30)12

(a) (b)

Scheme 4 Synthesis of the hybrid substance 14 starting with the reduction of the key intermediate 12 and followed by the linkage to thechloroquine motif Reagents and conditions (a) LiAlH

4

THF (dry) 80∘C (b) 47-dichloroquinoline neat 120∘C

N

MeO

HN NNH

O

N

MeO

HN NN

O

O

Br

N

MeO

HN N

N

O

O

N

MeO

HN NN

O

O

NH

N

Cl

N

MeO

N NN

O

O

NH

N

ClN

Cl

12 26 (69)

28 (81)

15 (30)

17 (28)

N

MeO

HN N

N

O

O

27 (92)

NH2

N3(a) (b)

(c)

(d)

(e)

Scheme 5 Synthesis of the hybrid compound 15 (ratio 1 1) and of substance 17 (ratio 1 2) by the divergent synthetic route using a C3-piperazine-C3 linkage Reagents and conditions (a) 3-bromopropionyl chloride (19) NaOAc DCM (dry) minus20∘C (b) NaN

3

DMF (dry)25∘C (c) PPh

3

MeOH (dry) 25∘C (d) 47-dichloroquinoline (075 equivalents) neat 120∘C (e) 47-dichloroquinoline (3 equivalents) neat120∘C

224 Synthetic Route toHybridMolecule 30with anAromatic-Type Linkage The influence of the linkage composition onthe bioactivity values was further investigated and a hybridmolecule with a nonbasic plain aromatic linker moiety wasdesigned and synthesized The distance between the linkagepositions of the primaquine pharmacophore and of thechloroquine pharmacophore moieties corresponded approx-imately to the distance in the genuine hybrid molecule 5 Thenumber of nitrogen atoms was not changed but the lipophil-icity was expected to be higher than that for the genuinecompound 5 due to the formal para-xylene part

The first attempts to synthesize 30 from the less expen-sive chloroquine moiety were not successful Therefore thesynthesis was started from the primaquine building block

The protecting group free protocol started with thecommercially available 14-benzenedimethanol which wasconverted by the use of 12-dibromotetrachloroethane andPPh3to the monobrominated product 31 in 63 yield and

to the side product the double brominated compound 32in 35 yield (Scheme 7) The introduction of the azidefunction by NaN

3gave 99 of compound 33 followed by the

tosylationwith p-toluenesulfonyl chloride to compound 34 in71 yield and by the linkage to the primaquine motif 4 yield-ing compound 35 (41) The key intermediate 35 was alsoobtained by the linkage of the brominated derivative 31 with6-methoxy-8-aminoquinoline (4) in 68 yield followed bythe azide introduction using DPPA andDBU in toluene (dry)at room temperature in 75 yield [62] The first route overfour steps resulted in the key intermediate 35 with an overallyield of 18 the second route over three steps resulted inintermediate 35 with a yield of 32

Compound 35 was reduced to amine 37 (95) by Staud-inger conditions the amine 37 was finally linked to the sec-ond pharmacophore moiety using 47-dichloroquinoline at120∘C under neat conditions yielding the target hybridmole-cule 38 in 43

International Journal of Medicinal Chemistry 7

N

MeO

HN NN

O

O

N

MeO

HN N

N NH

N

Cl

N

MeO

N N

N NH

N

Cl

N

Cl

27

16 (17) 18 (23)

N

MeO

HN N

N

29 (34)

(a)

(b) (c)

N3 NH2

Scheme 6 Synthetic route of the hybrid molecules 16 and 18 with higher basic molecule properties Reagents and conditions (a) LiAlH4

THF (dry) 80∘C (b) 47-dichloroquinoline (08 equivalents) neat 120∘C (c) 47-dichloroquinoline (five equivalents) neat 120∘C

23 Discussion Hybrid 5 showed a significant effect on themorphology of the liver and on the total number of liver stageparasites (P berghei) which were reduced by a concentrationsignificantly lower than that of primaquine (1) required forthe same activity All additional hybrid molecules showed aninfluence on the size of liver stages in comparison with theparasite wildtype and on the number of liver stages after 24hours (Scheme 8)

Amide 13 compared with amine 14 showed a decreasednumber of liver stages and a greater influence on the growthwith a smaller diameter of the parasitic stages The numberof liver stages and the parasite growth were slightly decreasedusing the elongated amide 15 comparedwith the 14with a sec-ond C3 linker in comparison with 15 the amine 16 showeda stronger increase in the number of parasites whereas thediameter did not alter significantly The introduction of thesecond elongating linker part as well as the variation of thebasic molecule properties of the four investigated molecules(13 to 16) had very little influence on the activity againstthe number and the diameter of parasites The introductionof two chloroquine motives resulted in molecules that wereless effective against the growth compared with the previousmonosubstituted derivatives amide 17 and the correspond-ing amine 18 showed a comparable weak effect on the growthof parasites but after 24 hours 17 and 18 as well as 16 and 38showed the lowest number of liver stages In this case as wella modification of the basic molecule property values did notinfluence the activity against liver stages

The hybrid molecules were tested against the followingstrains of P falciparum 3D7 (chloroquine and pyrimetham-ine sensitive strain) [63 64] Dd2 (resistant against chloro-quine mefloquine and pyrimethamine) [65] and K1 (resis-tant against pyrimethamine [63 66] and one of the mostresistant strains against chloroquine) [67] The equimolarcombination of primaquine (1) and chloroquine (2) and theequimolar combination of both the chloroquine (3) and the

primaquine motives (4) were measured in comparison withthe hybrid compounds

Almost all of the investigated hybrid molecules showedimproved activity against blood stages of P falciparum (3D7Dd2 and K1) Against strain 3D7 hybrid molecule 5 showedlower activity than chloroquine but 5 was still very activeat a concentration lower than 1 120583M also in comparison withprimaquine and to the chloroquine motif 3 The primaquinemoiety 4was not activeThe combination of both the chloro-quine and primaquine motifs 3 and 4 showed activity in therange of the chloroquine motif alone and hence had no addi-tional or synergistic effect on each other Also the equimolarcombination of primaquine (1) and chloroquine (2) showedactivity in the concentration range of chloroquine

Against strain Dd2 hybrid 5 showed a slightly improvedactivity compared with 3D7 Chloroquine (2) was less activeagainst Dd2 than against 3D7 and primaquine (1) had only aweak effect The primaquine motif 4 showed no activity butthe chloroquine motif 3 surprisingly showed a better activitycompared with 3D7 This was also confirmed by the equimo-lar combination of both motives 3 and 4 The equimolarcombination of chloroquine (2) and primaquine (1) showedenhanced activity compared with only chloroquine (2) thushinting the chloroquine resistance-reversing effect of pri-maquine (1) [54]

Against strain K1 the equimolar combination of chloro-quine (2) and primaquine (1) showed a better activity thanagainst the strainDd2 Chloroquine (2) showed a comparableactivity in comparison with Dd2 and the order of efficacy ofprimaquine (1) was 3D7 lt Dd2 lt K1 Also the hybrid com-pound 5 showed the best activity against the K1 strain Theorder of activity of compound 5 was 3D7 asymp Dd2 lt K1 (fivetimes higher than Dd2 and 3D7) This higher activity againstK1 strain than against the other strains can be probably due tothe resistance-reversing effect of primaquine [54] combinedwith the better activity of primaquine on its own The

8 International Journal of Medicinal Chemistry

NN

N

N

MeOMeO

MeO

MeO

HNHN

HN

HN

N

NH

Cl

N3

N3

N3

NH2

Br

Br

BrHO

HOHO

OH

OH

31 (63)

32 (35)

35 (f 75) 35 (d 41)36 (68)

37 (95)

33 (99)

34 (71)

38 (43)

TsO

+(a) (b)

(c)

(d)

(e)

(h)

(g)

(f)

Scheme 7 Two variants of the protecting group free synthesis of the aromatic-type linker moiety to obtain the key intermediate azide 35Reagents and conditions (a) (CBrCl

2

)2

PPh3

DCM (dry) 0ndash25∘C (b) NaN3

DMF (dry) 25∘C (c) TsCl NaH DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (e) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (f) DPPA DBUtoluene (dry) 25∘C (g) PPh

3

MeOH (dry) 25∘C (h) 47-dichloroquinoline neat 120∘C

primaquinemoiety 4was inactive against K1 but surprisinglythe chloroquine motif 3 showed its best activity against K1The combination of both motifs 3 and 4 showed effectivenessagainst K1 in the same range as 3 against K1 due to presenceof the chloroquine motif

Both compounds 9 and 10 showed good activities againstall strains but were slightly less active than the first repre-sentative 5 The derivative 6 showed improved bioactivitiesin the submicromolar range and had a similar linkage ascompound 5 originating from the primaquine side chain butwith a pharmacophore ratio of primaquine to chloroquinemoiety of 1 2 This might be due to not only the number ofpharmacophores but also an increased lipophilicity correlat-ing with an enhanced membrane permeability an increasedbasicity with a higher enrichment in acidic compartments or

an increased planar aromatic system capable of shielding thesurface of hemozoin from further growth

The piperazine-linked amide 13 and the amine 14 showedthe lowest activities against the blood stages Only 14 showedvery good activity against strain K1 (lower than 1 120583M) Thelow activity of both these molecules could be due to the lackof a strong basic center such as the tertiary nitrogen atom likein compound 16

Compounds 15 and 16 elongated piperazine derivativeswith a second C3 linker showed improved activities against3D7 andDd2whereby the diamine 16 with higher basic prop-erties was significantly active against strain K1Thismight beinfluenced by a higher total flexibility of compounds 15 and 16due to two C3 linkers the basic properties of the diamide 15and the diamine 16 might not be the cause of their higher

International Journal of Medicinal Chemistry 9

NHN

MeO

NH

N Cl

Linker

Authenticlinker

HNNH

Me

Nolinker

Piperazinelinker

Xylenelinker

NN

O

O

NN

O

NN

NN

3D7

Reference drugs(1) Primaquine(2) Chloroquine

(3) Chloroquine motif(4) Primaquine motif

Dd2

K1

Gametocytaemia

Liver stage-number [ compared to wildtype]

Liver stage-diameter [ compared to wildtype]

2 = 6 gt (1 + 2 15x) gt 17(20x) = 18 gt 30(15x) = 15 gt 16(11x) gt 5(64x) gt 10(17x) gt 9(16x) gt 1(18x)gt 3(13x) gt (3 + 4 12x) sim 14(11x) gt 13(11) gt 4 (inactive)2 = 6 gt (1 + 2 15x) gt 13(185x)2 = 6 gt (3 + 4 246x) gt 13(11x)

6 = 17 gt 16(15x) gt 30(12x) gt 18(14x) gt 15(12x) gt (1 + 2 16x) gt 2(14x) gt 5(22x) gt 1(20x) gt 9(15x)gt (3 + 4 14x) gt 3(11x) gt 13(12x) gt 14(11x) gt 10(12) gt 4 (inactive)6 = 17 gt (1 + 2 48x) gt 10(20x)6 = 17 gt (3 + 4 60x) gt 10(16x)

6 = 18 gt 16(20x) = 17 gt 30(35x) gt 5(13x) gt 15(16x) gt (1 + 2 12x) gt 2(12x) gt 14(15x) gt 1(20x)gt (3 + 4 11x) sim 3 gt 10(25x) gt 9(13x) gt 13(11) gt 4 (inactive)6 = 18 gt (1 + 2 170x) gt 13(149x)6 = 18 gt (3 + 4 68x) gt 10(37x)

5 sim 1 gt 9(13x) = 14 gt 13(13x) = 10 sim 18 sim 6 sim 16 sim 15 gt 17(11x) sim 30 gt 2(15x)5 sim 1 gt 10(17x) gt 30(12x) gt 2(15x)

sim 15 gt 14(11x) gt 3(12x)18 = 30 gt (1 + 2 3 + 4 14x) gt 14(17x)

13 gt 30(12x) gt 15(12x) gt 1(11x) = 16 sim 5 gt 3(11x) = (1 + 2) sim 4(11x) sim (3 + 4) sim 14 gt 17(11x)gt 18(11x) sim 2 gt wildtype (11x)

13 gt (1 + 2 16x) gt 2(13x)13 gt (3 + 4 17x) gt 2(12x)

18 = 30 gt 16(11x) gt 1(11x) gt 17(11x) sim 5 gt (1 + 2 11x) sim 13 sim (3 + 4) sim 4 gt wildtype (14x) sim 2(142x)

lowast

Scheme 8 Bioactive molecules of the study reference drugs (1 2 3 and 4) and their combinations (1 + 2 3 + 4) in order from the highestto the lowest activities (referring to IC

50

values for 3D7 Dd2 and K1 gametocytaemia and number and diameter of the liver stages resp)in brackets the ratios of activities of the compounds compared to the former substances

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 5: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 5

Br Cl

O

HN

BocNNBoc

N

O

BrHN

NH

+

1120 (78)

22 (9)

19 (63)

N

MeO

HN N

NBocNBoc

NBoc

O

+

MeO

NH

NONBoc

N

O

BocN

23 (74)

24 (17)

N

MeO

HN NNH

O

N

MeO

HN N

N

O

N

Cl

12 (98)

13 (62)

21 (91)

Br OH

O

(d)

(e)

(f)

N+

Brminus

(a)

(b)

(c)

Scheme 3 Synthetic route for hybrid molecule 13 a piperazine-linked primaquine-chloroquine dual molecule Reagents and conditions (a)Boc2

O DCM (dry) 0∘C (b) SOCl2

80∘C (c) NaOAc DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaH DMF (dry) 0ndash25∘C(e) TFA DCM 25∘C (f) 47-dichloroquinoline neat 120∘C

The key intermediate 12 was reduced by LiAlH4in THF

(dry) to obtain compound25 in low yields of 30 (Scheme 4)Multiple reasons for the low reduction yields of primaquineanalogs have been described earlier [61] formation of numer-ous soluble and stable complexes of the primaquine moietywith the reducing agent LiAlH

4at room temperature [61]

which complicates the detection of the complete consump-tion of the starting material during the reaction Further-more a splitting of the 8-amine-carbon bond by reduc-ing agent LiAlH

4and a partial reduction of the pyridinic

moiety to the corresponding tetrahydroisoquinoline mighthave caused low yields [61] Conversion of 25 with 47-dichloroquinoline at 120∘C under neat conditions gave com-pound 14 in 41 yield

The synthesis of hybrid molecules with a further elon-gated C3-piperazine-C3 linkage started with the introductionof the additional C3 part to the key intermediate 12 whichwas allowed to react with the acyl chloride 19 at minus20∘C

to give amide 26 in 69 yield (Scheme 5) and the twoadditional regioisomers as well as the corresponding elimina-tion product of amide 26 The azide function was introducedto 26 using NaN

3to obtain the azide 27 in 92 yield

followed by the reduction to the amine 28 in 81 yield usingthe Staudinger reaction The linkage of amine 28 with 47-dichloroquinoline gave the dual molecule 15 or the disubsti-tuted hybrid 17 (depending on the number of equivalents of47-dichloroquinoline) in low yields of 30 (15) and 28 (17)respectively

Starting from the azide 27 two further hybrid molecules(16 18) were obtained Azide 27was reduced using LiAlH

4in

34 yield to amine 29 with two tertiary and basic piperazinenitrogen atoms that might influence the bioactivity values byenrichment in acidic compartmentsThe free amine functionof compound 29was linkedwith 47-dichloroquinoline to themonosubstituted 16 and the disubstituted 18 in 17 and 23yield respectively (Scheme 6)

6 International Journal of Medicinal Chemistry

N

MeO

HN NNH

O

N

MeO

HN NNH

N

MeO

HN N

N

N

Cl

14 (41)25 (30)12

(a) (b)

Scheme 4 Synthesis of the hybrid substance 14 starting with the reduction of the key intermediate 12 and followed by the linkage to thechloroquine motif Reagents and conditions (a) LiAlH

4

THF (dry) 80∘C (b) 47-dichloroquinoline neat 120∘C

N

MeO

HN NNH

O

N

MeO

HN NN

O

O

Br

N

MeO

HN N

N

O

O

N

MeO

HN NN

O

O

NH

N

Cl

N

MeO

N NN

O

O

NH

N

ClN

Cl

12 26 (69)

28 (81)

15 (30)

17 (28)

N

MeO

HN N

N

O

O

27 (92)

NH2

N3(a) (b)

(c)

(d)

(e)

Scheme 5 Synthesis of the hybrid compound 15 (ratio 1 1) and of substance 17 (ratio 1 2) by the divergent synthetic route using a C3-piperazine-C3 linkage Reagents and conditions (a) 3-bromopropionyl chloride (19) NaOAc DCM (dry) minus20∘C (b) NaN

3

DMF (dry)25∘C (c) PPh

3

MeOH (dry) 25∘C (d) 47-dichloroquinoline (075 equivalents) neat 120∘C (e) 47-dichloroquinoline (3 equivalents) neat120∘C

224 Synthetic Route toHybridMolecule 30with anAromatic-Type Linkage The influence of the linkage composition onthe bioactivity values was further investigated and a hybridmolecule with a nonbasic plain aromatic linker moiety wasdesigned and synthesized The distance between the linkagepositions of the primaquine pharmacophore and of thechloroquine pharmacophore moieties corresponded approx-imately to the distance in the genuine hybrid molecule 5 Thenumber of nitrogen atoms was not changed but the lipophil-icity was expected to be higher than that for the genuinecompound 5 due to the formal para-xylene part

The first attempts to synthesize 30 from the less expen-sive chloroquine moiety were not successful Therefore thesynthesis was started from the primaquine building block

The protecting group free protocol started with thecommercially available 14-benzenedimethanol which wasconverted by the use of 12-dibromotetrachloroethane andPPh3to the monobrominated product 31 in 63 yield and

to the side product the double brominated compound 32in 35 yield (Scheme 7) The introduction of the azidefunction by NaN

3gave 99 of compound 33 followed by the

tosylationwith p-toluenesulfonyl chloride to compound 34 in71 yield and by the linkage to the primaquine motif 4 yield-ing compound 35 (41) The key intermediate 35 was alsoobtained by the linkage of the brominated derivative 31 with6-methoxy-8-aminoquinoline (4) in 68 yield followed bythe azide introduction using DPPA andDBU in toluene (dry)at room temperature in 75 yield [62] The first route overfour steps resulted in the key intermediate 35 with an overallyield of 18 the second route over three steps resulted inintermediate 35 with a yield of 32

Compound 35 was reduced to amine 37 (95) by Staud-inger conditions the amine 37 was finally linked to the sec-ond pharmacophore moiety using 47-dichloroquinoline at120∘C under neat conditions yielding the target hybridmole-cule 38 in 43

International Journal of Medicinal Chemistry 7

N

MeO

HN NN

O

O

N

MeO

HN N

N NH

N

Cl

N

MeO

N N

N NH

N

Cl

N

Cl

27

16 (17) 18 (23)

N

MeO

HN N

N

29 (34)

(a)

(b) (c)

N3 NH2

Scheme 6 Synthetic route of the hybrid molecules 16 and 18 with higher basic molecule properties Reagents and conditions (a) LiAlH4

THF (dry) 80∘C (b) 47-dichloroquinoline (08 equivalents) neat 120∘C (c) 47-dichloroquinoline (five equivalents) neat 120∘C

23 Discussion Hybrid 5 showed a significant effect on themorphology of the liver and on the total number of liver stageparasites (P berghei) which were reduced by a concentrationsignificantly lower than that of primaquine (1) required forthe same activity All additional hybrid molecules showed aninfluence on the size of liver stages in comparison with theparasite wildtype and on the number of liver stages after 24hours (Scheme 8)

Amide 13 compared with amine 14 showed a decreasednumber of liver stages and a greater influence on the growthwith a smaller diameter of the parasitic stages The numberof liver stages and the parasite growth were slightly decreasedusing the elongated amide 15 comparedwith the 14with a sec-ond C3 linker in comparison with 15 the amine 16 showeda stronger increase in the number of parasites whereas thediameter did not alter significantly The introduction of thesecond elongating linker part as well as the variation of thebasic molecule properties of the four investigated molecules(13 to 16) had very little influence on the activity againstthe number and the diameter of parasites The introductionof two chloroquine motives resulted in molecules that wereless effective against the growth compared with the previousmonosubstituted derivatives amide 17 and the correspond-ing amine 18 showed a comparable weak effect on the growthof parasites but after 24 hours 17 and 18 as well as 16 and 38showed the lowest number of liver stages In this case as wella modification of the basic molecule property values did notinfluence the activity against liver stages

The hybrid molecules were tested against the followingstrains of P falciparum 3D7 (chloroquine and pyrimetham-ine sensitive strain) [63 64] Dd2 (resistant against chloro-quine mefloquine and pyrimethamine) [65] and K1 (resis-tant against pyrimethamine [63 66] and one of the mostresistant strains against chloroquine) [67] The equimolarcombination of primaquine (1) and chloroquine (2) and theequimolar combination of both the chloroquine (3) and the

primaquine motives (4) were measured in comparison withthe hybrid compounds

Almost all of the investigated hybrid molecules showedimproved activity against blood stages of P falciparum (3D7Dd2 and K1) Against strain 3D7 hybrid molecule 5 showedlower activity than chloroquine but 5 was still very activeat a concentration lower than 1 120583M also in comparison withprimaquine and to the chloroquine motif 3 The primaquinemoiety 4was not activeThe combination of both the chloro-quine and primaquine motifs 3 and 4 showed activity in therange of the chloroquine motif alone and hence had no addi-tional or synergistic effect on each other Also the equimolarcombination of primaquine (1) and chloroquine (2) showedactivity in the concentration range of chloroquine

Against strain Dd2 hybrid 5 showed a slightly improvedactivity compared with 3D7 Chloroquine (2) was less activeagainst Dd2 than against 3D7 and primaquine (1) had only aweak effect The primaquine motif 4 showed no activity butthe chloroquine motif 3 surprisingly showed a better activitycompared with 3D7 This was also confirmed by the equimo-lar combination of both motives 3 and 4 The equimolarcombination of chloroquine (2) and primaquine (1) showedenhanced activity compared with only chloroquine (2) thushinting the chloroquine resistance-reversing effect of pri-maquine (1) [54]

Against strain K1 the equimolar combination of chloro-quine (2) and primaquine (1) showed a better activity thanagainst the strainDd2 Chloroquine (2) showed a comparableactivity in comparison with Dd2 and the order of efficacy ofprimaquine (1) was 3D7 lt Dd2 lt K1 Also the hybrid com-pound 5 showed the best activity against the K1 strain Theorder of activity of compound 5 was 3D7 asymp Dd2 lt K1 (fivetimes higher than Dd2 and 3D7) This higher activity againstK1 strain than against the other strains can be probably due tothe resistance-reversing effect of primaquine [54] combinedwith the better activity of primaquine on its own The

8 International Journal of Medicinal Chemistry

NN

N

N

MeOMeO

MeO

MeO

HNHN

HN

HN

N

NH

Cl

N3

N3

N3

NH2

Br

Br

BrHO

HOHO

OH

OH

31 (63)

32 (35)

35 (f 75) 35 (d 41)36 (68)

37 (95)

33 (99)

34 (71)

38 (43)

TsO

+(a) (b)

(c)

(d)

(e)

(h)

(g)

(f)

Scheme 7 Two variants of the protecting group free synthesis of the aromatic-type linker moiety to obtain the key intermediate azide 35Reagents and conditions (a) (CBrCl

2

)2

PPh3

DCM (dry) 0ndash25∘C (b) NaN3

DMF (dry) 25∘C (c) TsCl NaH DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (e) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (f) DPPA DBUtoluene (dry) 25∘C (g) PPh

3

MeOH (dry) 25∘C (h) 47-dichloroquinoline neat 120∘C

primaquinemoiety 4was inactive against K1 but surprisinglythe chloroquine motif 3 showed its best activity against K1The combination of both motifs 3 and 4 showed effectivenessagainst K1 in the same range as 3 against K1 due to presenceof the chloroquine motif

Both compounds 9 and 10 showed good activities againstall strains but were slightly less active than the first repre-sentative 5 The derivative 6 showed improved bioactivitiesin the submicromolar range and had a similar linkage ascompound 5 originating from the primaquine side chain butwith a pharmacophore ratio of primaquine to chloroquinemoiety of 1 2 This might be due to not only the number ofpharmacophores but also an increased lipophilicity correlat-ing with an enhanced membrane permeability an increasedbasicity with a higher enrichment in acidic compartments or

an increased planar aromatic system capable of shielding thesurface of hemozoin from further growth

The piperazine-linked amide 13 and the amine 14 showedthe lowest activities against the blood stages Only 14 showedvery good activity against strain K1 (lower than 1 120583M) Thelow activity of both these molecules could be due to the lackof a strong basic center such as the tertiary nitrogen atom likein compound 16

Compounds 15 and 16 elongated piperazine derivativeswith a second C3 linker showed improved activities against3D7 andDd2whereby the diamine 16 with higher basic prop-erties was significantly active against strain K1Thismight beinfluenced by a higher total flexibility of compounds 15 and 16due to two C3 linkers the basic properties of the diamide 15and the diamine 16 might not be the cause of their higher

International Journal of Medicinal Chemistry 9

NHN

MeO

NH

N Cl

Linker

Authenticlinker

HNNH

Me

Nolinker

Piperazinelinker

Xylenelinker

NN

O

O

NN

O

NN

NN

3D7

Reference drugs(1) Primaquine(2) Chloroquine

(3) Chloroquine motif(4) Primaquine motif

Dd2

K1

Gametocytaemia

Liver stage-number [ compared to wildtype]

Liver stage-diameter [ compared to wildtype]

2 = 6 gt (1 + 2 15x) gt 17(20x) = 18 gt 30(15x) = 15 gt 16(11x) gt 5(64x) gt 10(17x) gt 9(16x) gt 1(18x)gt 3(13x) gt (3 + 4 12x) sim 14(11x) gt 13(11) gt 4 (inactive)2 = 6 gt (1 + 2 15x) gt 13(185x)2 = 6 gt (3 + 4 246x) gt 13(11x)

6 = 17 gt 16(15x) gt 30(12x) gt 18(14x) gt 15(12x) gt (1 + 2 16x) gt 2(14x) gt 5(22x) gt 1(20x) gt 9(15x)gt (3 + 4 14x) gt 3(11x) gt 13(12x) gt 14(11x) gt 10(12) gt 4 (inactive)6 = 17 gt (1 + 2 48x) gt 10(20x)6 = 17 gt (3 + 4 60x) gt 10(16x)

6 = 18 gt 16(20x) = 17 gt 30(35x) gt 5(13x) gt 15(16x) gt (1 + 2 12x) gt 2(12x) gt 14(15x) gt 1(20x)gt (3 + 4 11x) sim 3 gt 10(25x) gt 9(13x) gt 13(11) gt 4 (inactive)6 = 18 gt (1 + 2 170x) gt 13(149x)6 = 18 gt (3 + 4 68x) gt 10(37x)

5 sim 1 gt 9(13x) = 14 gt 13(13x) = 10 sim 18 sim 6 sim 16 sim 15 gt 17(11x) sim 30 gt 2(15x)5 sim 1 gt 10(17x) gt 30(12x) gt 2(15x)

sim 15 gt 14(11x) gt 3(12x)18 = 30 gt (1 + 2 3 + 4 14x) gt 14(17x)

13 gt 30(12x) gt 15(12x) gt 1(11x) = 16 sim 5 gt 3(11x) = (1 + 2) sim 4(11x) sim (3 + 4) sim 14 gt 17(11x)gt 18(11x) sim 2 gt wildtype (11x)

13 gt (1 + 2 16x) gt 2(13x)13 gt (3 + 4 17x) gt 2(12x)

18 = 30 gt 16(11x) gt 1(11x) gt 17(11x) sim 5 gt (1 + 2 11x) sim 13 sim (3 + 4) sim 4 gt wildtype (14x) sim 2(142x)

lowast

Scheme 8 Bioactive molecules of the study reference drugs (1 2 3 and 4) and their combinations (1 + 2 3 + 4) in order from the highestto the lowest activities (referring to IC

50

values for 3D7 Dd2 and K1 gametocytaemia and number and diameter of the liver stages resp)in brackets the ratios of activities of the compounds compared to the former substances

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 6: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

6 International Journal of Medicinal Chemistry

N

MeO

HN NNH

O

N

MeO

HN NNH

N

MeO

HN N

N

N

Cl

14 (41)25 (30)12

(a) (b)

Scheme 4 Synthesis of the hybrid substance 14 starting with the reduction of the key intermediate 12 and followed by the linkage to thechloroquine motif Reagents and conditions (a) LiAlH

4

THF (dry) 80∘C (b) 47-dichloroquinoline neat 120∘C

N

MeO

HN NNH

O

N

MeO

HN NN

O

O

Br

N

MeO

HN N

N

O

O

N

MeO

HN NN

O

O

NH

N

Cl

N

MeO

N NN

O

O

NH

N

ClN

Cl

12 26 (69)

28 (81)

15 (30)

17 (28)

N

MeO

HN N

N

O

O

27 (92)

NH2

N3(a) (b)

(c)

(d)

(e)

Scheme 5 Synthesis of the hybrid compound 15 (ratio 1 1) and of substance 17 (ratio 1 2) by the divergent synthetic route using a C3-piperazine-C3 linkage Reagents and conditions (a) 3-bromopropionyl chloride (19) NaOAc DCM (dry) minus20∘C (b) NaN

3

DMF (dry)25∘C (c) PPh

3

MeOH (dry) 25∘C (d) 47-dichloroquinoline (075 equivalents) neat 120∘C (e) 47-dichloroquinoline (3 equivalents) neat120∘C

224 Synthetic Route toHybridMolecule 30with anAromatic-Type Linkage The influence of the linkage composition onthe bioactivity values was further investigated and a hybridmolecule with a nonbasic plain aromatic linker moiety wasdesigned and synthesized The distance between the linkagepositions of the primaquine pharmacophore and of thechloroquine pharmacophore moieties corresponded approx-imately to the distance in the genuine hybrid molecule 5 Thenumber of nitrogen atoms was not changed but the lipophil-icity was expected to be higher than that for the genuinecompound 5 due to the formal para-xylene part

The first attempts to synthesize 30 from the less expen-sive chloroquine moiety were not successful Therefore thesynthesis was started from the primaquine building block

The protecting group free protocol started with thecommercially available 14-benzenedimethanol which wasconverted by the use of 12-dibromotetrachloroethane andPPh3to the monobrominated product 31 in 63 yield and

to the side product the double brominated compound 32in 35 yield (Scheme 7) The introduction of the azidefunction by NaN

3gave 99 of compound 33 followed by the

tosylationwith p-toluenesulfonyl chloride to compound 34 in71 yield and by the linkage to the primaquine motif 4 yield-ing compound 35 (41) The key intermediate 35 was alsoobtained by the linkage of the brominated derivative 31 with6-methoxy-8-aminoquinoline (4) in 68 yield followed bythe azide introduction using DPPA andDBU in toluene (dry)at room temperature in 75 yield [62] The first route overfour steps resulted in the key intermediate 35 with an overallyield of 18 the second route over three steps resulted inintermediate 35 with a yield of 32

Compound 35 was reduced to amine 37 (95) by Staud-inger conditions the amine 37 was finally linked to the sec-ond pharmacophore moiety using 47-dichloroquinoline at120∘C under neat conditions yielding the target hybridmole-cule 38 in 43

International Journal of Medicinal Chemistry 7

N

MeO

HN NN

O

O

N

MeO

HN N

N NH

N

Cl

N

MeO

N N

N NH

N

Cl

N

Cl

27

16 (17) 18 (23)

N

MeO

HN N

N

29 (34)

(a)

(b) (c)

N3 NH2

Scheme 6 Synthetic route of the hybrid molecules 16 and 18 with higher basic molecule properties Reagents and conditions (a) LiAlH4

THF (dry) 80∘C (b) 47-dichloroquinoline (08 equivalents) neat 120∘C (c) 47-dichloroquinoline (five equivalents) neat 120∘C

23 Discussion Hybrid 5 showed a significant effect on themorphology of the liver and on the total number of liver stageparasites (P berghei) which were reduced by a concentrationsignificantly lower than that of primaquine (1) required forthe same activity All additional hybrid molecules showed aninfluence on the size of liver stages in comparison with theparasite wildtype and on the number of liver stages after 24hours (Scheme 8)

Amide 13 compared with amine 14 showed a decreasednumber of liver stages and a greater influence on the growthwith a smaller diameter of the parasitic stages The numberof liver stages and the parasite growth were slightly decreasedusing the elongated amide 15 comparedwith the 14with a sec-ond C3 linker in comparison with 15 the amine 16 showeda stronger increase in the number of parasites whereas thediameter did not alter significantly The introduction of thesecond elongating linker part as well as the variation of thebasic molecule properties of the four investigated molecules(13 to 16) had very little influence on the activity againstthe number and the diameter of parasites The introductionof two chloroquine motives resulted in molecules that wereless effective against the growth compared with the previousmonosubstituted derivatives amide 17 and the correspond-ing amine 18 showed a comparable weak effect on the growthof parasites but after 24 hours 17 and 18 as well as 16 and 38showed the lowest number of liver stages In this case as wella modification of the basic molecule property values did notinfluence the activity against liver stages

The hybrid molecules were tested against the followingstrains of P falciparum 3D7 (chloroquine and pyrimetham-ine sensitive strain) [63 64] Dd2 (resistant against chloro-quine mefloquine and pyrimethamine) [65] and K1 (resis-tant against pyrimethamine [63 66] and one of the mostresistant strains against chloroquine) [67] The equimolarcombination of primaquine (1) and chloroquine (2) and theequimolar combination of both the chloroquine (3) and the

primaquine motives (4) were measured in comparison withthe hybrid compounds

Almost all of the investigated hybrid molecules showedimproved activity against blood stages of P falciparum (3D7Dd2 and K1) Against strain 3D7 hybrid molecule 5 showedlower activity than chloroquine but 5 was still very activeat a concentration lower than 1 120583M also in comparison withprimaquine and to the chloroquine motif 3 The primaquinemoiety 4was not activeThe combination of both the chloro-quine and primaquine motifs 3 and 4 showed activity in therange of the chloroquine motif alone and hence had no addi-tional or synergistic effect on each other Also the equimolarcombination of primaquine (1) and chloroquine (2) showedactivity in the concentration range of chloroquine

Against strain Dd2 hybrid 5 showed a slightly improvedactivity compared with 3D7 Chloroquine (2) was less activeagainst Dd2 than against 3D7 and primaquine (1) had only aweak effect The primaquine motif 4 showed no activity butthe chloroquine motif 3 surprisingly showed a better activitycompared with 3D7 This was also confirmed by the equimo-lar combination of both motives 3 and 4 The equimolarcombination of chloroquine (2) and primaquine (1) showedenhanced activity compared with only chloroquine (2) thushinting the chloroquine resistance-reversing effect of pri-maquine (1) [54]

Against strain K1 the equimolar combination of chloro-quine (2) and primaquine (1) showed a better activity thanagainst the strainDd2 Chloroquine (2) showed a comparableactivity in comparison with Dd2 and the order of efficacy ofprimaquine (1) was 3D7 lt Dd2 lt K1 Also the hybrid com-pound 5 showed the best activity against the K1 strain Theorder of activity of compound 5 was 3D7 asymp Dd2 lt K1 (fivetimes higher than Dd2 and 3D7) This higher activity againstK1 strain than against the other strains can be probably due tothe resistance-reversing effect of primaquine [54] combinedwith the better activity of primaquine on its own The

8 International Journal of Medicinal Chemistry

NN

N

N

MeOMeO

MeO

MeO

HNHN

HN

HN

N

NH

Cl

N3

N3

N3

NH2

Br

Br

BrHO

HOHO

OH

OH

31 (63)

32 (35)

35 (f 75) 35 (d 41)36 (68)

37 (95)

33 (99)

34 (71)

38 (43)

TsO

+(a) (b)

(c)

(d)

(e)

(h)

(g)

(f)

Scheme 7 Two variants of the protecting group free synthesis of the aromatic-type linker moiety to obtain the key intermediate azide 35Reagents and conditions (a) (CBrCl

2

)2

PPh3

DCM (dry) 0ndash25∘C (b) NaN3

DMF (dry) 25∘C (c) TsCl NaH DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (e) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (f) DPPA DBUtoluene (dry) 25∘C (g) PPh

3

MeOH (dry) 25∘C (h) 47-dichloroquinoline neat 120∘C

primaquinemoiety 4was inactive against K1 but surprisinglythe chloroquine motif 3 showed its best activity against K1The combination of both motifs 3 and 4 showed effectivenessagainst K1 in the same range as 3 against K1 due to presenceof the chloroquine motif

Both compounds 9 and 10 showed good activities againstall strains but were slightly less active than the first repre-sentative 5 The derivative 6 showed improved bioactivitiesin the submicromolar range and had a similar linkage ascompound 5 originating from the primaquine side chain butwith a pharmacophore ratio of primaquine to chloroquinemoiety of 1 2 This might be due to not only the number ofpharmacophores but also an increased lipophilicity correlat-ing with an enhanced membrane permeability an increasedbasicity with a higher enrichment in acidic compartments or

an increased planar aromatic system capable of shielding thesurface of hemozoin from further growth

The piperazine-linked amide 13 and the amine 14 showedthe lowest activities against the blood stages Only 14 showedvery good activity against strain K1 (lower than 1 120583M) Thelow activity of both these molecules could be due to the lackof a strong basic center such as the tertiary nitrogen atom likein compound 16

Compounds 15 and 16 elongated piperazine derivativeswith a second C3 linker showed improved activities against3D7 andDd2whereby the diamine 16 with higher basic prop-erties was significantly active against strain K1Thismight beinfluenced by a higher total flexibility of compounds 15 and 16due to two C3 linkers the basic properties of the diamide 15and the diamine 16 might not be the cause of their higher

International Journal of Medicinal Chemistry 9

NHN

MeO

NH

N Cl

Linker

Authenticlinker

HNNH

Me

Nolinker

Piperazinelinker

Xylenelinker

NN

O

O

NN

O

NN

NN

3D7

Reference drugs(1) Primaquine(2) Chloroquine

(3) Chloroquine motif(4) Primaquine motif

Dd2

K1

Gametocytaemia

Liver stage-number [ compared to wildtype]

Liver stage-diameter [ compared to wildtype]

2 = 6 gt (1 + 2 15x) gt 17(20x) = 18 gt 30(15x) = 15 gt 16(11x) gt 5(64x) gt 10(17x) gt 9(16x) gt 1(18x)gt 3(13x) gt (3 + 4 12x) sim 14(11x) gt 13(11) gt 4 (inactive)2 = 6 gt (1 + 2 15x) gt 13(185x)2 = 6 gt (3 + 4 246x) gt 13(11x)

6 = 17 gt 16(15x) gt 30(12x) gt 18(14x) gt 15(12x) gt (1 + 2 16x) gt 2(14x) gt 5(22x) gt 1(20x) gt 9(15x)gt (3 + 4 14x) gt 3(11x) gt 13(12x) gt 14(11x) gt 10(12) gt 4 (inactive)6 = 17 gt (1 + 2 48x) gt 10(20x)6 = 17 gt (3 + 4 60x) gt 10(16x)

6 = 18 gt 16(20x) = 17 gt 30(35x) gt 5(13x) gt 15(16x) gt (1 + 2 12x) gt 2(12x) gt 14(15x) gt 1(20x)gt (3 + 4 11x) sim 3 gt 10(25x) gt 9(13x) gt 13(11) gt 4 (inactive)6 = 18 gt (1 + 2 170x) gt 13(149x)6 = 18 gt (3 + 4 68x) gt 10(37x)

5 sim 1 gt 9(13x) = 14 gt 13(13x) = 10 sim 18 sim 6 sim 16 sim 15 gt 17(11x) sim 30 gt 2(15x)5 sim 1 gt 10(17x) gt 30(12x) gt 2(15x)

sim 15 gt 14(11x) gt 3(12x)18 = 30 gt (1 + 2 3 + 4 14x) gt 14(17x)

13 gt 30(12x) gt 15(12x) gt 1(11x) = 16 sim 5 gt 3(11x) = (1 + 2) sim 4(11x) sim (3 + 4) sim 14 gt 17(11x)gt 18(11x) sim 2 gt wildtype (11x)

13 gt (1 + 2 16x) gt 2(13x)13 gt (3 + 4 17x) gt 2(12x)

18 = 30 gt 16(11x) gt 1(11x) gt 17(11x) sim 5 gt (1 + 2 11x) sim 13 sim (3 + 4) sim 4 gt wildtype (14x) sim 2(142x)

lowast

Scheme 8 Bioactive molecules of the study reference drugs (1 2 3 and 4) and their combinations (1 + 2 3 + 4) in order from the highestto the lowest activities (referring to IC

50

values for 3D7 Dd2 and K1 gametocytaemia and number and diameter of the liver stages resp)in brackets the ratios of activities of the compounds compared to the former substances

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 7: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 7

N

MeO

HN NN

O

O

N

MeO

HN N

N NH

N

Cl

N

MeO

N N

N NH

N

Cl

N

Cl

27

16 (17) 18 (23)

N

MeO

HN N

N

29 (34)

(a)

(b) (c)

N3 NH2

Scheme 6 Synthetic route of the hybrid molecules 16 and 18 with higher basic molecule properties Reagents and conditions (a) LiAlH4

THF (dry) 80∘C (b) 47-dichloroquinoline (08 equivalents) neat 120∘C (c) 47-dichloroquinoline (five equivalents) neat 120∘C

23 Discussion Hybrid 5 showed a significant effect on themorphology of the liver and on the total number of liver stageparasites (P berghei) which were reduced by a concentrationsignificantly lower than that of primaquine (1) required forthe same activity All additional hybrid molecules showed aninfluence on the size of liver stages in comparison with theparasite wildtype and on the number of liver stages after 24hours (Scheme 8)

Amide 13 compared with amine 14 showed a decreasednumber of liver stages and a greater influence on the growthwith a smaller diameter of the parasitic stages The numberof liver stages and the parasite growth were slightly decreasedusing the elongated amide 15 comparedwith the 14with a sec-ond C3 linker in comparison with 15 the amine 16 showeda stronger increase in the number of parasites whereas thediameter did not alter significantly The introduction of thesecond elongating linker part as well as the variation of thebasic molecule properties of the four investigated molecules(13 to 16) had very little influence on the activity againstthe number and the diameter of parasites The introductionof two chloroquine motives resulted in molecules that wereless effective against the growth compared with the previousmonosubstituted derivatives amide 17 and the correspond-ing amine 18 showed a comparable weak effect on the growthof parasites but after 24 hours 17 and 18 as well as 16 and 38showed the lowest number of liver stages In this case as wella modification of the basic molecule property values did notinfluence the activity against liver stages

The hybrid molecules were tested against the followingstrains of P falciparum 3D7 (chloroquine and pyrimetham-ine sensitive strain) [63 64] Dd2 (resistant against chloro-quine mefloquine and pyrimethamine) [65] and K1 (resis-tant against pyrimethamine [63 66] and one of the mostresistant strains against chloroquine) [67] The equimolarcombination of primaquine (1) and chloroquine (2) and theequimolar combination of both the chloroquine (3) and the

primaquine motives (4) were measured in comparison withthe hybrid compounds

Almost all of the investigated hybrid molecules showedimproved activity against blood stages of P falciparum (3D7Dd2 and K1) Against strain 3D7 hybrid molecule 5 showedlower activity than chloroquine but 5 was still very activeat a concentration lower than 1 120583M also in comparison withprimaquine and to the chloroquine motif 3 The primaquinemoiety 4was not activeThe combination of both the chloro-quine and primaquine motifs 3 and 4 showed activity in therange of the chloroquine motif alone and hence had no addi-tional or synergistic effect on each other Also the equimolarcombination of primaquine (1) and chloroquine (2) showedactivity in the concentration range of chloroquine

Against strain Dd2 hybrid 5 showed a slightly improvedactivity compared with 3D7 Chloroquine (2) was less activeagainst Dd2 than against 3D7 and primaquine (1) had only aweak effect The primaquine motif 4 showed no activity butthe chloroquine motif 3 surprisingly showed a better activitycompared with 3D7 This was also confirmed by the equimo-lar combination of both motives 3 and 4 The equimolarcombination of chloroquine (2) and primaquine (1) showedenhanced activity compared with only chloroquine (2) thushinting the chloroquine resistance-reversing effect of pri-maquine (1) [54]

Against strain K1 the equimolar combination of chloro-quine (2) and primaquine (1) showed a better activity thanagainst the strainDd2 Chloroquine (2) showed a comparableactivity in comparison with Dd2 and the order of efficacy ofprimaquine (1) was 3D7 lt Dd2 lt K1 Also the hybrid com-pound 5 showed the best activity against the K1 strain Theorder of activity of compound 5 was 3D7 asymp Dd2 lt K1 (fivetimes higher than Dd2 and 3D7) This higher activity againstK1 strain than against the other strains can be probably due tothe resistance-reversing effect of primaquine [54] combinedwith the better activity of primaquine on its own The

8 International Journal of Medicinal Chemistry

NN

N

N

MeOMeO

MeO

MeO

HNHN

HN

HN

N

NH

Cl

N3

N3

N3

NH2

Br

Br

BrHO

HOHO

OH

OH

31 (63)

32 (35)

35 (f 75) 35 (d 41)36 (68)

37 (95)

33 (99)

34 (71)

38 (43)

TsO

+(a) (b)

(c)

(d)

(e)

(h)

(g)

(f)

Scheme 7 Two variants of the protecting group free synthesis of the aromatic-type linker moiety to obtain the key intermediate azide 35Reagents and conditions (a) (CBrCl

2

)2

PPh3

DCM (dry) 0ndash25∘C (b) NaN3

DMF (dry) 25∘C (c) TsCl NaH DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (e) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (f) DPPA DBUtoluene (dry) 25∘C (g) PPh

3

MeOH (dry) 25∘C (h) 47-dichloroquinoline neat 120∘C

primaquinemoiety 4was inactive against K1 but surprisinglythe chloroquine motif 3 showed its best activity against K1The combination of both motifs 3 and 4 showed effectivenessagainst K1 in the same range as 3 against K1 due to presenceof the chloroquine motif

Both compounds 9 and 10 showed good activities againstall strains but were slightly less active than the first repre-sentative 5 The derivative 6 showed improved bioactivitiesin the submicromolar range and had a similar linkage ascompound 5 originating from the primaquine side chain butwith a pharmacophore ratio of primaquine to chloroquinemoiety of 1 2 This might be due to not only the number ofpharmacophores but also an increased lipophilicity correlat-ing with an enhanced membrane permeability an increasedbasicity with a higher enrichment in acidic compartments or

an increased planar aromatic system capable of shielding thesurface of hemozoin from further growth

The piperazine-linked amide 13 and the amine 14 showedthe lowest activities against the blood stages Only 14 showedvery good activity against strain K1 (lower than 1 120583M) Thelow activity of both these molecules could be due to the lackof a strong basic center such as the tertiary nitrogen atom likein compound 16

Compounds 15 and 16 elongated piperazine derivativeswith a second C3 linker showed improved activities against3D7 andDd2whereby the diamine 16 with higher basic prop-erties was significantly active against strain K1Thismight beinfluenced by a higher total flexibility of compounds 15 and 16due to two C3 linkers the basic properties of the diamide 15and the diamine 16 might not be the cause of their higher

International Journal of Medicinal Chemistry 9

NHN

MeO

NH

N Cl

Linker

Authenticlinker

HNNH

Me

Nolinker

Piperazinelinker

Xylenelinker

NN

O

O

NN

O

NN

NN

3D7

Reference drugs(1) Primaquine(2) Chloroquine

(3) Chloroquine motif(4) Primaquine motif

Dd2

K1

Gametocytaemia

Liver stage-number [ compared to wildtype]

Liver stage-diameter [ compared to wildtype]

2 = 6 gt (1 + 2 15x) gt 17(20x) = 18 gt 30(15x) = 15 gt 16(11x) gt 5(64x) gt 10(17x) gt 9(16x) gt 1(18x)gt 3(13x) gt (3 + 4 12x) sim 14(11x) gt 13(11) gt 4 (inactive)2 = 6 gt (1 + 2 15x) gt 13(185x)2 = 6 gt (3 + 4 246x) gt 13(11x)

6 = 17 gt 16(15x) gt 30(12x) gt 18(14x) gt 15(12x) gt (1 + 2 16x) gt 2(14x) gt 5(22x) gt 1(20x) gt 9(15x)gt (3 + 4 14x) gt 3(11x) gt 13(12x) gt 14(11x) gt 10(12) gt 4 (inactive)6 = 17 gt (1 + 2 48x) gt 10(20x)6 = 17 gt (3 + 4 60x) gt 10(16x)

6 = 18 gt 16(20x) = 17 gt 30(35x) gt 5(13x) gt 15(16x) gt (1 + 2 12x) gt 2(12x) gt 14(15x) gt 1(20x)gt (3 + 4 11x) sim 3 gt 10(25x) gt 9(13x) gt 13(11) gt 4 (inactive)6 = 18 gt (1 + 2 170x) gt 13(149x)6 = 18 gt (3 + 4 68x) gt 10(37x)

5 sim 1 gt 9(13x) = 14 gt 13(13x) = 10 sim 18 sim 6 sim 16 sim 15 gt 17(11x) sim 30 gt 2(15x)5 sim 1 gt 10(17x) gt 30(12x) gt 2(15x)

sim 15 gt 14(11x) gt 3(12x)18 = 30 gt (1 + 2 3 + 4 14x) gt 14(17x)

13 gt 30(12x) gt 15(12x) gt 1(11x) = 16 sim 5 gt 3(11x) = (1 + 2) sim 4(11x) sim (3 + 4) sim 14 gt 17(11x)gt 18(11x) sim 2 gt wildtype (11x)

13 gt (1 + 2 16x) gt 2(13x)13 gt (3 + 4 17x) gt 2(12x)

18 = 30 gt 16(11x) gt 1(11x) gt 17(11x) sim 5 gt (1 + 2 11x) sim 13 sim (3 + 4) sim 4 gt wildtype (14x) sim 2(142x)

lowast

Scheme 8 Bioactive molecules of the study reference drugs (1 2 3 and 4) and their combinations (1 + 2 3 + 4) in order from the highestto the lowest activities (referring to IC

50

values for 3D7 Dd2 and K1 gametocytaemia and number and diameter of the liver stages resp)in brackets the ratios of activities of the compounds compared to the former substances

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 8: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

8 International Journal of Medicinal Chemistry

NN

N

N

MeOMeO

MeO

MeO

HNHN

HN

HN

N

NH

Cl

N3

N3

N3

NH2

Br

Br

BrHO

HOHO

OH

OH

31 (63)

32 (35)

35 (f 75) 35 (d 41)36 (68)

37 (95)

33 (99)

34 (71)

38 (43)

TsO

+(a) (b)

(c)

(d)

(e)

(h)

(g)

(f)

Scheme 7 Two variants of the protecting group free synthesis of the aromatic-type linker moiety to obtain the key intermediate azide 35Reagents and conditions (a) (CBrCl

2

)2

PPh3

DCM (dry) 0ndash25∘C (b) NaN3

DMF (dry) 25∘C (c) TsCl NaH DCM (dry) 0ndash25∘C (d) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (e) 6-methoxy-8-aminoquinoline (4) NaOAc DMF (dry) 25∘C (f) DPPA DBUtoluene (dry) 25∘C (g) PPh

3

MeOH (dry) 25∘C (h) 47-dichloroquinoline neat 120∘C

primaquinemoiety 4was inactive against K1 but surprisinglythe chloroquine motif 3 showed its best activity against K1The combination of both motifs 3 and 4 showed effectivenessagainst K1 in the same range as 3 against K1 due to presenceof the chloroquine motif

Both compounds 9 and 10 showed good activities againstall strains but were slightly less active than the first repre-sentative 5 The derivative 6 showed improved bioactivitiesin the submicromolar range and had a similar linkage ascompound 5 originating from the primaquine side chain butwith a pharmacophore ratio of primaquine to chloroquinemoiety of 1 2 This might be due to not only the number ofpharmacophores but also an increased lipophilicity correlat-ing with an enhanced membrane permeability an increasedbasicity with a higher enrichment in acidic compartments or

an increased planar aromatic system capable of shielding thesurface of hemozoin from further growth

The piperazine-linked amide 13 and the amine 14 showedthe lowest activities against the blood stages Only 14 showedvery good activity against strain K1 (lower than 1 120583M) Thelow activity of both these molecules could be due to the lackof a strong basic center such as the tertiary nitrogen atom likein compound 16

Compounds 15 and 16 elongated piperazine derivativeswith a second C3 linker showed improved activities against3D7 andDd2whereby the diamine 16 with higher basic prop-erties was significantly active against strain K1Thismight beinfluenced by a higher total flexibility of compounds 15 and 16due to two C3 linkers the basic properties of the diamide 15and the diamine 16 might not be the cause of their higher

International Journal of Medicinal Chemistry 9

NHN

MeO

NH

N Cl

Linker

Authenticlinker

HNNH

Me

Nolinker

Piperazinelinker

Xylenelinker

NN

O

O

NN

O

NN

NN

3D7

Reference drugs(1) Primaquine(2) Chloroquine

(3) Chloroquine motif(4) Primaquine motif

Dd2

K1

Gametocytaemia

Liver stage-number [ compared to wildtype]

Liver stage-diameter [ compared to wildtype]

2 = 6 gt (1 + 2 15x) gt 17(20x) = 18 gt 30(15x) = 15 gt 16(11x) gt 5(64x) gt 10(17x) gt 9(16x) gt 1(18x)gt 3(13x) gt (3 + 4 12x) sim 14(11x) gt 13(11) gt 4 (inactive)2 = 6 gt (1 + 2 15x) gt 13(185x)2 = 6 gt (3 + 4 246x) gt 13(11x)

6 = 17 gt 16(15x) gt 30(12x) gt 18(14x) gt 15(12x) gt (1 + 2 16x) gt 2(14x) gt 5(22x) gt 1(20x) gt 9(15x)gt (3 + 4 14x) gt 3(11x) gt 13(12x) gt 14(11x) gt 10(12) gt 4 (inactive)6 = 17 gt (1 + 2 48x) gt 10(20x)6 = 17 gt (3 + 4 60x) gt 10(16x)

6 = 18 gt 16(20x) = 17 gt 30(35x) gt 5(13x) gt 15(16x) gt (1 + 2 12x) gt 2(12x) gt 14(15x) gt 1(20x)gt (3 + 4 11x) sim 3 gt 10(25x) gt 9(13x) gt 13(11) gt 4 (inactive)6 = 18 gt (1 + 2 170x) gt 13(149x)6 = 18 gt (3 + 4 68x) gt 10(37x)

5 sim 1 gt 9(13x) = 14 gt 13(13x) = 10 sim 18 sim 6 sim 16 sim 15 gt 17(11x) sim 30 gt 2(15x)5 sim 1 gt 10(17x) gt 30(12x) gt 2(15x)

sim 15 gt 14(11x) gt 3(12x)18 = 30 gt (1 + 2 3 + 4 14x) gt 14(17x)

13 gt 30(12x) gt 15(12x) gt 1(11x) = 16 sim 5 gt 3(11x) = (1 + 2) sim 4(11x) sim (3 + 4) sim 14 gt 17(11x)gt 18(11x) sim 2 gt wildtype (11x)

13 gt (1 + 2 16x) gt 2(13x)13 gt (3 + 4 17x) gt 2(12x)

18 = 30 gt 16(11x) gt 1(11x) gt 17(11x) sim 5 gt (1 + 2 11x) sim 13 sim (3 + 4) sim 4 gt wildtype (14x) sim 2(142x)

lowast

Scheme 8 Bioactive molecules of the study reference drugs (1 2 3 and 4) and their combinations (1 + 2 3 + 4) in order from the highestto the lowest activities (referring to IC

50

values for 3D7 Dd2 and K1 gametocytaemia and number and diameter of the liver stages resp)in brackets the ratios of activities of the compounds compared to the former substances

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 9: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 9

NHN

MeO

NH

N Cl

Linker

Authenticlinker

HNNH

Me

Nolinker

Piperazinelinker

Xylenelinker

NN

O

O

NN

O

NN

NN

3D7

Reference drugs(1) Primaquine(2) Chloroquine

(3) Chloroquine motif(4) Primaquine motif

Dd2

K1

Gametocytaemia

Liver stage-number [ compared to wildtype]

Liver stage-diameter [ compared to wildtype]

2 = 6 gt (1 + 2 15x) gt 17(20x) = 18 gt 30(15x) = 15 gt 16(11x) gt 5(64x) gt 10(17x) gt 9(16x) gt 1(18x)gt 3(13x) gt (3 + 4 12x) sim 14(11x) gt 13(11) gt 4 (inactive)2 = 6 gt (1 + 2 15x) gt 13(185x)2 = 6 gt (3 + 4 246x) gt 13(11x)

6 = 17 gt 16(15x) gt 30(12x) gt 18(14x) gt 15(12x) gt (1 + 2 16x) gt 2(14x) gt 5(22x) gt 1(20x) gt 9(15x)gt (3 + 4 14x) gt 3(11x) gt 13(12x) gt 14(11x) gt 10(12) gt 4 (inactive)6 = 17 gt (1 + 2 48x) gt 10(20x)6 = 17 gt (3 + 4 60x) gt 10(16x)

6 = 18 gt 16(20x) = 17 gt 30(35x) gt 5(13x) gt 15(16x) gt (1 + 2 12x) gt 2(12x) gt 14(15x) gt 1(20x)gt (3 + 4 11x) sim 3 gt 10(25x) gt 9(13x) gt 13(11) gt 4 (inactive)6 = 18 gt (1 + 2 170x) gt 13(149x)6 = 18 gt (3 + 4 68x) gt 10(37x)

5 sim 1 gt 9(13x) = 14 gt 13(13x) = 10 sim 18 sim 6 sim 16 sim 15 gt 17(11x) sim 30 gt 2(15x)5 sim 1 gt 10(17x) gt 30(12x) gt 2(15x)

sim 15 gt 14(11x) gt 3(12x)18 = 30 gt (1 + 2 3 + 4 14x) gt 14(17x)

13 gt 30(12x) gt 15(12x) gt 1(11x) = 16 sim 5 gt 3(11x) = (1 + 2) sim 4(11x) sim (3 + 4) sim 14 gt 17(11x)gt 18(11x) sim 2 gt wildtype (11x)

13 gt (1 + 2 16x) gt 2(13x)13 gt (3 + 4 17x) gt 2(12x)

18 = 30 gt 16(11x) gt 1(11x) gt 17(11x) sim 5 gt (1 + 2 11x) sim 13 sim (3 + 4) sim 4 gt wildtype (14x) sim 2(142x)

lowast

Scheme 8 Bioactive molecules of the study reference drugs (1 2 3 and 4) and their combinations (1 + 2 3 + 4) in order from the highestto the lowest activities (referring to IC

50

values for 3D7 Dd2 and K1 gametocytaemia and number and diameter of the liver stages resp)in brackets the ratios of activities of the compounds compared to the former substances

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 10: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

10 International Journal of Medicinal Chemistry

activity since they are both significantly more effectiveagainst all strains compared with hybrid 5 A higher ratio ofprimaquine to chloroquinemotifs of 1 2 resulted in a slightlyhigher activity for 17 and 18 compared with the very goodactivities of the derivatives 15 and 16

A combination of linkage properties and the pharma-cophore ratio such as for compound 6 seemed to influencethe activity more than just the ratio of primaquine andchloroquine by itself (compounds 15 16 compared to 17 18)Also compound 30 with an aromatic-type moiety as linkageand a comparable distance for the pharmacophoremoieties asin compound 5 but with higher lipophilicity properties and apossible higher hemozoin shielding (30) showed very goodactivities lower than 01 120583M against all strains

In conclusion hybrid molecules 5 6 15ndash18 and 30 allshowed excellent activity values against the tested strains 3D7Dd2 and K1 of P falciparum with concentrations lower than01 120583M ten times higher than the definition of a hit substancerequired in drug development [68] These compounds alsoshowed activity in the concentration range of equimolar com-bination of substances primaquine (1) and chloroquine (2)or even better

The inhibition of the development of blood stages togametocytes and the death of gametocytes are importantto block the vicious circle of transmission reinfection andspread of resistant organisms [69 70] Although a gameto-cidal activity is required for a successful hybrid moleculethe compounds that are active against blood stages shouldnot induce the formation of gametocytes [71] which can begenerally induced by medicaments in subtherapeutic con-centrations since the parasite is able to vary the number ofgametocytes to ensure the survival [72 73]

The influence of primaquine (1) on gametocytaemiawas used as positive control As expected chloroquine (2)showed a neglectable influence The hybrid molecules allinfluenced the development of gametocytesThe best activitywas obtained for the linker-free compounds 9 and 10 the C3-linked piperazine derivative 14 and the first representative5 Compound 6 the amide 13 the diamide 15 the diamine16 the diamide 17 the diamine 18 and compound 30 wereall comparably active Interestingly the linkage moiety thebasicity and the pharmacophore ratio seemed to barelyinfluence the activity against gametocytes

24 Conclusion We presented in summary eleven hybridmolecules of primaquine (1) and chloroquine (2) synthesizedin eight or less synthetic steps investigated for their activ-ity against the Plasmodium liver stages blood stages andgametocytes (Scheme 8) In conclusion we showed that itis possible to design and synthesize hybrid drug moleculesthat have good to excellent bioactivity values against differentstages of the Plasmodium infection We also analyzed theinfluence on the development of liver stages in hepatocytes(P berghei) the activity against blood stages of three differentstrains (3D7 Dd2 and K1 of P falciparum) and their efficacyagainst thematuration of gametocytes (P falciparum) [16 17]In general it is important to highlight that hybrid moleculesoften do not follow structural activity relationship rules ofthe single components The most promising structure of the

synthesized compounds was the hybrid molecule 30with thehighest activity against the number and the diameter of liverstages against blood stages of 3D7 Dd2 and K1 (lower than01 120583M) and against gametocytes This novel class of hybridmolecules shows activity against all stages of the Plasmodiuminfection in humans and also against resistant strains [16 17]

3 Experimental Section

31 General Information All solvents were distilled beforeuse Commercially available materials were used withoutfurther purification purchased by Sigma-Aldrich Thin layerchromatography was carried out using silica gel 60 119865

254or

alumina with fluorescent indicator The compounds weredetected by fluorescence quenching at 254 nm fluorescenceat 356 nm or staining with iodine or ninhydrin Flash chro-matography was performed using silica gel (20ndash63mesh)deactivated silica gel (20ndash63mesh 75 ammonia) or ICNneutral or basic alumina deactivated with 15 H

2O NMR

spectra were obtained on a Bruker DMX 600 apparatus andare reported in ppm relative to internal solvent signal withcoupling constants (119869) in Hertz (Hz) Spectra were usuallyobtained at 25∘C EI mass spectrometry was carried out on aFinnigan MAT 8200 ESI-HRMS was measured on a BrukerDaltonik micrOTOF-focus

32 Synthesis and Characterization of the Hybrid Molecules

321 N1N4-Bis(7-chloroquinolin-4-yl)-N4-(61015840-methoxyquino-lin-810158401015840-yl)pentane-14-diamine (6) A total of 1979mg(076mmol) of the free base of primaquine (1) and 4776mg(241mmol) of 47-dichloroquinoline were heated at 120∘Cunder neat conditions for 75 hours The reaction mixturewas allowed to cool down followed by the suspension of theresidue in a solvent mixture of dichloromethane and smallamounts of methanol and by the addition of some dropsof ammonia solution to alkalize the mixture The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated

Purification with flash column chromatography on deac-tivated silica gel (gradient elution starting with petroleumetherethyl acetate 1 1 and followed by 1 2) yieldedcompound 6 (3407mg 77) as yellow crystals Mp 109∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3627ndash3000 (w br) 2935 (w) 2854 (w) 2515 (w) 2448 (w) 2360 (s)2341 (s) 1698 (w) 1637 (w) 1604 (m) 1573 (s) 1503 (m) 1446(m) 1408 (m) 1372 (m) 1292 (w) 1232 (w) 1211 (w) 1157(w) 1137 (w) 1107 (w) 1074 (w) 1021 (w) 980 (w) 916 (w)877 (w) 845 (w) 808 (m) 783 (m) 680 (w) 669 (w) 644(w) 626 (w) 617 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 140 (t 3119869HndashH = 561Hz 6 H Me) 187ndash201 (m 8 H2-CH

2 3-CH

2) 340ndash344 (m 4 H 1-CH

2) 365 (s 3 H

OMe) 366 (s 3 H OMe) 393ndash396 (m 2 H 4-H) 642 (d3

119869HndashH = 570Hz 1 H 3101584010158401015840-H) 644 (d 3119869HndashH = 564Hz 1 H3101584010158401015840-H) 663 (s 1 H 71015840-H) 665 (s 1 H 71015840-H) 715ndash719 (m 2H 31015840-H) 727ndash739 (m 12 H 41015840-H 51015840-H 310158401015840-H 510158401015840-H 610158401015840-H6101584010158401015840-H) 772 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H) 773 (d 4119869HndashH =210Hz 1 H 8101584010158401015840-H) 800 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H)

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 11: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 11

804 (d 3119869HndashH = 900Hz 1H 5101584010158401015840-H) 807 (t 4119869HndashH = 150Hz 2H 810158401015840-H) 818 (d 3119869HndashH = 570Hz 1H 2101584010158401015840-H) 819 (d 3119869HndashH =564Hz 1 H 2101584010158401015840-H) 846 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 847 (dd 3119869HndashH = 408Hz 4119869HndashH =150Hz 1 H 21015840-H) 889 (d 3119869HndashH = 456Hz 1 H 210158401015840-H) 890(d 3119869HndashH = 456Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 2115 (Me) 2118 (Me) 2585 (C-2) 2618

(C-2) 3509 (C-3) 3535 (C-3) 4401 (C-1) 4408 (C-1)4908 (C-4) 4921 (C-4) 5664 (OMe) 9300 (C-71015840) 9305(C-71015840) 9978 (C-3101584010158401015840) 9979 (C-3101584010158401015840) 10548 (C-410158401015840a) 10549(C-410158401015840a) 11887 (C-4101584010158401015840a) 11889 (C-4101584010158401015840a) 12374 (C-31015840)12376 (C-31015840) 12438 (C-5101584010158401015840) 12440 (C-5101584010158401015840) 12603 (C-6101584010158401015840) 12610 (C-6101584010158401015840) 12641 (C-310158401015840) 12647 (C-310158401015840) 12769(C-8101584010158401015840) 12772 (C-8101584010158401015840) 12841 (C-810158401015840) 12863 (C-510158401015840) 12864(C-510158401015840) 12917 (C-610158401015840) 12918 (C-610158401015840) 12957 (C-51015840) 12966(C-51015840) 13000 (C-41015840a) 13006 (C-41015840a) 13351 (C-41015840) 13353(C-41015840) 13511 (C-81015840a) 13516 (C-81015840a) 13639 (C-7101584010158401015840) 13645(C-7101584010158401015840) 13675 (C-710158401015840) 13676 (C-710158401015840) 14572 (C-21015840) 14575(C-21015840) 14689 (C-410158401015840) 14692 (C-410158401015840) 14796 (C-81015840) 14804(C-81015840) 14972 (C-810158401015840a) 14973 (C-810158401015840a) 14978 (C-8101584010158401015840a)15227 (C-210158401015840) 15229 (C-210158401015840) 15237 (C-2101584010158401015840) 15243 (C-2101584010158401015840) 15275 (C-4101584010158401015840) 15281 (C-4101584010158401015840) 15771 (C-61015840) 15775(C-61015840) ppm MS (EI 70 eV) mz () = 583158215811[M]+∙ (14137) 406140514041 [M-C

9H6ClN2]+

(184582) 40314021 [M-C10H10ClN]+∙ (95100)

365136413631362136113601 [C21H16ClN3O]+∙ (1730

54672317) 349134813471 [C20H14ClN3O]+∙ (152333)

337133613351 [C19H14ClN3O]+∙ (131817) 24812471

2461 [C14H15ClN2]+∙ (142023) 2081207120612051

[C11H10ClN2]+ (14253737) 1941193119211911

[C10H8ClN2]+ (13222620) 18211811180117911781

[C9H7ClN2]+∙ (2036565220) HRMS (ESI) calcd [M+H]+

58218219 found 58218207

322 6-Methoxyquinolin-8-amine (4) A suspension of thecommercially available 6-methoxy-8-nitroquinoline (71830 g 896mmol) and PdC (1830mg 10mm) inMeOH(dry 50mL) was stirred under hydrogen atmosphere at roomtemperature for 2 hours The reaction mixture was filtered(Celite) and concentrated and the residue was purifiedby flash column chromatography on deactivated silica gel(petroleum etherethyl acetate 5 1) Compound 4 wasobtained as yellow oil (1530 g 98) IR (ATR-FTIR)V = 3363 (w br) 2933 (w br) 2360 (w) 2341 (w) 1616 (s)1589 (s) 1577 (m) 1502 (s) 1467 (m) 1451 (m) 1425 (m) 1381(s) 1336 (m) 1275 (w) 1214 (m) 1196 (m) 1158 (s) 1082 (m)1051 (m) 1028 (m) 977 (w) 956 (w) 898 (w) 886 (w) 820(s) 789 (s) 752 (w) 738 (w) 652 (m) 635 (m) 622 (w) 611(w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 385 (s 3 H

OMe) 656 (d 4119869HndashH = 264Hz 1 H) 661 (d 4119869HndashH = 258Hz1 H) 735 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 804 (dd3

119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 4-H) 852 (dd 3119869HndashH =420Hz 4119869HndashH = 162Hz 1H 2-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 5581 (6-OMe) 9559 (CH) 10315 (CH)

12291 (CH) 13175 (Cq) 13657 (CH) 13664 (Cq) 14601(CH) 14703 (C-8) 16067 (C-6) ppm MS (EI 70 eV) mz() = 17511741 [M]+∙ (325) HRMS (ESI) calcd [M+H]+17508659 found 17508658

323 7-Chloro-N-(61015840-methoxyquinolin-81015840-yl)quinolin-4-amine (9) A total of 495mg (028mmol) of 6-methoxy-8-aminoquinoline (4) and 383mg (019mmol) of 47-dichloroquinoline were allowed to react at 120∘C underneat conditions for 9 hours The mixture was allowed tocool down the residue was suspended in dichloromethaneand methanol and finally alkalized with a small amount ofammonia solution The solvent mixture was removed underreduced pressure the residue was suspended in dichloro-methane filtered (Celite) and concentrated Purificationon deactivated silica gel (petroleum etherethyl acetate 5 1)gave product 9 (605mg 95) as beige crystals Mp 209∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 3726(w) 3628 (w) 3347 (w) 3029 (w) 2981 (w) 2947 (w) 2360(m) 2341 (m) 2164 (w) 1888 (w) 1626 (w) 1565 (s) 1536 (s)1499 (m) 1459 (m) 1445 (m) 1428 (m) 1395 (m) 1364 (m)1348 (m) 1326 (m) 1273 (w) 1254 (w) 1213 (m) 1196 (m)1159 (m) 1146 (m) 1120 (w) 1096 (w) 1072 (m) 1051 (w)1038 (w) 1028 (w) 993 (w) 959 (w) 909 (w) 893 (w) 867(m) 848 (m) 825 (m) 802 (m) 785 (m) 772 (w) 758 (w)690 (w) 669 (w) 650 (w) 633 (w) 617 (w) 609 (w) cmminus11H-NMR (600MHz CD

2Cl2) 120575 = 395 (s 3 H OMe) 678

(d 4119869HndashH = 240Hz 1 H 51015840-H) 743 (d 4119869HndashH = 240Hz 1 H71015840-H) 748 (dd 3119869HndashH = 420Hz 822Hz 1 H 31015840-H) 755 (dd3

119869HndashH = 900Hz 4119869HndashH = 210Hz 1 H 6-H) 759 (d 3119869HndashH =510Hz 1 H 3-H) 805 (d 4119869HndashH = 198Hz 1 H 8-H) 812(dd 3119869HndashH = 828Hz 4119869HndashH = 138Hz 1 H 41015840-H) 820 (d3

119869HndashH = 888Hz 1 H 5-H) 871ndash873 (m 2H 2-H 21015840-H) 948(s 1 H NH) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 5682

(OMe) 9799 (C-51015840) 10528 (C-71015840) 10537 (C-3) 12045(C-4a) 12283 (C-5) 12315 (C-31015840) 12689 (C-6) 12948 (C-8)13034 (C-41015840a) 13565 (C-7) 13573 (C-41015840) 13655 (C-81015840)13844 (C-81015840a) 14538 (C-4) 14628 (C-21015840) 15053 (C-8a)15271 (C-2) 15889 (C-61015840) ppm MS (EI 70 eV) mz () =3382337233623352 [M]+∙ (73337100) HRMS (ESI)calcd [M+H]+ 33608982 found 33608964

324 7-Chloro-N-(710158401015840-chloroquinolin-410158401015840-yl)-N-(61015840-methoxy-quinolin-81015840-yl)quinolin-4-amine (10) 6-Methoxy-8-amino-quinoline (4 621mg 036mmol) and 47-dichloroquinoline(2128mg 107mmol) were heated at 120∘C under neat con-ditions for 9 hours The reaction mixture was suspended indichloromethane methanol was added and the mixture wasalkalized by the addition of ammonia solution The solventmixture was removed under reduced pressure the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification by flash column chromatographyon deactivated silica gel (gradient elution starting withpetroleum etherethyl acetate 6 1 followed by petroleumetherethyl acetate 5 1) yielded compound 10 (454mg25) as yellow solid Mp 135ndash140∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 3159 (w br) 2925 (w) 2853(w) 2461 (w) 2194 (w br) 2059 (w) 1609 (m) 1563 (s) 1498(s) 1473 (m) 1455 (m) 1433 (m) 1386 (m) 1356 (m) 1326 (m)1294 (w) 1267 (w) 1237 (w) 1218 (m) 1186 (w) 1159 (w) 1139(w) 1108 (m) 1073 (m) 1037 (w) 982 (w) 959 (w) 916 (m)877 (m) 838 (m) 826 (m) 815 (m) 794 (m) 781 (m) 755 (w)732 (w) 698 (w) 682 (w) 657 (w) 635 (w) 613 (w) cmminus1

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 12: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

12 International Journal of Medicinal Chemistry

1H-NMR (600MHz MeOD-d4CD2Cl2) 120575 = 384 (s 3 H

OMe) 739 (dd 3119869HndashH = 402Hz 864Hz 1 H 31015840-H) 742ndash746 (m 2 H 510158401015840-H 610158401015840-H) 750 (d 3119869HndashH = 444Hz 1 H 310158401015840-H) 756 (dd 3119869HndashH = 864Hz 4119869HndashH = 144Hz 1 H 41015840-H)766 (dd 3119869HndashH = 888Hz 4119869HndashH = 204Hz 1 H 6-H) 772 (d3

119869HndashH = 540Hz 1 H 3-H) 784 (s 1 H 71015840-H) 804 (d 4119869HndashH =204Hz 1H 8-H) 816 (d 4119869HndashH = 168Hz 1H 810158401015840-H) 838 (d3

119869HndashH = 888Hz 1 H 5-H) 871 (d 3119869HndashH = 534Hz 1 H2-H) 878 (dd 3119869HndashH = 402Hz 4119869HndashH = 150Hz 1 H 21015840-H) 900 (d 3119869HndashH = 438Hz 1 H 210158401015840-H) ppm 51015840-H wasnot detectable because of the proton-deuterium exchangeat this position 13C-NMR (150MHz MeOD-d

4CD2Cl2)

120575 = 5723 (OMe) 10263 (C-71015840) 10592 (C-3) 11314 (C-51015840) 12107 (C-4a) 12402 (C-5) 12423 (C-31015840) 12567 (C-310158401015840)12793 (C-6) 12830 (C-410158401015840a) 12854 (C-8) 12858 (C-810158401015840)12890 (C-510158401015840 C-610158401015840) 12991 (C-41015840a) 13416 (C-41015840) 13643 (C-81015840a) 13689 (C-710158401015840) 13720 (C-7) 14029 (C-81015840) 14517 (C-810158401015840a) 14756 (C-8) 14769 (C-21015840) 14948 (C-410158401015840) 15034 (C-4) 15206 (C-210158401015840) 15287 (C-2) 15613 (C-61015840) ppm MS (EI70 eV) mz () = 500949994989497949694959 [M]+∙(617347362100) HRMS (ESI) calcd [M+H]+ 49709304found 49709284

325 3-Bromopropanoyl Chloride (19) [60] 3-Bromopro-pionic acid (536 g 3504mmol) was refluxed in thionylchloride (10mL) under nitrogen atmosphere The completeconversion was determined by 1H-NMR spectroscopy Theexcess of thionyl chloride was removed by distillation andcompound 19 (376 g 63) was obtained as yellow oil IR(ATR-FTIR) V = 1787 (s) 1742 (m) 1430 (w) 1391 (w) 1345(w) 1327 (w) 1266 (m) 1215 (w) 1159 (w) 1034 (m) 1016 (m)954 (s) 907 (m) 871 (m) 842 (m) 764 (m) 751 (m) 679 (s)642 (w) 631 (w) 603 (s) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 344 (t 3119869HndashH = 626Hz 2 H CH2) 353 (t 3119869HndashH =

644Hz 2 H CH2) ppm 13C-NMR (150MHz CDCl

3)

120575 = 2400 (CH2) 4938 (CH

2) 17145 (COCl) ppm MS

(EI 70 eV) mz () = 137013601350 [M-Cl]+ (934100)109010801070 [M-CClO]+ (48549)

326 tert-Butyl Piperazine-1-carboxylate (20) [74] A solu-tion of Boc

2O (5471 g 2507mmol 05mM) in DCM (dry

50mL) was slowly dropped to a solution of piperazine(4323 g 5014mmol 04mM) in DCM (dry 125mL) at 0∘Cfor 70min and was stirred for 1 hour at 0∘C The solvent wasremoved under reduced pressure and the obtained colorlessresidue was suspended in 75mL of water The double pro-tected and colorless compound 22 was filtered off the filtratewas alkalized using aqueousK

2CO3solution and exhaustively

extracted with diethyl ether The combined organic extractswere dried (MgSO

4) filtered and concentrated Purification

with flash column chromatography on deactivated silica gel(DCMMeOH 10 1) and recrystallisation (diethyl ether) gave20 (3653 g 78) as colorless crystals Mp 44∘C (diethylether) IR (ATR-FTIR) V = 3003ndash2733 (w br) 1685 (s) 1475(w) 1455 (w) 1421 (s) 1361 (m) 1339 (w) 1316 (m) 1291(m) 1268 (m) 1243 (s) 1167 (s) 1139 (m) 1119 (s) 1090(m) 1052 (m) 1005 (s) 926 (w) 902 (w) 865 (m) 846 (w)

809 (m) 765 (s) 655 (w) 621 (w) 602 (w) cmminus1 1H-NMR(600MHz CDCl

3) 120575 = 143 (s 9 H tBu-Me) 195 (s 1 H

NH) 278 (m 4 H 3-CH2 5-CH

2) 336 (m 4 H 2-CH

2 6-

CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2863 (tBu-

Me) 4432 (br CH2) 4540 (br CH

2) 4605 (C-3 C-5) 7980

(tBu-C) 15503 (Boc CO) ppm MS (EI 70 eV) mz () =18711861 [M]+∙ (217) 13101300 [M-C

4H8]+∙ (646)

11401130 [M-C4H9O]+ (237) 860850 [C

4H9N2]+ (324)

580570 [C4H9]+ (7100)HRMS (ESI) calcd [M+H]+ found

18714410

327 Di-tert-Butyl Piperazine-14-dicarboxylate (22) Com-pound 18 was obtained as side product within the synthesisof 20 and separated by filtration For analysis it was furtherpurified by flash column chromatography on deactivatedsilica gel (DCMMeOH 100 1) and gave compound 22(6122mg 9) as colorless solid Mp 111∘C (DCMMeOH)IR (ATR-FTIR) V = 2983 (w br) 2863 (w br) 2363 (w) 2336(w) 1682 (s) 1482 (w) 1455 (m) 1417 (s) 1362 (s) 1289 (m)1239 (s) 1215 (w) 1159 (s) 1105 (s) 1005 (s) 972 (m) 865 (s)835 (w) 768 (s) 669 (w) cmminus1 1H-NMR (600MHz CDCl

3)

120575 = 144 (s 18 H tBu-Me) 336 (s 8 H piperazine CH2)

ppm 13C-NMR (150MHz CDCl3) 120575 = 2860 (tBu-Me)

4367 (b piperazine CH2) 8024 (tBu-C) 15491 (Boc CO)

ppm MS (EI 70 eV) mz () = 2861 [M]+∙ (3) 17501740[C6H10N2O4]+∙ (328) 580570 [C

4H9]+ (5100) HRMS

(ESI) calcd [M+Na]+ 30917848 found 30917847 [M+Na]+

328 tert-Butyl 4-(31015840-Bromopropanoyl)piperazine-1-carboxy-late (21) A solution of 3-bromopropionyl chloride (191760mg 103mmol) was slowly dropped to a suspensionof the monoprotected piperazine 20 (957mg 051mmol)and of sodium acetate (1057mg 129mmol) in DCM (dry3mL) at 0∘C After completed addition the reaction mixturewas allowed to warm up to room temperature and the fullconversion was determined by thin layer chromatography(deactivated silica gel DCMMeOH 10 1) The excess ofsodium acetate was filtered off (Celite) and all volatile sub-stances were removed under reduced pressure Purificationby flash column chromatography was obtained on silica gel(DCMdiethyl ether 5 1) and gave compound 21 (1496mg91) as colorless crystals Mp 102∘C (DCMdiethyl ether) IR(ATR-FTIR) V = 2976 (w) 2920 (w br) 1679 (s) 1635 (s)1455 (m) 1426 (s) 1402 (s) 1361 (s) 1277 (m) 1263 (m) 1239(s) 1176 (s) 1129 (s) 1071 (s) 1057 (m) 1012 (s) 993 (m) 956(m) 930 (m) 909 (m) 889 (w) 868 (m) 843 (w) 824 (w)762 (s) 721 (w) 647 (w) 615 (w) cmminus1 1H-NMR (600MHzCDCl

3) 120575 = 144 (s 9 H tBu-Me) 290 (t 3119869HndashH = 708Hz

2 H 21015840-CH2) 338ndash346 (m br 6 H piperazine CH

2) 357ndash

360 (m br 2 H piperazine CH2) 363 (t 3119869HndashH = 708Hz

2 H 31015840-CH2) ppm 13C-NMR (150MHz CDCl

3) 120575 = 2728

(C-31015840) 2857 (tBu-Me) 3649 (C-21015840) 4179 (CH2) 4373 (br

CH2) 4550 (CH

2) 8067 (tBu-C) 15473 (Boc CO) 16891

(amide CO) ppm MS (EI 70 eV) mz () = 32203200[M]+∙ (11) 266026502640 [M-C

4H8]+∙ (748) 860850

[C4H9N2]+ (217) 580570 [C

4H9]+ (5100) HRMS (ESI)

[M+Na]+ 34306278 found 34306278

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 13: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 13

329 tert-Butyl 4-Acryloylpiperazine-1-carboxylate (Not Dis-played) The compound was obtained as side product withinthe synthesis of compound 21 and purified for analysis byflash column chromatography on silica gel (DCMdiethylether 5 1) to give colorless crystals Mp 85∘C (DCMdiethylether) IR (ATR-FTIR) V = 2970 (w) 2925 (w) 2862 (w) 2361(m) 2340 (m) 1691 (s) 1640 (s) 1608 (m) 1520 (w) 1455 (m)1416 (s) 1362 (m) 1282 (m) 1250 (s) 1227 (m) 1162 (s) 1127(s) 1083 (m) 1054 (m) 1030 (s) 997 (m) 980 (m) 948 (m)927 (m) 862 (m) 841 (w) 828 (w) 788 (m) 765 (m) 668 (w)cmminus1 1H-NMR (600MHz CDCl

3) 120575 = 145 (s 9 H tBu-

Me) 343ndash364 (m 8 H 2-CH2 3-CH

2 5-CH

2 6-CH

2) 570

(dd 2119869HndashH = 162Hz 3119869HndashH = 1062Hz 1 H 31015840-H) 629 (dd2

119869HndashH = 162Hz 3119869HndashH = 1674Hz 1H 31015840-H) 653 (dd 3119869HndashH =1062Hz 1674Hz 1 H 21015840-H) ppm 13C-NMR (150MHzCDCl

3) 120575 = 2958 (tBu-Me) 4198 (CH

2) 4385 (br CH

2)

4582 (CH2) 8058 (tBu-C) 12745 (C-21015840) 12857 (C-31015840)

15476 (Boc CO) 16577 (amide CO) ppm MS (EI 70 eV)mz () = 24112401 [M]+∙ (213) 18501840 [M-C

4H8]+

(328) 1130 [C5H9N2O]+ (13) 580570 [C

4H9]+ (6100)

HRMS (ESI) calcd [M+Na]+ 26313661 found 26313661

3210 tert-Butyl 4-(31015840-(610158401015840-Methoxyquinolin-810158401015840-ylamino)pro-panoyl)piperazine-1-carboxylate (23) NaH (7826mg of a55 oily dispersion 1793mmol) was added in portionsto a solution of 6-methoxy-8-aminoquinoline (4 1041 g597mmol) in DMF (dry 30mL) under nitrogen atmosphereat 0∘C The reaction mixture was stirred for 30min at 0∘Cfollowed by the addition of the bromine derivative 21 inportions The mixture was stirred for 1 hour at 0∘C allowedto warm up to room temperature and stirred for further18 hours The excess of NaH of the reddish brown sus-pension was carefully hydrolyzed by a small amount ofwater The solvent DMF was azeotropically removed usingtoluene under reduced pressure the residue was suspendedin dichloromethane and filtered (Celite) The filtrate wasconcentrated and purified by flash column chromatographyon silica gel (ethyl acetate 100)The obtained light yellowishfoam was recrystallized (diethyl etherpetroleum ether) andgave compound 23 (1838 g 74) as light yellow crystalsMp 45∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 2975ndash2858 (w br) 2359 (m) 2341 (w) 1689 (m) 1644(m) 1616 (m) 1594 (w) 1577 (w) 1518 (m) 1455 (m) 1417(m) 1388 (m) 1363 (m) 1283 (w) 1255 (m) 1236 (m) 1213(m) 1197 (m) 1161 (s) 1123 (m) 1078 (w) 1050 (w) 1024(m) 995 (m) 904 (w) 862 (w) 820 (m) 790 (m) 765 (m)667 (w) 643 (w) 627 (w) 615 (m) 602 (w) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 144 (s 9 H tBu-Me) 280 (t

3

119869HndashH = 636Hz 2 H 21015840-CH2) 328-329 (m 2 H CH

2)

332ndash336 (m 2 H CH2) 346ndash348 (m 2 H CH

2) 355-356

(m 2 H CH2) 363 (t 3119869HndashH = 636Hz 2 H 31015840-CH

2) 387

(s 3 H OMe) 638 (d 4119869HndashH = 246Hz 1 H 710158401015840-H) 648(d 4119869HndashH = 252Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH = 426Hz828Hz 310158401015840-H) 802 (dd 3119869HndashH = 828Hz 4119869HndashH = 150Hz 1H 410158401015840-H) 849 (dd 3119869HndashH = 414 4119869HndashH = 162Hz 1 H 210158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2873 (tBu-Me)

3332 (C-21015840) 4041 (C-31015840) 4276 (CH2) 4390 (b CH

2) 4509

(b CH2) 4669 (CH

2) 5583 (OMe) 8173 (tBu-C) 9377

(C-510158401015840) 9834 (C-710158401015840) 12317 (C-310158401015840) 13163 (C-410158401015840a) 13632(C-410158401015840) 13673 (C-810158401015840a) 14574 (C-210158401015840) 14678 (C-810158401015840) 15637(Boc CO) 16108 (C-610158401015840) 17295 (C-11015840) ppm MS (EI 70 eV)mz () = 416241524142 [M]+∙ (31642) 203120212011[C12H13N2O]+ (21659) 18811871 [C

11H11N2O]+ (14100)

17511741 [C10H10N2O]+∙ (1024) HRMS (ESI) calcd [M]+∙

41422616 found 41422615

3211 1-(3-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-3-oxopro-pyl)-8-(3-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-oxopropyl-amino)-6-methoxyquinolinium Bromide (24) Further elu-tion of the column chromatography of compound 23 (ethylacetate 100) and recrystallization (DCMpetroleum ether)gave the side product 24 (6841mg 104mmol 17) as beigecrystals Mp 168∘C (DCMpetroleum ether) IR (ATR-FTIR)V = 3734 (w) 3627 (w) 3385 (w) 2978ndash2861 (w br) 2360(m) 2341 (w) 1704 (m) 1688 (m) 1647 (m) 1626 (s) 1580(w) 1524 (m) 1455 (m) 1420 (s) 1389 (m) 1364 (m) 1283(w) 1251 (m) 1221 (m) 1163 (s) 1122 (m) 1075 (w) 1019 (m)996 (m) 932 (w) 902 (w) 862 (w) 823 (m) 790 (m) 766 (w)669 (w) 650 (w) 632 (w) 620 (w) 610 (w) cmminus1 1H-NMR(600MHz CD

2Cl2) 120575 = 139 (s 9 H tBu-Me) 144 (s 9 H

tBu-Me) 184ndash190 (m 1 H CH2) 200ndash206 (m 1 H CH

2)

224ndash229 (m 1 H CH2) 240ndash245 (m 1 H CH

2) 296ndash305

(m 1 H piperazine CH2) 316ndash327 (m 2 H piperazine

CH2) 333ndash364 (m 17 H 11015840-CH

2 1101584010158401015840-CH

2 piperazine CH

2)

387 (s 3 H OMe) 630 (d 3119869HndashH = 246Hz 1 H 7-H) 638 (d3

119869HndashH = 246Hz 1 H 5-H) 643 (t 3119869HndashH = 606Hz 1 H NH)731 (dd 3119869HndashH = 414Hz 828Hz 1 H 3-H) 794 (dd 3119869HndashH =828Hz 4119869HndashH = 162Hz 1 H 4-H) 851 (dd 3119869HndashH = 414Hz4

119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR (150MHzCD2Cl2) 120575 = 2637 (CH

2) 2854 (tBu-Me) 2859 (tBu-Me)

3074 (CH2) 4180 (NCH

2) 4223 (NCH

2) 4357 (br

piperazine CH2) 4443 (br piperazine CH

2) 4574 (pip-

erazine CH2) 4598 (piperazine CH

2) 4606 (piperazine

CH2) 5571 (OMe) 8021 (tBu-C) 8031 (tBu-C) 9271 (C-5)

9694 (C-7) 12253 (C-3) 13035 (C-4a) 13520 (C-4) 13568(C-8a) 14508 (C-2) 14591 (C-8) 15482 (Boc CO) 15487(Boc CO) 15990 (C-6) 17110 (amide CO) 17338 (amideCO) ppm 15N-NMR (405MHz DMSO-d

6) 62 (ArNH)

82 (amide-N) 115 (Boc-N) 119 (Boc-N) 292 (ArN+) ppmMS (EI 70 eV) mz () = 6543 [M]+∙ (3) 55535543[M-C

5H8O2]+∙ (617) 45524542 [M-2(C

5H8O2)]+∙ (515)

18811871 [C11H11N2O]+ (15100) 17511741 [C

10H10N2O]+∙

(719) HRMS (ESI) calcd [M+Na]+ 67736332 found67736340

3212 3-(610158401015840-Methoxyquinolin-810158401015840-ylamino)-1-(piperazin-11015840-yl)propan-1-one (12) TFA (32mL 004mmol) was addedto a yellowish solution of the Boc protected derivative 23(3524mg 085mmol) in DCM (12mL) at 25∘C leading toa change of color to an intense orange color The reactionmixture was stirred for 1 hour at 25∘C followed by theaddition of aqueous NaHCO

3solution (decolorization of

the solution) and the exhaustive extraction using dichloro-methaneThe combined organic extracts were dried (MgSO

4)

and filtered and all volatile components were removedunder reduced pressure Purification with flash column

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 14: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

14 International Journal of Medicinal Chemistry

chromatography on deactivated silica gel (DCMMeOH10 1) gave compound 12 (2620mg 98) as yellow solid Mp75∘C (DCMMeOH) IR (ATR-FTIR) V = 3376 (w br) 2916(w br) 2856 (w br) 2361 (m) 2342 (w) 1614 (s) 1576 (m)1517 (s) 1446 (m) 1422 (m) 1386 (m) 1336 (w) 1320 (w) 1265(w) 1237 (w) 1212 (m) 1196 (m) 1165 (m) 1153 (m) 1123 (w)1048 (w) 1024 (m) 906 (w) 820 (s) 790 (s) 668 (m) 652(m) 634 (m) 615 (w) cmminus1 1H-NMR (600MHzMeOD-d

4)

120575 = 273-274 (m 2 H piperazine CH2) 278-279 (m 4 H

2-CH2 piperazine CH

2) 349ndash351 (m 2 H piperazine CH

2)

358ndash360 (m 2 H piperazine CH2) 362 (t 3119869HndashH = 642Hz

2 H 3-CH2) 387 (s 3 H OMe) 638 (d 4119869HndashH = 240Hz 1 H

710158401015840-H) 648 (d 4119869HndashH = 240Hz 1 H 510158401015840-H) 735 (dd 3119869HndashH =426Hz 828Hz 1 H 310158401015840-H) 801 (dd 3119869HndashH = 828Hz4

119869HndashH = 150Hz 1H 410158401015840-H) 850 (dd 3119869HndashH = 426Hz 4119869HndashH =150Hz 1 H 210158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4)

120575 = 3320 (C-2) 4041 (C-3) 4045 (C-3) 4299 (CH2) 4601

(CH2) 4635 (CH

2) 4715 (CH

2) 5582 (OMe) 9377 (C-510158401015840)

9831 (C-710158401015840) 12316 (C-310158401015840) 13162 (C-410158401015840a) 13631 (C-410158401015840)13673 (C-810158401015840a) 14575 (C-210158401015840) 14680 (C-810158401015840) 14681 (C-810158401015840)17271 (amide CO) 17273 (amide CO) ppm MS (EI 70 eV)mz () = 316231523142 [M]+∙ (52041) 20212011[C12H13N2O]+ (1948) 18811871 [C

11H11N2O]+ (19100)

17511741 [C10H10N2O]+∙ (1429) HRMS (ESI) calcd

[M+H]+ 31518155 found 31518155

3213 1-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)-3-(61015840-me-thoxyquinolin-81015840-ylamino)propan-1-one (13) Com-pound 12 (717mg 023mmol) and 47-dichloroquinoline(455mg 023mmol) were allowed to react at 120∘C underneat conditions for 45 hours The residue was suspendedin methanol the reddish brown mixture was alkalizedusing ammonia solution (change of color to yellow) and allvolatile components were removed under reduced pressurePurification by flash column chromatography on deactivatedsilica gel (ethyl acetate 100) gave compound 11 (675mg62) as light yellow solid Mp 85∘C (ethyl acetate) IR(ATR-FTIR) V = 3383 (w) 2920 (w) 2853 (w) 2360 (m)2341 (m) 1638 (s) 1615 (s) 1574 (s) 1517 (s) 1456 (m) 1421(s) 1382 (s) 1334 (w) 1276 (w) 1212 (m) 1196 (m) 1154 (m)1124 (m) 1070 (w) 1049 (w) 1011 (m) 933 (w) 909 (w) 866(m) 819 (s) 790 (m) 714 (w) 669 (w) 654 (w) 628 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 287 (t 3119869HndashH =

636Hz 2 H 2-CH2) 301ndash303 (m 2 H piperazine CH

2)

311-312 (m 2 H piperazine CH2) 370 (t 3119869HndashH = 630Hz

1 H 3-CH2) 378-379 (m 2 H piperazine CH

2) 387-388

(m 5 H piperazine CH2 OMe) 642 (d 4119869HndashH = 240Hz 1 H

71015840-H) 648 (d 4119869HndashH = 240Hz 1 H 51015840-H) 735 (dd 3119869HndashH =414Hz 828Hz 1 H 31015840-H) 752 (dd 3119869HndashH = 894Hz 4119869HndashH =210Hz 1 H 6101584010158401015840-H) 793 (d 4119869HndashH = 210Hz 1 H 8101584010158401015840-H)801 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1 H 41015840-H)804 (d 3119869HndashH = 894Hz 1 H 5101584010158401015840-H) 849 (dd 3119869HndashH =414Hz 4119869HndashH = 162Hz 1 H 21015840-H) 861 (d 3119869HndashH = 510Hz1 H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3325

(C-2) 4050 (C-3) 4298 (piperazine CH2) 4701 (piperazine

CH2) 5316 (piperazine CH

2) 5321 (piperazine CH

2)

5585 (OMe) 9378 (C-51015840) 9836 (C-71015840) 11074 (C-3101584010158401015840)

12321 (C-31015840) 12323 (C-4101584010158401015840a) 12712 (C-5101584010158401015840) 12775 (C-6101584010158401015840)12851 (C-8101584010158401015840) 13168 (C-41015840a) 13635 (C-41015840) 13674 (C-81015840a)13677 (C-7101584010158401015840) 14579 (C-21015840) 14677 (C-81015840) 15069 (C-8101584010158401015840a)15299 (C-2101584010158401015840) 15892 (C-4101584010158401015840) 16113 (C-61015840) 17303 (C-1)ppm MS (EI 70 eV) mz () = 477147614751 [M]+∙(283948) 249124812471 [C

13H14ClN3]+∙ (111927)

207120612051 [C11H10ClN2]+ (8928) 203120212011

[C12H13N2O]+ (121830) 193119211911 [C

10H8ClN2]+

(141142) 18811871 [C11H11N2O]+ (21100) 17511741

[C10H10N2O]+∙ (1732) HRMS (ESI) calcd [M+H]+

47618478 found 47618466

3214 6-Methoxy-N-(31015840-(piperazin-110158401015840-yl)propyl)quinolin-8-amine (25) LiAlH

4(3194mg 842mmol) was added in

portions to a solution of amide 12 (4390mg 140mmol)in THF (dry 30mL) at 0∘C leading to a change of color toreddish brown at once The reaction mixture was stirredat 80∘C for 3 hours during this period the color changedto yellow The excess of LiAlH

4was carefully hydrolyzed

using small amounts of water the mixture was dried(MgSO

4) and concentrated The residue was suspended in

dichloromethane filtered and concentrated Purificationby flash column chromatography on basic alumina (activitylevel V DCMMeOH 20 1) gave compound 25 (1258mg30) as viscous yellow oil IR (ATR-FTIR) V = 3393ndash3261(w br) 2935 (w br) 2810 (w br) 2360 (w) 2342 (w) 1725(w) 1651 (w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1455 (m)1422 (m) 1385 (m) 1320 (w) 1263 (w) 1212 (m) 1196 (w)1169 (m) 1154 (m) 1133 (m) 1072 (w) 1051 (w) 1027 (w) 997(w) 970 (w) 918 (w) 899 (w) 819 (m) 790 (m) 704 (w)667 (w) 624 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 =

189ndash196 (m 2 H 21015840-CH2) 248ndash254 (m 6 H 31015840-CH

2

piperazine CH2) 289 (t 3119869HndashH = 492Hz 4 H piperazine

CH2) 331ndash334 (m 2 H 11015840-CH

2) 386 (s 3 H OMe) 632

(d 4119869HndashH = 248Hz 1 H 7-H) 645 (d 4119869HndashH = 248Hz 1H 5-H) 734 (dd 3119869HndashH = 424Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 824Hz 4119869HndashH = 156Hz 1 H 4-H) 851 (dd3

119869HndashH = 424Hz 4119869HndashH = 160Hz 1 H 2-H) ppm 13C-NMR(100MHz MeOD-d

4) 120575 = 2661 (C-21015840) 4306 (C-11015840) 4627

(piperazine CH2) 5519 (piperazine CH

2) 5579 (OMe) 5851

(C-31015840) 9343 (C-5) 9822 (C-7) 12306 (C-3) 13158 (C-4a)13631 (C-4) 13680 (C-8a) 14558 (C-2) 14738 (C-8) 16117(C-6) ppm MS (EI 70 eV) mz () = 302230123002[M]+∙ (31860) 20212011 [C

12H13N2O]+ (1673) 18811871

[C11H11N2O]+ (1950) 17511741 [C

10H10N2O]+∙ (1422)

HRMS (ESI) calcd [M+H]+ 30120229 found 30120235

3215 N-(31015840-(410158401015840-(7101584010158401015840-Chloroquinolin-4101584010158401015840-yl)piperazin-110158401015840-yl)pro-pyl)-6-methoxyquinolin-8-amine (14) Amine 25(280mg 009mmol) and 47-dichloroquinoline (193mg010mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in methanol andalkalized by using ammonia solution and the solvent wasconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (DCMMeOH 50 1) gavecompound 14 (195mg 44) as yellow oil IR (ATR-FTIR)V = 3393ndash3260 (w br) 3046 (w br) 2938 (w br) 2818 (w br)1731 (w) 1671 (w) 1651 (w) 1608 (m) 1573 (s) 1517 (s) 1455

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 15: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 15

(m) 1422 (m) 1384 (m) 1334 (w) 1296 (w) 1264 (w) 1251(w) 1228 (w) 1211 (m) 1194 (m) 1166 (m) 1154 (m) 1137 (m)1070 (w) 1051 (w) 1021 (w) 993 (w) 970 (w) 949 (w) 927(w) 898 (w) 870 (m) 819 (s) 790 (m) 770 (w) 732 (m) 700(w) 652 (w) 629 (m) cmminus1 1H-NMR (400MHz MeOD-d

4)

120575 = 200 (quin 3119869HndashH = 672Hz 2H 21015840-CH2) 268 (t 3119869HndashH =

702Hz 2 H 31015840-CH2) 278ndash283 (m 4 H 210158401015840-CH

2 610158401015840-CH

2)

333ndash340 (m 6 H 11015840-CH2 310158401015840-CH

2 510158401015840-CH

2) 387 (s 3 H

OMe) 634 (d 4119869HndashH = 244Hz 1 H 7-H) 646 (d 4119869HndashH =228Hz 1 H 5-H) 701 (d 3119869HndashH = 524Hz 1 H 3101584010158401015840-H) 734(dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 751 (dd 3119869HndashH =908Hz 4119869HndashH = 212Hz 6101584010158401015840-H) 793 (d 4119869HndashH = 208Hz 1 H8101584010158401015840-H) 801 (dd 3119869HndashH = 824Hz 4119869HndashH = 148Hz 1 H 4-H)805 (d 3119869HndashH = 908Hz 1 H 5101584010158401015840-H) 848 (dd 3119869HndashH =420Hz 4119869HndashH = 164Hz 1 H 2-H) 864 (d 3119869HndashH = 516Hz1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4) 120575 = 2682

(C-21015840) 4321 (C-11015840) 5315 (C-310158401015840 C-510158401015840) 5435 (C-210158401015840 C-610158401015840)5581 (OMe) 5797 (C-31015840) 9343 (C-5) 9825 (C-7) 11037(C-3101584010158401015840) 12309 (C-3) 12327 (C-4101584010158401015840a) 12734 (C-5101584010158401015840) 12745(C-6101584010158401015840) 12846 (C-8101584010158401015840) 13161 (C-4a) 13633 (C-4) 13665(C-7101584010158401015840) 13684 (C-8a) 14557 (C-2) 14746 (C-8) 15077 (C-8101584010158401015840a) 15302 (C-2101584010158401015840) 15938 (C-4101584010158401015840) 16119 (C-6) ppm MS(EI 70 eV) mz () = 463246224612 [M]+∙ (192530)289128812871 [C

16H18ClN3]+ (182049) 262126112601

[C14H15ClN3]+ (142929) 203120212011 [C

12H13N2O]+

(1254100) 189118811871 [C11H11N2O]+ (153748)

17511741 [C10H10N2O]+∙ (1521) HRMS (ESI) calcd

[M+H]+ 46220551 found 46220527

3216 3-Bromo-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (26) A colorlesssolution of 3-bromopropionyl chloride 19 (3880mg226mmol 002mM) inDCM (dry 111mL) was slowly addedover a period of time of 2 hours to a yellow suspension ofaminoquinoline 12 (704mg 224mmol 01mM) and sodiumacetate (368mg 449mmol) in DCM (dry 223mL) at minus20∘Cunder nitrogen atmosphere After completed addition theorange colored reaction mixture was stirred for 1 hourat minus20∘C The solvent was concentrated the residue wasrepeatedly suspended in dichloromethane and all volatilecomponents were removed under reduced pressure Theresidue was suspended in dichloromethane filtered (Celite)and concentrated Purification on silica gel (ethyl acetate100) gave compound 26 (6908mg 1537 69) as lightyellow solid Mp 98∘C (ethyl acetate) IR (ATR-FTIR) V =3399 (w br) 2922 (w br) 1737 (w) 1615 (s) 1517 (m) 1426(s) 1387 (m) 1282 (m) 1213 (s) 1166 (m) 1014 (m) 821(m) 791 (m) 621 (m) 610 (m) cmminus1 1H-NMR (600MHzMeOD-d

4) 120575 = 280 (t 3119869HndashH = 622Hz 2 H 210158401015840-CH

2) 291

(t 3119869HndashH = 666Hz 1 H 2-CH2) 297 (t 3119869HndashH = 666Hz 1 H

2-CH2) 339-340 (m 1 H piperazine CH

2) 346ndash354 (m

5 H piperazine CH2) 357ndash365 (m 6 H 310158401015840-CH

2 3-CH

2

piperazine CH2) 387 (s 3 H OMe) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 204Hz 5101584010158401015840-H) 734 (dd 3119869HndashH = 396Hz 816Hz1 H 3101584010158401015840-H) 802 (d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 849 (m 1H 2101584010158401015840-H) ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 2800

(C-3) 3328 (C-210158401015840) 3336 (C-210158401015840) 3702 (C-2) 3706 (C-2)

4036 (C-310158401015840) 4040 (C-310158401015840) 4257 (piperazine CH2) 4258

(piperazine CH2) 4289 (piperazine CH

2) 4290 (piperazine

CH2) 4624 (piperazine CH

2) 4648 (piperazine CH

2) 4672

(piperazine CH2) 5584 (OMe) 5586 (OMe) 9381 (C-5101584010158401015840)

9839 (C-7101584010158401015840) 9840 (C-7101584010158401015840) 12319 (C-3101584010158401015840) 12321 (C-3101584010158401015840)13157 (C-4101584010158401015840a) 13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13638 (C-4101584010158401015840) 13665 (C-8101584010158401015840a) 13666 (C-8101584010158401015840a) 14574 (C-2101584010158401015840) 14576(C-2101584010158401015840) 16103 (C-6101584010158401015840) 16108 (C-6101584010158401015840) 17126 (C-1) 17130(C-1) 17299 (C-110158401015840) 17304 (C-110158401015840) ppm MS (EI 70 eV) mz() = 371237023692 [M-Br]+ (82033) 203120212011[C12H13N2O]+ (254844) 18811871 [C

11H11N2O]+

(7192) 17511741 [C10H10N2O]+∙ (1719) 819799

[HBr]+ (99100) 809789 [Br]+ (4437) HRMS (ESI)calcd [M]+∙ 44811045 found 44811047

3217 1-(41015840-(310158401015840-(6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)propan-oyl)piperazin-11015840-yl)prop-2-en-1-one (Not Displayed) Duringthe synthesis of compound 26 a side product was obtainedand synthesized for analysis and biotests Cs

2CO3(1289mg

040mmol) was added to a solution of the brominederivative 26 (1187mg 026mmol) in DCM (dry 15mL)and the reaction mixture was stirred at 25∘C overnight Thesuspension was filtered (MgSO

4) and concentrated and the

residue was purified with flash column chromatography ondeactivated silica gel (DCMMeOH 10 1) to give the sideproduct (865mg 023mmol 90) as light yellow solid Mp153∘C (DCMMeOH) IR (ATR-FTIR) V = 3384 (w br) 2861(w br) 2360 (w) 2341 (w) 1638 (s) 1611 (s) 1576 (m) 1517(m) 1425 (s) 1386 (s) 1276 (w) 1212 (s) 1197 (s) 1165 (m)1154 (m) 1125 (w) 1050 (w) 1018 (m) 975 (m) 906 (w) 820(m) 789 (s) 668 (w) 632 (w) 620 (w) 604 (w) cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 282 (t 3119869HndashH = 624Hz 2

H 210158401015840-CH2) 355ndash367 (m 10 H piperazine CH

2 310158401015840-CH

2)

387 (s 3 H OMe) 573 (d 3119869HndashH = 892Hz 1 H 3-CH2) 618

(d 3119869HndashH = 1696Hz 1 H 3-CH2) 639 (s 1 H 7101584010158401015840-H) 648

(d 4119869HndashH = 240Hz 1 H 5101584010158401015840-H) 662ndash675 (m 1 H 2-H) 735(dd 3119869HndashH = 424Hz 824Hz 1 H 3101584010158401015840-H) 801 (d 3119869HndashH =828Hz 1 H 4101584010158401015840-H) 849 (dd 3119869HndashH = 416Hz 4119869HndashH =160Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d

4)

120575 = 3332 (C-210158401015840) 4040 (C-310158401015840) 4304 (b piperazine CH2)

4313 (b piperazine CH2) 4651 (b piperazine CH

2) 4674

(b piperazine CH2) 5584 (OMe) 9382 (C-5101584010158401015840) 9835

(C-7101584010158401015840) 12318 (C-3101584010158401015840) 12882 (C-2) 12901 (C-3) 13163(C-4101584010158401015840a) 13631 (C-4101584010158401015840) 13673 (C-8101584010158401015840a) 14577 (C-2101584010158401015840)14679 (C-8101584010158401015840) 16109 (C-6101584010158401015840) 16780 (C-1) 17302 (C-110158401015840)ppm MS (EI 70 eV) mz () = 370236923682 [M]+∙(83158) 20212011 [C

12H13N2O]+ (2559) 18811871

[C11H11N2O]+ (38100) 17511741 [C

10H10N2O]+∙ (1018)

16011591 [C10H9NO]+∙ (714) HRMS (ESI) calcd [M]+∙

36818429 found 36818412

3218 3-Azido-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (27) A suspen-sion consisting of the bromine derivative 26 (5745mg128mmol) and NaN

3(2502mg 385mmol) in DMF (dry

25mL) was stirred under nitrogen atmosphere overnight at25∘C The complete conversion was determined by 1H-NMR

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 16: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

16 International Journal of Medicinal Chemistry

spectroscopy An aqueous solution of NaHCO3was added

and exhaustively extracted with dichloromethane Thecombined organic extracts were dried (MgSO

4) filtered and

concentrated Purification with column chromatography ondeactivated silica gel (ethyl acetate 100) gave 27 (4868mg118mmol 92) as light yellow solidMp 86∘C (ethyl acetate)IR (ATR-FTIR) V = 3385 (w) 2933ndash2860 (w br) 2504 (w)2101 (m) 1633 (s) 1576 (m) 1518 (m) 1501 (m) 1423 (s) 1386(s) 1282 (m) 1211 (s) 1154 (m) 1126 (m) 1051 (m) 1016 (m)901 (w) 821 (m) 790 (m) 665 (w) 625 (m) cmminus1 1H-NMR(600MHz MeOD-d

4) 120575 = 258 (t 3119869HndashH = 624Hz 1 H

2-CH2) 264 (t 3119869HndashH = 624Hz 1 H 2-CH

2) 282 (t 3119869HndashH =

630Hz 2 H 210158401015840-CH2) 340ndash343 (m 1 H piperazine CH

2)

348ndash360 (m 8 H piperazine CH2 3-CH

2) 364-365 (m

3 H piperazine CH2 310158401015840-CH

2) 387 (s 3 H OMe) 639 (d

4

119869HndashH = 228Hz 1 H 5101584010158401015840-H) 649 (d 4119869HndashH = 234Hz 1H 7101584010158401015840-H) 735 (dd 3119869HndashH = 414Hz 816Hz 1 H 3101584010158401015840-H)802 (d 3119869HndashH = 828Hz 1 H 4101584010158401015840-H) 850 (s br 1 H 2101584010158401015840-H)ppm 13C-NMR (150MHz MeOD-d

4) 120575 = 3330 (CH

2)

3333 (CH2) 3337 (CH

2) 4037 (C-310158401015840) 4253 (piperazine

CH2) 4258 (piperazine CH

2) 4286 (piperazine CH

2) 4290

(piperazine CH2) 4622 (piperazine CH

2) 4644 (piperazine

CH2) 4648 (piperazine CH

2) 4674 (piperazine CH

2)

4837 (C-1) 5583 (OMe) 9380 (C-5101584010158401015840) 9836 (C-7101584010158401015840) 12320(C-3101584010158401015840) 13164 (C-4101584010158401015840a) 13633 (C-4101584010158401015840) 13674 (C-8101584010158401015840a)14578 (C-2101584010158401015840) 14678 (C-8101584010158401015840) 16110 (C-6101584010158401015840) 17151 (C-1)17157 (C-1) 17303 (C-110158401015840) 17309 (C-110158401015840) ppmMS (EI 70 eV)mz () = 413241224111 [M]+∙ (3813) 385238413831[M-N

2]+∙ (51417) 370136913681 [M-HN

3]+∙ (344)

203020212011 [C12H13N2O]+ (72643) 18811870

[C11H11N2O]+ (21100) 17501740 [C

10H10N2O]+∙ (1337)

HRMS (ESI) calcd [M]+∙ 41120134 found 41120129

3219 3-Amino-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylami-no)propanoyl)piperazin-1-yl)propan-1-one (28) A solution ofazide 27 (579mg 014mmol) and PPh

3(472mg 018mmol)

in MeOH (dry 5mL) was stirred at 25∘C under nitrogenatmosphere overnight The solvent was concentrated and theresidue was purified with flash column chromatography onalumina (activity level V gradient elution starting with ethylacetate 100 followed by DCMMeOH 1 2) Compound 28(439mg 011mmol 81) was obtained as light yellow solidMp 65∘C (DCMMeOH) IR (ATR-FTIR) V = 3378 (w br)2922 (w) 2854 (w) 2360 (m) 2341 (w) 1734 (w) 1615 (s)1576 (m) 1517 (s) 1423 (s) 1385 (s) 1336 (w) 1282 (w) 1213(m) 1196 (s) 1165 (m) 1154 (m) 1124 (w) 1048 (w) 1019 (m)985 (w) 899 (w) 821 (m) 790 (m) 722 (w) 668 (w) 624(w) 613 (w) cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 250

(t 3119869HndashH = 628Hz 1 H CH2) 255 (t 3119869HndashH = 636Hz 1 H

CH2) 281 (t 3119869HndashH = 636Hz 2 H 210158401015840-CH

2) 288ndash292 (m 2

H CH2) 340-341 (m 1 H piperazine CH

2) 346ndash355 (m

5 H piperazine CH2) 357ndash359 (m 1 H piperazine CH

2)

362ndash365 (m 3 H piperazine CH2) 387 (s 3 H OMe) 639

(d 4119869HndashH = 240Hz 1 H 7101584010158401015840-H) 648 (d 4119869HndashH = 222Hz5101584010158401015840-H) 734ndash736 (m 1 H 3101584010158401015840-H) 802 (d br 3119869HndashH = 828Hz4101584010158401015840-H) 849 (m br 2101584010158401015840-H) ppm 13C-NMR (150MHzMeOD-d

4) 120575 = 3330 (C-210158401015840) 3337 (C-210158401015840) 3570 (CH

2)

3575 (CH2) 3835 (CH

2) 4040 (C-310158401015840) 4234 (piperazine

CH2) 4259 (piperazine CH

2) 4267 (piperazine CH

2) 4288

(piperazine CH2) 4612 (piperazine CH

2) 4635 (piperazine

CH2) 4648 (piperazine CH

2) 4670 (piperazine CH

2)

5584 (OMe) 9378 (C-5101584010158401015840) 9834 (C-7101584010158401015840) 12318 (C-3101584010158401015840)13163 (C-4101584010158401015840a) 13632 (C-4101584010158401015840) 13672 (C-8101584010158401015840a) 14576(C-2101584010158401015840) 14678 (C-8101584010158401015840) 16108 (C-6101584010158401015840) 17248 (C-1) 17252(C-1) 17298 (C-110158401015840) 17305 (C-110158401015840) ppm MS (EI 70 eV) mz() = 387238623852 [M]+∙ (31014) 370236923682[C20H24N4O3]+∙ (41319) 203120212011 [C

12H13N2O]+

(52442) 18811871 [C11H11N2O]+ (17100) 17511741

[C10H10N2O]+∙ (1130) HRMS (ESI) calcd [M+H]+

38621867 found 38621859

3220 3-(71015840101584010158401015840-Chloroquinolin-41015840101584010158401015840-ylamino)-1-(41015840-(310158401015840-(6101584010158401015840-methoxyquinolin-8101584010158401015840-ylamino)propanoyl)piperazin-11015840-yl)pro-pan-1-one (15) Amine 28 (313mg 008mmol) and 47-dichloroquinoline (124mg 006mmol) were stirred at100∘C under neat conditions for 8 hours The residue wassuspended in a mixture of dichloromethane and methanolthe orange colored suspension was alkalized using aqueousammonia solution leading to a change of color to yellowand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography on deactivated silica gel (repeated elutionwith DCMMeOH 20 1) Compound 15 (98mg 002mmol30) was obtained as beige solid Mp 131∘C (DCMMeOH)IR (ATR-FTIR) V = 3393 (w) 3235 (w) 3059 (w) 2918 (w)1736 (w) 1644 (m) 1615 (m) 1573 (s) 1519 (m) 1425 (m) 1387(m) 1366 (m) 1329 (w) 1283 (w) 1219 (m) 1166 (m) 1133(m) 1078 (w) 1049 (w) 1023 (m) 995 (m) 921 (w) 876 (w)844 (w) 812 (m) 788 (m) 732 (w) 681 (w) 644 (w) 620 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 268ndash274 (m 4 H

2-CH2) 339ndash343 (m 4 H piperazine CH

2) 362ndash367 (m 8

H piperazine CH2 3-CH

2 310158401015840-CH

2) 387 (s 3 H OMe) 613

(s 1 H NH) 632 (d 3119869HndashH = 222Hz 1 H 7101584010158401015840-H) 638 (s 1 H5101584010158401015840-H) 642ndash648 (m 31015840101584010158401015840-H NH) 729-739 (m 2 H 3101584010158401015840-H51015840101584010158401015840-H) 771-772 (m 1 H 61015840101584010158401015840-H) 790 (s 1 H 81015840101584010158401015840-H) 794(d 3119869HndashH = 816Hz 1 H 4101584010158401015840-H) 848ndash852 (m 2 H 2101584010158401015840-H21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 3187

(C-2210158401015840) 3190 (C-2210158401015840) 3263 (C-2210158401015840) 3271 (C-2210158401015840)3904 (C-3310158401015840) 3908 (C-3310158401015840) 3930 (C-3310158401015840) 3934 (C-3310158401015840) 4155 (piperazine CH

2) 4165 (piperazine CH

2) 4168

(piperazine CH2) 4177 (piperazine CH

2) 4543 (piperazine

CH2) 4549 (piperazine CH

2) 4556 (piperazine CH

2) 5572

(OMe) 9259 (C-5101584010158401015840) 9694 (C-7101584010158401015840) 9922 (C-31015840101584010158401015840) 11800(C-41015840101584010158401015840a) 12214 (C-61015840101584010158401015840) 12248 (C-3101584010158401015840) 12564 (C-51015840101584010158401015840)12890 (C-81015840101584010158401015840) 13036 (C-4101584010158401015840a) 13519 (C-4101584010158401015840) 13527 (C-71015840101584010158401015840) 13584 (C-8101584010158401015840a) 14503 (C-2101584010158401015840) 14592 (C-8101584010158401015840) 14962(C-81015840101584010158401015840a) 15016 (C-41015840101584010158401015840) 15235 (C-21015840101584010158401015840) 15994 (C-6101584010158401015840)17040 (C-1110158401015840) 17046 (C-1110158401015840) 17056 (C-1110158401015840) 17062 (C-1110158401015840) ppm MS (EI 70 eV) mz () = 5491548154715461[M]+∙ (39922) 3751374137313721 [C

19H22ClN4O2]+

(3589) 320131913181 [C16H19ClN4O]+∙ (121528)

316131513141 [C17H22N4O2]+∙ (245) 207020602050

[C11H10ClN2]+ (3322100) 203020212011 [C

12H13N2O]+

(7841) 193019201910 [C10H8ClN2]+ (10929) 18811871

[C11H11N2O]+ (1379) 180017901780 [C

9H7ClN2]+∙

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 17: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 17

(172046) 17511741 [C10H10N2O]+∙ (1356) HRMS (ESI)

calcd [M+H]+ 54722189 found 54722165

3221 3-((710158401015840101584010158401015840-Chloroquinolin-410158401015840101584010158401015840-yl)(61015840101584010158401015840-methoxyquin-olin-81015840101584010158401015840-yl)amino)-1-(41015840-(310158401015840-(7101584010158401015840-chloroquinolin-4101584010158401015840-ylami-no)propanoyl)piperazin-11015840-yl)propan-1-one (17) Amine 28(261mg 007mmol) and 47-dichloroquinoline (418mg021mmol) were stirred at 120∘C under neat conditionsfor 85 hours The residue was suspended in a solventmixture containing dichloromethane and methanol thedark red suspension was alkalized using aqueous ammoniasolution leading to a change of color to light brownish colorand all volatile components were removed under reducedpressure The residue was purified by preparative thin layerchromatography (repeated elution with DCMMeOH 25 1)to give product 17 (140mg 002mmol 28) as yellow solidMp 152ndash155∘C (DCMMeOH) IR (ATR-FTIR) V = 3374(w br) 2936 (w br) 2360 (s) 2341 (m) 1607 (s) 1575 (s)1522 (m) 1421 (m) 1368 (m) 1277 (w) 1211 (m) 1135 (w)1108 (w) 1074 (w) 1016 (m) 915 (w) 877 (m) 808 (m) 784(m) 763 (m) 680 (w) 669 (w) 643 (w) 630 (w) 609 (w)cmminus1 1H-NMR (600MHz MeOD-d

4) 120575 = 274 (t 3119869HndashH =

650Hz 2 H 210158401015840-CH2) 282 (t 3119869HndashH = 666Hz 2 H

210158401015840-CH2) 285ndash291 (m 4 H 2-CH

2) 340ndash342 (m 2 H

piperazine CH2) 346ndash348 (m 2 H piperazine CH

2) 352ndash

354 (m 4 H piperazine CH2) 356ndash361 (m 8 H piperazine

CH2) 365ndash370 (m 4 H 310158401015840-CH

2) 378ndash382 (m 10 H OMe

3-CH2) 655 (d 3119869HndashH = 582Hz 1 H 3101584010158401015840-H) 660 (d 3119869HndashH =

588Hz 1 H 3101584010158401015840-H) 675 (s 2 H 71015840101584010158401015840-H) 712 (dd 3119869HndashH =408Hz 858Hz 1 H 31015840101584010158401015840-H) 717 (dd 3119869HndashH = 402Hz858Hz 1 H 31015840101584010158401015840-H) 727 (d 3119869HndashH = 762Hz 1 H 41015840101584010158401015840-H)731 (d 3119869HndashH = 732Hz 1 H 41015840101584010158401015840-H) 736ndash741 (m 8 H 6101584010158401015840-H310158401015840101584010158401015840-H 51015840101584010158401015840-H 61015840101584010158401015840-H) 777ndash779 (m 2 H 8101584010158401015840-H) 801 (d3

119869HndashH = 900Hz 1 H 5101584010158401015840-H) 804 (d 3119869HndashH = 900Hz 1 H5101584010158401015840-H) 834 (d 3119869HndashH = 588Hz 1 H 2101584010158401015840-H) 836 (d 3119869HndashH =588Hz 1 H 2101584010158401015840-H) 849-850 (m 2 H 21015840101584010158401015840-H) 892 (d3

119869HndashH = 444Hz 2 H 210158401015840101584010158401015840-H) ppm 51015840-H was not detectablebecause of the proton-deuterium exchange at this position13C-NMR (150MHz MeOD-d

4) 120575 = 3262 (C-210158401015840) 3265

(C-210158401015840) 3348 (C-2) 3381 (C-2) 4006 (C-310158401015840) 4017 (C-310158401015840)4030 (C-3) 4039 (C-3) 4245 (piperazine CH

2) 4262

(piperazine CH2) 4282 (piperazine CH

2) 4289 (piperazine

CH2) 4628 (piperazine CH

2) 4642 (piperazine CH

2) 4652

(piperazine CH2) 4674 (piperazine CH

2) 5676 (OMe)

9292 (C-71015840101584010158401015840) 9976 (C-3101584010158401015840) 9982 (C-3101584010158401015840) 10588 (C-51015840101584010158401015840)10592 (C-51015840101584010158401015840) 11862 (C-4101584010158401015840a) 12379 (C-31015840101584010158401015840) 12446(C-5101584010158401015840) 12449 (C-5101584010158401015840) 12642 (C-310158401015840101584010158401015840) 12644 (C-310158401015840101584010158401015840)12664 (C-6101584010158401015840) 12667 (C-6101584010158401015840) 12682 (C-8101584010158401015840) 12688 (C-8101584010158401015840)12847 (C-810158401015840101584010158401015840) 12870 (C-610158401015840101584010158401015840) 12872 (C-610158401015840101584010158401015840) 12917(C-410158401015840101584010158401015840a) 12956 (C-510158401015840101584010158401015840) 12960 (C-510158401015840101584010158401015840) 12995 (C-41015840101584010158401015840a)13337 (C-41015840101584010158401015840) 13342 (C-41015840101584010158401015840) 13514 (C-81015840101584010158401015840a) 13521 (C-81015840101584010158401015840a) 13680 (C-710158401015840101584010158401015840) 13717 (C-7101584010158401015840) 13720 (C-7101584010158401015840) 14596(C-21015840101584010158401015840) 14685 (C-410158401015840101584010158401015840) 14688 (C-410158401015840101584010158401015840) 14843 (C-81015840101584010158401015840)14855 (C-8101584010158401015840a) 14860 (C-8101584010158401015840a) 14975 (C-810158401015840101584010158401015840a) 15147(C-2101584010158401015840) 15153 (C-2101584010158401015840) 15235 (C-210158401015840101584010158401015840) 15307 (C-4101584010158401015840) 15319(C-4101584010158401015840) 15774 (C-61015840101584010158401015840) 17215 (C-110158401015840) 17221 (C-110158401015840)17305 (C-1) 17309 (C-1) ppm MS (EI 70 eV) mz

() = 3381337133613351 [C19H14ClN3O]+∙ (113734

100) 323132213211 [C18H12ClN3O]+∙ (141641) 2071

20612051 [C11H10ClN2]+ (11928) 19211911

[C10H8ClN2]+ (1011) 180117911781 [C

9H7ClN2]+∙ (109

29) HRMS (ESI) calcd [M+H]+ 70822512 found 70822501

3222 N-(31015840-(410158401015840-(3101584010158401015840-Aminopropyl)piperazin-110158401015840-yl)propyl)-6-methoxyquinolin-8-amine (29) LiAlH

4(829mg

218mmol) was added to a solution of diamide 27 (1497mg036mmol) in THF (dry 20mL) leading to a change of colorto orange at once The reaction mixture was stirred at 80∘Cfor 3 hours and the excess of LiAlH

4was carefully hydrolyzed

using water leading to decolorization The reaction mixturewas dried (Na

2SO4) filtered and concentrated The

residue was suspended in dichloromethane filtered andconcentrated Purification by flash column chromatographyon alumina (activity level V gradient elution with ethylacetate 100 followed by DCMMeOH 10 1) gavecompound 29 (440mg 012mmol 34) as yellow oilIR (ATR-FTIR) V = 3388 (w br) 2937 (w) 2876 (w) 2813(w) 1615 (m) 1592 (m) 1576 (m) 1518 (s) 1456 (m) 1422 (m)1385 (m) 1350 (w) 1334 (w) 1308 (w) 1267 (w) 1237 (w)1212 (m) 1196 (m) 1154 (s) 1051 (w) 1027 (w) 994 (w) 969(w) 943 (w) 919 (w) 899 (w) 818 (s) 789 (m) 764 (w) 751(w) 667 (w) 625 (w) cmminus1 1H-NMR (600MHz MeOD-d

4)

120575 = 165ndash170 (m 2 H 2101584010158401015840-CH2) 189-190 (m 2 H 21015840-CH

2)

241ndash271 (m 14 H 31015840-CH2 piperazine CH

2 1101584010158401015840-CH

2

3101584010158401015840-CH2) 330ndash332 (m 2 H 11015840-CH

2) 386 (s 3 H OMe)

631 (d 4119869HndashH = 246Hz 1 H 7-H) 645 (d 4119869HndashH = 240Hz1 H 5-H) 734 (dd 3119869HndashH = 420Hz 828Hz 1 H 3-H) 801(dd 3119869HndashH = 828Hz 4119869HndashH = 144Hz 1 H 4-H) 850 (dd3

119869HndashH = 470Hz 4119869HndashH = 162Hz 1 H 2-H) ppm 13C-NMR(150MHz MeOD-d

4) 120575 = 2684 (C-21015840) 3002 (C-2101584010158401015840)

4109 (C-3101584010158401015840) 4298 (C-11015840) 5398 (piperazine CH2) 5410

(piperazine CH2) 5580 (OMe) 5749 (C-1101584010158401015840) 5781 (C-31015840)

9340 (C-5) 9822 (C-7) 12308 (C-3) 13158 (C-4a) 13633(C-4) 13676 (C-8a) 14558 (C-2) 14733 (C-8) 16115(C-6) ppm MS (EI 70 eV) mz () = 35823572 [M]+∙(1240) 24512441 [C

14H18N3O]+ (738) 20212011

[C12H13N2O]+ (15100) 18811871 [C

11H11N2O]+ (1339)

17511741 [C10H10N2O]+∙ (1123) HRMS (ESI) calcd

[M+H]+ 35826014 found 35826021

3223 7-Chloro-N-(31015840-(410158401015840-(3101584010158401015840-(61015840101584010158401015840-methoxyquinolin-81015840101584010158401015840-ylamino)propyl)piperazin-1-yl)propyl)quinolin-4-amine (16)Amine 29 (321mg 0090mmol) and 47-dichloroquinoline(137mg 0069mmol) were stirred at 120∘C under neatconditions for 65 hoursThe reactionmixture was suspendedin methanol and alkalized using aqueous ammonia solutionand all volatile components were removed under reducedpressure The residue was suspended in a solvent mixtureof DCMMeOH 10 1 filtered (Celite) and concentratedPurification by preparative thin layer chromatography ondeactivated silica gel (DCMMeOH 20 1) gave 16 (62mg001mmol 17) as beige powder Mp 52∘C (DCMMeOH)IR (ATR-FTIR) V = 3250 (w br) 2922 (m) 2851 (w) 2819(w) 1738 (w) 1612 (m) 1578 (s) 1519 (m) 1451 (m) 1423 (w)1385 (m) 1331 (w) 1309 (w) 1280 (w) 1212 (w) 1153 (m)

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 18: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

18 International Journal of Medicinal Chemistry

1138 (m) 1077 (w) 1051 (w) 1029 (w) 989 (w) 900 (w) 872(w) 852 (w) 817 (m) 789 (m) 764 (m) 646 (w) 624 (w)cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 196ndash200 (m 4

H 21015840-CH2 2101584010158401015840-CH

2) 250ndash295 (m 12 H 31015840-CH

2 1101584010158401015840-CH

2

piperazine CH2) 334ndash344 (m 4 H 11015840-CH

2 3101584010158401015840-CH

2)

388 (s 3 H OMe) 629 (d 4119869HndashH = 222Hz 1 H 71015840101584010158401015840-H)635ndash637 (m 2 H 3-H 51015840101584010158401015840-H) 681 (s br 1 H NH) 732(dd 3119869HndashH = 414Hz 822Hz 1 H 31015840101584010158401015840-H) 738 (dd 3119869HndashH =894Hz 4119869HndashH = 204Hz 1 H 5-H) 794-804 (m 4 H 6-H8-H 41015840101584010158401015840-H NH) 845 (d 3119869HndashH = 546Hz 1 H 2-H) 853(dd 3119869HndashH = 414Hz 4119869HndashH = 156Hz 1 H 21015840101584010158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 2366 (C-21015840) 2628 (C-2101584010158401015840)

4292 (C-3101584010158401015840) 4495 (C-11015840) 5364 (piperazine CH2) 5373

(piperazine CH2) 5390 (piperazine CH

2) 5410 (piperazine

CH2) 5568 (OMe) 5763 (C-1101584010158401015840) 5916 (C-31015840) 9212 (C-51015840101584010158401015840)

9675 (C-71015840101584010158401015840) 9882 (C-3) 11788 (C-4a) 12235 (C-31015840101584010158401015840)12361 (C-8) 12528 (C-5) 12812 (C-6) 13031 (C-41015840101584010158401015840a)13511 (C-41015840101584010158401015840) 13538 (C-7) 13596 (C-81015840101584010158401015840a) 14480 (C-21015840101584010158401015840)14687 (C-81015840101584010158401015840) 14873 (C-8a) 15166 (C-2 C-4) 16012 (C-61015840101584010158401015840) ppm MS (EI 70 eV) mz () = 520151915181 [M]+∙(151736) 3271 [M-C

10H8ClN2]+ (19) 250124912481

[C13H15ClN3]+ (3419100) 2311 [C

13H17N3O]+∙ (9)

20212011 [C12H13N2O]+ (1157) 1940193019201910

[C10H8ClN2]+ (20185932) 18811871 [C

11H11N2O]+

(1549) 17901780 [C9H7ClN2]+ (117) 17511741

[C10H10N2O]+∙ (915) 16011591 [C

10H9NO]+∙ (718)

HRMS (ESI) calcd [M+H]+ 51926336 found 51926361

3224 7-Chloro-N-(310158401015840-(4101584010158401015840-(31015840101584010158401015840-(710158401015840101584010158401015840-chloroquinolin-410158401015840101584010158401015840-ylamino)propyl)piperazin-1101584010158401015840-yl)propyl)-N-(61015840-methoxyquin-olin-81015840-yl)quinolin-4-amine (18) Amine 29 (579mg016mmol) and 47-dichloroquinoline (1611mg 081mmol)were stirred at 125∘C under neat conditions for 9 hoursThe residue was suspended in methanol and alkalized usingaqueous ammonia solution and all volatile componentswere removed under reduced pressure The residue wassuspended in a solvent mixture containing DCMMeOH10 1 and filtered over deactivated silica gel Preparative thinlayer chromatography on deactivated silica gel (DCMMeOH20 1) gave compound 18 (254mg 0037mmol 23) asyellow powderMp 89∘C (DCMMeOH) IR (ATR-FTIR) V =3247 (w br) 2928 (w) 2815 (w) 1737 (w) 1607 (m) 1576(s) 1523 (m) 1449 (w) 1371 (m) 1331 (w) 1282 (w) 1235(w) 1137 (m) 1109 (w) 1075 (w) 1030 (w) 988 (w) 916 (w)875 (m) 849 (w) 808 (m) 783 (w) 734 (w) 680 (w) 637(w) 620 (w) 611 (w) cmminus1 1H-NMR (400MHz CD

2Cl2)

120575 = 197ndash210 (m 4 H 210158401015840-CH2 21015840101584010158401015840-CH

2) 270ndash289 (m 12

H 310158401015840-CH2 11015840101584010158401015840-CH

2 piperazine CH

2) 338ndash347 (m 2 H

31015840101584010158401015840-CH2) 351ndash356 (m 2 H 110158401015840-CH

2) 379 (s 3 H OMe)

636 (d 3119869HndashH = 536Hz 1 H 310158401015840101584010158401015840-H) 656 (s 1 H 71015840-H) 717(dd 3119869HndashH = 404Hz 852Hz 1 H 31015840-H) 730ndash742 (m 5 H3-H 5-H 6-H 41015840-H 610158401015840101584010158401015840-H) 775 (s br NH) 791 (s 1 H810158401015840101584010158401015840-H) 799ndash801 (m 1 H 510158401015840101584010158401015840-H) 815 (d 4119869HndashH = 204Hz1 H 8-H) 846 (d 3119869HndashH = 536Hz 1 H 210158401015840101584010158401015840-H) 856 (dd3

119869HndashH = 404Hz 4119869HndashH = 156Hz 1 H 21015840-H) 897 (d 3119869HndashH =436Hz 1 H 2-H) ppm 51015840-H was not detectable becauseof the proton-deuterium exchange at this position 13C-NMR

(100MHz CD2Cl2) 120575 = 2402 (C-21015840101584010158401015840) 2633 (C-210158401015840)

4319 (C-110158401015840) 4519 (C-31015840101584010158401015840) 5394 (piperazine CH2) 5400

(piperazine CH2) 5418 (piperazine CH

2) 5447 (piperazine

CH2) 5672 (OMe) 5792 (C-310158401015840) 5949 (C-11015840101584010158401015840) 9178

(C-71015840) 9902 (C-31015840101584010158401015840) 10515 (C-51015840) 11814 (C-410158401015840101584010158401015840a) 12271(C-31015840) 12348 (C-510158401015840101584010158401015840) 12505 (C-610158401015840101584010158401015840) 12534 (C-3) 12757(C-6) 12818 (C-5) 12865 (C-810158401015840101584010158401015840) 12890 (C-8) 12915(C-41015840a) 12947 (C-4a) 13287 (C-4) 13465 (C-81015840a) 13504(C-710158401015840101584010158401015840) 13530 (C-7) 14464 (C-4) 14497 (C-21015840) 14815(C-81015840) 14984 (C-8a) 15135 (C-410158401015840101584010158401015840) 15190 (C-2) 15272(C-210158401015840101584010158401015840) 15685 (C-61015840) ppm MS (EI 70 eV) mz () =6821681168016791 [M]+∙ (10201528) 48914881 [M-C10H8ClN2]+ (1020) 364036303620 [C

21H17ClN3O]+

(151542) 3500349034803470 [C20H15ClN3O]+ (1317

2911) 337033603350 [C19H14ClN3O]+∙ (132027) 2501

24912481 [C13H15ClN3]+ (3518100) 193019201910

[C10H8ClN2]+ (176028) HRMS (ESI) calcd [M+H]+

68026659 found 68026636

3225 (4-(Bromomethyl)phenyl)methanol (31) PPh3

(7557 g 0029mol) was added to a solution of 14-benzened-imethanol (9907 g 0072mol) and (CBrCl

2)2

(7770 g0024mol) in DCM (dry 120mL) and the reaction mixturewas stirred at 25∘C overnight The solvent was concentratedand the residue purified with flash column chromatographyon silica gel (petroleum etherethyl acetate 10 1) to obtaincompound 31 (3020 g 0015mol 63) as a colorless solidMp 79∘C (petroleum etherethyl acetate) IR (ATR-FTIR)V = 3313 (m br) 2921 (w) 2859 (w) 2360 (w) 2337 (w) 1918(w) 1683 (w) 1513 (w) 1442 (w) 1417 (m) 1349 (m) 1301 (w)1222 (m) 1193 (m) 1093 (w) 1000 (s) 871 (w) 829 (s) 757(m) 727 (s) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 169

(s 1 H OH) 448 (s 2 H CH2Br) 467 (s 2 H CH

2OH)

732 (d 3119869HndashH = 824Hz 2 H Ph-H) 737 (d 3119869HndashH = 820Hz2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 3343

(CH2Br) 6511 (CH

2OH) 12753 (Ph-CH) 12947 (Ph-CH)

13740 (C-4) 14140 (C-1) ppm MS (EI 70 eV) mz () =20202000 [M]+∙ (33) 12201210 [M-Br]+ (10100) 920910 [C

7H7]+ (636) HRMS (EI) calcd [M]+∙ 19998313

found 19998343

3226 14-Bis(bromomethyl)benzene (32) Within the syn-thesis of compound 31 the dibrominated side product 32was given in 35 yield (2229 g 0008mmol) Mp 144∘C(petroleum etherethyl acetate) IR (ATR-FTIR) V = 2971(w) 2360 (w) 1976 (w) 1924 (w) 1806 (w) 1691 (w) 1511(w) 1434 (w) 1419 (w) 1261 (w) 1224 (w) 1195 (w) 1126 (w)1083 (w) 1020 (w) 968 (w) 846 (m) 794 (w) 750 (s) 667(w) 605 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 446

(s 4H CH2) 735 (s 4 H Ph-H) ppm 13C-NMR (100MHz

CDCl3) 120575 = 3298 (CH

2) 12970 (Ph-CH) 13824 (C-1 C-4)

ppm MS (EI 70 eV) mz () = 265926392619 [M]+∙(363) 1860185018401830 [M-Br]+ (671874) 10511041 [C

8H8]+∙ (9100) HRMS (EI) calcd [M]+ 26189873

found 26189852

3227 (4-(Azidomethyl)phenyl)methanol (33) NaN3

(4111mg 634mmol) was added to a solution of the

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 19: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 19

brominated compound 31 (4247mg 211mmol) in DMF(dry 7mL) and the reaction mixture was stirred at 25∘Covernight The complete conversion was determined by 1H-NMR spectroscopy The solvent was azeotropically removedusing toluene under reduced pressure and the residuewas suspended in dichloromethane filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on silica gel (ethyl acetate 100) gave the colorlesssolid 33 (3417mg (209mmol 99)Mp 76∘C (ethyl acetate)IR (ATR-FTIR) V = 3332 (w br) 3023 (w) 2929 (w) 2873(w) 2092 (s) 1616 (w) 1513 (w) 1448 (w) 1419 (w) 1344 (w)1255 (m) 1207 (m) 1110 (w) 1010 (m) 877 (w) 804 (m) 752(s) 657 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 178 (s

1 H OH) 431 (s 2 H CH2N3) 468 (s 2 H CH

2OH) 729 (d

3

119869HndashH = 812Hz 2 H Ph-H) 736 (d 3119869HndashH = 812Hz 2 H Ph-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 5473 (CH

2N3)

6511 (CH2OH) 12758 (Ph-CH) 12867 (Ph-CH) 13491

(C-4) 14125 (C-1) ppm MS (EI 70 eV) mz () = 1630[M]+∙ (7) 12201210 [M-N

3]+ (331) 180 [H

2O]+∙ (100)

HRMS (EI) calcd [M]+∙ 16307401 found 16307374

3228 4-(Azidomethyl)benzyl 4-Methylbenzenesulfonate(34) NaH (0823 g of a 55 oily dispersion 0018mol) wasadded in portions to a solution of azide 33 (1014 g 0006mol)and 4-toluenesulfonyl chloride (1421 g 0007mol) in DCM(dry 20mL) at 0∘C under nitrogen atmosphere The reactionmixture was allowed to warm up to room temperatureand stirred for further 25 hours The excess of NaHwas reacted with glacial acetic acid at 0∘C until no moregas was generated the mixture was filtered (Celite) andconcentrated Purification of the residue with flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) gave compound 34 (1352 g 71) as colorless oil IR(ATR-FTIR) V = 3060ndash2920 (w br) 2360 (w) 2341 (w)2096 (m) 1914 (w) 1798 (w) 1732 (w) 1699 (w) 1644 (w)1596 (w) 1516 (w) 1492 (w) 1477 (w) 1462 (w) 1449 (w)1426 (w) 1397 (w) 1350 (s) 1325 (w) 1301 (w) 1290 (w)1247 (m) 1215 (w) 1184 (m) 1170 (s) 1116 (w) 1094 (m) 1039(w) 1018 (w) 954 (w) 928 (s) 885 (w) 862 (s) 848 (m) 820(m) 808 (m) 788 (m) 762 (s) 732 (m) 702 (w) 664 (s) 639(w) cmminus1 1H-NMR (400MHz CD

2Cl2) 120575 = 245 (s 3 H

Me) 434 (s 2 H CH2N3) 505 (s 2 H CH

2OTs) 726ndash731

(m 4 H Ph-H) 736 (d 3119869HndashH = 796Hz 2 H Ph-H) 778(d 3119869HndashH = 832Hz 2 H Ph-H) ppm 13C-NMR (100MHzCD2Cl2) 120575 = 2193 (Me) 5486 (CH

2N3) 7209 (CH

2OTs)

12842 (Ph-CH) 12899 (Ph-CH) 12947 (Ph-CH) 13048(Ph-CH) 13374 (Ph-C) 13416 (Ph-C) 13712 (Ph-C) 14575(Ph-C) ppm MS (EI 70 eV) mz () = 27622752 [M-N

3]+

(632) 16311621 [M-Ts]+ (433) 1461 [C8H8N3]+ (26) 1321

[C7H6N3]+ (10) 12011191 [C

8H7O]+ (663) 10501041

[C8H8]+ (313) 920911 [C

7H7]+ (7100) 781771 [C

6H5]+

(513) HRMS (EI) calcd [M]+ 27507364 found 27507334

3229 (41015840-((6101584010158401015840-Methoxyquinolin-8101584010158401015840-ylamino)methyl)phe-nyl)methanol (36) A mixture consisting of 6-methoxy-8-aminoquinoline (4 2003mg 115mmol) the brominatedalcohol 31 (2548mg 127mmol) and NaOAc (2822mg344mmol) in DMF (dry 5mL) was stirred at 25∘C for 17

hours The solvent DMF was removed azeotropically withtoluene under reduced pressure the residue was suspendedin dichloromethane filtered (Celite) and concentratedPurification with flash column chromatography on deac-tivated silica gel (petroleum etherethyl acetate 4 1) gavecompound 36 (2293mg 68) as yellow oil IR (ATR-FTIR) V = 3394 (w br) 3050 (w) 3005 (w) 2930 (w br)2857 (w br) 2513 (w br) 1725 (w) 1612 (s) 1576 (s) 1516(m) 1500 (s) 1456 (m) 1419 (m) 1405 (m) 1385 (s) 1338(w) 1298 (w) 1262 (w) 1238 (w) 1207 (s) 1155 (m) 1126(w) 1056 (m) 1029 (m) 1014 (m) 966 (w) 922 (w) 901(w) 818 (s) 787 (s) 747 (m) 698 (w) 667 (w) 624 (w)cmminus1 1H-NMR (400MHz MeOD-d

4) 120575 = 380 (s 3 H

OMe) 449 (s 2 H 110158401015840-CH2) 457 (s 2 H 1-CH

2) 622 (d

4

119869HndashH = 204Hz 1 H 7101584010158401015840-H) 645 (d 4119869HndashH = 246Hz 1H 5101584010158401015840-H) 731 (d 3119869HndashH = 804Hz 2 H 21015840-H 61015840-H) 735(dd 3119869HndashH = 420Hz 828Hz 1 H 3101584010158401015840-H) 739 (d 3119869HndashH =810Hz 2 H 31015840-H 51015840-H) 801 (dd 3119869HndashH = 828Hz 4119869HndashH= 144Hz 1 H 4101584010158401015840-H) 851 (dd 3119869HndashH = 414Hz 4119869HndashH =138Hz 1 H 2101584010158401015840-H) ppm 13C-NMR (100MHz MeOD-d4) 120575 = 4820 (C-110158401015840) 5573 (OMe) 6521 (C-1) 9377

(C-5101584010158401015840) 9914 (C-7101584010158401015840) 12308 (C-3101584010158401015840) 12850 (C-31015840 C-51015840) 12854 (C-21015840 C-61015840) 13152 (C-41015840a) 13639 (C-41015840)13666 (C-81015840a) 13992 (C-41015840) 14166 (C-11015840) 14570 (C-2101584010158401015840) 14686 (C-8101584010158401015840) 16093 (C-6101584010158401015840) ppm MS (EI 70 eV)mz () = 2972296229522942 [M]+∙ (185210087)265126412631 [M-CH

3O]+ (7118) 189118811871

[C11H11N2O]+ (61822) 17511741 [C

10H10N2O]+∙ (55)

16011591 [C9H7N2O]+∙ (5455) 921911 [C

7H7]+ (820)

871771 [C6H5]+ (919) HRMS (ESI) calcd [M+H]+

29514410 found 29514401

3230 N-(41015840-(Azidomethyl)benzyl)-6-methoxyquinolin-8-amine (35) Compound 35 was obtained by two syntheticroutes that are described in the following procedures

Method A The tosylated azide 34 (9053mg 285mmol) wasadded to a suspension of 6-methoxy-8-aminoquinoline (44547mg 261mmol) and NaOAc (6413mg 782mmol) inDMF (dry 10mL) and the reaction mixture was stirred at25∘C for 12 hours The solvent was azeotropically removedwith toluene under reduced pressure the residue was sus-pended in dichloromethane filtered (Celite) and concen-trated Purification with flash column chromatography onsilica gel (petroleum etherethyl acetate) gave compound 35(3434mg 41) as yellow oil

Method B Diphenylphosphoryl azide (DPPA 331 120583L423mg 015mmol) and 18-diazabicyclo[540]undec-7-en(DBU 230 120583L 234mg 015mmol) were added to a solutionof alcohol 36 (377mg 013mmol) in toluene (dry 5mL) andthe mixture was stirred at 25∘C for 35 hoursThe solvent wasconcentrated and the residue purified using flash columnchromatography on silica gel (petroleum etherethyl acetate10 1) to obtain compound 35 (322mg 010mmol 78) asyellow oil IR (ATR-FTIR) V = 3395 (w br) 3049ndash2852 (wbr) 2093 (s) 1616 (m) 1593 (m) 1576 (m) 1517 (s) 1457 (m)1420 (m) 1386 (m) 1336 (w) 1286 (w) 1254 (w) 1238 (w)

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 20: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

20 International Journal of Medicinal Chemistry

1209 (s) 1163 (m) 1153 (m) 1124 (w) 1060 (w) 1022 (w) 999(w) 967 (w) 935 (w) 902 (w) 880 (w) 820 (m) 789 (m) 667(w) 644 (w) 624 (w) 603 (w) cmminus1 1H-NMR (600MHzCD2Cl2) 120575 = 383 (s 3 H OMe) 434 (s 2 H CH

2N3) 454

(d 3119869HndashH = 594Hz 2 H CH2NHR) 622 (d 3119869HndashH = 252Hz

1 H 7-H) 640 (d 3119869HndashH = 252Hz 1 H 5-H) 665ndash668 (m1 H NH) 731 (d 3119869HndashH = 810Hz 2 H 31015840-H 51015840-H) 734 (d3

119869HndashH = 420Hz 822Hz 1 H 3-H) 744 (d 3119869HndashH = 804Hz2 H 21015840-H 61015840-H) 797 (dd 3119869HndashH = 828Hz 4119869HndashH = 162Hz 1H 4-H) 855 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H)ppm 13C-NMR (150MHz CD

2Cl2) 120575 = 4757 (CH

2NHR)

5502 (CH2N3) 5566 (OMe) 9287 (C-5) 9770 (C-7) 12251

(C-3) 12817 (C-21015840 C-61015840) 12905 (C-31015840 C-51015840) 13026 (C-4a)13498 (C-41015840) 13521 (C-4) 13578 (C-8a) 13998 (C-11015840) 14511(C-2) 14598 (C-8) 15981 (C-6) ppm MS (EI 70 eV) mz() = 32013191 [M]+∙ (21100) 27812771 [M-N

3]+ (417)

18811871 [C11H11N2O]+ (325) 16011591 [C

10H9NO]+∙

(1565) 911 [C7H7]+ (24) 781771 [C

6H5]+ (45) HRMS

(ESI) calcd [M+H]+ 32015059 found 32015042

3231 N-(41015840-(Aminomethyl)benzyl)-6-methoxyquinolin-8-amine (37) PPh

3(1569mg 060mmol) was added to a

solution of azide 35 (1589mg 050mmol) in MeOH (dry5mL) and the mixture was stirred at 25∘C for 2 hoursThe solvent was removed under reduced pressure and theresidue was purified on deactivated silica gel (ethyl acetate100) to give compound 37 (1401mg 95) as yellow oilIR (ATR-FTIR) V = 3383 (w) 3310 (w) 3004ndash2853 (w br)2360 (w) 2342 (w) 1617 (m) 1576 (m) 1518 (s) 1461 (m)1420 (m) 1387 (m) 1350 (w) 1293 (w) 1276 (w) 1261 (w)1237 (w) 1210 (s) 1163 (s) 1122 (w) 1059 (w) 1022 (w) 1000(w) 936 (w) 893 (w) 821 (m) 789 (m) 669 (w) 627 (w) 614(w) 604 (w) cmminus1 1H-NMR (600MHz CD

2Cl2) 120575 = 146

(s br 2 H NH2) 382-383 (m 5 H OMe CH

2NH2) 450 (d

3

119869HndashH = 594Hz 2 H CH2NH) 623 (d 4119869HndashH = 246Hz 1 H

7-H) 639 (d 4119869HndashH = 252Hz 1 H 5-H) 662 (s br 1 H NH)729 (d 3119869HndashH = 798Hz 2 H 31015840-H 51015840-H) 733 (dd 3119869HndashH =414Hz 822Hz 1 H 3-H) 737 (d 3119869HndashH = 804Hz 2H 21015840-H61015840-H) 796 (dd 3119869HndashH = 828Hz 4119869HndashH = 156Hz 1 H 4-H)853 (dd 3119869HndashH = 420Hz 4119869HndashH = 162Hz 1 H 2-H) ppm13C-NMR (150MHz CD

2Cl2) 120575 = 4663 (CH

2NH2) 4764

(CH2NH) 5565 (OMe) 9272 (C-5) 9763 (C-7) 12247

(C-3) 12782 (C-31015840 C-51015840) 12790 (C-21015840 C-61015840) 13025 (C-4a)13519 (C-4) 13580 (C-8a) 13800 (C-11015840) 14336 (C-41015840) 14506(C-2) 14607 (C-8) 15983 (C-6) ppm MS (EI 70 eV) mz() = 2951294129312921 [M]+∙ (32510032) 1870[M-C

7H8N]+ (17) 16001590 [C

10H9NO]+∙ (1643) 1201

[C8H10N]+ (14) 911 [C

7H7]+ (14) HRMS (ESI) calcd

[M+H]+ 29416009 found 29415997

3232 7-Chloro-N-(410158401015840-((610158401015840-methoxyquinolin-810158401015840-ylami-no)methyl)benzyl)quinolin-4-amine (30) Amine 37(806mg 027mmol) and 47-dichloroquinoline (419mg021mmol) were stirred at 120∘C under neat conditionsfor 135 hours The reaction mixture was suspended indichloromethane and methanol alkalized using ammoniasolution and all volatile components were removed under

reduced pressure The residue was repeatedly suspendedin dichloromethane and methanol filtered (Celite) andconcentrated Purification with flash column chromatog-raphy on deactivated silica gel (gradient elution withpetroleum etherethyl acetate 5 1 followed by petroleumetherethyl acetate 2 1) gave hybrid compound 30 (411mg43) as beige crystals Mp 273∘C (petroleum etherethylacetate) IR (ATR-FTIR) V = 2926 (w br) 2850 (w br) 2528(w) 2358 (w br) 2340 (w br) 1734 (w) 1608 (m) 1574 (s)1509 (m) 1467 (m) 1453 (m) 1419 (m) 1388 (m) 1363 (m)1333 (m) 1283 (m) 1206 (m) 1154 (m) 1128 (w) 1061 (m)1018 (m) 956 (w) 930 (w) 896 (m) 866 (w) 845 (w) 815(m) 806 (s) 788 (m) 761 (w) 732 (w) 671 (w) 644 (w) 634(w) 623 (w) cmminus1 1H-NMR (600MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 381 (s 3 H OMe) 450 (s 2 H CH2NH-PQ) 454

(s 2 H CH2NH-CQ) 622 (d 4119869HndashH = 204Hz 1 H 710158401015840-H)

639ndash642 (m 2 H 3-H 510158401015840-H) 733ndash736 (m 3 H 21015840-H 61015840-H310158401015840-H) 738ndash741 (m 3 H 6-H 31015840-H 51015840-H) 786 (d 4119869HndashH =204Hz 1H 8-H) 791 (d 3119869HndashH = 894Hz 1H 5-H) 797 (dd3

119869HndashH = 828Hz 4119869HndashH = 132Hz 1 H 410158401015840-H) 833 (d 3119869HndashH =552Hz 1 H 2-H) 851 (dd 3119869HndashH = 426Hz 4119869HndashH = 156Hz1 H 210158401015840-H) ppm 13C-NMR (150MHz CD

2Cl2MeOD-d

4=

10 1) 120575 = 4731 (CH2-NH-CQ) 4751 (CH

2-NH-PQ) 5567

(OMe) 9303 (C-510158401015840) 9798 (C-710158401015840) 9994 (C-3) 11774 (C-4a)12254 (C-310158401015840) 12269 (C-5) 12597 (C-6) 12759 (C-8) 12813(C-21015840 C-61015840) 12828 (C-31015840 C-51015840) 13039 (C-410158401015840a) 13551(C-410158401015840) 13569 (C-810158401015840a) 13588 (C-7) 13689 (C-11015840) 13929(C-41015840) 14516 (C-210158401015840) 14591 (C-810158401015840) 14855 (C-8a) 15125(C-4) 15156 (C-2) 15979 (C-610158401015840) ppm MS (EI 70 eV) mz() = 455945494539 [C

27H23ClN4O]+∙ (235) 2790

278027702760 [C18H17N2O]+ (1736100) 16001590

[C10H9NO]+∙ (27) HRMS (ESI) calcd [M+H]+ 45516332

found 45516320

3233 7-Chloroquinolin-4-amine (3) [75] Gaseous ammo-nia was directed through a solution of 47-dichloroquinoline(11907 g 0060mmol) in phenol (58000 g 0616mol) at170∘C the mixture was heated up to 200∘C and stirred for25 hours After addition of glacial acetic acid (15mL) water(30mL) and diethyl ether (100mL) a colorless solid wasobtained and filtered The residue was dissolved in wateralkalized using aqueous NaOH solution and exhaustivelyextracted using diethyl ether The combined organic extractswere dried (MgSO

4) and concentrated Recrystallization

(H2O) gave 3 (8359 g 78) as colorless crystals Mp 152∘C

(H2O) IR (ATR-FTIR) V = 3447 (w) 3355 (w) 3060 (w

br) 1637 (m) 1612 (m) 1574 (s) 1507 (m) 1442 (m) 1369 (w)1326 (m) 1284 (m) 1200 (m) 1129 (w) 1077 (w) 1019 (w) 909(m) 877 (m) 855 (m) 837 (m) 812 (s) 760 (m) 732 (m) 643(m) 626 (m) cmminus1 1H-NMR (400MHz CDCl

3) 120575 = 656 (d

3

119869HndashH = 516Hz 1 H 3-H) 737 (dd 3119869HndashH = 896Hz 4119869HndashH =216Hz 1 H 6-H) 767 (d 3119869HndashH = 896Hz 1 H 5-H) 796(d 4119869HndashH = 204Hz 1 H 8-H) 849 (d 3119869HndashH = 520Hz 1H 2-H) ppm 13C-NMR (100MHz CDCl

3) 120575 = 10418 (C-

3) 11734 12189 12591 12899 13549 (C-7) 14971 14984(C-4) 15196 (C-2) ppm 15N-NMR (405MHz DMSO-d

6)

minus3100 (4-NH2) minus1100 (N-1) ppmMS (EI 70 eV) mz () =

180117911781 [M]+∙ (3414100)

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 21: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 21

Conflict of Interests

The authors declare no conflict of interests regarding thepublication of this paper

Authorsrsquo Contribution

Melanie Lodige conceived designed and performed theexperiments and analysed the data andwrote the paper LuisaHiersch performed the experiments for compounds 31ndash33All authors have given approval to the final version of thepaper

Acknowledgments

This work was supported by the Deutsche Forschungsge-meinschaft (SFB 630 ldquoRecognition Preparation and Func-tional Analysis of Agents against Infectious Diseasesrdquo) Theauthors want to thank Professor Dr Dr hc mult GerhardBringmann for his support on this work and the followinggroups for the bioactivity tests the group of Dr Ann-KristinMueller with Dr Matthew Lewis at Heidelberg University(liver stages) the group of Professor Dr Gabriele Pradel atRWTH Aachen University (blood stages of strains 3D7 andDd2 and gametocytes) and the group of Professor Dr RBrun (blood stages of strain K1) at the Swiss Tropical andPublic Health Institute in Basel and Dr Laura Damiano forediting the paper

References

[1] World Health Organization status 2014 httpwwwwhointmalariamediaworld malaria report 2013en

[2] I Petersen R Eastman andM Lanzer ldquoDrug-resistantmalariamolecular mechanisms and implications for public healthrdquoFEBS Letters vol 585 no 11 pp 1551ndash1562 2011

[3] FWissing C P Sanchez P Rohrbach S Ricken andM LanzerldquoIllumination of the malaria parasite Plasmodium falciparumalters intracellular pHrdquoThe Journal of Biological Chemistry vol277 no 40 pp 37747ndash37755 2002

[4] K Kaiser N Camargo and S H I Kappe ldquoTransformationof sporozoites into early exoerythrocytic malaria parasites doesnot require host cellsrdquo The Journal of Experimental Medicinevol 197 no 8 pp 1045ndash1050 2003

[5] A U Krettli and L H Miller ldquoMalaria a sporozoite runsthrough itrdquoCurrent Biology vol 11 no 10 pp R409ndashR412 2001

[6] T N C Wells P L Alonso and W E Gutteridge ldquoNewmedicines to improve control and contribute to the eradicationof malariardquo Nature Reviews Drug Discovery vol 8 no 11 pp879ndash891 2009

[7] N Gerald B Mahajan and S Kumar ldquoMitosis in the humanmalaria parasite Plasmodium falciparumrdquo Eukaryotic Cell vol10 no 4 pp 474ndash482 2011

[8] R Menard V Heussler M Yuda and V Nussenzweig ldquoPlas-modium pre-erythrocytic stages whatrsquos newrdquo Trends in Para-sitology vol 24 no 12 pp 564ndash569 2008

[9] U Schulte ldquoKampf gegen die Malariardquo Die Deutsche ApothekerZeitung vol 148 pp 2414ndash2415 2008

[10] H A Babiker P Schneider and S E Reece ldquoGametocytesinsights gained during a decade of molecular monitoringrdquoTrends in Parasitology vol 24 no 11 pp 525ndash530 2008

[11] G D Burchard ldquoMalariardquo Internist vol 47 no 8 pp 818ndash8242006

[12] M S Oakley T F McCutchan V Anantharaman et al ldquoHostbiomarkers and biological pathways that are associated with theexpression of experimental cerebral malaria in micerdquo Infectionand Immunity vol 76 no 10 pp 4518ndash4529 2008

[13] A Stich ldquoMalaria the most important tropical infectious dis-easerdquoPharmazie inUnserer Zeit vol 38 no 6 pp 508ndash511 2009

[14] T N C Wells J N Burrows and J K Baird ldquoTargeting thehypnozoite reservoir of Plasmodium vivax the hidden obstacletomalaria eliminationrdquoTrends in Parasitology vol 26 no 3 pp145ndash151 2010

[15] L Florens M PWashburn J D Raine et al ldquoA proteomic viewof the Plasmodium falciparum life cyclerdquo Nature vol 419 no6906 pp 520ndash526 2002

[16] G Bringmann M Loedige G Pradel et al ldquoHybrid com-pounds of 4- and 8-aminoquinolines for the prophylactic andtherapeutic treatment of malaria and other parasitic diseasespatent applicationmdashpriority date 14102010 international fil-ing date 14102011mdashinternational application number PCTEP2011005173mdashpublication date 19042012 publication num-ber WO2012048894A1rdquo 2012

[17] M Loedige Synthesis and evaluation of novel drug classes againstinfectious diseases [PhD dissertation] University ofWurzburgWurzburg Germany 2013 httpbitly1rzOtW7

[18] ThemalERA Consultative Group on Drugs ldquoA research agendaformalaria eradication drugsrdquo PLoSMedicine vol 8 Article IDe1000402 2011

[19] World Health Organization Antimalarial Drug CombinationTherapy Report of a Technical Consultation WHO 2001 httpwhqlibdocwhointhq2001WHO CDS RBM 200135pdf

[20] J A M Christiaans and H Timmerman ldquoCardiovascularhybrid drugs combination of more than one pharmacologicalproperty in one single moleculerdquo European Journal of Pharma-ceutical Sciences vol 4 no 1 pp 1ndash22 1996

[21] T J Egan and C H Kaschula ldquoStrategies to reverse drug resis-tance in malariardquo Current Opinion in Infectious Diseases vol20 no 6 pp 598ndash604 2007

[22] N White ldquoAntimalarial drug resistance and combinationchemotherapyrdquo Philosophical Transactions of the Royal SocietyB Biological Sciences vol 354 no 1384 pp 739ndash749 1999

[23] GD Shanks A JOlooGMAleman et al ldquoAnewprimaquineanalogue tafenoquine (WR 238605) for prophylaxis againstPlasmodium falciparum malariardquo Clinical Infectious Diseasesvol 33 no 12 pp 1968ndash1974 2001

[24] K Stepniewska and N J White ldquoPharmacokinetic determi-nants of the window of selection for antimalarial drug resis-tancerdquo Antimicrobial Agents and Chemotherapy vol 52 no 5pp 1589ndash1596 2008

[25] R Morphy and Z Rankovic ldquoDesigned multiple ligands Anemerging drug discovery paradigmrdquo Journal of MedicinalChemistry vol 48 no 21 pp 6523ndash6543 2005

[26] L F Tietze H P Bell and S Chandrasekhar ldquoNaturstoffhybrideals neue Leitstrukturen bei der Wirkstoffsucherdquo AngewandteChemie vol 115 no 34 pp 4128ndash4160 2003

[27] C H Arnaud ldquoDrug hybrids enter the frayrdquo Chemical andEngineering News vol 85 no 46 pp 46ndash48 2007

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 22: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

22 International Journal of Medicinal Chemistry

[28] B Meunier ldquoHybrid molecules with a dual mode of actiondream or realityrdquo Accounts of Chemical Research vol 41 no1 pp 69ndash77 2008

[29] C A M Fraga ldquoDrug hybridization strategies before or afterlead identificationrdquo Expert Opinion on Drug Discovery vol 4no 6 pp 605ndash609 2009

[30] R Morphy C Kay and Z Rankovic ldquoFrom magic bullets todesigned multiple ligandsrdquoDrug Discovery Today vol 9 no 15pp 641ndash651 2004

[31] I R Edwards and J K Aronson ldquoAdverse drug reactionsdefinitions diagnosis and managementrdquo The Lancet vol 356no 9237 pp 1255ndash1259 2000

[32] E J Ariens ldquoStereochemical implications of hydrid andpseudo-hybrid drugs Part IIIrdquoMedicinal Research Reviews vol 8 no 2pp 309ndash320 1988

[33] L K Gediya and V C Njar ldquoPromise and challenges in drugdiscovery and development of hybrid anticancer drugsrdquo ExpertOpinion on Drug Discovery vol 4 no 11 pp 1099ndash1111 2009

[34] Bundesverband der Pharmazeutischen Industrie eV Position-spapier zur Bedeutung innovativer Arzneimittel auf Basisbewahrter Wirkstoffe 2010 httpwwwbpidefileadminmediabpiDownloadsInternetPublikationenPositionspapi-ereBPI-Positionspapier - Innovationen auf Basis bewaehrterWirkstoffe 2013pdf

[35] European Monitoring Centre for Drugs and Drug Addic- tionEMCDDA ldquoEuropol 2010 Annual Report on the implemen-tation of Council Decision 2005387JHArdquo 2010 httpwwwemcddaeuropaeupublicationsimplementation-reports2010

[36] P Liehl A R FrancaM Prudencio E Latz A Zaidman-Remyand M M Mota ldquoPhosphothioate oligodeoxynucleotidesinhibit Plasmodium sporozoite glidingmotilityrdquoCellularMicro-biology vol 12 no 4 pp 506ndash515 2010

[37] X Liu XWang Q Li et al ldquoSynthesis and antimalarial activityof 2-guanidino-4-oxoimidazoline derivativesrdquo Journal of Me-dicinal Chemistry vol 54 no 13 pp 4523ndash4535 2011

[38] H Shiraki M P Kozar V Melendez et al ldquoAntimalarialactivity of novel 5-aryl-8-aminoquinoline derivativesrdquo Journalof Medicinal Chemistry vol 54 no 1 pp 131ndash142 2011

[39] A E Kiszewski ldquoBlocking Plasmodium falciparum malariatransmission with drugs the gametocytocidal and sporon-tocidal properties of current and prospective antimalarialsrdquoPharmaceuticals vol 4 no 1 pp 44ndash68 2011

[40] B M Greenwood ldquoControl to elimination implications formalaria researchrdquoTrends in Parasitology vol 24 no 10 pp 449ndash454 2008

[41] D R Hill J K Baird M E Parise L S Lewis E T Ryan andA J Magill ldquoPrimaquine report from CDC expert meetingon malaria chemoprophylaxis Irdquo American Journal of TropicalMedicine and Hygiene vol 75 no 3 pp 402ndash415 2006

[42] J K Baird D J Fryauff and S L Hoffman ldquoPrimaquine forprevention of malaria in travelersrdquo Clinical Infectious Diseasesvol 37 no 12 pp 1659ndash1667 2003

[43] G U Fisher M P Gordon H O Lobel and K RuncikldquoMalaria in soldiers returning from Vietnam Epidemiologictherapeutic and clinical studiesrdquo American Journal of TropicalMedicine and Hygiene vol 19 no 1 pp 27ndash39 1970

[44] G D Shanks K C Kain and J S Keystone ldquoMalaria chemo-prophylaxis in the age of drug resistance II Drugs that may beavailable in the futurerdquo Clinical Infectious Diseases vol 33 no3 pp 381ndash385 2001

[45] T J Egan ldquoChloroquine and primaquine combining old drugsas a new weapon against falciparum malariardquo Trends in Para-sitology vol 22 no 6 pp 235ndash237 2006

[46] G W Mihaly S A Ward G Edwards M L Orme and AM Breckenridge ldquoPharmacokinetics of primaquine in manidentification of the carboxylic acid derivative as amajor plasmametaboliterdquo British Journal of Clinical Pharmacology vol 17 no4 pp 441ndash446 1984

[47] B L Tekwani and L AWalker ldquo8-Aminoquinolines future roleas antiprotozoal drugsrdquo Current Opinion in Infectious Diseasesvol 19 no 6 pp 623ndash631 2006

[48] MD Coleman andNA Coleman ldquoDrug-inducedmethaemo-globinaemia treatment issuesrdquo Drug Safety vol 14 no 6 pp394ndash405 1996

[49] E Beutler S Duparc O Doumbo et al ldquoGlucose-6-phosphatedehydrogenase deficiency and antimalarial drug developmentrdquoThe American Journal of Tropical Medicine and Hygiene vol 77no 4 pp 779ndash789 2007

[50] Bayer Vital GmbH Fachinformation Resochin Tabletten250mgResochin junior Tabletten 81mg 2008 httpwwwfa-chinfodepdf007659view=FitHamppagemode=noneamptoolbar=1ampstatusbar=0ampmessages=0ampnavpanes=0

[51] M Frisk-Holmberg Y Bergqvist E Termond and B Domeij-Nyberg ldquoThe single dose kinetics of chloroquine and its majormetabolite desethylchloroquine in healthy subjectsrdquo EuropeanJournal of Clinical Pharmacology vol 26 no 4 pp 521ndash5301984

[52] V V Kouznetsov and A Gomez-Barrio ldquoRecent developmentsin the design and synthesis of hybridmolecules basedon amino-quinoline ring and their antiplasmodial evaluationrdquo EuropeanJournal of Medicinal Chemistry vol 44 no 8 pp 3091ndash31132009

[53] D A Fidock T Nomura A K Talley et al ldquoMutations in theP falciparum digestive vacuole transmembrane protein PfCRTand evidence for their role in chloroquine resistancerdquoMolecularCell vol 6 no 4 pp 861ndash871 2000

[54] P G Bray S Deed E Fox et al ldquoPrimaquine synergises theactivity of chloroquine against chloroquine-resistant P falci-parumrdquo Biochemical Pharmacology vol 70 no 8 pp 1158ndash11662005

[55] K Kaur M Jain S I Khan et al ldquoExtended side chain ana-logues of 8-aminoquinolines synthesis and evaluation of anti-protozoal antimicrobial 120573-hematin inhibition and cytotoxicactivitiesrdquoMedChemComm vol 2 no 4 pp 300ndash307 2011

[56] I Fernandes N Vale V de Freitas R Moreira N Mateus andP Gomes ldquoAnti-tumoral activity of imidazoquines a new classof antimalarials derived from primaquinerdquo Bioorganic andMedicinal Chemistry Letters vol 19 no 24 pp 6914ndash6917 2009

[57] M Lodige M D Lewis E S Paulsen et al ldquoA primaquine-chloroquine hybrid with dual activity against Plasmodium liverand blood stagesrdquo International Journal ofMedicalMicrobiologyvol 303 no 8 pp 539ndash547 2013

[58] F Ehlgen J S Pham T de Koning-Ward A F Cowmanand S A Ralph ldquoInvestigation of the Plasmodium falciparumfood vacuole through inducible expression of the chloroquineresistance transporter (PfCRT)rdquo PLoS ONE vol 7 no 6 ArticleID e38781 2012

[59] J Kumar C S Purohit and S Verma ldquoDirecting spatial dis-position of ferrocene around homoadenine tetradsrdquo ChemicalCommunications no 22 pp 2526ndash2528 2008

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 23: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

International Journal of Medicinal Chemistry 23

[60] S Groszkowski J Sienkiewicz and L Korzycka ldquo1 Haloa-cylpiperazinesrdquo Polish Journal of Pharmacology and Pharmacyvol 27 no 2 pp 183ndash186 1975

[61] P A Barrett A G Caldwell and L P Walls ldquo6-Methoxy-8-(120596-piperazin-11015840-ylalkylamino)quinolinesrdquo Journal of the ChemicalSociety pp 2404ndash2418 1961

[62] Q Liu W Qian A Li et al ldquoAryl sulfonamides containingtetralin allylic amines as potent and selective bradykinin B1receptor antagonistsrdquo Bioorganic and Medicinal Chemistry Let-ters vol 20 no 15 pp 4593ndash4597 2010

[63] N B Quashie H P De Koning and L C Ranford-CartwrightldquoAn improved and highly sensitive microfluorimetric methodfor assessing susceptibility of Plasmodium falciparum to anti-malarial drugs in vitrordquoMalaria Journal vol 5 article 95 2006

[64] D Walliker I A Quakyi T E Wellems et al ldquoGenetic analysisof the humanmalaria parasite Plasmodium falciparumrdquo Sciencevol 236 no 4809 pp 1661ndash1666 1987

[65] httpwwwbroadinstituteorgannotationgenomeplasmodi-um falciparum sppInfohtml

[66] SThaithong T Sueblinwong and G H Beale ldquoEnzyme typingof some isolates of Plasmodium falciparum from ThailandrdquoTransactions of the Royal Society of Tropical Medicine andHygiene vol 75 no 2 pp 268ndash270 1981

[67] M L Ancelin M Calas V Vidal-Sailhan S Herbute PRingwald and H J Vial ldquoPotent inhibitors of Plasmodiumphospholipid metabolism with a broad spectrum of In vitroantimalarial activitiesrdquo Antimicrobial Agents and Chemother-apy vol 47 no 8 pp 2590ndash2597 2003

[68] S Nwaka and A Hudson ldquoInnovative lead discovery strategiesfor tropical diseasesrdquoNature Reviews Drug Discovery vol 5 no11 pp 941ndash955 2006

[69] C L Peatey K T Andrews N Eickel et al ldquoAntimalarialasexual stage-specific and gametocytocidal activities of HIVprotease inhibitorsrdquo Antimicrobial Agents and Chemotherapyvol 54 no 3 pp 1334ndash1337 2010

[70] L Von Seidlein M Jawara R Coleman T Doherty GWalraven and G Targett ldquoParasitaemia and gametocytaemiaafter treatment with chloroquine pyrimethaminesulfadoxineand pyrimethaminesulfadoxine combined with artesunatein young Gambians with uncomplicated malariardquo TropicalMedicine and International Health vol 6 no 2 pp 92ndash98 2001

[71] A Berry C Deymier M Sertorio B Witkowski and F Benoit-Vical ldquoPfs 16 pivotal role in Plasmodium falciparum gametocy-togenesis a potential antiplasmodial drug targetrdquo ExperimentalParasitology vol 121 no 2 pp 189ndash192 2009

[72] A Buckling L C Ranford-Cartwright AMiles andA F ReadldquoChloroquine increases Plasmodium falciparum gametocytoge-nesis in vitrordquo Parasitology vol 118 no 4 pp 339ndash346 1999

[73] A Buckling L Crooks and A Read ldquoPlasmodium chabaudieffect of antimalarial drugs on gametocytogenesisrdquo Experimen-tal Parasitology vol 93 no 1 pp 45ndash54 1999

[74] S Sengmany E le Gall C le JeanM Troupel and J-Y NedelecldquoStraightforward three-component synthesis of diarylmethyl-piperazines and 12-diarylethylpiperazinesrdquo Tetrahedron vol63 no 18 pp 3672ndash3681 2007

[75] R C Elderfield W J Gensler O Birstein F J Kreysa J TMaynard and J Galbreath ldquoSynthesis of certain simple 4-aminoquinoline derivativesrdquo Journal of the American ChemicalSociety vol 68 no 7 pp 1250ndash1251 1946

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of

Page 24: Research Article Design and Synthesis of Novel Hybrid ...Design and Synthesis of Novel Hybrid Molecules against Malaria MelanieLödigeandLuisaHiersch Institute of Organic Chemistry,

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Inorganic ChemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

International Journal ofPhotoenergy

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Carbohydrate Chemistry

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom

Analytical Methods in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry and ApplicationsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

SpectroscopyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Medicinal ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chromatography Research International

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Applied ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Theoretical ChemistryJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Spectroscopy

Analytical ChemistryInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Quantum Chemistry

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Organic Chemistry International

ElectrochemistryInternational Journal of

Hindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CatalystsJournal of


Recommended