+ All Categories
Home > Documents > Research Article Equilibrium Investment Strategy for DC Pension...

Research Article Equilibrium Investment Strategy for DC Pension...

Date post: 08-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
19
Research Article Equilibrium Investment Strategy for DC Pension Plan with Inflation and Stochastic Income under Heston’s SV Model Jingyun Sun, 1,2 Zhongfei Li, 3 and Yongwu Li 4 1 School of Mathematics, Lanzhou City University, Lanzhou 730070, China 2 School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China 3 Sun Yat-sen Business School, Sun Yat-sen University, Guangzhou 510275, China 4 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China Correspondence should be addressed to Zhongfei Li; [email protected] Received 8 December 2015; Revised 2 April 2016; Accepted 4 April 2016 Academic Editor: Reza Jazar Copyright © 2016 Jingyun Sun et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider a portfolio selection problem for a defined contribution (DC) pension plan under the mean-variance criteria. We take into account the inflation risk and assume that the salary income process of the pension plan member is stochastic. Furthermore, the financial market consists of a risk-free asset, an inflation-linked bond, and a risky asset with Heston’s stochastic volatility (SV). Under the framework of game theory, we derive two extended Hamilton-Jacobi-Bellman (HJB) equations systems and give the corresponding verification theorems in both the periods of accumulation and distribution of the DC pension plan. e explicit expressions of the equilibrium investment strategies, corresponding equilibrium value functions, and the efficient frontiers are also obtained. Finally, some numerical simulations and sensitivity analysis are presented to verify our theoretical results. 1. Introduction Nowadays, the application of stochastic control theory to portfolio selection problems of pension funds is becoming a hot issue in actuarial research. e basic pension plans have two types: the defined benefit (DB) pension plan and the defined contribution (DC) pension plan. In recent years, with the rapid development of the equity market and the lower mortality level of the population, compared with the DB pension plan, the DC pension plan is more favored by most countries in the world. As in a DC pension plan, the payment pressure of benefit which is caused by the uncertainty of investment earnings and pension plan member’s longevity risk is transferred from the sponsoring company to the member himself/herself. us, in the literature related to pension funds, the majority of the literature focuses on the DC pension plan. As we know, for a DC pension plan, the contribution is a predetermined constant or a fixed proportion of the member’s income while the benefit is distributed based on the accumulation value of the contribution and the return of the pension fund portfolio until retirement. us, many scholars are devoted to the optimal investment problem of the DC pension plan. For example, [1] considered a discrete- time multiperiod DC pension plan model to minimize the expected deviation between the pension fund account and a predetermined target by using a quadratic loss function; to maximize the expected utility from the wealth at retire- ment time, [2] investigated the optimal investment strategies for a DC pension plan both before and aſter retirement under the continuous-time framework; [3] extended the above model into the case with stochastic interest rate and stochastic labor income; [4] obtained the closed-form of the optimal investment strategy for a DC pension plan under the logarithm utility function. Besides, [5] investigated the optimal asset allocation problem for a DC pension plan with downside protection under stochastic inflation, and [6] studied the same problem under the stochastic interest rate and stochastic volatility framework. Under the regime switching environment, [7] considered an optimal asset- liability management problem for a pension fund. All the literature mentioned above focus on the opti- mal investment strategy under the objective of maximizing the expected utility or minimizing the expected quadratic Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2016, Article ID 2391849, 18 pages http://dx.doi.org/10.1155/2016/2391849
Transcript
Page 1: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Research ArticleEquilibrium Investment Strategy for DC Pension Plan withInflation and Stochastic Income under Hestonrsquos SV Model

Jingyun Sun12 Zhongfei Li3 and Yongwu Li4

1School of Mathematics Lanzhou City University Lanzhou 730070 China2School of Mathematics and Statistics Lanzhou University Lanzhou 730000 China3Sun Yat-sen Business School Sun Yat-sen University Guangzhou 510275 China4Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190 China

Correspondence should be addressed to Zhongfei Li lnslzfmailsysueducn

Received 8 December 2015 Revised 2 April 2016 Accepted 4 April 2016

Academic Editor Reza Jazar

Copyright copy 2016 Jingyun Sun et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

We consider a portfolio selection problem for a defined contribution (DC) pension plan under the mean-variance criteria We takeinto account the inflation risk and assume that the salary income process of the pension plan member is stochastic Furthermorethe financial market consists of a risk-free asset an inflation-linked bond and a risky asset with Hestonrsquos stochastic volatility (SV)Under the framework of game theory we derive two extended Hamilton-Jacobi-Bellman (HJB) equations systems and give thecorresponding verification theorems in both the periods of accumulation and distribution of the DC pension plan The explicitexpressions of the equilibrium investment strategies corresponding equilibrium value functions and the efficient frontiers are alsoobtained Finally some numerical simulations and sensitivity analysis are presented to verify our theoretical results

1 Introduction

Nowadays the application of stochastic control theory toportfolio selection problems of pension funds is becoming ahot issue in actuarial research The basic pension plans havetwo types the defined benefit (DB) pension plan and thedefined contribution (DC) pension plan In recent years withthe rapid development of the equity market and the lowermortality level of the population compared with the DBpension plan the DC pension plan is more favored by mostcountries in the world As in a DC pension plan the paymentpressure of benefit which is caused by the uncertainty ofinvestment earnings and pension plan memberrsquos longevityrisk is transferred from the sponsoring company to themember himselfherself Thus in the literature related topension funds the majority of the literature focuses on theDC pension plan

As we know for a DC pension plan the contributionis a predetermined constant or a fixed proportion of thememberrsquos income while the benefit is distributed based onthe accumulation value of the contribution and the returnof the pension fund portfolio until retirement Thus many

scholars are devoted to the optimal investment problem ofthe DC pension plan For example [1] considered a discrete-time multiperiod DC pension plan model to minimize theexpected deviation between the pension fund account anda predetermined target by using a quadratic loss functionto maximize the expected utility from the wealth at retire-ment time [2] investigated the optimal investment strategiesfor a DC pension plan both before and after retirementunder the continuous-time framework [3] extended theabove model into the case with stochastic interest rate andstochastic labor income [4] obtained the closed-form of theoptimal investment strategy for a DC pension plan underthe logarithm utility function Besides [5] investigated theoptimal asset allocation problem for a DC pension planwith downside protection under stochastic inflation and[6] studied the same problem under the stochastic interestrate and stochastic volatility framework Under the regimeswitching environment [7] considered an optimal asset-liability management problem for a pension fund

All the literature mentioned above focus on the opti-mal investment strategy under the objective of maximizingthe expected utility or minimizing the expected quadratic

Hindawi Publishing CorporationMathematical Problems in EngineeringVolume 2016 Article ID 2391849 18 pageshttpdxdoiorg10115520162391849

2 Mathematical Problems in Engineering

loss In recent years some scholars pay attention to theportfolio selection problem of the DC pension plan underthe mean-variance (MV) criteria This is because of thefact that the optimal investment problems under the MVcriteria in a multiperiod or continuous-time framework aresuccessfully solved only recently It is well known that theMV problems with multiperiod or continuous-time versionare time-inconsistent in the sense that the Bellman optimalityprinciple does not hold Hence the dynamic programmingapproach can not be used In existing literature there areusually two methods that are suggested to deal with thisproblem The first one is to find the precommitment strategy(the breakthrough work for this method was made by [8 9])which means that the manager derives an optimal strategyat the initial time 0 and commits to performing this strategyin the future even if it does not remain optimal in thelater time However in practice this strategy is not easilyperformed since the preference of the MV manager changeswith time and heshe has an incentive to deviate from theprecommitment strategy in the later time In addition findinga time-consistent strategy is a basic requirement for a rationaldecision-maker Thus the second method is finding a time-consistent equilibrium strategy under the framework of gametheory (the most representative work was made by [10ndash12])In this case we regard the decision-making process as anoncooperative game between an infinite number of distinctplayers At each time 119905 we named player 119905 representing thefuture incarnation of the manager at time 119905 We are interestedin finding a subgame perfect Nash equilibrium point forthe game and formulating an equilibrium strategy thisstrategy is time-consistent For the MV problem under thebackground of pension fund [13] considered a DC pensionplan with the return of premiums clauses under the gametheoretic framework and obtained an equilibrium investmentstrategy in the period before retirement Under the sameframework [14] investigated an equilibrium investment andcontribution strategies for a DB pension plan The researchon the precommitment investment strategy can be found in[15ndash17] and references therein

Meanwhile for the portfolio problem many scholarsbegin to pay attention to the influence of the background risksuch as the risk of interest rate inflation and volatility of therisky asset on the optimal decision-making process On theone hand as we all know the inflation might affect the realvalue of the wealth especially for the problem with long timehorizon investment the higher inflation leads to the lowerreal wealth In theDCpension plan [18] obtained the optimalinvestment strategy which maximizes the expected utility ofthe DC pension plan under inflation risk A similar problemwas studied in [5] under the environment of stochasticinterest and inflation rate with the minimized guaranteeUnder the MV criteria [17] investigated the optimal pre-commitment investment strategy of a DC pension plan withinflation risk using Lagrange method Recently the equilib-rium investment strategies for a DC pension plan with theinflation risk are obtained by [19] On the other hand manyempirical studies have shown that the volatility of the riskyasset is stochastic Some scholars have proposed a variety ofSVmodels such as the constant elastic variance (CEV)model

[20] Hestonrsquos SV model (volatility satisfies Cox-Ingersoll-Ross process) [21] and Stein-Stein model (volatility satisfiesOrnstein-Uhlenbeck process) [22] The CEV and HestonrsquosSV models have been widely considered in investment andreinsurance problems such as [23ndash25] and references thereinFor the stochastic volatility model under the DC pensionplan the interested reader can be referred to [6 26 27]

In this paper we consider the MV portfolio problems foraDCpension plan both before and after retirementThemaindifference between this paper and the existing literature isthat both the inflation risk and the stochastic volatility riskare considered in our model To the best of our knowledgeunder the MV framework there is no literature consideringboth of the two risks in the DC pension fund managementWe assume that the financial market consists of a risk-freeasset an inflation-linked bond and a stock with Hestonrsquosstochastic volatility The salary income of the DC pensionplan member is also assumed to be stochastic because ofthe influence of inflation rate Under the framework of gametheory two MV problems are formulated related to theperiods before and after retirement respectively For each ofthe problems by solving an extended HJB equations systemthe equilibrium strategy equilibrium value function and thecorresponding equilibrium efficient frontier are obtainedWefind that the equilibrium investment money in the inflation-linked bond depends on current wealth the inflation riskand the contribution of the salary income have no influenceon the equilibrium investment money of stock Finally usingMonte Carlo method we investigate the evolution process ofthe equilibrium strategy with time before retirement underdifferent parameters and present the sensitivity of the efficientfrontier to corresponding parameters

The remainder of the paper is organized as follows InSection 2 we introduce the financial market and wealthprocesses both before and after retirement In Section 3 aMV portfolio allocation problem is formulated in the periodbefore retirement Under the framework of game theoryan extended HJB equations system and an equilibriuminvestment strategy are also obtained In Section 4 weconsider a MV portfolio problem after retirement and derivethe corresponding verification theorem and the equilibriumstrategy Some numerical simulations and sensitivity analysisfor our results are presented in Section 5 Section 6 concludesthe paper and outlines further research

2 Assumption and Model

Let (ΩF F P) be a filtered probability space with filtrationF = F

119905119905isin[0119879+119873]

satisfying the usual conditions that isF

119905119905isin[0119879+119873]

is right-continuous and P-complete The timehorizon [0 119879] represents the accumulation period of a DCpension plan member and [119879 119879 + 119873] is the distributionperiod of the member after heshe retires Let F

119905represent

the information available until time 119905 Suppose that all ofstochastic processes and random variables are defined on thefiltered probability space (ΩF F P) In addition we assumethat there are no transaction costs or taxes in the financialmarket trading can take place continuously and short sellingis permitted

Mathematical Problems in Engineering 3

21 Financial Market As we all know for a DC pensionplan manager the objective is making the terminal wealthmaximized by investing the pension fund into the marketGenerally speaking the investment time horizon of thepension fund lasts decades The inflation risk as a kind ofimportant background risk has important influence on thereal value of the pension fund In economics CPI (ConsumerPrice Index) as the typical index can represent the inflationlevel of the market Following [28 29] we assume that theprice level 119875(119905) satisfies the following diffusion process

119889119875 (119905)

119875 (119905)= 120583

119901(119905) 119889119905 + 120590

119901119889119882

119901(119905) 119875 (0) = 119901

0 (1)

where 120583119901(119905) represents the instantaneous expected inflation

rate 120590119901gt 0 is the instantaneous volatility of inflation rate

and 119882119901(119905) is a standard Brownian motion which generates

uncertainty of the price levelWe assume that the financial market consists of three

kinds of assets an inflation-linked asset a money marketaccount and a stock

(1) The inflation-linked index bond has the same risksource as the price level process 119875(119905) and can be freely tradedin themarket Following [18 29] its price process 119868(119905) satisfiesthe following stochastic differential equation (SDE)

119889119868 (119905)

119868 (119905)= 119903 (119905) 119889119905 +

119889119875 (119905)

119875 (119905)

= (119903 (119905) + 120583119901(119905)) 119889119905 + 120590

119901119889119882

119901(119905)

(2)

where 119903(119905) represents the real interest rate at time 119905 119903(119905)+120583119901(119905)

is the expected yields of the inflation-linked bondThe higherexpected inflation rate 120583

119901(119905) will lead to higher expected

yields of the inflation-linked bond Thus it can hedge theinflation risk

(2) The price dynamics of the risk-free money marketaccount is given by

119889119861 (119905)

119861 (119905)= 119877 (119905) 119889119905 (3)

where 119877(119905) is the nominal interest rate(3) The risky asset in the market is a stock whose

price process 119878(119905) follows a geometric Brownian motion withHestonrsquos stochastic volatility That is

119889119878 (119905)

119878 (119905)= 119877 (119905) 119889119905 + radic119881 (119905) (120582

119904radic119881 (119905) 119889119905 + 119889119882

119904(119905))

+ 120590119904(120582

119901(119905) 119889119905 + 119889119882

119901(119905))

= [119877 (119905) + 120582119904119881 (119905) + 120582

119901(119905) 120590

119904] 119889119905

+ radic119881 (119905)119889119882119904(119905) + 120590

119904119889119882

119901(119905)

119889119881 (119905) = 120572 [120575 minus 119881 (119905)] 119889119905 + 120590Vradic119881 (119905)119889119882V (119905)

119881 (0) = V0

(4)

where 119882119904(119905) and 119882V(119905) are two standard Brownian motions

and120582119904radic119881(119905) and120582

119901(119905) are themarket price of the risk sources

119882119904(119905) and 119882

119901(119905) respectively Since the inflation risk might

have influence on the price evolution process of the stockthrough direct or indirect ways (the correlated empiricalresearch can be found in [30 31] and references therein)hence we assume that the price process of the stock is derivedby not only its own risk source 119882

119904(119905) but also the risk

source119882119901(119905) We further assume that119882

119901(119905) is independent

of 119882119904(119905) and 119882V(119905) respectively while 119882119904

(119905) and 119882V(119905) aredependent and E[119882

119904(119905)119882V(119905)] = 120588119904V119905 where 120588119904V isin [minus1 1] is

the correlation coefficientThe second equation of (4) is a CIR(Cox-Ingersoll-Ross) mean-revert process whichmodels thestochastic volatility of the stock price Here we suppose 2120572120575 gt1205902

V to assure that 119881(119905) gt 0 holdsIn addition we assume that theDCpension planmember

receives salary income with nominal value 119871(119905) at time 119905 untilthe retirement time 119879 Suppose that the income is stochasticand dynamically influenced by the price level 119875(119905) that is thesalary income process is driven by the source of uncertaintyfrom inflation and it satisfies the following process

119889119871 (119905)

119871 (119905)

= 120583119897119889119905 + 120590

119897119889119882

119901(119905)

119871 (0) = 1198970gt 0

(5)

where 120583119897is the average growth rate of the income and 120590

119897is the

volatility rate

Remark 1 To simplify the model achieve tractability andgive detailed analysis about the optimal strategies we assumethat the real interest rate 119903(119905) nominal interest rate 119877(119905) andexpected inflation rate 120583

119901(119905) are all deterministic functions of

time 119905

Remark 2 If we denote Q as the risk neutral measure then(2) can be rewritten as

119889119868 (119905)

119868 (119905)= (119903 (119905) + 120583

119901(119905) minus 120582

119901(119905) 120590

119901) 119889119905 + 120590

119901119889119882

Q119901(119905) (6)

By the pricing theory of the derivative (to avoid arbitrage) weobtain the following relationship

119903 (119905) + 120583119901(119905) minus 120582

119901(119905) 120590

119901= 119877 (119905) (7)

Remark 3 In the empirical research the evolution processof 119878(119905) and 119881(119905) is usually negatively correlated Since ingeneral with declining of the stock price the volatility of theprice gradually increases (cf [32]) based on this reason inSection 5 we assume that the parameter 120588

119904V lt 0

22 Wealth Process In this paper we consider the optimalportfolio problems of aDCpension planmember both beforeand after retirement The member contributes part of hishersalary into the pension fund account before retirement andobtains benefit after retirement So we need to consider thewealth processes in two different periods

(I) Before Retirement During the accumulation period [0 119879]we assume that the DC pension plan member contributes

4 Mathematical Problems in Engineering

continuously to hisher pension fund account with a fixedrate 119896 of hisher salary income that is heshe contributes theamount of money 119896119871(119905) to hisher pension fund account attime 119905 The pension fund is invested in the financial marketby the manager Denote 120587

119868(119905) and 120587

119878(119905) as the propositions

of wealth invested in the inflation-linked index bond and thestock respectively Then 120587

119861(119905) = 1 minus 120587

119868(119905) minus 120587

119878(119905) is the

proposition of the risk-free money market account Denote120587(119905) = (120587

119868(119905) 120587

119878(119905)) 119905 isin [0 119879] as the decision-making

process Now we rewrite the SDEs (2) and (4) as matrix form

[[[

[

119889119868 (119905)

119868 (119905)

119889119878 (119905)

119878 (119905)

]]]

]

= [

119903 (119905) + 120583119901(119905)

119877 (119905) + 120582119904119881 (119905) + 120582

119901(119905) 120590

119904

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

120583(119905)

119889119905

+ [

120590119901

0

120590119904radic119881 (119905)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Σ(119905)

[

119889119882119901(119905)

119889119882119904(119905)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119889119882(119905)

(8)

Denote 119883120587

(119905) as the nominal value of the wealth processassociated with the investment strategy 120587 Then the nominalwealth process119883120587

(119905) satisfies

119889119883120587

(119905)

= 119883120587

(119905) [120587119861(119905)119889119861 (119905)

119861 (119905)+ 120587

119868(119905)119889119868 (119905)

119868 (119905)+ 120587

119878(119905)119889119878 (119905)

119878 (119905)]

+ 119896119871 (119905) 119889119905

= 119883120587

(119905) [119877 (119905) + 120587 (119905) (120583 (119905) minus 119877 (119905) 1)] 119889119905

+ 119883120587

(119905) 120587 (119905) Σ (119905) 119889119882 (119905) + 119896119871 (119905) 119889119905

= 119883120587

(119905) [119877 (119905) + 120587 (119905) Σ (119905) 120579 (119905)] 119889119905 + 119896119871 (119905) 119889119905

+ 119883120587

(119905) 120587 (119905) Σ (119905) 119889119882 (119905)

(9)

where 1 = (1 1)1015840 The last equation holds because of (7) and

120583 (119905) minus 119877 (119905) 1 = [119903 (119905) minus 119877 (119905) + 120583

119901(119905)

120582119904119881 (119905) + 120582

119901(119905) 120590

119904

]

= [

120582119901(119905) 120590

119901

120582119904119881 (119905) + 120582

119901(119905) 120590

119904

] = Σ (119905) 120579 (119905)

(10)

where 120579(119905) = (120582119901(119905) 120582

119904radic119881(119905))

1015840 Let 1199090be the nominal wealth

at time 0Since the real value of the wealth reflects the real purchase

power of the current market the nominal value of the wealthshould be converted into the real value By discounting thevalue of nominal wealth with the price level process thereal value of wealth will be obtained Now denote 119883(119905) =119883(119905)119875(119905) and 119871(119905) = 119871(119905)119875(119905) and by Itorsquos formula we

obtain the real wealth process 119883120587(119905) and real salary income

process 119871(119905) as follows119889119883

120587(119905) = 119883

120587(119905)

sdot [119877 (119905) minus 120583119901(119905) + 120590

2

119901+ 120587 (119905) Σ (119905) (120579 (119905) minus 120588

119901)] 119889119905

+ 119896119871 (119905) 119889119905 + 119883120587(119905) (120587 (119905) Σ (119905) minus 120588

1015840

119901) 119889119882 (119905)

(11)

119889119871 (119905) = 119871 (119905) [120572119897(119905) 119889119905 + 120573

1015840

119897119889119882 (119905)] (12)

where 120572119897(119905) = 120583

119897minus 120583

119901(119905) + 120590

2

119901minus 120590

119897120590119901and 1205881015840

119901= (120590

119901 0)

1205731015840

119897= (120590

119897minus 120590

119901 0) For 119875(0) = 119901

0 the real initial wealth and

initial salary income are 119883120587(0) = 119909

0119901

0and 119871(0) = 119897

0119901

0

respectively Note that the dynamic process of119883120587(119905) depends

on the real salary income process 119871(119905) and the stochasticvolatility process 119881(119905) but it is independent of the price levelprocess 119875(119905)

Definition 4 (admissible strategy) LetO = RtimesR+timesR+ and

G = [0 119879] times O A strategy 120587(119905) = 120587119868(119905) 120587

119878(119905)

119905isin[0119879]is said

to be admissible if(1) forall(119909 V 119897) isin O the SDE (11) has unique solution119883

120587(119904)

119904isin[119905119879]with119883120587

(119905) = 119909 119881(119905) = V and 119871(119905) = 119897

(2) forall119904 isin [119905 119879] E[int119879

119905[(120587

119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904]4119889119904] lt infin

(3) forall984858 isin [1 +infin) and forall(119905 119909 V 119897) isin GE

119905119909V119897[sup119904isin[119905119879]|119883

120587(119904)|

984858] lt infin where E

119905119909V119897[sdot] isthe condition expectation given 119883120587

(119905) = 119909 119881(119905) = Vand 119871(119905) = 119897

One denotes Π(119905 119909 V 119897) as the set of all admissiblestrategies with respect to the initial condition (119905 119909 V 119897) isin G

(II) After Retirement When the member of the pension planretires the accumulation value of the pension fund usually isused to purchase an annuity In practice the member usuallyhas two ways to purchase the annuity The first way is thatheshe purchases the annuity directly at the retirement timeFor example as being considered in [2 27] the accumulatedpension fund is used to purchase a paid-up annuity oncethe member arrives at the retirement age and the managerhas also to decide the part of the remaining mathematicalreserve to invest in the market The second way is that themember does not purchase the annuity directly but choosesthe income drawdown option at the retirement It means thatthe member withdraws a fixed income and invests the restof the wealth until heshe achieves the age when the time ofpurchasing the annuity is compulsory The interested readercan see [33 34] for details

Here we consider the first way Similar to [2] we assumethat the member purchases a paid-up annuity at the retire-ment time which guarantees the benefit to be given only on afixed time horizon [119879 119879+119873] and invests the rest of the wealthcontinuously in the market We denote119882 as the part of thefund used to purchase an annuity (119882 ⩽ 119883(119879)) Continuousbenefit (real value) paid from 119879 to 119879

1= 119879 + 119873 is 119902 = 119882119886

119873|

where 119886119873|= (1 minus 119890

minus120575119873)120575 and 120575 is the continuous technical

rate

Mathematical Problems in Engineering 5

Let119872(119905) denote the nominal total payment value of thebenefit at time interval [119879 119905] 119905 isin (119879 119879

1] For simplicity the

dynamics of119872(119905) can be modeled as119872(119905) = int119905

119879119902119875(119904)119889119904 or

119889119872(119905) = 119902119875(119905)119889119905 This setting is reasonable and realistic anda similar setting is used in [17] It means that after retirementthe nominal benefit is adjusted dynamically based on theinflation rate of that time that is at time 119905 the nominalbenefit is 119902119875(119905) which keeps the purchasing power level ofthe retirees not decreasing We assume that once the retiredmember dies during [119879 119879

1] the pension fund continues to be

invested and the remaining annuity benefit and the terminalwealth119883(119879

1) are paid off to hisher offspring If themember is

alive until 1198791 the wealth119883(119879

1) is left for hisher later life Let

119868(119905) and

119878(119905) represent the propositions of the pension fund

wealth invested in the inflation-linked index bond and thestock respectively Denote (119905) = (

119868(119905)

119878(119905)) 119905 isin [119879 119879

1]

as the decision-making process Then after retirement thedynamics of nominal wealth process is

119889119883

(119905) = 119883

(119905) [119877 (119905) + (119905) Σ (119905) 120579 (119905)] 119889119905

minus 119902119875 (119905) 119889119905 + 119883

(119905) (119905) Σ (119905) 119889119882 (119905)

(13)

Using the same method as before retirement we obtain thereal wealth process as follows

119889119883(119905) = 119883

(119905)

sdot [119877 (119905) minus 120583119901(119905) + 120590

2

119901+ (119905) Σ (119905) (120579 (119905) minus 120588

119901)] 119889119905

minus 119902 119889119905 + 119883(119905) ( (119905) Σ (119905) minus 120588

1015840

119901) 119889119882 (119905)

(14)

Now we give the definition of the admissible strategy for thedecision-making process (119905)

Definition 5 (admissible strategy) Let O1= R times R+ and

G1= [119879 119879

1] times O

1 A strategy (119905) =

119868(119905)

119878(119905)

119905isin[1198791198791]is

said to be admissible if

(1) forall(119909 V) isin O1 the SDE (14) has unique solution

119883(119904)

119904isin[1199051198791]with119883

(119905) = 119909 119881(119905) = V

(2) forall119904 isin [119905 1198791] E[int119879

1

119905[(

119868(119904) minus 1)120590

119901+

119878(119904)120590

119904]4119889119904] lt infin

(3) forall984858 isin [1 +infin) and forall(119905 119909 V) isin G1

E119905119909V[sup119904isin[119905119879

1]|119883

(119904)|

984858] lt infin where E

119905119909V[sdot] isthe condition expectation given 119883

(119905) = 119909 and

119881(119905) = V

One denotes Π(119905 119909 V) as the set of all admissible strategieswith respect to the initial condition (119905 119909 V) isin G

1

3 Problem Formulation before Retirementand Verification Theorem

In this section we assume that the pension plan managerhopes to maximize the expectation of the total wealth atretirement time119879 meanwhileminimizing the variance of thewealth at retirement So the pension plan manager faces a

continuous-time MV portfolio problem However since theMV objective function does not satisfy the iterated expecta-tion property Bellmanrsquos optimality principle does not holdunder the continuous-time framework Hence this problemis time-inconsistent This means that for the pension fundmanager without precommitment should take into accountthat heshemay have different objective functions in differenttimes We can thus view this problem as a noncooperativegame At each time 119905 there is one player named player 119905representing the future incarnation of the manager at time119905 At any state (119905 119909 V 119897) the manager faces an optimal controlproblem with value function 119881(119905 119909 V 119897) as follows

119869 (119905 119909 V 119897 120587) = E119905119909V119897 [119883

120587(119879)]

minus120574

2Var

119905119909V119897 [119883120587(119879)]

119881 (119905 119909 V 119897) = sup120587isinΠ(119905119909V119897)

119869 (119905 119909 V 119897 120587)

(P1)

where 120574 represents the risk aversion level of the managerand Var

119905119909V119897[sdot] refers to the conditional variance Since theobjective of the pensionmanager updates with different statethemanagerrsquos decision process is like a game process betweenan infinite number of distinct players Thus we need to lookfor a subgame perfect Nash equilibrium point for the gameand determine an equilibrium strategy 120587lowast

If we denote 119910120587(119905 119909 V 119897) = E

119905119909V119897[119883120587(119879)] 119911120587(119905 119909 V 119897) =

E119905119909V119897[(119883

120587(119879))

2] then the value function 119881(119905 119909 V 119897) can be

rewritten as119881 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (15)

where 119891(119905 119909 V 119897 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

31 Verification Theorem Based on the idea of the Nashequilibrium similarly to [11] we first give the definition ofequilibrium strategy

Definition 6 For any given initial state (119905 119909 V 119897) isin Gconsider an admissible strategy 120587lowast

(119905 119909 V 119897) and choose threereal numbers 120591 gt 0

119868 and

119861 one defines the following

strategy

120587120591(119904 V )

=

(119868

119861) 119905 ⩽ 119904 lt 119905 + 120591 ( V ) isin O

120587lowast(119904 V ) 119905 + 120591 ⩽ 119904 lt 119879 ( V ) isin O

(16)

If lim120591rarr0

inf((119891120587lowast

(119905) minus 119891120587120591(119905))120591) ⩾ 0 forall(

119868

119861) isin R times R

then 120587lowast(119905 119909 V 119897) is called an equilibrium strategy and the

equilibrium value function is defined by

119881 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897)) (17)

where 119891120587(119905) = 119891(119905 119909 V 119897 119910120587

(119905 119909 V 119897) 119911120587(119905 119909 V 119897)) for short

6 Mathematical Problems in Engineering

For any 120601(119905 119909 V 119897) isin 1198621222(G) we define a set 119863

119901(G) =

120601(119905 119909 V 119897) | 120601(119905 119909 V 119897) isin 1198621222

(G) and all first-orderpartial derivatives of 120601(sdot 119909 V 119897) satisfy the polynomial growthcondition on O and we define a variational operator asfollows (in the following we will omit the variable 119905 fornotation convenience)

A120587120601 (119905 119909 V 119897)

= 120601119905+ 120601

119909[119896119897 + 119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901))]

+ 120601V120572 (120575 minus V) + 120601119897120572119897119897

+1

21206011199091199091199092(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V

+1

212060111989711989711989721205731015840

119897120573119897+ 120601

119909V119909120590VradicV (120587Σ minus 1205881015840

119901) 120573V

+ 120601119909119897119909119897 (120587Σ minus 120588

1015840

119901) 120573

119897+ 120601V119897119897120590VradicV120573

1015840

119897120573V

(18)

where 120573V = (0 120588119904V)1015840 Now we give the verification theorem of

problem (P1)

Theorem 7 (verification theorem) For problem (P1) if there

exist three real value functions 119865(119905 119909 V 119897) 119866(119905 119909 V 119897) and119867(119905 119909 V 119897) isin 119863

119901(G) satisfying the following conditions

forall(119905 119909 V 119897) isin G

sup120587isinΠ(119905119909V119897)

A120587119865 (119905 119909 V 119897) minus 120585120587 (119905 119909 V 119897) = 0 (19)

119865 (119879 119909 V 119897) = 119891 (119879 119909 V 119897 119909 1199092) (20)

A120587lowast

119866 (119905 119909 V 119897) = 0

119866 (119879 119909 V 119897) = 119909(21)

A120587lowast

119867(119905 119909 V 119897) = 0

119867 (119879 119909 V 119897) = 1199092

(22)

where 120587lowast= arg sup

120587isinΠ(119905119909V119897)A120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897)

then 119881(119905 119909 V 119897) = 119865(119905 119909 V 119897) 119910120587lowast

(119905 119909 V 119897) = 119866(119905 119909 V 119897) and119911120587lowast

(119905 119909 V 119897) = 119867(119905 119909 V 119897) and 120587lowast is the equilibrium strategywhere

120585120587(119905 119909 V 119897)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901)) + 119896119897] 119891

119909

+ [120572 (120575 minus V)] 119891V + 120572119897119897119891119897

+1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092119880

120587

1+1

21205902

V V119880120587

2

+1

211989721205731015840

119897120573119897119880

120587

3+ 120590VradicV119909 (120587Σ minus 120588

1015840

119901) 120573V119880

120587

4

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897119880

120587

5+ 120590VradicV119897120573

1015840

119897120573V119880

120587

6

119880120587

1

= 119891119909119909+ 119891

119910119910(119910

120587

119909)2

+ 119891119911119911(119911

120587

119909)2

+ 2119891119909119910119910120587

119909+ 2119891

119909119911119911120587

119909

+ 2119891119910119911119910120587

119909119911120587

119909

119880120587

2

= 119891VV + 119891119910119910 (119910120587

V )2

+ 119891119911119911(119911

120587

V )2

+ 2119891V119910119910120587

V + 2119891V119911119911120587

V

+ 2119891119910119911119910120587

V 119911120587

V

119880120587

3

= 119891119897119897+ 119891

119910119910(119910

120587

119897)2

+ 119891119911119911(119911

120587

119897)2

+ 2119891119897119910119910120587

119897+ 2119891

119897119911119911120587

119897

+ 2119891119910119911119910120587

119897119911120587

119897

119880120587

4

= 119891119910119910119910120587

119909119910120587

V + 119891119911119911119911120587

119909119911120587

V + 119891119909V + 119891119909119910119910120587

V + 119891119909119911119911120587

V

+ 119891V119910119910120587

119909+ 119891V119911119911

120587

119909+ 119891

119910119911(119910

120587

119909119911120587

V + 119910120587

V 119911120587

119909)

119880120587

5

= 119891119910119910119910120587

119909119910120587

119897+ 119891

119911119911119911120587

119909119911120587

119897+ 119891

119909119897+ 119891

119909119910119910120587

119897+ 119891

119909119911119911120587

119897

+ 119891119897119910119910120587

119909+ 119891

119897119911119911120587

119909+ 119891

119910119911(119910

120587

119909119911120587

119897+ 119910

120587

119897119911120587

119909)

119880120587

6

= 119891119910119910119910120587

V 119910120587

119897+ 119891

119911119911119911120587

V 119911120587

119897+ 119891V119897 + 119891V119910119910

120587

119897+ 119891V119911119911

120587

119897

+ 119891119897119910119910120587

V + 119891119897119911119911120587

V + 119891119910119911 (119910120587

119897119911120587

V + 119910120587

V 119911120587

119897)

(23)

and 119891 = 119891(119905 119909 V 119897 119910 119911) 119910120587= 119910

120587(119905 119909 V 119897) and 119911120587 =

119911120587(119905 119909 V 119897)

The proof of this theorem is given in the AppendixEquations (19) (21) and (22) are called an extended

HJB equations system By solving this equations systemwe can obtain the equilibrium strategy and correspondingequilibrium value function

32 Solution to the Equilibrium Strategy Since 119891(119905 119909 V 119897 119910119911) = 119910 minus (1205742)(119911 minus 119910

2) according to Theorem 7 we have

119880120587lowast

1= 120574119866

2

119909 119880120587

lowast

2= 120574119866

2

V 119880120587lowast

3= 120574119866

2

119897 119880120587

lowast

4= 120574119866

119909119866V 119880

120587lowast

5=

120574119866119909119866

119897 and 119880120587

lowast

6= 120574119866V119866119897

so

120585120587lowast

(119905 119909 V 119897) =1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092120574119866

2

119909

+1

21205902

V V1205741198662

V +1

211989721205731015840

119897120573119897120574119866

2

119897

+ 120590VradicV1198971205731015840

119897120573V120574119866V119866119897

+ 120590VradicV119909 (120587Σ minus 1205881015840

119901) 120573V120574119866V119866119909

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897120574119866

119909119866

119897

(24)

Mathematical Problems in Engineering 7

By differentiatingA120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897) with respect to

120587(119905) we can obtain the equilibrium strategy

120587lowast(119905) = minus

[119865119909(120579 minus 120588

119901)1015840

+ (119865119909V minus 120574119866119909

119866V) 120590VradicV1205731015840

V + (119865119909119897 minus 120574119866119909119866

119897) 119897120573

1015840

119897] Σ

minus1

(119865119909119909minus 120574119866

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(25)

Inspired by [24] we suppose 119865(119905 119909 V 119897) and 119866(119905 119909 V 119897) havethe following linear forms with respect to 119909 V and 119897

119865 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

119866 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

(26)

Then120587lowast(119905)

=

[119860 (119905) (120579 minus 120588119901)1015840

minus 119860 (119905) 119861 (119905) 120590VradicV1205731015840

V minus 119860 (119905) 119862 (119905) 1205741198971205731015840

119897] Σ

minus1

1205741198602

(119905) 119909

+ 1205881015840

119901Σ

minus1

(27)

Inserting 120587lowast(119905) intoA120587

lowast

119865(119905 119909 V 119897) minus 120585120587lowast

(119905 119909 V 119897) = 0 weget the following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905) minus

1198612

(119905)

21205741205902

V V

+1

21205741198602

(119905)

[1198602(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120588119904V120590VV

minus 2119860 (119905) 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897

+ 1198602

(119905) 1198612

(119905) 1205902

V1205882

119904VV] = 0

(28)

Separating with 119909 V 119897 and other terms we obtain thefollowing ordinary differential equations (ODEs)

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 minus

1198612

(119905)

21205902

V +1

21198602

(119905)

[1198602(119905) 120582

2

119904

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120590V120588119904V + 119860

2

(119905) 1198612

(119905) 1205902

V1205882

119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) 120572

119897(119905) minus

1

119860 (119905)

119860 (119905) 119862 (119905) (120582119901(119905)

minus 120590119901) (120590

119897minus 120590

119901) = 0

119863119905+ 120572120575119861 (119905) +

1

21198602

(119905)

1198602(119905) (120582

119901(119905) minus 120590

119901)2

= 0

(29)

Now we insert 120587lowast(119905) into A120587

lowast

119866(119905 119909 V 119897) = 0 and obtainthe following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905)

+1

120574119860 (119905)

[119860 (119905) ((120582119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119860 (119905) 119861 (119905) 120582119904120590V120588119904VV

minus 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897] = 0

(30)

Similarly separating with 119909 V 119897 and other terms we obtainthe following ODEs

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 +

1

119860 (119905)

[119860 (119905) 1205822

119904minus 119860 (119905) 119861 (119905) 120582

119904120590V120588119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) [120572

119897(119905) minus (120582

119901(119905) minus 120590

119901) (120590

119897minus 120590

119901)]

= 0

119863119905+ 120572120575119861 (119905) +

1

119860 (119905)

119860 (119905) (120582119901(119905) minus 120590

119901)2

= 0

(31)

By using the corresponding boundary conditions we get thesolutions of the ODEs (29) and (31) as follows

119860 (119905) = 119860 (119905) = 119890int119879

119905[119877(119904)minus120583

119901(119904)+120582

119901(119904)120590119901]119889119904= 119890

int119879

119905119903(119904)119889119904

(32)

119861 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(119879minus119905)

] (33)

8 Mathematical Problems in Engineering

119861 (119905) =1

2119890minus120572(119879minus119905)

int

119879

119905

1198921(119904) 119890

120572(119879minus119904)119889119904 (34)

119862 (119905) = 119862 (119905) = 119896int

119879

119905

119890int119904

119905119898(119906)119889119906

119890int119879

119904119903(119906)119889119906

119889119904 (35)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 +1

2int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (36)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 + int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (37)

where 1198921(119904) = 120582

2

119904minus2120582

119904120590V120588119904V119861(119904)+119861

2

(119904)1205902

V (1205882

119904Vminus1) and119898(119906) =120583119897minus 120583

119901(119906) + 120582

119901(119906)(120590

119901minus 120590

119897) Substituting the above results

into (27) and after some rearrangement we can conclude thefollowing theorem

Theorem 8 For problem (P1) the equilibrium investment

strategy is

120587lowast

119868(119905) =

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V119861 (119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879 minus 119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

(38)

120587lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(119879minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (119879 minus 119905)]

120574119909119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(39)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int119879

119905119903(119904)119889119904

+119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574 (40)

where 119861(119905) 119862(119905) and 119863(119905) are given by (34) (35) and (36)

Note that

E119905119909V119897 [119883

120587lowast

(119879)]

= 119909119890int119879

119905119903(119904)119889119904

+1

120574[119861 (119905) V + 119863 (119905)] + 119862 (119905) 119897

(41)

Var119905119909V119897 [119883

120587lowast

(119879)] = 119867 (119905 119909 V 119897) minus 1198662(119905 119909 V 119897)

=2

120574[119866 (119905 119909 V 119897) minus 119865 (119905 119909 V 119897)]

=2

1205742[(119861 (119905) minus 119861 (119905)) V + 119863 (119905) minus 119863 (119905)]

(42)

Thus we obtain the following so-called equilibrium efficientfrontier which reflects the relationship between the invest-ment risk and return under the equilibrium strategy

Corollary 9 For MV problem (P1) based on state (119905 119909 V 119897)

its equilibrium efficient frontier is

E119905119909V119897 [119883

120587lowast

(119879)] = 119909119890int119879

119905119903(119904)119889119904

+ 119862 (119905) 119897

+ 119873 (119905 V 119897) radicVar119905119909V119897 [119883

120587lowast

(119879)]

(43)

where 119873(119905 V 119897) = [119861(119905)V + 119863(119905)]

radic2[(119861(119905) minus 119861(119905))V + 119863(119905) minus 119863(119905)]

Remark 10 By (38) and (39) we find that the equilibriuminvestment proportion in the stock has the similar expressionas in [24] although their study focuses on the optimal invest-ment and reinsurance problem In addition the equilibriuminvestment money in the stock is only the function of time119905 which is independent of the current wealth However forthe inflation-linked bond the equilibrium investmentmoneydepends on current wealth and the more the wealth isthe more the inflation-linked bond is invested This resultis consistent with the economic intuition considering thatwhen the manager has more wealth the sensitivity to theinflation risk becomes higher and the corresponding hedgingdemand is improved

Remark 11 In view of (38) we find that if 120590119901gt 120590

119897 that is the

volatility rate of the inflation is larger than that of the salaryincome the equilibrium investment amount in the inflation-linked bond has positive relationship with the salary levelOtherwise it has negative relationship with the salary level

Remark 12 From (42) and (43) if Var119905119909V119897[119883

120587(119879)] = 0 it

means that the pension fund manager bears no risk at allunder the state (119905 119909 V 119897) this is equivalent to the case of120574 rarr infin that is the pension fund manager is fully averseto risk In this case 120587lowast

119878(119905) = 0 and 120587lowast

119868(119905) = 1 minus ((120590

119897minus

120590119901)119909120590

119901)119897119862(119905)119890

minusint119879

119905119903(119904)119889119904 This indicates that the manager will

only invest all the fund in the inflation-linked bond and therisk-free money market account and obtain the expected realterminal wealth of 119909119890int

119879

119905119903(119904)119889119904

+ 119862(119905)119897 at retirement time 119879 Itconsists of two parts The first part is the accumulation ofthe initial wealth 119909 and the second part can be seen as theaccumulation of the contribution

Mathematical Problems in Engineering 9

Remark 13 If we do not consider the risk of stochasticvolatility of the stock price that is let 120572 = 0 120590V = 0 thenthe equilibrium strategy is simplified as

120587lowast

119868(119905)

= [

120582119901(119905) minus 120590

119901minus 120582

119904120590119904

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1

120587lowast

119878(119905) =

120582119904119890minusint119879

119905119903(119904)119889119904

120574119909

(44)

In this case we find that 120587lowast

119878(119905) is consistent with the

result of the ordinaryMVportfolio problem under the Black-Scholes market (see [11]) This indicates that the contributionof the salary income has no influence on the equilibriuminvestment amount of the stock Furthermore if we do notconsider the risk of inflation that is 120583

119901(119905) = 120590

119901= 120590

119904= 0

then 119877(119905) = 119903(119905) and the inflation-linked bond is degeneratedto the risk-free money market account

4 Problem Formulation after Retirement andVerification Theorem

After retirement we assume that the pension plan memberpurchases a paid-up annuity during the time horizon [119879 119879 +119873] Thus the objective function of the pension plan manageris to maximize the expected surplus after paying off thebenefit to the member and minimize the variance of thesurplus at time 119879

1= 119879 + 119873 So at the state (119905 119909 V) isin G

1

the manager faces the following optimal control problem

(119905 119909 V) = supisinΠ(119905119909V)

E119905119909V [119883

(119879

1)]

minus120574

2Var

119905119909V [119883(119879

1)]

(P2)

Similarly to the method of Section 3 we denote 119910(119905 119909 V) =

E119905119909V[119883

(119879

1)] 119911(119905 119909 V) = E

119905119909V[(119883(119879

1))

2] Then we can

rewrite

(119905 119909 V)

= supisinΠ(119905119909V)

(119905 119909 V 119910(119905 119909 V) 119911 (119905 119909 V))

(45)

where (119905 119909 V 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

41 VerificationTheorem In this subsection we first give thedefinition of equilibrium strategy after retirement and thengive the verification theoremwhich is satisfied by the equilib-rium value function Now for any 120601(119905 119909 V) isin 119862122

(G1) let

set 119901(G

1) = 120601(119905 119909 V) | 120601(119905 119909 V) isin 119862122

(G1) and all first-

order partial derivatives of 120601(sdot 119909 V) satisfy the polynomialgrowth condition on O

1 and denote differential operator as

L120601 (119905 119909 V)

= 120601119905+ 120601

119909[119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902]

+ 120601V120572 (120575 minus V) +1

21206011199091199091199092(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V + 120601119909V119909120590VradicV (Σ minus 1205881015840

119901) 120573V

(46)

Definition 14 For any given initial state (119905 119909 V) isin G1

consider an admissible strategy lowast(119905 119909 V) and choose three

real numbers 120591 gt 0 120587119868 and 120587

119861 one defines the following

strategy

120587120591(119904 119909 V)

=

(120587119868 120587

119861) 119905 ⩽ 119904 lt 119905 + 120591 (119909 V) isin O

1

lowast(119904 119909 V) 119905 + 120591 ⩽ 119904 lt 119879

1 (119909 V) isin O

1

(47)

If lim120591rarr0

inf((lowast

(119905) minus 120587120591

(119905))120591) ⩾ 0 forall(120587119868 120587

119861) isin R times R

then lowast(119905 119909 V) is called an equilibrium strategy and the

equilibrium value function is defined as (119905 119909 V) = (119905 119909 V119910lowast

(119905 119909 V) 119911lowast

(119905 119909 V)) where

(119905) = (119905 119909 V 119910(119905 119909 V)

119911(119905 119909 V)) for short

Theorem 15 (verification theorem) For the optimal assetallocation problem (P

2) if there exist three real value functions

(119905 119909 V) (119905 119909 V) and (119905 119909 V) isin 119901(G

1) satisfying the

following conditions forall(119905 119909 V) isin G1

supisinΠ(119905119909V)

L (119905 119909 V) minus 120593

(119905 119909 V) = 0

(1198791 119909 V) = (119879

1 119909 V 119909 1199092

)

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 119909

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 1199092

(48)

where lowast= arg sup

isinΠ(119905119909V)L(119905 119909 V) minus 120593

(119905 119909 V) then(119905 119909 V) = (119905 119909 V) 119910

lowast

(119905 119909 V) = (119905 119909 V) and 119911lowast

(119905 119909

V) = (119905 119909 V) and lowast is the equilibrium strategy where

120593(119905 119909 V)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902] 119891

119909

+ 119891V120572 (120575 minus V) +1

2(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

1199092

1

+1

21205902

V V

2+ 120590VradicV119909 (

1015840Σ minus 120588

1015840

119901) 120573V

3

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

2 Mathematical Problems in Engineering

loss In recent years some scholars pay attention to theportfolio selection problem of the DC pension plan underthe mean-variance (MV) criteria This is because of thefact that the optimal investment problems under the MVcriteria in a multiperiod or continuous-time framework aresuccessfully solved only recently It is well known that theMV problems with multiperiod or continuous-time versionare time-inconsistent in the sense that the Bellman optimalityprinciple does not hold Hence the dynamic programmingapproach can not be used In existing literature there areusually two methods that are suggested to deal with thisproblem The first one is to find the precommitment strategy(the breakthrough work for this method was made by [8 9])which means that the manager derives an optimal strategyat the initial time 0 and commits to performing this strategyin the future even if it does not remain optimal in thelater time However in practice this strategy is not easilyperformed since the preference of the MV manager changeswith time and heshe has an incentive to deviate from theprecommitment strategy in the later time In addition findinga time-consistent strategy is a basic requirement for a rationaldecision-maker Thus the second method is finding a time-consistent equilibrium strategy under the framework of gametheory (the most representative work was made by [10ndash12])In this case we regard the decision-making process as anoncooperative game between an infinite number of distinctplayers At each time 119905 we named player 119905 representing thefuture incarnation of the manager at time 119905 We are interestedin finding a subgame perfect Nash equilibrium point forthe game and formulating an equilibrium strategy thisstrategy is time-consistent For the MV problem under thebackground of pension fund [13] considered a DC pensionplan with the return of premiums clauses under the gametheoretic framework and obtained an equilibrium investmentstrategy in the period before retirement Under the sameframework [14] investigated an equilibrium investment andcontribution strategies for a DB pension plan The researchon the precommitment investment strategy can be found in[15ndash17] and references therein

Meanwhile for the portfolio problem many scholarsbegin to pay attention to the influence of the background risksuch as the risk of interest rate inflation and volatility of therisky asset on the optimal decision-making process On theone hand as we all know the inflation might affect the realvalue of the wealth especially for the problem with long timehorizon investment the higher inflation leads to the lowerreal wealth In theDCpension plan [18] obtained the optimalinvestment strategy which maximizes the expected utility ofthe DC pension plan under inflation risk A similar problemwas studied in [5] under the environment of stochasticinterest and inflation rate with the minimized guaranteeUnder the MV criteria [17] investigated the optimal pre-commitment investment strategy of a DC pension plan withinflation risk using Lagrange method Recently the equilib-rium investment strategies for a DC pension plan with theinflation risk are obtained by [19] On the other hand manyempirical studies have shown that the volatility of the riskyasset is stochastic Some scholars have proposed a variety ofSVmodels such as the constant elastic variance (CEV)model

[20] Hestonrsquos SV model (volatility satisfies Cox-Ingersoll-Ross process) [21] and Stein-Stein model (volatility satisfiesOrnstein-Uhlenbeck process) [22] The CEV and HestonrsquosSV models have been widely considered in investment andreinsurance problems such as [23ndash25] and references thereinFor the stochastic volatility model under the DC pensionplan the interested reader can be referred to [6 26 27]

In this paper we consider the MV portfolio problems foraDCpension plan both before and after retirementThemaindifference between this paper and the existing literature isthat both the inflation risk and the stochastic volatility riskare considered in our model To the best of our knowledgeunder the MV framework there is no literature consideringboth of the two risks in the DC pension fund managementWe assume that the financial market consists of a risk-freeasset an inflation-linked bond and a stock with Hestonrsquosstochastic volatility The salary income of the DC pensionplan member is also assumed to be stochastic because ofthe influence of inflation rate Under the framework of gametheory two MV problems are formulated related to theperiods before and after retirement respectively For each ofthe problems by solving an extended HJB equations systemthe equilibrium strategy equilibrium value function and thecorresponding equilibrium efficient frontier are obtainedWefind that the equilibrium investment money in the inflation-linked bond depends on current wealth the inflation riskand the contribution of the salary income have no influenceon the equilibrium investment money of stock Finally usingMonte Carlo method we investigate the evolution process ofthe equilibrium strategy with time before retirement underdifferent parameters and present the sensitivity of the efficientfrontier to corresponding parameters

The remainder of the paper is organized as follows InSection 2 we introduce the financial market and wealthprocesses both before and after retirement In Section 3 aMV portfolio allocation problem is formulated in the periodbefore retirement Under the framework of game theoryan extended HJB equations system and an equilibriuminvestment strategy are also obtained In Section 4 weconsider a MV portfolio problem after retirement and derivethe corresponding verification theorem and the equilibriumstrategy Some numerical simulations and sensitivity analysisfor our results are presented in Section 5 Section 6 concludesthe paper and outlines further research

2 Assumption and Model

Let (ΩF F P) be a filtered probability space with filtrationF = F

119905119905isin[0119879+119873]

satisfying the usual conditions that isF

119905119905isin[0119879+119873]

is right-continuous and P-complete The timehorizon [0 119879] represents the accumulation period of a DCpension plan member and [119879 119879 + 119873] is the distributionperiod of the member after heshe retires Let F

119905represent

the information available until time 119905 Suppose that all ofstochastic processes and random variables are defined on thefiltered probability space (ΩF F P) In addition we assumethat there are no transaction costs or taxes in the financialmarket trading can take place continuously and short sellingis permitted

Mathematical Problems in Engineering 3

21 Financial Market As we all know for a DC pensionplan manager the objective is making the terminal wealthmaximized by investing the pension fund into the marketGenerally speaking the investment time horizon of thepension fund lasts decades The inflation risk as a kind ofimportant background risk has important influence on thereal value of the pension fund In economics CPI (ConsumerPrice Index) as the typical index can represent the inflationlevel of the market Following [28 29] we assume that theprice level 119875(119905) satisfies the following diffusion process

119889119875 (119905)

119875 (119905)= 120583

119901(119905) 119889119905 + 120590

119901119889119882

119901(119905) 119875 (0) = 119901

0 (1)

where 120583119901(119905) represents the instantaneous expected inflation

rate 120590119901gt 0 is the instantaneous volatility of inflation rate

and 119882119901(119905) is a standard Brownian motion which generates

uncertainty of the price levelWe assume that the financial market consists of three

kinds of assets an inflation-linked asset a money marketaccount and a stock

(1) The inflation-linked index bond has the same risksource as the price level process 119875(119905) and can be freely tradedin themarket Following [18 29] its price process 119868(119905) satisfiesthe following stochastic differential equation (SDE)

119889119868 (119905)

119868 (119905)= 119903 (119905) 119889119905 +

119889119875 (119905)

119875 (119905)

= (119903 (119905) + 120583119901(119905)) 119889119905 + 120590

119901119889119882

119901(119905)

(2)

where 119903(119905) represents the real interest rate at time 119905 119903(119905)+120583119901(119905)

is the expected yields of the inflation-linked bondThe higherexpected inflation rate 120583

119901(119905) will lead to higher expected

yields of the inflation-linked bond Thus it can hedge theinflation risk

(2) The price dynamics of the risk-free money marketaccount is given by

119889119861 (119905)

119861 (119905)= 119877 (119905) 119889119905 (3)

where 119877(119905) is the nominal interest rate(3) The risky asset in the market is a stock whose

price process 119878(119905) follows a geometric Brownian motion withHestonrsquos stochastic volatility That is

119889119878 (119905)

119878 (119905)= 119877 (119905) 119889119905 + radic119881 (119905) (120582

119904radic119881 (119905) 119889119905 + 119889119882

119904(119905))

+ 120590119904(120582

119901(119905) 119889119905 + 119889119882

119901(119905))

= [119877 (119905) + 120582119904119881 (119905) + 120582

119901(119905) 120590

119904] 119889119905

+ radic119881 (119905)119889119882119904(119905) + 120590

119904119889119882

119901(119905)

119889119881 (119905) = 120572 [120575 minus 119881 (119905)] 119889119905 + 120590Vradic119881 (119905)119889119882V (119905)

119881 (0) = V0

(4)

where 119882119904(119905) and 119882V(119905) are two standard Brownian motions

and120582119904radic119881(119905) and120582

119901(119905) are themarket price of the risk sources

119882119904(119905) and 119882

119901(119905) respectively Since the inflation risk might

have influence on the price evolution process of the stockthrough direct or indirect ways (the correlated empiricalresearch can be found in [30 31] and references therein)hence we assume that the price process of the stock is derivedby not only its own risk source 119882

119904(119905) but also the risk

source119882119901(119905) We further assume that119882

119901(119905) is independent

of 119882119904(119905) and 119882V(119905) respectively while 119882119904

(119905) and 119882V(119905) aredependent and E[119882

119904(119905)119882V(119905)] = 120588119904V119905 where 120588119904V isin [minus1 1] is

the correlation coefficientThe second equation of (4) is a CIR(Cox-Ingersoll-Ross) mean-revert process whichmodels thestochastic volatility of the stock price Here we suppose 2120572120575 gt1205902

V to assure that 119881(119905) gt 0 holdsIn addition we assume that theDCpension planmember

receives salary income with nominal value 119871(119905) at time 119905 untilthe retirement time 119879 Suppose that the income is stochasticand dynamically influenced by the price level 119875(119905) that is thesalary income process is driven by the source of uncertaintyfrom inflation and it satisfies the following process

119889119871 (119905)

119871 (119905)

= 120583119897119889119905 + 120590

119897119889119882

119901(119905)

119871 (0) = 1198970gt 0

(5)

where 120583119897is the average growth rate of the income and 120590

119897is the

volatility rate

Remark 1 To simplify the model achieve tractability andgive detailed analysis about the optimal strategies we assumethat the real interest rate 119903(119905) nominal interest rate 119877(119905) andexpected inflation rate 120583

119901(119905) are all deterministic functions of

time 119905

Remark 2 If we denote Q as the risk neutral measure then(2) can be rewritten as

119889119868 (119905)

119868 (119905)= (119903 (119905) + 120583

119901(119905) minus 120582

119901(119905) 120590

119901) 119889119905 + 120590

119901119889119882

Q119901(119905) (6)

By the pricing theory of the derivative (to avoid arbitrage) weobtain the following relationship

119903 (119905) + 120583119901(119905) minus 120582

119901(119905) 120590

119901= 119877 (119905) (7)

Remark 3 In the empirical research the evolution processof 119878(119905) and 119881(119905) is usually negatively correlated Since ingeneral with declining of the stock price the volatility of theprice gradually increases (cf [32]) based on this reason inSection 5 we assume that the parameter 120588

119904V lt 0

22 Wealth Process In this paper we consider the optimalportfolio problems of aDCpension planmember both beforeand after retirement The member contributes part of hishersalary into the pension fund account before retirement andobtains benefit after retirement So we need to consider thewealth processes in two different periods

(I) Before Retirement During the accumulation period [0 119879]we assume that the DC pension plan member contributes

4 Mathematical Problems in Engineering

continuously to hisher pension fund account with a fixedrate 119896 of hisher salary income that is heshe contributes theamount of money 119896119871(119905) to hisher pension fund account attime 119905 The pension fund is invested in the financial marketby the manager Denote 120587

119868(119905) and 120587

119878(119905) as the propositions

of wealth invested in the inflation-linked index bond and thestock respectively Then 120587

119861(119905) = 1 minus 120587

119868(119905) minus 120587

119878(119905) is the

proposition of the risk-free money market account Denote120587(119905) = (120587

119868(119905) 120587

119878(119905)) 119905 isin [0 119879] as the decision-making

process Now we rewrite the SDEs (2) and (4) as matrix form

[[[

[

119889119868 (119905)

119868 (119905)

119889119878 (119905)

119878 (119905)

]]]

]

= [

119903 (119905) + 120583119901(119905)

119877 (119905) + 120582119904119881 (119905) + 120582

119901(119905) 120590

119904

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

120583(119905)

119889119905

+ [

120590119901

0

120590119904radic119881 (119905)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Σ(119905)

[

119889119882119901(119905)

119889119882119904(119905)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119889119882(119905)

(8)

Denote 119883120587

(119905) as the nominal value of the wealth processassociated with the investment strategy 120587 Then the nominalwealth process119883120587

(119905) satisfies

119889119883120587

(119905)

= 119883120587

(119905) [120587119861(119905)119889119861 (119905)

119861 (119905)+ 120587

119868(119905)119889119868 (119905)

119868 (119905)+ 120587

119878(119905)119889119878 (119905)

119878 (119905)]

+ 119896119871 (119905) 119889119905

= 119883120587

(119905) [119877 (119905) + 120587 (119905) (120583 (119905) minus 119877 (119905) 1)] 119889119905

+ 119883120587

(119905) 120587 (119905) Σ (119905) 119889119882 (119905) + 119896119871 (119905) 119889119905

= 119883120587

(119905) [119877 (119905) + 120587 (119905) Σ (119905) 120579 (119905)] 119889119905 + 119896119871 (119905) 119889119905

+ 119883120587

(119905) 120587 (119905) Σ (119905) 119889119882 (119905)

(9)

where 1 = (1 1)1015840 The last equation holds because of (7) and

120583 (119905) minus 119877 (119905) 1 = [119903 (119905) minus 119877 (119905) + 120583

119901(119905)

120582119904119881 (119905) + 120582

119901(119905) 120590

119904

]

= [

120582119901(119905) 120590

119901

120582119904119881 (119905) + 120582

119901(119905) 120590

119904

] = Σ (119905) 120579 (119905)

(10)

where 120579(119905) = (120582119901(119905) 120582

119904radic119881(119905))

1015840 Let 1199090be the nominal wealth

at time 0Since the real value of the wealth reflects the real purchase

power of the current market the nominal value of the wealthshould be converted into the real value By discounting thevalue of nominal wealth with the price level process thereal value of wealth will be obtained Now denote 119883(119905) =119883(119905)119875(119905) and 119871(119905) = 119871(119905)119875(119905) and by Itorsquos formula we

obtain the real wealth process 119883120587(119905) and real salary income

process 119871(119905) as follows119889119883

120587(119905) = 119883

120587(119905)

sdot [119877 (119905) minus 120583119901(119905) + 120590

2

119901+ 120587 (119905) Σ (119905) (120579 (119905) minus 120588

119901)] 119889119905

+ 119896119871 (119905) 119889119905 + 119883120587(119905) (120587 (119905) Σ (119905) minus 120588

1015840

119901) 119889119882 (119905)

(11)

119889119871 (119905) = 119871 (119905) [120572119897(119905) 119889119905 + 120573

1015840

119897119889119882 (119905)] (12)

where 120572119897(119905) = 120583

119897minus 120583

119901(119905) + 120590

2

119901minus 120590

119897120590119901and 1205881015840

119901= (120590

119901 0)

1205731015840

119897= (120590

119897minus 120590

119901 0) For 119875(0) = 119901

0 the real initial wealth and

initial salary income are 119883120587(0) = 119909

0119901

0and 119871(0) = 119897

0119901

0

respectively Note that the dynamic process of119883120587(119905) depends

on the real salary income process 119871(119905) and the stochasticvolatility process 119881(119905) but it is independent of the price levelprocess 119875(119905)

Definition 4 (admissible strategy) LetO = RtimesR+timesR+ and

G = [0 119879] times O A strategy 120587(119905) = 120587119868(119905) 120587

119878(119905)

119905isin[0119879]is said

to be admissible if(1) forall(119909 V 119897) isin O the SDE (11) has unique solution119883

120587(119904)

119904isin[119905119879]with119883120587

(119905) = 119909 119881(119905) = V and 119871(119905) = 119897

(2) forall119904 isin [119905 119879] E[int119879

119905[(120587

119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904]4119889119904] lt infin

(3) forall984858 isin [1 +infin) and forall(119905 119909 V 119897) isin GE

119905119909V119897[sup119904isin[119905119879]|119883

120587(119904)|

984858] lt infin where E

119905119909V119897[sdot] isthe condition expectation given 119883120587

(119905) = 119909 119881(119905) = Vand 119871(119905) = 119897

One denotes Π(119905 119909 V 119897) as the set of all admissiblestrategies with respect to the initial condition (119905 119909 V 119897) isin G

(II) After Retirement When the member of the pension planretires the accumulation value of the pension fund usually isused to purchase an annuity In practice the member usuallyhas two ways to purchase the annuity The first way is thatheshe purchases the annuity directly at the retirement timeFor example as being considered in [2 27] the accumulatedpension fund is used to purchase a paid-up annuity oncethe member arrives at the retirement age and the managerhas also to decide the part of the remaining mathematicalreserve to invest in the market The second way is that themember does not purchase the annuity directly but choosesthe income drawdown option at the retirement It means thatthe member withdraws a fixed income and invests the restof the wealth until heshe achieves the age when the time ofpurchasing the annuity is compulsory The interested readercan see [33 34] for details

Here we consider the first way Similar to [2] we assumethat the member purchases a paid-up annuity at the retire-ment time which guarantees the benefit to be given only on afixed time horizon [119879 119879+119873] and invests the rest of the wealthcontinuously in the market We denote119882 as the part of thefund used to purchase an annuity (119882 ⩽ 119883(119879)) Continuousbenefit (real value) paid from 119879 to 119879

1= 119879 + 119873 is 119902 = 119882119886

119873|

where 119886119873|= (1 minus 119890

minus120575119873)120575 and 120575 is the continuous technical

rate

Mathematical Problems in Engineering 5

Let119872(119905) denote the nominal total payment value of thebenefit at time interval [119879 119905] 119905 isin (119879 119879

1] For simplicity the

dynamics of119872(119905) can be modeled as119872(119905) = int119905

119879119902119875(119904)119889119904 or

119889119872(119905) = 119902119875(119905)119889119905 This setting is reasonable and realistic anda similar setting is used in [17] It means that after retirementthe nominal benefit is adjusted dynamically based on theinflation rate of that time that is at time 119905 the nominalbenefit is 119902119875(119905) which keeps the purchasing power level ofthe retirees not decreasing We assume that once the retiredmember dies during [119879 119879

1] the pension fund continues to be

invested and the remaining annuity benefit and the terminalwealth119883(119879

1) are paid off to hisher offspring If themember is

alive until 1198791 the wealth119883(119879

1) is left for hisher later life Let

119868(119905) and

119878(119905) represent the propositions of the pension fund

wealth invested in the inflation-linked index bond and thestock respectively Denote (119905) = (

119868(119905)

119878(119905)) 119905 isin [119879 119879

1]

as the decision-making process Then after retirement thedynamics of nominal wealth process is

119889119883

(119905) = 119883

(119905) [119877 (119905) + (119905) Σ (119905) 120579 (119905)] 119889119905

minus 119902119875 (119905) 119889119905 + 119883

(119905) (119905) Σ (119905) 119889119882 (119905)

(13)

Using the same method as before retirement we obtain thereal wealth process as follows

119889119883(119905) = 119883

(119905)

sdot [119877 (119905) minus 120583119901(119905) + 120590

2

119901+ (119905) Σ (119905) (120579 (119905) minus 120588

119901)] 119889119905

minus 119902 119889119905 + 119883(119905) ( (119905) Σ (119905) minus 120588

1015840

119901) 119889119882 (119905)

(14)

Now we give the definition of the admissible strategy for thedecision-making process (119905)

Definition 5 (admissible strategy) Let O1= R times R+ and

G1= [119879 119879

1] times O

1 A strategy (119905) =

119868(119905)

119878(119905)

119905isin[1198791198791]is

said to be admissible if

(1) forall(119909 V) isin O1 the SDE (14) has unique solution

119883(119904)

119904isin[1199051198791]with119883

(119905) = 119909 119881(119905) = V

(2) forall119904 isin [119905 1198791] E[int119879

1

119905[(

119868(119904) minus 1)120590

119901+

119878(119904)120590

119904]4119889119904] lt infin

(3) forall984858 isin [1 +infin) and forall(119905 119909 V) isin G1

E119905119909V[sup119904isin[119905119879

1]|119883

(119904)|

984858] lt infin where E

119905119909V[sdot] isthe condition expectation given 119883

(119905) = 119909 and

119881(119905) = V

One denotes Π(119905 119909 V) as the set of all admissible strategieswith respect to the initial condition (119905 119909 V) isin G

1

3 Problem Formulation before Retirementand Verification Theorem

In this section we assume that the pension plan managerhopes to maximize the expectation of the total wealth atretirement time119879 meanwhileminimizing the variance of thewealth at retirement So the pension plan manager faces a

continuous-time MV portfolio problem However since theMV objective function does not satisfy the iterated expecta-tion property Bellmanrsquos optimality principle does not holdunder the continuous-time framework Hence this problemis time-inconsistent This means that for the pension fundmanager without precommitment should take into accountthat heshemay have different objective functions in differenttimes We can thus view this problem as a noncooperativegame At each time 119905 there is one player named player 119905representing the future incarnation of the manager at time119905 At any state (119905 119909 V 119897) the manager faces an optimal controlproblem with value function 119881(119905 119909 V 119897) as follows

119869 (119905 119909 V 119897 120587) = E119905119909V119897 [119883

120587(119879)]

minus120574

2Var

119905119909V119897 [119883120587(119879)]

119881 (119905 119909 V 119897) = sup120587isinΠ(119905119909V119897)

119869 (119905 119909 V 119897 120587)

(P1)

where 120574 represents the risk aversion level of the managerand Var

119905119909V119897[sdot] refers to the conditional variance Since theobjective of the pensionmanager updates with different statethemanagerrsquos decision process is like a game process betweenan infinite number of distinct players Thus we need to lookfor a subgame perfect Nash equilibrium point for the gameand determine an equilibrium strategy 120587lowast

If we denote 119910120587(119905 119909 V 119897) = E

119905119909V119897[119883120587(119879)] 119911120587(119905 119909 V 119897) =

E119905119909V119897[(119883

120587(119879))

2] then the value function 119881(119905 119909 V 119897) can be

rewritten as119881 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (15)

where 119891(119905 119909 V 119897 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

31 Verification Theorem Based on the idea of the Nashequilibrium similarly to [11] we first give the definition ofequilibrium strategy

Definition 6 For any given initial state (119905 119909 V 119897) isin Gconsider an admissible strategy 120587lowast

(119905 119909 V 119897) and choose threereal numbers 120591 gt 0

119868 and

119861 one defines the following

strategy

120587120591(119904 V )

=

(119868

119861) 119905 ⩽ 119904 lt 119905 + 120591 ( V ) isin O

120587lowast(119904 V ) 119905 + 120591 ⩽ 119904 lt 119879 ( V ) isin O

(16)

If lim120591rarr0

inf((119891120587lowast

(119905) minus 119891120587120591(119905))120591) ⩾ 0 forall(

119868

119861) isin R times R

then 120587lowast(119905 119909 V 119897) is called an equilibrium strategy and the

equilibrium value function is defined by

119881 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897)) (17)

where 119891120587(119905) = 119891(119905 119909 V 119897 119910120587

(119905 119909 V 119897) 119911120587(119905 119909 V 119897)) for short

6 Mathematical Problems in Engineering

For any 120601(119905 119909 V 119897) isin 1198621222(G) we define a set 119863

119901(G) =

120601(119905 119909 V 119897) | 120601(119905 119909 V 119897) isin 1198621222

(G) and all first-orderpartial derivatives of 120601(sdot 119909 V 119897) satisfy the polynomial growthcondition on O and we define a variational operator asfollows (in the following we will omit the variable 119905 fornotation convenience)

A120587120601 (119905 119909 V 119897)

= 120601119905+ 120601

119909[119896119897 + 119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901))]

+ 120601V120572 (120575 minus V) + 120601119897120572119897119897

+1

21206011199091199091199092(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V

+1

212060111989711989711989721205731015840

119897120573119897+ 120601

119909V119909120590VradicV (120587Σ minus 1205881015840

119901) 120573V

+ 120601119909119897119909119897 (120587Σ minus 120588

1015840

119901) 120573

119897+ 120601V119897119897120590VradicV120573

1015840

119897120573V

(18)

where 120573V = (0 120588119904V)1015840 Now we give the verification theorem of

problem (P1)

Theorem 7 (verification theorem) For problem (P1) if there

exist three real value functions 119865(119905 119909 V 119897) 119866(119905 119909 V 119897) and119867(119905 119909 V 119897) isin 119863

119901(G) satisfying the following conditions

forall(119905 119909 V 119897) isin G

sup120587isinΠ(119905119909V119897)

A120587119865 (119905 119909 V 119897) minus 120585120587 (119905 119909 V 119897) = 0 (19)

119865 (119879 119909 V 119897) = 119891 (119879 119909 V 119897 119909 1199092) (20)

A120587lowast

119866 (119905 119909 V 119897) = 0

119866 (119879 119909 V 119897) = 119909(21)

A120587lowast

119867(119905 119909 V 119897) = 0

119867 (119879 119909 V 119897) = 1199092

(22)

where 120587lowast= arg sup

120587isinΠ(119905119909V119897)A120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897)

then 119881(119905 119909 V 119897) = 119865(119905 119909 V 119897) 119910120587lowast

(119905 119909 V 119897) = 119866(119905 119909 V 119897) and119911120587lowast

(119905 119909 V 119897) = 119867(119905 119909 V 119897) and 120587lowast is the equilibrium strategywhere

120585120587(119905 119909 V 119897)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901)) + 119896119897] 119891

119909

+ [120572 (120575 minus V)] 119891V + 120572119897119897119891119897

+1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092119880

120587

1+1

21205902

V V119880120587

2

+1

211989721205731015840

119897120573119897119880

120587

3+ 120590VradicV119909 (120587Σ minus 120588

1015840

119901) 120573V119880

120587

4

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897119880

120587

5+ 120590VradicV119897120573

1015840

119897120573V119880

120587

6

119880120587

1

= 119891119909119909+ 119891

119910119910(119910

120587

119909)2

+ 119891119911119911(119911

120587

119909)2

+ 2119891119909119910119910120587

119909+ 2119891

119909119911119911120587

119909

+ 2119891119910119911119910120587

119909119911120587

119909

119880120587

2

= 119891VV + 119891119910119910 (119910120587

V )2

+ 119891119911119911(119911

120587

V )2

+ 2119891V119910119910120587

V + 2119891V119911119911120587

V

+ 2119891119910119911119910120587

V 119911120587

V

119880120587

3

= 119891119897119897+ 119891

119910119910(119910

120587

119897)2

+ 119891119911119911(119911

120587

119897)2

+ 2119891119897119910119910120587

119897+ 2119891

119897119911119911120587

119897

+ 2119891119910119911119910120587

119897119911120587

119897

119880120587

4

= 119891119910119910119910120587

119909119910120587

V + 119891119911119911119911120587

119909119911120587

V + 119891119909V + 119891119909119910119910120587

V + 119891119909119911119911120587

V

+ 119891V119910119910120587

119909+ 119891V119911119911

120587

119909+ 119891

119910119911(119910

120587

119909119911120587

V + 119910120587

V 119911120587

119909)

119880120587

5

= 119891119910119910119910120587

119909119910120587

119897+ 119891

119911119911119911120587

119909119911120587

119897+ 119891

119909119897+ 119891

119909119910119910120587

119897+ 119891

119909119911119911120587

119897

+ 119891119897119910119910120587

119909+ 119891

119897119911119911120587

119909+ 119891

119910119911(119910

120587

119909119911120587

119897+ 119910

120587

119897119911120587

119909)

119880120587

6

= 119891119910119910119910120587

V 119910120587

119897+ 119891

119911119911119911120587

V 119911120587

119897+ 119891V119897 + 119891V119910119910

120587

119897+ 119891V119911119911

120587

119897

+ 119891119897119910119910120587

V + 119891119897119911119911120587

V + 119891119910119911 (119910120587

119897119911120587

V + 119910120587

V 119911120587

119897)

(23)

and 119891 = 119891(119905 119909 V 119897 119910 119911) 119910120587= 119910

120587(119905 119909 V 119897) and 119911120587 =

119911120587(119905 119909 V 119897)

The proof of this theorem is given in the AppendixEquations (19) (21) and (22) are called an extended

HJB equations system By solving this equations systemwe can obtain the equilibrium strategy and correspondingequilibrium value function

32 Solution to the Equilibrium Strategy Since 119891(119905 119909 V 119897 119910119911) = 119910 minus (1205742)(119911 minus 119910

2) according to Theorem 7 we have

119880120587lowast

1= 120574119866

2

119909 119880120587

lowast

2= 120574119866

2

V 119880120587lowast

3= 120574119866

2

119897 119880120587

lowast

4= 120574119866

119909119866V 119880

120587lowast

5=

120574119866119909119866

119897 and 119880120587

lowast

6= 120574119866V119866119897

so

120585120587lowast

(119905 119909 V 119897) =1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092120574119866

2

119909

+1

21205902

V V1205741198662

V +1

211989721205731015840

119897120573119897120574119866

2

119897

+ 120590VradicV1198971205731015840

119897120573V120574119866V119866119897

+ 120590VradicV119909 (120587Σ minus 1205881015840

119901) 120573V120574119866V119866119909

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897120574119866

119909119866

119897

(24)

Mathematical Problems in Engineering 7

By differentiatingA120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897) with respect to

120587(119905) we can obtain the equilibrium strategy

120587lowast(119905) = minus

[119865119909(120579 minus 120588

119901)1015840

+ (119865119909V minus 120574119866119909

119866V) 120590VradicV1205731015840

V + (119865119909119897 minus 120574119866119909119866

119897) 119897120573

1015840

119897] Σ

minus1

(119865119909119909minus 120574119866

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(25)

Inspired by [24] we suppose 119865(119905 119909 V 119897) and 119866(119905 119909 V 119897) havethe following linear forms with respect to 119909 V and 119897

119865 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

119866 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

(26)

Then120587lowast(119905)

=

[119860 (119905) (120579 minus 120588119901)1015840

minus 119860 (119905) 119861 (119905) 120590VradicV1205731015840

V minus 119860 (119905) 119862 (119905) 1205741198971205731015840

119897] Σ

minus1

1205741198602

(119905) 119909

+ 1205881015840

119901Σ

minus1

(27)

Inserting 120587lowast(119905) intoA120587

lowast

119865(119905 119909 V 119897) minus 120585120587lowast

(119905 119909 V 119897) = 0 weget the following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905) minus

1198612

(119905)

21205741205902

V V

+1

21205741198602

(119905)

[1198602(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120588119904V120590VV

minus 2119860 (119905) 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897

+ 1198602

(119905) 1198612

(119905) 1205902

V1205882

119904VV] = 0

(28)

Separating with 119909 V 119897 and other terms we obtain thefollowing ordinary differential equations (ODEs)

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 minus

1198612

(119905)

21205902

V +1

21198602

(119905)

[1198602(119905) 120582

2

119904

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120590V120588119904V + 119860

2

(119905) 1198612

(119905) 1205902

V1205882

119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) 120572

119897(119905) minus

1

119860 (119905)

119860 (119905) 119862 (119905) (120582119901(119905)

minus 120590119901) (120590

119897minus 120590

119901) = 0

119863119905+ 120572120575119861 (119905) +

1

21198602

(119905)

1198602(119905) (120582

119901(119905) minus 120590

119901)2

= 0

(29)

Now we insert 120587lowast(119905) into A120587

lowast

119866(119905 119909 V 119897) = 0 and obtainthe following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905)

+1

120574119860 (119905)

[119860 (119905) ((120582119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119860 (119905) 119861 (119905) 120582119904120590V120588119904VV

minus 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897] = 0

(30)

Similarly separating with 119909 V 119897 and other terms we obtainthe following ODEs

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 +

1

119860 (119905)

[119860 (119905) 1205822

119904minus 119860 (119905) 119861 (119905) 120582

119904120590V120588119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) [120572

119897(119905) minus (120582

119901(119905) minus 120590

119901) (120590

119897minus 120590

119901)]

= 0

119863119905+ 120572120575119861 (119905) +

1

119860 (119905)

119860 (119905) (120582119901(119905) minus 120590

119901)2

= 0

(31)

By using the corresponding boundary conditions we get thesolutions of the ODEs (29) and (31) as follows

119860 (119905) = 119860 (119905) = 119890int119879

119905[119877(119904)minus120583

119901(119904)+120582

119901(119904)120590119901]119889119904= 119890

int119879

119905119903(119904)119889119904

(32)

119861 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(119879minus119905)

] (33)

8 Mathematical Problems in Engineering

119861 (119905) =1

2119890minus120572(119879minus119905)

int

119879

119905

1198921(119904) 119890

120572(119879minus119904)119889119904 (34)

119862 (119905) = 119862 (119905) = 119896int

119879

119905

119890int119904

119905119898(119906)119889119906

119890int119879

119904119903(119906)119889119906

119889119904 (35)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 +1

2int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (36)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 + int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (37)

where 1198921(119904) = 120582

2

119904minus2120582

119904120590V120588119904V119861(119904)+119861

2

(119904)1205902

V (1205882

119904Vminus1) and119898(119906) =120583119897minus 120583

119901(119906) + 120582

119901(119906)(120590

119901minus 120590

119897) Substituting the above results

into (27) and after some rearrangement we can conclude thefollowing theorem

Theorem 8 For problem (P1) the equilibrium investment

strategy is

120587lowast

119868(119905) =

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V119861 (119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879 minus 119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

(38)

120587lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(119879minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (119879 minus 119905)]

120574119909119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(39)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int119879

119905119903(119904)119889119904

+119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574 (40)

where 119861(119905) 119862(119905) and 119863(119905) are given by (34) (35) and (36)

Note that

E119905119909V119897 [119883

120587lowast

(119879)]

= 119909119890int119879

119905119903(119904)119889119904

+1

120574[119861 (119905) V + 119863 (119905)] + 119862 (119905) 119897

(41)

Var119905119909V119897 [119883

120587lowast

(119879)] = 119867 (119905 119909 V 119897) minus 1198662(119905 119909 V 119897)

=2

120574[119866 (119905 119909 V 119897) minus 119865 (119905 119909 V 119897)]

=2

1205742[(119861 (119905) minus 119861 (119905)) V + 119863 (119905) minus 119863 (119905)]

(42)

Thus we obtain the following so-called equilibrium efficientfrontier which reflects the relationship between the invest-ment risk and return under the equilibrium strategy

Corollary 9 For MV problem (P1) based on state (119905 119909 V 119897)

its equilibrium efficient frontier is

E119905119909V119897 [119883

120587lowast

(119879)] = 119909119890int119879

119905119903(119904)119889119904

+ 119862 (119905) 119897

+ 119873 (119905 V 119897) radicVar119905119909V119897 [119883

120587lowast

(119879)]

(43)

where 119873(119905 V 119897) = [119861(119905)V + 119863(119905)]

radic2[(119861(119905) minus 119861(119905))V + 119863(119905) minus 119863(119905)]

Remark 10 By (38) and (39) we find that the equilibriuminvestment proportion in the stock has the similar expressionas in [24] although their study focuses on the optimal invest-ment and reinsurance problem In addition the equilibriuminvestment money in the stock is only the function of time119905 which is independent of the current wealth However forthe inflation-linked bond the equilibrium investmentmoneydepends on current wealth and the more the wealth isthe more the inflation-linked bond is invested This resultis consistent with the economic intuition considering thatwhen the manager has more wealth the sensitivity to theinflation risk becomes higher and the corresponding hedgingdemand is improved

Remark 11 In view of (38) we find that if 120590119901gt 120590

119897 that is the

volatility rate of the inflation is larger than that of the salaryincome the equilibrium investment amount in the inflation-linked bond has positive relationship with the salary levelOtherwise it has negative relationship with the salary level

Remark 12 From (42) and (43) if Var119905119909V119897[119883

120587(119879)] = 0 it

means that the pension fund manager bears no risk at allunder the state (119905 119909 V 119897) this is equivalent to the case of120574 rarr infin that is the pension fund manager is fully averseto risk In this case 120587lowast

119878(119905) = 0 and 120587lowast

119868(119905) = 1 minus ((120590

119897minus

120590119901)119909120590

119901)119897119862(119905)119890

minusint119879

119905119903(119904)119889119904 This indicates that the manager will

only invest all the fund in the inflation-linked bond and therisk-free money market account and obtain the expected realterminal wealth of 119909119890int

119879

119905119903(119904)119889119904

+ 119862(119905)119897 at retirement time 119879 Itconsists of two parts The first part is the accumulation ofthe initial wealth 119909 and the second part can be seen as theaccumulation of the contribution

Mathematical Problems in Engineering 9

Remark 13 If we do not consider the risk of stochasticvolatility of the stock price that is let 120572 = 0 120590V = 0 thenthe equilibrium strategy is simplified as

120587lowast

119868(119905)

= [

120582119901(119905) minus 120590

119901minus 120582

119904120590119904

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1

120587lowast

119878(119905) =

120582119904119890minusint119879

119905119903(119904)119889119904

120574119909

(44)

In this case we find that 120587lowast

119878(119905) is consistent with the

result of the ordinaryMVportfolio problem under the Black-Scholes market (see [11]) This indicates that the contributionof the salary income has no influence on the equilibriuminvestment amount of the stock Furthermore if we do notconsider the risk of inflation that is 120583

119901(119905) = 120590

119901= 120590

119904= 0

then 119877(119905) = 119903(119905) and the inflation-linked bond is degeneratedto the risk-free money market account

4 Problem Formulation after Retirement andVerification Theorem

After retirement we assume that the pension plan memberpurchases a paid-up annuity during the time horizon [119879 119879 +119873] Thus the objective function of the pension plan manageris to maximize the expected surplus after paying off thebenefit to the member and minimize the variance of thesurplus at time 119879

1= 119879 + 119873 So at the state (119905 119909 V) isin G

1

the manager faces the following optimal control problem

(119905 119909 V) = supisinΠ(119905119909V)

E119905119909V [119883

(119879

1)]

minus120574

2Var

119905119909V [119883(119879

1)]

(P2)

Similarly to the method of Section 3 we denote 119910(119905 119909 V) =

E119905119909V[119883

(119879

1)] 119911(119905 119909 V) = E

119905119909V[(119883(119879

1))

2] Then we can

rewrite

(119905 119909 V)

= supisinΠ(119905119909V)

(119905 119909 V 119910(119905 119909 V) 119911 (119905 119909 V))

(45)

where (119905 119909 V 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

41 VerificationTheorem In this subsection we first give thedefinition of equilibrium strategy after retirement and thengive the verification theoremwhich is satisfied by the equilib-rium value function Now for any 120601(119905 119909 V) isin 119862122

(G1) let

set 119901(G

1) = 120601(119905 119909 V) | 120601(119905 119909 V) isin 119862122

(G1) and all first-

order partial derivatives of 120601(sdot 119909 V) satisfy the polynomialgrowth condition on O

1 and denote differential operator as

L120601 (119905 119909 V)

= 120601119905+ 120601

119909[119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902]

+ 120601V120572 (120575 minus V) +1

21206011199091199091199092(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V + 120601119909V119909120590VradicV (Σ minus 1205881015840

119901) 120573V

(46)

Definition 14 For any given initial state (119905 119909 V) isin G1

consider an admissible strategy lowast(119905 119909 V) and choose three

real numbers 120591 gt 0 120587119868 and 120587

119861 one defines the following

strategy

120587120591(119904 119909 V)

=

(120587119868 120587

119861) 119905 ⩽ 119904 lt 119905 + 120591 (119909 V) isin O

1

lowast(119904 119909 V) 119905 + 120591 ⩽ 119904 lt 119879

1 (119909 V) isin O

1

(47)

If lim120591rarr0

inf((lowast

(119905) minus 120587120591

(119905))120591) ⩾ 0 forall(120587119868 120587

119861) isin R times R

then lowast(119905 119909 V) is called an equilibrium strategy and the

equilibrium value function is defined as (119905 119909 V) = (119905 119909 V119910lowast

(119905 119909 V) 119911lowast

(119905 119909 V)) where

(119905) = (119905 119909 V 119910(119905 119909 V)

119911(119905 119909 V)) for short

Theorem 15 (verification theorem) For the optimal assetallocation problem (P

2) if there exist three real value functions

(119905 119909 V) (119905 119909 V) and (119905 119909 V) isin 119901(G

1) satisfying the

following conditions forall(119905 119909 V) isin G1

supisinΠ(119905119909V)

L (119905 119909 V) minus 120593

(119905 119909 V) = 0

(1198791 119909 V) = (119879

1 119909 V 119909 1199092

)

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 119909

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 1199092

(48)

where lowast= arg sup

isinΠ(119905119909V)L(119905 119909 V) minus 120593

(119905 119909 V) then(119905 119909 V) = (119905 119909 V) 119910

lowast

(119905 119909 V) = (119905 119909 V) and 119911lowast

(119905 119909

V) = (119905 119909 V) and lowast is the equilibrium strategy where

120593(119905 119909 V)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902] 119891

119909

+ 119891V120572 (120575 minus V) +1

2(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

1199092

1

+1

21205902

V V

2+ 120590VradicV119909 (

1015840Σ minus 120588

1015840

119901) 120573V

3

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Mathematical Problems in Engineering 3

21 Financial Market As we all know for a DC pensionplan manager the objective is making the terminal wealthmaximized by investing the pension fund into the marketGenerally speaking the investment time horizon of thepension fund lasts decades The inflation risk as a kind ofimportant background risk has important influence on thereal value of the pension fund In economics CPI (ConsumerPrice Index) as the typical index can represent the inflationlevel of the market Following [28 29] we assume that theprice level 119875(119905) satisfies the following diffusion process

119889119875 (119905)

119875 (119905)= 120583

119901(119905) 119889119905 + 120590

119901119889119882

119901(119905) 119875 (0) = 119901

0 (1)

where 120583119901(119905) represents the instantaneous expected inflation

rate 120590119901gt 0 is the instantaneous volatility of inflation rate

and 119882119901(119905) is a standard Brownian motion which generates

uncertainty of the price levelWe assume that the financial market consists of three

kinds of assets an inflation-linked asset a money marketaccount and a stock

(1) The inflation-linked index bond has the same risksource as the price level process 119875(119905) and can be freely tradedin themarket Following [18 29] its price process 119868(119905) satisfiesthe following stochastic differential equation (SDE)

119889119868 (119905)

119868 (119905)= 119903 (119905) 119889119905 +

119889119875 (119905)

119875 (119905)

= (119903 (119905) + 120583119901(119905)) 119889119905 + 120590

119901119889119882

119901(119905)

(2)

where 119903(119905) represents the real interest rate at time 119905 119903(119905)+120583119901(119905)

is the expected yields of the inflation-linked bondThe higherexpected inflation rate 120583

119901(119905) will lead to higher expected

yields of the inflation-linked bond Thus it can hedge theinflation risk

(2) The price dynamics of the risk-free money marketaccount is given by

119889119861 (119905)

119861 (119905)= 119877 (119905) 119889119905 (3)

where 119877(119905) is the nominal interest rate(3) The risky asset in the market is a stock whose

price process 119878(119905) follows a geometric Brownian motion withHestonrsquos stochastic volatility That is

119889119878 (119905)

119878 (119905)= 119877 (119905) 119889119905 + radic119881 (119905) (120582

119904radic119881 (119905) 119889119905 + 119889119882

119904(119905))

+ 120590119904(120582

119901(119905) 119889119905 + 119889119882

119901(119905))

= [119877 (119905) + 120582119904119881 (119905) + 120582

119901(119905) 120590

119904] 119889119905

+ radic119881 (119905)119889119882119904(119905) + 120590

119904119889119882

119901(119905)

119889119881 (119905) = 120572 [120575 minus 119881 (119905)] 119889119905 + 120590Vradic119881 (119905)119889119882V (119905)

119881 (0) = V0

(4)

where 119882119904(119905) and 119882V(119905) are two standard Brownian motions

and120582119904radic119881(119905) and120582

119901(119905) are themarket price of the risk sources

119882119904(119905) and 119882

119901(119905) respectively Since the inflation risk might

have influence on the price evolution process of the stockthrough direct or indirect ways (the correlated empiricalresearch can be found in [30 31] and references therein)hence we assume that the price process of the stock is derivedby not only its own risk source 119882

119904(119905) but also the risk

source119882119901(119905) We further assume that119882

119901(119905) is independent

of 119882119904(119905) and 119882V(119905) respectively while 119882119904

(119905) and 119882V(119905) aredependent and E[119882

119904(119905)119882V(119905)] = 120588119904V119905 where 120588119904V isin [minus1 1] is

the correlation coefficientThe second equation of (4) is a CIR(Cox-Ingersoll-Ross) mean-revert process whichmodels thestochastic volatility of the stock price Here we suppose 2120572120575 gt1205902

V to assure that 119881(119905) gt 0 holdsIn addition we assume that theDCpension planmember

receives salary income with nominal value 119871(119905) at time 119905 untilthe retirement time 119879 Suppose that the income is stochasticand dynamically influenced by the price level 119875(119905) that is thesalary income process is driven by the source of uncertaintyfrom inflation and it satisfies the following process

119889119871 (119905)

119871 (119905)

= 120583119897119889119905 + 120590

119897119889119882

119901(119905)

119871 (0) = 1198970gt 0

(5)

where 120583119897is the average growth rate of the income and 120590

119897is the

volatility rate

Remark 1 To simplify the model achieve tractability andgive detailed analysis about the optimal strategies we assumethat the real interest rate 119903(119905) nominal interest rate 119877(119905) andexpected inflation rate 120583

119901(119905) are all deterministic functions of

time 119905

Remark 2 If we denote Q as the risk neutral measure then(2) can be rewritten as

119889119868 (119905)

119868 (119905)= (119903 (119905) + 120583

119901(119905) minus 120582

119901(119905) 120590

119901) 119889119905 + 120590

119901119889119882

Q119901(119905) (6)

By the pricing theory of the derivative (to avoid arbitrage) weobtain the following relationship

119903 (119905) + 120583119901(119905) minus 120582

119901(119905) 120590

119901= 119877 (119905) (7)

Remark 3 In the empirical research the evolution processof 119878(119905) and 119881(119905) is usually negatively correlated Since ingeneral with declining of the stock price the volatility of theprice gradually increases (cf [32]) based on this reason inSection 5 we assume that the parameter 120588

119904V lt 0

22 Wealth Process In this paper we consider the optimalportfolio problems of aDCpension planmember both beforeand after retirement The member contributes part of hishersalary into the pension fund account before retirement andobtains benefit after retirement So we need to consider thewealth processes in two different periods

(I) Before Retirement During the accumulation period [0 119879]we assume that the DC pension plan member contributes

4 Mathematical Problems in Engineering

continuously to hisher pension fund account with a fixedrate 119896 of hisher salary income that is heshe contributes theamount of money 119896119871(119905) to hisher pension fund account attime 119905 The pension fund is invested in the financial marketby the manager Denote 120587

119868(119905) and 120587

119878(119905) as the propositions

of wealth invested in the inflation-linked index bond and thestock respectively Then 120587

119861(119905) = 1 minus 120587

119868(119905) minus 120587

119878(119905) is the

proposition of the risk-free money market account Denote120587(119905) = (120587

119868(119905) 120587

119878(119905)) 119905 isin [0 119879] as the decision-making

process Now we rewrite the SDEs (2) and (4) as matrix form

[[[

[

119889119868 (119905)

119868 (119905)

119889119878 (119905)

119878 (119905)

]]]

]

= [

119903 (119905) + 120583119901(119905)

119877 (119905) + 120582119904119881 (119905) + 120582

119901(119905) 120590

119904

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

120583(119905)

119889119905

+ [

120590119901

0

120590119904radic119881 (119905)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Σ(119905)

[

119889119882119901(119905)

119889119882119904(119905)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119889119882(119905)

(8)

Denote 119883120587

(119905) as the nominal value of the wealth processassociated with the investment strategy 120587 Then the nominalwealth process119883120587

(119905) satisfies

119889119883120587

(119905)

= 119883120587

(119905) [120587119861(119905)119889119861 (119905)

119861 (119905)+ 120587

119868(119905)119889119868 (119905)

119868 (119905)+ 120587

119878(119905)119889119878 (119905)

119878 (119905)]

+ 119896119871 (119905) 119889119905

= 119883120587

(119905) [119877 (119905) + 120587 (119905) (120583 (119905) minus 119877 (119905) 1)] 119889119905

+ 119883120587

(119905) 120587 (119905) Σ (119905) 119889119882 (119905) + 119896119871 (119905) 119889119905

= 119883120587

(119905) [119877 (119905) + 120587 (119905) Σ (119905) 120579 (119905)] 119889119905 + 119896119871 (119905) 119889119905

+ 119883120587

(119905) 120587 (119905) Σ (119905) 119889119882 (119905)

(9)

where 1 = (1 1)1015840 The last equation holds because of (7) and

120583 (119905) minus 119877 (119905) 1 = [119903 (119905) minus 119877 (119905) + 120583

119901(119905)

120582119904119881 (119905) + 120582

119901(119905) 120590

119904

]

= [

120582119901(119905) 120590

119901

120582119904119881 (119905) + 120582

119901(119905) 120590

119904

] = Σ (119905) 120579 (119905)

(10)

where 120579(119905) = (120582119901(119905) 120582

119904radic119881(119905))

1015840 Let 1199090be the nominal wealth

at time 0Since the real value of the wealth reflects the real purchase

power of the current market the nominal value of the wealthshould be converted into the real value By discounting thevalue of nominal wealth with the price level process thereal value of wealth will be obtained Now denote 119883(119905) =119883(119905)119875(119905) and 119871(119905) = 119871(119905)119875(119905) and by Itorsquos formula we

obtain the real wealth process 119883120587(119905) and real salary income

process 119871(119905) as follows119889119883

120587(119905) = 119883

120587(119905)

sdot [119877 (119905) minus 120583119901(119905) + 120590

2

119901+ 120587 (119905) Σ (119905) (120579 (119905) minus 120588

119901)] 119889119905

+ 119896119871 (119905) 119889119905 + 119883120587(119905) (120587 (119905) Σ (119905) minus 120588

1015840

119901) 119889119882 (119905)

(11)

119889119871 (119905) = 119871 (119905) [120572119897(119905) 119889119905 + 120573

1015840

119897119889119882 (119905)] (12)

where 120572119897(119905) = 120583

119897minus 120583

119901(119905) + 120590

2

119901minus 120590

119897120590119901and 1205881015840

119901= (120590

119901 0)

1205731015840

119897= (120590

119897minus 120590

119901 0) For 119875(0) = 119901

0 the real initial wealth and

initial salary income are 119883120587(0) = 119909

0119901

0and 119871(0) = 119897

0119901

0

respectively Note that the dynamic process of119883120587(119905) depends

on the real salary income process 119871(119905) and the stochasticvolatility process 119881(119905) but it is independent of the price levelprocess 119875(119905)

Definition 4 (admissible strategy) LetO = RtimesR+timesR+ and

G = [0 119879] times O A strategy 120587(119905) = 120587119868(119905) 120587

119878(119905)

119905isin[0119879]is said

to be admissible if(1) forall(119909 V 119897) isin O the SDE (11) has unique solution119883

120587(119904)

119904isin[119905119879]with119883120587

(119905) = 119909 119881(119905) = V and 119871(119905) = 119897

(2) forall119904 isin [119905 119879] E[int119879

119905[(120587

119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904]4119889119904] lt infin

(3) forall984858 isin [1 +infin) and forall(119905 119909 V 119897) isin GE

119905119909V119897[sup119904isin[119905119879]|119883

120587(119904)|

984858] lt infin where E

119905119909V119897[sdot] isthe condition expectation given 119883120587

(119905) = 119909 119881(119905) = Vand 119871(119905) = 119897

One denotes Π(119905 119909 V 119897) as the set of all admissiblestrategies with respect to the initial condition (119905 119909 V 119897) isin G

(II) After Retirement When the member of the pension planretires the accumulation value of the pension fund usually isused to purchase an annuity In practice the member usuallyhas two ways to purchase the annuity The first way is thatheshe purchases the annuity directly at the retirement timeFor example as being considered in [2 27] the accumulatedpension fund is used to purchase a paid-up annuity oncethe member arrives at the retirement age and the managerhas also to decide the part of the remaining mathematicalreserve to invest in the market The second way is that themember does not purchase the annuity directly but choosesthe income drawdown option at the retirement It means thatthe member withdraws a fixed income and invests the restof the wealth until heshe achieves the age when the time ofpurchasing the annuity is compulsory The interested readercan see [33 34] for details

Here we consider the first way Similar to [2] we assumethat the member purchases a paid-up annuity at the retire-ment time which guarantees the benefit to be given only on afixed time horizon [119879 119879+119873] and invests the rest of the wealthcontinuously in the market We denote119882 as the part of thefund used to purchase an annuity (119882 ⩽ 119883(119879)) Continuousbenefit (real value) paid from 119879 to 119879

1= 119879 + 119873 is 119902 = 119882119886

119873|

where 119886119873|= (1 minus 119890

minus120575119873)120575 and 120575 is the continuous technical

rate

Mathematical Problems in Engineering 5

Let119872(119905) denote the nominal total payment value of thebenefit at time interval [119879 119905] 119905 isin (119879 119879

1] For simplicity the

dynamics of119872(119905) can be modeled as119872(119905) = int119905

119879119902119875(119904)119889119904 or

119889119872(119905) = 119902119875(119905)119889119905 This setting is reasonable and realistic anda similar setting is used in [17] It means that after retirementthe nominal benefit is adjusted dynamically based on theinflation rate of that time that is at time 119905 the nominalbenefit is 119902119875(119905) which keeps the purchasing power level ofthe retirees not decreasing We assume that once the retiredmember dies during [119879 119879

1] the pension fund continues to be

invested and the remaining annuity benefit and the terminalwealth119883(119879

1) are paid off to hisher offspring If themember is

alive until 1198791 the wealth119883(119879

1) is left for hisher later life Let

119868(119905) and

119878(119905) represent the propositions of the pension fund

wealth invested in the inflation-linked index bond and thestock respectively Denote (119905) = (

119868(119905)

119878(119905)) 119905 isin [119879 119879

1]

as the decision-making process Then after retirement thedynamics of nominal wealth process is

119889119883

(119905) = 119883

(119905) [119877 (119905) + (119905) Σ (119905) 120579 (119905)] 119889119905

minus 119902119875 (119905) 119889119905 + 119883

(119905) (119905) Σ (119905) 119889119882 (119905)

(13)

Using the same method as before retirement we obtain thereal wealth process as follows

119889119883(119905) = 119883

(119905)

sdot [119877 (119905) minus 120583119901(119905) + 120590

2

119901+ (119905) Σ (119905) (120579 (119905) minus 120588

119901)] 119889119905

minus 119902 119889119905 + 119883(119905) ( (119905) Σ (119905) minus 120588

1015840

119901) 119889119882 (119905)

(14)

Now we give the definition of the admissible strategy for thedecision-making process (119905)

Definition 5 (admissible strategy) Let O1= R times R+ and

G1= [119879 119879

1] times O

1 A strategy (119905) =

119868(119905)

119878(119905)

119905isin[1198791198791]is

said to be admissible if

(1) forall(119909 V) isin O1 the SDE (14) has unique solution

119883(119904)

119904isin[1199051198791]with119883

(119905) = 119909 119881(119905) = V

(2) forall119904 isin [119905 1198791] E[int119879

1

119905[(

119868(119904) minus 1)120590

119901+

119878(119904)120590

119904]4119889119904] lt infin

(3) forall984858 isin [1 +infin) and forall(119905 119909 V) isin G1

E119905119909V[sup119904isin[119905119879

1]|119883

(119904)|

984858] lt infin where E

119905119909V[sdot] isthe condition expectation given 119883

(119905) = 119909 and

119881(119905) = V

One denotes Π(119905 119909 V) as the set of all admissible strategieswith respect to the initial condition (119905 119909 V) isin G

1

3 Problem Formulation before Retirementand Verification Theorem

In this section we assume that the pension plan managerhopes to maximize the expectation of the total wealth atretirement time119879 meanwhileminimizing the variance of thewealth at retirement So the pension plan manager faces a

continuous-time MV portfolio problem However since theMV objective function does not satisfy the iterated expecta-tion property Bellmanrsquos optimality principle does not holdunder the continuous-time framework Hence this problemis time-inconsistent This means that for the pension fundmanager without precommitment should take into accountthat heshemay have different objective functions in differenttimes We can thus view this problem as a noncooperativegame At each time 119905 there is one player named player 119905representing the future incarnation of the manager at time119905 At any state (119905 119909 V 119897) the manager faces an optimal controlproblem with value function 119881(119905 119909 V 119897) as follows

119869 (119905 119909 V 119897 120587) = E119905119909V119897 [119883

120587(119879)]

minus120574

2Var

119905119909V119897 [119883120587(119879)]

119881 (119905 119909 V 119897) = sup120587isinΠ(119905119909V119897)

119869 (119905 119909 V 119897 120587)

(P1)

where 120574 represents the risk aversion level of the managerand Var

119905119909V119897[sdot] refers to the conditional variance Since theobjective of the pensionmanager updates with different statethemanagerrsquos decision process is like a game process betweenan infinite number of distinct players Thus we need to lookfor a subgame perfect Nash equilibrium point for the gameand determine an equilibrium strategy 120587lowast

If we denote 119910120587(119905 119909 V 119897) = E

119905119909V119897[119883120587(119879)] 119911120587(119905 119909 V 119897) =

E119905119909V119897[(119883

120587(119879))

2] then the value function 119881(119905 119909 V 119897) can be

rewritten as119881 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (15)

where 119891(119905 119909 V 119897 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

31 Verification Theorem Based on the idea of the Nashequilibrium similarly to [11] we first give the definition ofequilibrium strategy

Definition 6 For any given initial state (119905 119909 V 119897) isin Gconsider an admissible strategy 120587lowast

(119905 119909 V 119897) and choose threereal numbers 120591 gt 0

119868 and

119861 one defines the following

strategy

120587120591(119904 V )

=

(119868

119861) 119905 ⩽ 119904 lt 119905 + 120591 ( V ) isin O

120587lowast(119904 V ) 119905 + 120591 ⩽ 119904 lt 119879 ( V ) isin O

(16)

If lim120591rarr0

inf((119891120587lowast

(119905) minus 119891120587120591(119905))120591) ⩾ 0 forall(

119868

119861) isin R times R

then 120587lowast(119905 119909 V 119897) is called an equilibrium strategy and the

equilibrium value function is defined by

119881 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897)) (17)

where 119891120587(119905) = 119891(119905 119909 V 119897 119910120587

(119905 119909 V 119897) 119911120587(119905 119909 V 119897)) for short

6 Mathematical Problems in Engineering

For any 120601(119905 119909 V 119897) isin 1198621222(G) we define a set 119863

119901(G) =

120601(119905 119909 V 119897) | 120601(119905 119909 V 119897) isin 1198621222

(G) and all first-orderpartial derivatives of 120601(sdot 119909 V 119897) satisfy the polynomial growthcondition on O and we define a variational operator asfollows (in the following we will omit the variable 119905 fornotation convenience)

A120587120601 (119905 119909 V 119897)

= 120601119905+ 120601

119909[119896119897 + 119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901))]

+ 120601V120572 (120575 minus V) + 120601119897120572119897119897

+1

21206011199091199091199092(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V

+1

212060111989711989711989721205731015840

119897120573119897+ 120601

119909V119909120590VradicV (120587Σ minus 1205881015840

119901) 120573V

+ 120601119909119897119909119897 (120587Σ minus 120588

1015840

119901) 120573

119897+ 120601V119897119897120590VradicV120573

1015840

119897120573V

(18)

where 120573V = (0 120588119904V)1015840 Now we give the verification theorem of

problem (P1)

Theorem 7 (verification theorem) For problem (P1) if there

exist three real value functions 119865(119905 119909 V 119897) 119866(119905 119909 V 119897) and119867(119905 119909 V 119897) isin 119863

119901(G) satisfying the following conditions

forall(119905 119909 V 119897) isin G

sup120587isinΠ(119905119909V119897)

A120587119865 (119905 119909 V 119897) minus 120585120587 (119905 119909 V 119897) = 0 (19)

119865 (119879 119909 V 119897) = 119891 (119879 119909 V 119897 119909 1199092) (20)

A120587lowast

119866 (119905 119909 V 119897) = 0

119866 (119879 119909 V 119897) = 119909(21)

A120587lowast

119867(119905 119909 V 119897) = 0

119867 (119879 119909 V 119897) = 1199092

(22)

where 120587lowast= arg sup

120587isinΠ(119905119909V119897)A120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897)

then 119881(119905 119909 V 119897) = 119865(119905 119909 V 119897) 119910120587lowast

(119905 119909 V 119897) = 119866(119905 119909 V 119897) and119911120587lowast

(119905 119909 V 119897) = 119867(119905 119909 V 119897) and 120587lowast is the equilibrium strategywhere

120585120587(119905 119909 V 119897)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901)) + 119896119897] 119891

119909

+ [120572 (120575 minus V)] 119891V + 120572119897119897119891119897

+1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092119880

120587

1+1

21205902

V V119880120587

2

+1

211989721205731015840

119897120573119897119880

120587

3+ 120590VradicV119909 (120587Σ minus 120588

1015840

119901) 120573V119880

120587

4

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897119880

120587

5+ 120590VradicV119897120573

1015840

119897120573V119880

120587

6

119880120587

1

= 119891119909119909+ 119891

119910119910(119910

120587

119909)2

+ 119891119911119911(119911

120587

119909)2

+ 2119891119909119910119910120587

119909+ 2119891

119909119911119911120587

119909

+ 2119891119910119911119910120587

119909119911120587

119909

119880120587

2

= 119891VV + 119891119910119910 (119910120587

V )2

+ 119891119911119911(119911

120587

V )2

+ 2119891V119910119910120587

V + 2119891V119911119911120587

V

+ 2119891119910119911119910120587

V 119911120587

V

119880120587

3

= 119891119897119897+ 119891

119910119910(119910

120587

119897)2

+ 119891119911119911(119911

120587

119897)2

+ 2119891119897119910119910120587

119897+ 2119891

119897119911119911120587

119897

+ 2119891119910119911119910120587

119897119911120587

119897

119880120587

4

= 119891119910119910119910120587

119909119910120587

V + 119891119911119911119911120587

119909119911120587

V + 119891119909V + 119891119909119910119910120587

V + 119891119909119911119911120587

V

+ 119891V119910119910120587

119909+ 119891V119911119911

120587

119909+ 119891

119910119911(119910

120587

119909119911120587

V + 119910120587

V 119911120587

119909)

119880120587

5

= 119891119910119910119910120587

119909119910120587

119897+ 119891

119911119911119911120587

119909119911120587

119897+ 119891

119909119897+ 119891

119909119910119910120587

119897+ 119891

119909119911119911120587

119897

+ 119891119897119910119910120587

119909+ 119891

119897119911119911120587

119909+ 119891

119910119911(119910

120587

119909119911120587

119897+ 119910

120587

119897119911120587

119909)

119880120587

6

= 119891119910119910119910120587

V 119910120587

119897+ 119891

119911119911119911120587

V 119911120587

119897+ 119891V119897 + 119891V119910119910

120587

119897+ 119891V119911119911

120587

119897

+ 119891119897119910119910120587

V + 119891119897119911119911120587

V + 119891119910119911 (119910120587

119897119911120587

V + 119910120587

V 119911120587

119897)

(23)

and 119891 = 119891(119905 119909 V 119897 119910 119911) 119910120587= 119910

120587(119905 119909 V 119897) and 119911120587 =

119911120587(119905 119909 V 119897)

The proof of this theorem is given in the AppendixEquations (19) (21) and (22) are called an extended

HJB equations system By solving this equations systemwe can obtain the equilibrium strategy and correspondingequilibrium value function

32 Solution to the Equilibrium Strategy Since 119891(119905 119909 V 119897 119910119911) = 119910 minus (1205742)(119911 minus 119910

2) according to Theorem 7 we have

119880120587lowast

1= 120574119866

2

119909 119880120587

lowast

2= 120574119866

2

V 119880120587lowast

3= 120574119866

2

119897 119880120587

lowast

4= 120574119866

119909119866V 119880

120587lowast

5=

120574119866119909119866

119897 and 119880120587

lowast

6= 120574119866V119866119897

so

120585120587lowast

(119905 119909 V 119897) =1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092120574119866

2

119909

+1

21205902

V V1205741198662

V +1

211989721205731015840

119897120573119897120574119866

2

119897

+ 120590VradicV1198971205731015840

119897120573V120574119866V119866119897

+ 120590VradicV119909 (120587Σ minus 1205881015840

119901) 120573V120574119866V119866119909

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897120574119866

119909119866

119897

(24)

Mathematical Problems in Engineering 7

By differentiatingA120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897) with respect to

120587(119905) we can obtain the equilibrium strategy

120587lowast(119905) = minus

[119865119909(120579 minus 120588

119901)1015840

+ (119865119909V minus 120574119866119909

119866V) 120590VradicV1205731015840

V + (119865119909119897 minus 120574119866119909119866

119897) 119897120573

1015840

119897] Σ

minus1

(119865119909119909minus 120574119866

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(25)

Inspired by [24] we suppose 119865(119905 119909 V 119897) and 119866(119905 119909 V 119897) havethe following linear forms with respect to 119909 V and 119897

119865 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

119866 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

(26)

Then120587lowast(119905)

=

[119860 (119905) (120579 minus 120588119901)1015840

minus 119860 (119905) 119861 (119905) 120590VradicV1205731015840

V minus 119860 (119905) 119862 (119905) 1205741198971205731015840

119897] Σ

minus1

1205741198602

(119905) 119909

+ 1205881015840

119901Σ

minus1

(27)

Inserting 120587lowast(119905) intoA120587

lowast

119865(119905 119909 V 119897) minus 120585120587lowast

(119905 119909 V 119897) = 0 weget the following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905) minus

1198612

(119905)

21205741205902

V V

+1

21205741198602

(119905)

[1198602(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120588119904V120590VV

minus 2119860 (119905) 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897

+ 1198602

(119905) 1198612

(119905) 1205902

V1205882

119904VV] = 0

(28)

Separating with 119909 V 119897 and other terms we obtain thefollowing ordinary differential equations (ODEs)

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 minus

1198612

(119905)

21205902

V +1

21198602

(119905)

[1198602(119905) 120582

2

119904

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120590V120588119904V + 119860

2

(119905) 1198612

(119905) 1205902

V1205882

119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) 120572

119897(119905) minus

1

119860 (119905)

119860 (119905) 119862 (119905) (120582119901(119905)

minus 120590119901) (120590

119897minus 120590

119901) = 0

119863119905+ 120572120575119861 (119905) +

1

21198602

(119905)

1198602(119905) (120582

119901(119905) minus 120590

119901)2

= 0

(29)

Now we insert 120587lowast(119905) into A120587

lowast

119866(119905 119909 V 119897) = 0 and obtainthe following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905)

+1

120574119860 (119905)

[119860 (119905) ((120582119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119860 (119905) 119861 (119905) 120582119904120590V120588119904VV

minus 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897] = 0

(30)

Similarly separating with 119909 V 119897 and other terms we obtainthe following ODEs

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 +

1

119860 (119905)

[119860 (119905) 1205822

119904minus 119860 (119905) 119861 (119905) 120582

119904120590V120588119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) [120572

119897(119905) minus (120582

119901(119905) minus 120590

119901) (120590

119897minus 120590

119901)]

= 0

119863119905+ 120572120575119861 (119905) +

1

119860 (119905)

119860 (119905) (120582119901(119905) minus 120590

119901)2

= 0

(31)

By using the corresponding boundary conditions we get thesolutions of the ODEs (29) and (31) as follows

119860 (119905) = 119860 (119905) = 119890int119879

119905[119877(119904)minus120583

119901(119904)+120582

119901(119904)120590119901]119889119904= 119890

int119879

119905119903(119904)119889119904

(32)

119861 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(119879minus119905)

] (33)

8 Mathematical Problems in Engineering

119861 (119905) =1

2119890minus120572(119879minus119905)

int

119879

119905

1198921(119904) 119890

120572(119879minus119904)119889119904 (34)

119862 (119905) = 119862 (119905) = 119896int

119879

119905

119890int119904

119905119898(119906)119889119906

119890int119879

119904119903(119906)119889119906

119889119904 (35)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 +1

2int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (36)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 + int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (37)

where 1198921(119904) = 120582

2

119904minus2120582

119904120590V120588119904V119861(119904)+119861

2

(119904)1205902

V (1205882

119904Vminus1) and119898(119906) =120583119897minus 120583

119901(119906) + 120582

119901(119906)(120590

119901minus 120590

119897) Substituting the above results

into (27) and after some rearrangement we can conclude thefollowing theorem

Theorem 8 For problem (P1) the equilibrium investment

strategy is

120587lowast

119868(119905) =

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V119861 (119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879 minus 119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

(38)

120587lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(119879minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (119879 minus 119905)]

120574119909119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(39)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int119879

119905119903(119904)119889119904

+119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574 (40)

where 119861(119905) 119862(119905) and 119863(119905) are given by (34) (35) and (36)

Note that

E119905119909V119897 [119883

120587lowast

(119879)]

= 119909119890int119879

119905119903(119904)119889119904

+1

120574[119861 (119905) V + 119863 (119905)] + 119862 (119905) 119897

(41)

Var119905119909V119897 [119883

120587lowast

(119879)] = 119867 (119905 119909 V 119897) minus 1198662(119905 119909 V 119897)

=2

120574[119866 (119905 119909 V 119897) minus 119865 (119905 119909 V 119897)]

=2

1205742[(119861 (119905) minus 119861 (119905)) V + 119863 (119905) minus 119863 (119905)]

(42)

Thus we obtain the following so-called equilibrium efficientfrontier which reflects the relationship between the invest-ment risk and return under the equilibrium strategy

Corollary 9 For MV problem (P1) based on state (119905 119909 V 119897)

its equilibrium efficient frontier is

E119905119909V119897 [119883

120587lowast

(119879)] = 119909119890int119879

119905119903(119904)119889119904

+ 119862 (119905) 119897

+ 119873 (119905 V 119897) radicVar119905119909V119897 [119883

120587lowast

(119879)]

(43)

where 119873(119905 V 119897) = [119861(119905)V + 119863(119905)]

radic2[(119861(119905) minus 119861(119905))V + 119863(119905) minus 119863(119905)]

Remark 10 By (38) and (39) we find that the equilibriuminvestment proportion in the stock has the similar expressionas in [24] although their study focuses on the optimal invest-ment and reinsurance problem In addition the equilibriuminvestment money in the stock is only the function of time119905 which is independent of the current wealth However forthe inflation-linked bond the equilibrium investmentmoneydepends on current wealth and the more the wealth isthe more the inflation-linked bond is invested This resultis consistent with the economic intuition considering thatwhen the manager has more wealth the sensitivity to theinflation risk becomes higher and the corresponding hedgingdemand is improved

Remark 11 In view of (38) we find that if 120590119901gt 120590

119897 that is the

volatility rate of the inflation is larger than that of the salaryincome the equilibrium investment amount in the inflation-linked bond has positive relationship with the salary levelOtherwise it has negative relationship with the salary level

Remark 12 From (42) and (43) if Var119905119909V119897[119883

120587(119879)] = 0 it

means that the pension fund manager bears no risk at allunder the state (119905 119909 V 119897) this is equivalent to the case of120574 rarr infin that is the pension fund manager is fully averseto risk In this case 120587lowast

119878(119905) = 0 and 120587lowast

119868(119905) = 1 minus ((120590

119897minus

120590119901)119909120590

119901)119897119862(119905)119890

minusint119879

119905119903(119904)119889119904 This indicates that the manager will

only invest all the fund in the inflation-linked bond and therisk-free money market account and obtain the expected realterminal wealth of 119909119890int

119879

119905119903(119904)119889119904

+ 119862(119905)119897 at retirement time 119879 Itconsists of two parts The first part is the accumulation ofthe initial wealth 119909 and the second part can be seen as theaccumulation of the contribution

Mathematical Problems in Engineering 9

Remark 13 If we do not consider the risk of stochasticvolatility of the stock price that is let 120572 = 0 120590V = 0 thenthe equilibrium strategy is simplified as

120587lowast

119868(119905)

= [

120582119901(119905) minus 120590

119901minus 120582

119904120590119904

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1

120587lowast

119878(119905) =

120582119904119890minusint119879

119905119903(119904)119889119904

120574119909

(44)

In this case we find that 120587lowast

119878(119905) is consistent with the

result of the ordinaryMVportfolio problem under the Black-Scholes market (see [11]) This indicates that the contributionof the salary income has no influence on the equilibriuminvestment amount of the stock Furthermore if we do notconsider the risk of inflation that is 120583

119901(119905) = 120590

119901= 120590

119904= 0

then 119877(119905) = 119903(119905) and the inflation-linked bond is degeneratedto the risk-free money market account

4 Problem Formulation after Retirement andVerification Theorem

After retirement we assume that the pension plan memberpurchases a paid-up annuity during the time horizon [119879 119879 +119873] Thus the objective function of the pension plan manageris to maximize the expected surplus after paying off thebenefit to the member and minimize the variance of thesurplus at time 119879

1= 119879 + 119873 So at the state (119905 119909 V) isin G

1

the manager faces the following optimal control problem

(119905 119909 V) = supisinΠ(119905119909V)

E119905119909V [119883

(119879

1)]

minus120574

2Var

119905119909V [119883(119879

1)]

(P2)

Similarly to the method of Section 3 we denote 119910(119905 119909 V) =

E119905119909V[119883

(119879

1)] 119911(119905 119909 V) = E

119905119909V[(119883(119879

1))

2] Then we can

rewrite

(119905 119909 V)

= supisinΠ(119905119909V)

(119905 119909 V 119910(119905 119909 V) 119911 (119905 119909 V))

(45)

where (119905 119909 V 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

41 VerificationTheorem In this subsection we first give thedefinition of equilibrium strategy after retirement and thengive the verification theoremwhich is satisfied by the equilib-rium value function Now for any 120601(119905 119909 V) isin 119862122

(G1) let

set 119901(G

1) = 120601(119905 119909 V) | 120601(119905 119909 V) isin 119862122

(G1) and all first-

order partial derivatives of 120601(sdot 119909 V) satisfy the polynomialgrowth condition on O

1 and denote differential operator as

L120601 (119905 119909 V)

= 120601119905+ 120601

119909[119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902]

+ 120601V120572 (120575 minus V) +1

21206011199091199091199092(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V + 120601119909V119909120590VradicV (Σ minus 1205881015840

119901) 120573V

(46)

Definition 14 For any given initial state (119905 119909 V) isin G1

consider an admissible strategy lowast(119905 119909 V) and choose three

real numbers 120591 gt 0 120587119868 and 120587

119861 one defines the following

strategy

120587120591(119904 119909 V)

=

(120587119868 120587

119861) 119905 ⩽ 119904 lt 119905 + 120591 (119909 V) isin O

1

lowast(119904 119909 V) 119905 + 120591 ⩽ 119904 lt 119879

1 (119909 V) isin O

1

(47)

If lim120591rarr0

inf((lowast

(119905) minus 120587120591

(119905))120591) ⩾ 0 forall(120587119868 120587

119861) isin R times R

then lowast(119905 119909 V) is called an equilibrium strategy and the

equilibrium value function is defined as (119905 119909 V) = (119905 119909 V119910lowast

(119905 119909 V) 119911lowast

(119905 119909 V)) where

(119905) = (119905 119909 V 119910(119905 119909 V)

119911(119905 119909 V)) for short

Theorem 15 (verification theorem) For the optimal assetallocation problem (P

2) if there exist three real value functions

(119905 119909 V) (119905 119909 V) and (119905 119909 V) isin 119901(G

1) satisfying the

following conditions forall(119905 119909 V) isin G1

supisinΠ(119905119909V)

L (119905 119909 V) minus 120593

(119905 119909 V) = 0

(1198791 119909 V) = (119879

1 119909 V 119909 1199092

)

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 119909

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 1199092

(48)

where lowast= arg sup

isinΠ(119905119909V)L(119905 119909 V) minus 120593

(119905 119909 V) then(119905 119909 V) = (119905 119909 V) 119910

lowast

(119905 119909 V) = (119905 119909 V) and 119911lowast

(119905 119909

V) = (119905 119909 V) and lowast is the equilibrium strategy where

120593(119905 119909 V)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902] 119891

119909

+ 119891V120572 (120575 minus V) +1

2(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

1199092

1

+1

21205902

V V

2+ 120590VradicV119909 (

1015840Σ minus 120588

1015840

119901) 120573V

3

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

4 Mathematical Problems in Engineering

continuously to hisher pension fund account with a fixedrate 119896 of hisher salary income that is heshe contributes theamount of money 119896119871(119905) to hisher pension fund account attime 119905 The pension fund is invested in the financial marketby the manager Denote 120587

119868(119905) and 120587

119878(119905) as the propositions

of wealth invested in the inflation-linked index bond and thestock respectively Then 120587

119861(119905) = 1 minus 120587

119868(119905) minus 120587

119878(119905) is the

proposition of the risk-free money market account Denote120587(119905) = (120587

119868(119905) 120587

119878(119905)) 119905 isin [0 119879] as the decision-making

process Now we rewrite the SDEs (2) and (4) as matrix form

[[[

[

119889119868 (119905)

119868 (119905)

119889119878 (119905)

119878 (119905)

]]]

]

= [

119903 (119905) + 120583119901(119905)

119877 (119905) + 120582119904119881 (119905) + 120582

119901(119905) 120590

119904

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

120583(119905)

119889119905

+ [

120590119901

0

120590119904radic119881 (119905)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Σ(119905)

[

119889119882119901(119905)

119889119882119904(119905)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119889119882(119905)

(8)

Denote 119883120587

(119905) as the nominal value of the wealth processassociated with the investment strategy 120587 Then the nominalwealth process119883120587

(119905) satisfies

119889119883120587

(119905)

= 119883120587

(119905) [120587119861(119905)119889119861 (119905)

119861 (119905)+ 120587

119868(119905)119889119868 (119905)

119868 (119905)+ 120587

119878(119905)119889119878 (119905)

119878 (119905)]

+ 119896119871 (119905) 119889119905

= 119883120587

(119905) [119877 (119905) + 120587 (119905) (120583 (119905) minus 119877 (119905) 1)] 119889119905

+ 119883120587

(119905) 120587 (119905) Σ (119905) 119889119882 (119905) + 119896119871 (119905) 119889119905

= 119883120587

(119905) [119877 (119905) + 120587 (119905) Σ (119905) 120579 (119905)] 119889119905 + 119896119871 (119905) 119889119905

+ 119883120587

(119905) 120587 (119905) Σ (119905) 119889119882 (119905)

(9)

where 1 = (1 1)1015840 The last equation holds because of (7) and

120583 (119905) minus 119877 (119905) 1 = [119903 (119905) minus 119877 (119905) + 120583

119901(119905)

120582119904119881 (119905) + 120582

119901(119905) 120590

119904

]

= [

120582119901(119905) 120590

119901

120582119904119881 (119905) + 120582

119901(119905) 120590

119904

] = Σ (119905) 120579 (119905)

(10)

where 120579(119905) = (120582119901(119905) 120582

119904radic119881(119905))

1015840 Let 1199090be the nominal wealth

at time 0Since the real value of the wealth reflects the real purchase

power of the current market the nominal value of the wealthshould be converted into the real value By discounting thevalue of nominal wealth with the price level process thereal value of wealth will be obtained Now denote 119883(119905) =119883(119905)119875(119905) and 119871(119905) = 119871(119905)119875(119905) and by Itorsquos formula we

obtain the real wealth process 119883120587(119905) and real salary income

process 119871(119905) as follows119889119883

120587(119905) = 119883

120587(119905)

sdot [119877 (119905) minus 120583119901(119905) + 120590

2

119901+ 120587 (119905) Σ (119905) (120579 (119905) minus 120588

119901)] 119889119905

+ 119896119871 (119905) 119889119905 + 119883120587(119905) (120587 (119905) Σ (119905) minus 120588

1015840

119901) 119889119882 (119905)

(11)

119889119871 (119905) = 119871 (119905) [120572119897(119905) 119889119905 + 120573

1015840

119897119889119882 (119905)] (12)

where 120572119897(119905) = 120583

119897minus 120583

119901(119905) + 120590

2

119901minus 120590

119897120590119901and 1205881015840

119901= (120590

119901 0)

1205731015840

119897= (120590

119897minus 120590

119901 0) For 119875(0) = 119901

0 the real initial wealth and

initial salary income are 119883120587(0) = 119909

0119901

0and 119871(0) = 119897

0119901

0

respectively Note that the dynamic process of119883120587(119905) depends

on the real salary income process 119871(119905) and the stochasticvolatility process 119881(119905) but it is independent of the price levelprocess 119875(119905)

Definition 4 (admissible strategy) LetO = RtimesR+timesR+ and

G = [0 119879] times O A strategy 120587(119905) = 120587119868(119905) 120587

119878(119905)

119905isin[0119879]is said

to be admissible if(1) forall(119909 V 119897) isin O the SDE (11) has unique solution119883

120587(119904)

119904isin[119905119879]with119883120587

(119905) = 119909 119881(119905) = V and 119871(119905) = 119897

(2) forall119904 isin [119905 119879] E[int119879

119905[(120587

119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904]4119889119904] lt infin

(3) forall984858 isin [1 +infin) and forall(119905 119909 V 119897) isin GE

119905119909V119897[sup119904isin[119905119879]|119883

120587(119904)|

984858] lt infin where E

119905119909V119897[sdot] isthe condition expectation given 119883120587

(119905) = 119909 119881(119905) = Vand 119871(119905) = 119897

One denotes Π(119905 119909 V 119897) as the set of all admissiblestrategies with respect to the initial condition (119905 119909 V 119897) isin G

(II) After Retirement When the member of the pension planretires the accumulation value of the pension fund usually isused to purchase an annuity In practice the member usuallyhas two ways to purchase the annuity The first way is thatheshe purchases the annuity directly at the retirement timeFor example as being considered in [2 27] the accumulatedpension fund is used to purchase a paid-up annuity oncethe member arrives at the retirement age and the managerhas also to decide the part of the remaining mathematicalreserve to invest in the market The second way is that themember does not purchase the annuity directly but choosesthe income drawdown option at the retirement It means thatthe member withdraws a fixed income and invests the restof the wealth until heshe achieves the age when the time ofpurchasing the annuity is compulsory The interested readercan see [33 34] for details

Here we consider the first way Similar to [2] we assumethat the member purchases a paid-up annuity at the retire-ment time which guarantees the benefit to be given only on afixed time horizon [119879 119879+119873] and invests the rest of the wealthcontinuously in the market We denote119882 as the part of thefund used to purchase an annuity (119882 ⩽ 119883(119879)) Continuousbenefit (real value) paid from 119879 to 119879

1= 119879 + 119873 is 119902 = 119882119886

119873|

where 119886119873|= (1 minus 119890

minus120575119873)120575 and 120575 is the continuous technical

rate

Mathematical Problems in Engineering 5

Let119872(119905) denote the nominal total payment value of thebenefit at time interval [119879 119905] 119905 isin (119879 119879

1] For simplicity the

dynamics of119872(119905) can be modeled as119872(119905) = int119905

119879119902119875(119904)119889119904 or

119889119872(119905) = 119902119875(119905)119889119905 This setting is reasonable and realistic anda similar setting is used in [17] It means that after retirementthe nominal benefit is adjusted dynamically based on theinflation rate of that time that is at time 119905 the nominalbenefit is 119902119875(119905) which keeps the purchasing power level ofthe retirees not decreasing We assume that once the retiredmember dies during [119879 119879

1] the pension fund continues to be

invested and the remaining annuity benefit and the terminalwealth119883(119879

1) are paid off to hisher offspring If themember is

alive until 1198791 the wealth119883(119879

1) is left for hisher later life Let

119868(119905) and

119878(119905) represent the propositions of the pension fund

wealth invested in the inflation-linked index bond and thestock respectively Denote (119905) = (

119868(119905)

119878(119905)) 119905 isin [119879 119879

1]

as the decision-making process Then after retirement thedynamics of nominal wealth process is

119889119883

(119905) = 119883

(119905) [119877 (119905) + (119905) Σ (119905) 120579 (119905)] 119889119905

minus 119902119875 (119905) 119889119905 + 119883

(119905) (119905) Σ (119905) 119889119882 (119905)

(13)

Using the same method as before retirement we obtain thereal wealth process as follows

119889119883(119905) = 119883

(119905)

sdot [119877 (119905) minus 120583119901(119905) + 120590

2

119901+ (119905) Σ (119905) (120579 (119905) minus 120588

119901)] 119889119905

minus 119902 119889119905 + 119883(119905) ( (119905) Σ (119905) minus 120588

1015840

119901) 119889119882 (119905)

(14)

Now we give the definition of the admissible strategy for thedecision-making process (119905)

Definition 5 (admissible strategy) Let O1= R times R+ and

G1= [119879 119879

1] times O

1 A strategy (119905) =

119868(119905)

119878(119905)

119905isin[1198791198791]is

said to be admissible if

(1) forall(119909 V) isin O1 the SDE (14) has unique solution

119883(119904)

119904isin[1199051198791]with119883

(119905) = 119909 119881(119905) = V

(2) forall119904 isin [119905 1198791] E[int119879

1

119905[(

119868(119904) minus 1)120590

119901+

119878(119904)120590

119904]4119889119904] lt infin

(3) forall984858 isin [1 +infin) and forall(119905 119909 V) isin G1

E119905119909V[sup119904isin[119905119879

1]|119883

(119904)|

984858] lt infin where E

119905119909V[sdot] isthe condition expectation given 119883

(119905) = 119909 and

119881(119905) = V

One denotes Π(119905 119909 V) as the set of all admissible strategieswith respect to the initial condition (119905 119909 V) isin G

1

3 Problem Formulation before Retirementand Verification Theorem

In this section we assume that the pension plan managerhopes to maximize the expectation of the total wealth atretirement time119879 meanwhileminimizing the variance of thewealth at retirement So the pension plan manager faces a

continuous-time MV portfolio problem However since theMV objective function does not satisfy the iterated expecta-tion property Bellmanrsquos optimality principle does not holdunder the continuous-time framework Hence this problemis time-inconsistent This means that for the pension fundmanager without precommitment should take into accountthat heshemay have different objective functions in differenttimes We can thus view this problem as a noncooperativegame At each time 119905 there is one player named player 119905representing the future incarnation of the manager at time119905 At any state (119905 119909 V 119897) the manager faces an optimal controlproblem with value function 119881(119905 119909 V 119897) as follows

119869 (119905 119909 V 119897 120587) = E119905119909V119897 [119883

120587(119879)]

minus120574

2Var

119905119909V119897 [119883120587(119879)]

119881 (119905 119909 V 119897) = sup120587isinΠ(119905119909V119897)

119869 (119905 119909 V 119897 120587)

(P1)

where 120574 represents the risk aversion level of the managerand Var

119905119909V119897[sdot] refers to the conditional variance Since theobjective of the pensionmanager updates with different statethemanagerrsquos decision process is like a game process betweenan infinite number of distinct players Thus we need to lookfor a subgame perfect Nash equilibrium point for the gameand determine an equilibrium strategy 120587lowast

If we denote 119910120587(119905 119909 V 119897) = E

119905119909V119897[119883120587(119879)] 119911120587(119905 119909 V 119897) =

E119905119909V119897[(119883

120587(119879))

2] then the value function 119881(119905 119909 V 119897) can be

rewritten as119881 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (15)

where 119891(119905 119909 V 119897 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

31 Verification Theorem Based on the idea of the Nashequilibrium similarly to [11] we first give the definition ofequilibrium strategy

Definition 6 For any given initial state (119905 119909 V 119897) isin Gconsider an admissible strategy 120587lowast

(119905 119909 V 119897) and choose threereal numbers 120591 gt 0

119868 and

119861 one defines the following

strategy

120587120591(119904 V )

=

(119868

119861) 119905 ⩽ 119904 lt 119905 + 120591 ( V ) isin O

120587lowast(119904 V ) 119905 + 120591 ⩽ 119904 lt 119879 ( V ) isin O

(16)

If lim120591rarr0

inf((119891120587lowast

(119905) minus 119891120587120591(119905))120591) ⩾ 0 forall(

119868

119861) isin R times R

then 120587lowast(119905 119909 V 119897) is called an equilibrium strategy and the

equilibrium value function is defined by

119881 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897)) (17)

where 119891120587(119905) = 119891(119905 119909 V 119897 119910120587

(119905 119909 V 119897) 119911120587(119905 119909 V 119897)) for short

6 Mathematical Problems in Engineering

For any 120601(119905 119909 V 119897) isin 1198621222(G) we define a set 119863

119901(G) =

120601(119905 119909 V 119897) | 120601(119905 119909 V 119897) isin 1198621222

(G) and all first-orderpartial derivatives of 120601(sdot 119909 V 119897) satisfy the polynomial growthcondition on O and we define a variational operator asfollows (in the following we will omit the variable 119905 fornotation convenience)

A120587120601 (119905 119909 V 119897)

= 120601119905+ 120601

119909[119896119897 + 119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901))]

+ 120601V120572 (120575 minus V) + 120601119897120572119897119897

+1

21206011199091199091199092(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V

+1

212060111989711989711989721205731015840

119897120573119897+ 120601

119909V119909120590VradicV (120587Σ minus 1205881015840

119901) 120573V

+ 120601119909119897119909119897 (120587Σ minus 120588

1015840

119901) 120573

119897+ 120601V119897119897120590VradicV120573

1015840

119897120573V

(18)

where 120573V = (0 120588119904V)1015840 Now we give the verification theorem of

problem (P1)

Theorem 7 (verification theorem) For problem (P1) if there

exist three real value functions 119865(119905 119909 V 119897) 119866(119905 119909 V 119897) and119867(119905 119909 V 119897) isin 119863

119901(G) satisfying the following conditions

forall(119905 119909 V 119897) isin G

sup120587isinΠ(119905119909V119897)

A120587119865 (119905 119909 V 119897) minus 120585120587 (119905 119909 V 119897) = 0 (19)

119865 (119879 119909 V 119897) = 119891 (119879 119909 V 119897 119909 1199092) (20)

A120587lowast

119866 (119905 119909 V 119897) = 0

119866 (119879 119909 V 119897) = 119909(21)

A120587lowast

119867(119905 119909 V 119897) = 0

119867 (119879 119909 V 119897) = 1199092

(22)

where 120587lowast= arg sup

120587isinΠ(119905119909V119897)A120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897)

then 119881(119905 119909 V 119897) = 119865(119905 119909 V 119897) 119910120587lowast

(119905 119909 V 119897) = 119866(119905 119909 V 119897) and119911120587lowast

(119905 119909 V 119897) = 119867(119905 119909 V 119897) and 120587lowast is the equilibrium strategywhere

120585120587(119905 119909 V 119897)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901)) + 119896119897] 119891

119909

+ [120572 (120575 minus V)] 119891V + 120572119897119897119891119897

+1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092119880

120587

1+1

21205902

V V119880120587

2

+1

211989721205731015840

119897120573119897119880

120587

3+ 120590VradicV119909 (120587Σ minus 120588

1015840

119901) 120573V119880

120587

4

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897119880

120587

5+ 120590VradicV119897120573

1015840

119897120573V119880

120587

6

119880120587

1

= 119891119909119909+ 119891

119910119910(119910

120587

119909)2

+ 119891119911119911(119911

120587

119909)2

+ 2119891119909119910119910120587

119909+ 2119891

119909119911119911120587

119909

+ 2119891119910119911119910120587

119909119911120587

119909

119880120587

2

= 119891VV + 119891119910119910 (119910120587

V )2

+ 119891119911119911(119911

120587

V )2

+ 2119891V119910119910120587

V + 2119891V119911119911120587

V

+ 2119891119910119911119910120587

V 119911120587

V

119880120587

3

= 119891119897119897+ 119891

119910119910(119910

120587

119897)2

+ 119891119911119911(119911

120587

119897)2

+ 2119891119897119910119910120587

119897+ 2119891

119897119911119911120587

119897

+ 2119891119910119911119910120587

119897119911120587

119897

119880120587

4

= 119891119910119910119910120587

119909119910120587

V + 119891119911119911119911120587

119909119911120587

V + 119891119909V + 119891119909119910119910120587

V + 119891119909119911119911120587

V

+ 119891V119910119910120587

119909+ 119891V119911119911

120587

119909+ 119891

119910119911(119910

120587

119909119911120587

V + 119910120587

V 119911120587

119909)

119880120587

5

= 119891119910119910119910120587

119909119910120587

119897+ 119891

119911119911119911120587

119909119911120587

119897+ 119891

119909119897+ 119891

119909119910119910120587

119897+ 119891

119909119911119911120587

119897

+ 119891119897119910119910120587

119909+ 119891

119897119911119911120587

119909+ 119891

119910119911(119910

120587

119909119911120587

119897+ 119910

120587

119897119911120587

119909)

119880120587

6

= 119891119910119910119910120587

V 119910120587

119897+ 119891

119911119911119911120587

V 119911120587

119897+ 119891V119897 + 119891V119910119910

120587

119897+ 119891V119911119911

120587

119897

+ 119891119897119910119910120587

V + 119891119897119911119911120587

V + 119891119910119911 (119910120587

119897119911120587

V + 119910120587

V 119911120587

119897)

(23)

and 119891 = 119891(119905 119909 V 119897 119910 119911) 119910120587= 119910

120587(119905 119909 V 119897) and 119911120587 =

119911120587(119905 119909 V 119897)

The proof of this theorem is given in the AppendixEquations (19) (21) and (22) are called an extended

HJB equations system By solving this equations systemwe can obtain the equilibrium strategy and correspondingequilibrium value function

32 Solution to the Equilibrium Strategy Since 119891(119905 119909 V 119897 119910119911) = 119910 minus (1205742)(119911 minus 119910

2) according to Theorem 7 we have

119880120587lowast

1= 120574119866

2

119909 119880120587

lowast

2= 120574119866

2

V 119880120587lowast

3= 120574119866

2

119897 119880120587

lowast

4= 120574119866

119909119866V 119880

120587lowast

5=

120574119866119909119866

119897 and 119880120587

lowast

6= 120574119866V119866119897

so

120585120587lowast

(119905 119909 V 119897) =1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092120574119866

2

119909

+1

21205902

V V1205741198662

V +1

211989721205731015840

119897120573119897120574119866

2

119897

+ 120590VradicV1198971205731015840

119897120573V120574119866V119866119897

+ 120590VradicV119909 (120587Σ minus 1205881015840

119901) 120573V120574119866V119866119909

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897120574119866

119909119866

119897

(24)

Mathematical Problems in Engineering 7

By differentiatingA120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897) with respect to

120587(119905) we can obtain the equilibrium strategy

120587lowast(119905) = minus

[119865119909(120579 minus 120588

119901)1015840

+ (119865119909V minus 120574119866119909

119866V) 120590VradicV1205731015840

V + (119865119909119897 minus 120574119866119909119866

119897) 119897120573

1015840

119897] Σ

minus1

(119865119909119909minus 120574119866

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(25)

Inspired by [24] we suppose 119865(119905 119909 V 119897) and 119866(119905 119909 V 119897) havethe following linear forms with respect to 119909 V and 119897

119865 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

119866 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

(26)

Then120587lowast(119905)

=

[119860 (119905) (120579 minus 120588119901)1015840

minus 119860 (119905) 119861 (119905) 120590VradicV1205731015840

V minus 119860 (119905) 119862 (119905) 1205741198971205731015840

119897] Σ

minus1

1205741198602

(119905) 119909

+ 1205881015840

119901Σ

minus1

(27)

Inserting 120587lowast(119905) intoA120587

lowast

119865(119905 119909 V 119897) minus 120585120587lowast

(119905 119909 V 119897) = 0 weget the following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905) minus

1198612

(119905)

21205741205902

V V

+1

21205741198602

(119905)

[1198602(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120588119904V120590VV

minus 2119860 (119905) 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897

+ 1198602

(119905) 1198612

(119905) 1205902

V1205882

119904VV] = 0

(28)

Separating with 119909 V 119897 and other terms we obtain thefollowing ordinary differential equations (ODEs)

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 minus

1198612

(119905)

21205902

V +1

21198602

(119905)

[1198602(119905) 120582

2

119904

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120590V120588119904V + 119860

2

(119905) 1198612

(119905) 1205902

V1205882

119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) 120572

119897(119905) minus

1

119860 (119905)

119860 (119905) 119862 (119905) (120582119901(119905)

minus 120590119901) (120590

119897minus 120590

119901) = 0

119863119905+ 120572120575119861 (119905) +

1

21198602

(119905)

1198602(119905) (120582

119901(119905) minus 120590

119901)2

= 0

(29)

Now we insert 120587lowast(119905) into A120587

lowast

119866(119905 119909 V 119897) = 0 and obtainthe following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905)

+1

120574119860 (119905)

[119860 (119905) ((120582119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119860 (119905) 119861 (119905) 120582119904120590V120588119904VV

minus 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897] = 0

(30)

Similarly separating with 119909 V 119897 and other terms we obtainthe following ODEs

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 +

1

119860 (119905)

[119860 (119905) 1205822

119904minus 119860 (119905) 119861 (119905) 120582

119904120590V120588119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) [120572

119897(119905) minus (120582

119901(119905) minus 120590

119901) (120590

119897minus 120590

119901)]

= 0

119863119905+ 120572120575119861 (119905) +

1

119860 (119905)

119860 (119905) (120582119901(119905) minus 120590

119901)2

= 0

(31)

By using the corresponding boundary conditions we get thesolutions of the ODEs (29) and (31) as follows

119860 (119905) = 119860 (119905) = 119890int119879

119905[119877(119904)minus120583

119901(119904)+120582

119901(119904)120590119901]119889119904= 119890

int119879

119905119903(119904)119889119904

(32)

119861 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(119879minus119905)

] (33)

8 Mathematical Problems in Engineering

119861 (119905) =1

2119890minus120572(119879minus119905)

int

119879

119905

1198921(119904) 119890

120572(119879minus119904)119889119904 (34)

119862 (119905) = 119862 (119905) = 119896int

119879

119905

119890int119904

119905119898(119906)119889119906

119890int119879

119904119903(119906)119889119906

119889119904 (35)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 +1

2int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (36)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 + int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (37)

where 1198921(119904) = 120582

2

119904minus2120582

119904120590V120588119904V119861(119904)+119861

2

(119904)1205902

V (1205882

119904Vminus1) and119898(119906) =120583119897minus 120583

119901(119906) + 120582

119901(119906)(120590

119901minus 120590

119897) Substituting the above results

into (27) and after some rearrangement we can conclude thefollowing theorem

Theorem 8 For problem (P1) the equilibrium investment

strategy is

120587lowast

119868(119905) =

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V119861 (119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879 minus 119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

(38)

120587lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(119879minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (119879 minus 119905)]

120574119909119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(39)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int119879

119905119903(119904)119889119904

+119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574 (40)

where 119861(119905) 119862(119905) and 119863(119905) are given by (34) (35) and (36)

Note that

E119905119909V119897 [119883

120587lowast

(119879)]

= 119909119890int119879

119905119903(119904)119889119904

+1

120574[119861 (119905) V + 119863 (119905)] + 119862 (119905) 119897

(41)

Var119905119909V119897 [119883

120587lowast

(119879)] = 119867 (119905 119909 V 119897) minus 1198662(119905 119909 V 119897)

=2

120574[119866 (119905 119909 V 119897) minus 119865 (119905 119909 V 119897)]

=2

1205742[(119861 (119905) minus 119861 (119905)) V + 119863 (119905) minus 119863 (119905)]

(42)

Thus we obtain the following so-called equilibrium efficientfrontier which reflects the relationship between the invest-ment risk and return under the equilibrium strategy

Corollary 9 For MV problem (P1) based on state (119905 119909 V 119897)

its equilibrium efficient frontier is

E119905119909V119897 [119883

120587lowast

(119879)] = 119909119890int119879

119905119903(119904)119889119904

+ 119862 (119905) 119897

+ 119873 (119905 V 119897) radicVar119905119909V119897 [119883

120587lowast

(119879)]

(43)

where 119873(119905 V 119897) = [119861(119905)V + 119863(119905)]

radic2[(119861(119905) minus 119861(119905))V + 119863(119905) minus 119863(119905)]

Remark 10 By (38) and (39) we find that the equilibriuminvestment proportion in the stock has the similar expressionas in [24] although their study focuses on the optimal invest-ment and reinsurance problem In addition the equilibriuminvestment money in the stock is only the function of time119905 which is independent of the current wealth However forthe inflation-linked bond the equilibrium investmentmoneydepends on current wealth and the more the wealth isthe more the inflation-linked bond is invested This resultis consistent with the economic intuition considering thatwhen the manager has more wealth the sensitivity to theinflation risk becomes higher and the corresponding hedgingdemand is improved

Remark 11 In view of (38) we find that if 120590119901gt 120590

119897 that is the

volatility rate of the inflation is larger than that of the salaryincome the equilibrium investment amount in the inflation-linked bond has positive relationship with the salary levelOtherwise it has negative relationship with the salary level

Remark 12 From (42) and (43) if Var119905119909V119897[119883

120587(119879)] = 0 it

means that the pension fund manager bears no risk at allunder the state (119905 119909 V 119897) this is equivalent to the case of120574 rarr infin that is the pension fund manager is fully averseto risk In this case 120587lowast

119878(119905) = 0 and 120587lowast

119868(119905) = 1 minus ((120590

119897minus

120590119901)119909120590

119901)119897119862(119905)119890

minusint119879

119905119903(119904)119889119904 This indicates that the manager will

only invest all the fund in the inflation-linked bond and therisk-free money market account and obtain the expected realterminal wealth of 119909119890int

119879

119905119903(119904)119889119904

+ 119862(119905)119897 at retirement time 119879 Itconsists of two parts The first part is the accumulation ofthe initial wealth 119909 and the second part can be seen as theaccumulation of the contribution

Mathematical Problems in Engineering 9

Remark 13 If we do not consider the risk of stochasticvolatility of the stock price that is let 120572 = 0 120590V = 0 thenthe equilibrium strategy is simplified as

120587lowast

119868(119905)

= [

120582119901(119905) minus 120590

119901minus 120582

119904120590119904

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1

120587lowast

119878(119905) =

120582119904119890minusint119879

119905119903(119904)119889119904

120574119909

(44)

In this case we find that 120587lowast

119878(119905) is consistent with the

result of the ordinaryMVportfolio problem under the Black-Scholes market (see [11]) This indicates that the contributionof the salary income has no influence on the equilibriuminvestment amount of the stock Furthermore if we do notconsider the risk of inflation that is 120583

119901(119905) = 120590

119901= 120590

119904= 0

then 119877(119905) = 119903(119905) and the inflation-linked bond is degeneratedto the risk-free money market account

4 Problem Formulation after Retirement andVerification Theorem

After retirement we assume that the pension plan memberpurchases a paid-up annuity during the time horizon [119879 119879 +119873] Thus the objective function of the pension plan manageris to maximize the expected surplus after paying off thebenefit to the member and minimize the variance of thesurplus at time 119879

1= 119879 + 119873 So at the state (119905 119909 V) isin G

1

the manager faces the following optimal control problem

(119905 119909 V) = supisinΠ(119905119909V)

E119905119909V [119883

(119879

1)]

minus120574

2Var

119905119909V [119883(119879

1)]

(P2)

Similarly to the method of Section 3 we denote 119910(119905 119909 V) =

E119905119909V[119883

(119879

1)] 119911(119905 119909 V) = E

119905119909V[(119883(119879

1))

2] Then we can

rewrite

(119905 119909 V)

= supisinΠ(119905119909V)

(119905 119909 V 119910(119905 119909 V) 119911 (119905 119909 V))

(45)

where (119905 119909 V 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

41 VerificationTheorem In this subsection we first give thedefinition of equilibrium strategy after retirement and thengive the verification theoremwhich is satisfied by the equilib-rium value function Now for any 120601(119905 119909 V) isin 119862122

(G1) let

set 119901(G

1) = 120601(119905 119909 V) | 120601(119905 119909 V) isin 119862122

(G1) and all first-

order partial derivatives of 120601(sdot 119909 V) satisfy the polynomialgrowth condition on O

1 and denote differential operator as

L120601 (119905 119909 V)

= 120601119905+ 120601

119909[119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902]

+ 120601V120572 (120575 minus V) +1

21206011199091199091199092(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V + 120601119909V119909120590VradicV (Σ minus 1205881015840

119901) 120573V

(46)

Definition 14 For any given initial state (119905 119909 V) isin G1

consider an admissible strategy lowast(119905 119909 V) and choose three

real numbers 120591 gt 0 120587119868 and 120587

119861 one defines the following

strategy

120587120591(119904 119909 V)

=

(120587119868 120587

119861) 119905 ⩽ 119904 lt 119905 + 120591 (119909 V) isin O

1

lowast(119904 119909 V) 119905 + 120591 ⩽ 119904 lt 119879

1 (119909 V) isin O

1

(47)

If lim120591rarr0

inf((lowast

(119905) minus 120587120591

(119905))120591) ⩾ 0 forall(120587119868 120587

119861) isin R times R

then lowast(119905 119909 V) is called an equilibrium strategy and the

equilibrium value function is defined as (119905 119909 V) = (119905 119909 V119910lowast

(119905 119909 V) 119911lowast

(119905 119909 V)) where

(119905) = (119905 119909 V 119910(119905 119909 V)

119911(119905 119909 V)) for short

Theorem 15 (verification theorem) For the optimal assetallocation problem (P

2) if there exist three real value functions

(119905 119909 V) (119905 119909 V) and (119905 119909 V) isin 119901(G

1) satisfying the

following conditions forall(119905 119909 V) isin G1

supisinΠ(119905119909V)

L (119905 119909 V) minus 120593

(119905 119909 V) = 0

(1198791 119909 V) = (119879

1 119909 V 119909 1199092

)

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 119909

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 1199092

(48)

where lowast= arg sup

isinΠ(119905119909V)L(119905 119909 V) minus 120593

(119905 119909 V) then(119905 119909 V) = (119905 119909 V) 119910

lowast

(119905 119909 V) = (119905 119909 V) and 119911lowast

(119905 119909

V) = (119905 119909 V) and lowast is the equilibrium strategy where

120593(119905 119909 V)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902] 119891

119909

+ 119891V120572 (120575 minus V) +1

2(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

1199092

1

+1

21205902

V V

2+ 120590VradicV119909 (

1015840Σ minus 120588

1015840

119901) 120573V

3

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Mathematical Problems in Engineering 5

Let119872(119905) denote the nominal total payment value of thebenefit at time interval [119879 119905] 119905 isin (119879 119879

1] For simplicity the

dynamics of119872(119905) can be modeled as119872(119905) = int119905

119879119902119875(119904)119889119904 or

119889119872(119905) = 119902119875(119905)119889119905 This setting is reasonable and realistic anda similar setting is used in [17] It means that after retirementthe nominal benefit is adjusted dynamically based on theinflation rate of that time that is at time 119905 the nominalbenefit is 119902119875(119905) which keeps the purchasing power level ofthe retirees not decreasing We assume that once the retiredmember dies during [119879 119879

1] the pension fund continues to be

invested and the remaining annuity benefit and the terminalwealth119883(119879

1) are paid off to hisher offspring If themember is

alive until 1198791 the wealth119883(119879

1) is left for hisher later life Let

119868(119905) and

119878(119905) represent the propositions of the pension fund

wealth invested in the inflation-linked index bond and thestock respectively Denote (119905) = (

119868(119905)

119878(119905)) 119905 isin [119879 119879

1]

as the decision-making process Then after retirement thedynamics of nominal wealth process is

119889119883

(119905) = 119883

(119905) [119877 (119905) + (119905) Σ (119905) 120579 (119905)] 119889119905

minus 119902119875 (119905) 119889119905 + 119883

(119905) (119905) Σ (119905) 119889119882 (119905)

(13)

Using the same method as before retirement we obtain thereal wealth process as follows

119889119883(119905) = 119883

(119905)

sdot [119877 (119905) minus 120583119901(119905) + 120590

2

119901+ (119905) Σ (119905) (120579 (119905) minus 120588

119901)] 119889119905

minus 119902 119889119905 + 119883(119905) ( (119905) Σ (119905) minus 120588

1015840

119901) 119889119882 (119905)

(14)

Now we give the definition of the admissible strategy for thedecision-making process (119905)

Definition 5 (admissible strategy) Let O1= R times R+ and

G1= [119879 119879

1] times O

1 A strategy (119905) =

119868(119905)

119878(119905)

119905isin[1198791198791]is

said to be admissible if

(1) forall(119909 V) isin O1 the SDE (14) has unique solution

119883(119904)

119904isin[1199051198791]with119883

(119905) = 119909 119881(119905) = V

(2) forall119904 isin [119905 1198791] E[int119879

1

119905[(

119868(119904) minus 1)120590

119901+

119878(119904)120590

119904]4119889119904] lt infin

(3) forall984858 isin [1 +infin) and forall(119905 119909 V) isin G1

E119905119909V[sup119904isin[119905119879

1]|119883

(119904)|

984858] lt infin where E

119905119909V[sdot] isthe condition expectation given 119883

(119905) = 119909 and

119881(119905) = V

One denotes Π(119905 119909 V) as the set of all admissible strategieswith respect to the initial condition (119905 119909 V) isin G

1

3 Problem Formulation before Retirementand Verification Theorem

In this section we assume that the pension plan managerhopes to maximize the expectation of the total wealth atretirement time119879 meanwhileminimizing the variance of thewealth at retirement So the pension plan manager faces a

continuous-time MV portfolio problem However since theMV objective function does not satisfy the iterated expecta-tion property Bellmanrsquos optimality principle does not holdunder the continuous-time framework Hence this problemis time-inconsistent This means that for the pension fundmanager without precommitment should take into accountthat heshemay have different objective functions in differenttimes We can thus view this problem as a noncooperativegame At each time 119905 there is one player named player 119905representing the future incarnation of the manager at time119905 At any state (119905 119909 V 119897) the manager faces an optimal controlproblem with value function 119881(119905 119909 V 119897) as follows

119869 (119905 119909 V 119897 120587) = E119905119909V119897 [119883

120587(119879)]

minus120574

2Var

119905119909V119897 [119883120587(119879)]

119881 (119905 119909 V 119897) = sup120587isinΠ(119905119909V119897)

119869 (119905 119909 V 119897 120587)

(P1)

where 120574 represents the risk aversion level of the managerand Var

119905119909V119897[sdot] refers to the conditional variance Since theobjective of the pensionmanager updates with different statethemanagerrsquos decision process is like a game process betweenan infinite number of distinct players Thus we need to lookfor a subgame perfect Nash equilibrium point for the gameand determine an equilibrium strategy 120587lowast

If we denote 119910120587(119905 119909 V 119897) = E

119905119909V119897[119883120587(119879)] 119911120587(119905 119909 V 119897) =

E119905119909V119897[(119883

120587(119879))

2] then the value function 119881(119905 119909 V 119897) can be

rewritten as119881 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (15)

where 119891(119905 119909 V 119897 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

31 Verification Theorem Based on the idea of the Nashequilibrium similarly to [11] we first give the definition ofequilibrium strategy

Definition 6 For any given initial state (119905 119909 V 119897) isin Gconsider an admissible strategy 120587lowast

(119905 119909 V 119897) and choose threereal numbers 120591 gt 0

119868 and

119861 one defines the following

strategy

120587120591(119904 V )

=

(119868

119861) 119905 ⩽ 119904 lt 119905 + 120591 ( V ) isin O

120587lowast(119904 V ) 119905 + 120591 ⩽ 119904 lt 119879 ( V ) isin O

(16)

If lim120591rarr0

inf((119891120587lowast

(119905) minus 119891120587120591(119905))120591) ⩾ 0 forall(

119868

119861) isin R times R

then 120587lowast(119905 119909 V 119897) is called an equilibrium strategy and the

equilibrium value function is defined by

119881 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897)) (17)

where 119891120587(119905) = 119891(119905 119909 V 119897 119910120587

(119905 119909 V 119897) 119911120587(119905 119909 V 119897)) for short

6 Mathematical Problems in Engineering

For any 120601(119905 119909 V 119897) isin 1198621222(G) we define a set 119863

119901(G) =

120601(119905 119909 V 119897) | 120601(119905 119909 V 119897) isin 1198621222

(G) and all first-orderpartial derivatives of 120601(sdot 119909 V 119897) satisfy the polynomial growthcondition on O and we define a variational operator asfollows (in the following we will omit the variable 119905 fornotation convenience)

A120587120601 (119905 119909 V 119897)

= 120601119905+ 120601

119909[119896119897 + 119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901))]

+ 120601V120572 (120575 minus V) + 120601119897120572119897119897

+1

21206011199091199091199092(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V

+1

212060111989711989711989721205731015840

119897120573119897+ 120601

119909V119909120590VradicV (120587Σ minus 1205881015840

119901) 120573V

+ 120601119909119897119909119897 (120587Σ minus 120588

1015840

119901) 120573

119897+ 120601V119897119897120590VradicV120573

1015840

119897120573V

(18)

where 120573V = (0 120588119904V)1015840 Now we give the verification theorem of

problem (P1)

Theorem 7 (verification theorem) For problem (P1) if there

exist three real value functions 119865(119905 119909 V 119897) 119866(119905 119909 V 119897) and119867(119905 119909 V 119897) isin 119863

119901(G) satisfying the following conditions

forall(119905 119909 V 119897) isin G

sup120587isinΠ(119905119909V119897)

A120587119865 (119905 119909 V 119897) minus 120585120587 (119905 119909 V 119897) = 0 (19)

119865 (119879 119909 V 119897) = 119891 (119879 119909 V 119897 119909 1199092) (20)

A120587lowast

119866 (119905 119909 V 119897) = 0

119866 (119879 119909 V 119897) = 119909(21)

A120587lowast

119867(119905 119909 V 119897) = 0

119867 (119879 119909 V 119897) = 1199092

(22)

where 120587lowast= arg sup

120587isinΠ(119905119909V119897)A120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897)

then 119881(119905 119909 V 119897) = 119865(119905 119909 V 119897) 119910120587lowast

(119905 119909 V 119897) = 119866(119905 119909 V 119897) and119911120587lowast

(119905 119909 V 119897) = 119867(119905 119909 V 119897) and 120587lowast is the equilibrium strategywhere

120585120587(119905 119909 V 119897)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901)) + 119896119897] 119891

119909

+ [120572 (120575 minus V)] 119891V + 120572119897119897119891119897

+1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092119880

120587

1+1

21205902

V V119880120587

2

+1

211989721205731015840

119897120573119897119880

120587

3+ 120590VradicV119909 (120587Σ minus 120588

1015840

119901) 120573V119880

120587

4

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897119880

120587

5+ 120590VradicV119897120573

1015840

119897120573V119880

120587

6

119880120587

1

= 119891119909119909+ 119891

119910119910(119910

120587

119909)2

+ 119891119911119911(119911

120587

119909)2

+ 2119891119909119910119910120587

119909+ 2119891

119909119911119911120587

119909

+ 2119891119910119911119910120587

119909119911120587

119909

119880120587

2

= 119891VV + 119891119910119910 (119910120587

V )2

+ 119891119911119911(119911

120587

V )2

+ 2119891V119910119910120587

V + 2119891V119911119911120587

V

+ 2119891119910119911119910120587

V 119911120587

V

119880120587

3

= 119891119897119897+ 119891

119910119910(119910

120587

119897)2

+ 119891119911119911(119911

120587

119897)2

+ 2119891119897119910119910120587

119897+ 2119891

119897119911119911120587

119897

+ 2119891119910119911119910120587

119897119911120587

119897

119880120587

4

= 119891119910119910119910120587

119909119910120587

V + 119891119911119911119911120587

119909119911120587

V + 119891119909V + 119891119909119910119910120587

V + 119891119909119911119911120587

V

+ 119891V119910119910120587

119909+ 119891V119911119911

120587

119909+ 119891

119910119911(119910

120587

119909119911120587

V + 119910120587

V 119911120587

119909)

119880120587

5

= 119891119910119910119910120587

119909119910120587

119897+ 119891

119911119911119911120587

119909119911120587

119897+ 119891

119909119897+ 119891

119909119910119910120587

119897+ 119891

119909119911119911120587

119897

+ 119891119897119910119910120587

119909+ 119891

119897119911119911120587

119909+ 119891

119910119911(119910

120587

119909119911120587

119897+ 119910

120587

119897119911120587

119909)

119880120587

6

= 119891119910119910119910120587

V 119910120587

119897+ 119891

119911119911119911120587

V 119911120587

119897+ 119891V119897 + 119891V119910119910

120587

119897+ 119891V119911119911

120587

119897

+ 119891119897119910119910120587

V + 119891119897119911119911120587

V + 119891119910119911 (119910120587

119897119911120587

V + 119910120587

V 119911120587

119897)

(23)

and 119891 = 119891(119905 119909 V 119897 119910 119911) 119910120587= 119910

120587(119905 119909 V 119897) and 119911120587 =

119911120587(119905 119909 V 119897)

The proof of this theorem is given in the AppendixEquations (19) (21) and (22) are called an extended

HJB equations system By solving this equations systemwe can obtain the equilibrium strategy and correspondingequilibrium value function

32 Solution to the Equilibrium Strategy Since 119891(119905 119909 V 119897 119910119911) = 119910 minus (1205742)(119911 minus 119910

2) according to Theorem 7 we have

119880120587lowast

1= 120574119866

2

119909 119880120587

lowast

2= 120574119866

2

V 119880120587lowast

3= 120574119866

2

119897 119880120587

lowast

4= 120574119866

119909119866V 119880

120587lowast

5=

120574119866119909119866

119897 and 119880120587

lowast

6= 120574119866V119866119897

so

120585120587lowast

(119905 119909 V 119897) =1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092120574119866

2

119909

+1

21205902

V V1205741198662

V +1

211989721205731015840

119897120573119897120574119866

2

119897

+ 120590VradicV1198971205731015840

119897120573V120574119866V119866119897

+ 120590VradicV119909 (120587Σ minus 1205881015840

119901) 120573V120574119866V119866119909

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897120574119866

119909119866

119897

(24)

Mathematical Problems in Engineering 7

By differentiatingA120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897) with respect to

120587(119905) we can obtain the equilibrium strategy

120587lowast(119905) = minus

[119865119909(120579 minus 120588

119901)1015840

+ (119865119909V minus 120574119866119909

119866V) 120590VradicV1205731015840

V + (119865119909119897 minus 120574119866119909119866

119897) 119897120573

1015840

119897] Σ

minus1

(119865119909119909minus 120574119866

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(25)

Inspired by [24] we suppose 119865(119905 119909 V 119897) and 119866(119905 119909 V 119897) havethe following linear forms with respect to 119909 V and 119897

119865 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

119866 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

(26)

Then120587lowast(119905)

=

[119860 (119905) (120579 minus 120588119901)1015840

minus 119860 (119905) 119861 (119905) 120590VradicV1205731015840

V minus 119860 (119905) 119862 (119905) 1205741198971205731015840

119897] Σ

minus1

1205741198602

(119905) 119909

+ 1205881015840

119901Σ

minus1

(27)

Inserting 120587lowast(119905) intoA120587

lowast

119865(119905 119909 V 119897) minus 120585120587lowast

(119905 119909 V 119897) = 0 weget the following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905) minus

1198612

(119905)

21205741205902

V V

+1

21205741198602

(119905)

[1198602(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120588119904V120590VV

minus 2119860 (119905) 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897

+ 1198602

(119905) 1198612

(119905) 1205902

V1205882

119904VV] = 0

(28)

Separating with 119909 V 119897 and other terms we obtain thefollowing ordinary differential equations (ODEs)

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 minus

1198612

(119905)

21205902

V +1

21198602

(119905)

[1198602(119905) 120582

2

119904

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120590V120588119904V + 119860

2

(119905) 1198612

(119905) 1205902

V1205882

119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) 120572

119897(119905) minus

1

119860 (119905)

119860 (119905) 119862 (119905) (120582119901(119905)

minus 120590119901) (120590

119897minus 120590

119901) = 0

119863119905+ 120572120575119861 (119905) +

1

21198602

(119905)

1198602(119905) (120582

119901(119905) minus 120590

119901)2

= 0

(29)

Now we insert 120587lowast(119905) into A120587

lowast

119866(119905 119909 V 119897) = 0 and obtainthe following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905)

+1

120574119860 (119905)

[119860 (119905) ((120582119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119860 (119905) 119861 (119905) 120582119904120590V120588119904VV

minus 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897] = 0

(30)

Similarly separating with 119909 V 119897 and other terms we obtainthe following ODEs

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 +

1

119860 (119905)

[119860 (119905) 1205822

119904minus 119860 (119905) 119861 (119905) 120582

119904120590V120588119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) [120572

119897(119905) minus (120582

119901(119905) minus 120590

119901) (120590

119897minus 120590

119901)]

= 0

119863119905+ 120572120575119861 (119905) +

1

119860 (119905)

119860 (119905) (120582119901(119905) minus 120590

119901)2

= 0

(31)

By using the corresponding boundary conditions we get thesolutions of the ODEs (29) and (31) as follows

119860 (119905) = 119860 (119905) = 119890int119879

119905[119877(119904)minus120583

119901(119904)+120582

119901(119904)120590119901]119889119904= 119890

int119879

119905119903(119904)119889119904

(32)

119861 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(119879minus119905)

] (33)

8 Mathematical Problems in Engineering

119861 (119905) =1

2119890minus120572(119879minus119905)

int

119879

119905

1198921(119904) 119890

120572(119879minus119904)119889119904 (34)

119862 (119905) = 119862 (119905) = 119896int

119879

119905

119890int119904

119905119898(119906)119889119906

119890int119879

119904119903(119906)119889119906

119889119904 (35)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 +1

2int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (36)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 + int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (37)

where 1198921(119904) = 120582

2

119904minus2120582

119904120590V120588119904V119861(119904)+119861

2

(119904)1205902

V (1205882

119904Vminus1) and119898(119906) =120583119897minus 120583

119901(119906) + 120582

119901(119906)(120590

119901minus 120590

119897) Substituting the above results

into (27) and after some rearrangement we can conclude thefollowing theorem

Theorem 8 For problem (P1) the equilibrium investment

strategy is

120587lowast

119868(119905) =

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V119861 (119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879 minus 119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

(38)

120587lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(119879minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (119879 minus 119905)]

120574119909119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(39)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int119879

119905119903(119904)119889119904

+119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574 (40)

where 119861(119905) 119862(119905) and 119863(119905) are given by (34) (35) and (36)

Note that

E119905119909V119897 [119883

120587lowast

(119879)]

= 119909119890int119879

119905119903(119904)119889119904

+1

120574[119861 (119905) V + 119863 (119905)] + 119862 (119905) 119897

(41)

Var119905119909V119897 [119883

120587lowast

(119879)] = 119867 (119905 119909 V 119897) minus 1198662(119905 119909 V 119897)

=2

120574[119866 (119905 119909 V 119897) minus 119865 (119905 119909 V 119897)]

=2

1205742[(119861 (119905) minus 119861 (119905)) V + 119863 (119905) minus 119863 (119905)]

(42)

Thus we obtain the following so-called equilibrium efficientfrontier which reflects the relationship between the invest-ment risk and return under the equilibrium strategy

Corollary 9 For MV problem (P1) based on state (119905 119909 V 119897)

its equilibrium efficient frontier is

E119905119909V119897 [119883

120587lowast

(119879)] = 119909119890int119879

119905119903(119904)119889119904

+ 119862 (119905) 119897

+ 119873 (119905 V 119897) radicVar119905119909V119897 [119883

120587lowast

(119879)]

(43)

where 119873(119905 V 119897) = [119861(119905)V + 119863(119905)]

radic2[(119861(119905) minus 119861(119905))V + 119863(119905) minus 119863(119905)]

Remark 10 By (38) and (39) we find that the equilibriuminvestment proportion in the stock has the similar expressionas in [24] although their study focuses on the optimal invest-ment and reinsurance problem In addition the equilibriuminvestment money in the stock is only the function of time119905 which is independent of the current wealth However forthe inflation-linked bond the equilibrium investmentmoneydepends on current wealth and the more the wealth isthe more the inflation-linked bond is invested This resultis consistent with the economic intuition considering thatwhen the manager has more wealth the sensitivity to theinflation risk becomes higher and the corresponding hedgingdemand is improved

Remark 11 In view of (38) we find that if 120590119901gt 120590

119897 that is the

volatility rate of the inflation is larger than that of the salaryincome the equilibrium investment amount in the inflation-linked bond has positive relationship with the salary levelOtherwise it has negative relationship with the salary level

Remark 12 From (42) and (43) if Var119905119909V119897[119883

120587(119879)] = 0 it

means that the pension fund manager bears no risk at allunder the state (119905 119909 V 119897) this is equivalent to the case of120574 rarr infin that is the pension fund manager is fully averseto risk In this case 120587lowast

119878(119905) = 0 and 120587lowast

119868(119905) = 1 minus ((120590

119897minus

120590119901)119909120590

119901)119897119862(119905)119890

minusint119879

119905119903(119904)119889119904 This indicates that the manager will

only invest all the fund in the inflation-linked bond and therisk-free money market account and obtain the expected realterminal wealth of 119909119890int

119879

119905119903(119904)119889119904

+ 119862(119905)119897 at retirement time 119879 Itconsists of two parts The first part is the accumulation ofthe initial wealth 119909 and the second part can be seen as theaccumulation of the contribution

Mathematical Problems in Engineering 9

Remark 13 If we do not consider the risk of stochasticvolatility of the stock price that is let 120572 = 0 120590V = 0 thenthe equilibrium strategy is simplified as

120587lowast

119868(119905)

= [

120582119901(119905) minus 120590

119901minus 120582

119904120590119904

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1

120587lowast

119878(119905) =

120582119904119890minusint119879

119905119903(119904)119889119904

120574119909

(44)

In this case we find that 120587lowast

119878(119905) is consistent with the

result of the ordinaryMVportfolio problem under the Black-Scholes market (see [11]) This indicates that the contributionof the salary income has no influence on the equilibriuminvestment amount of the stock Furthermore if we do notconsider the risk of inflation that is 120583

119901(119905) = 120590

119901= 120590

119904= 0

then 119877(119905) = 119903(119905) and the inflation-linked bond is degeneratedto the risk-free money market account

4 Problem Formulation after Retirement andVerification Theorem

After retirement we assume that the pension plan memberpurchases a paid-up annuity during the time horizon [119879 119879 +119873] Thus the objective function of the pension plan manageris to maximize the expected surplus after paying off thebenefit to the member and minimize the variance of thesurplus at time 119879

1= 119879 + 119873 So at the state (119905 119909 V) isin G

1

the manager faces the following optimal control problem

(119905 119909 V) = supisinΠ(119905119909V)

E119905119909V [119883

(119879

1)]

minus120574

2Var

119905119909V [119883(119879

1)]

(P2)

Similarly to the method of Section 3 we denote 119910(119905 119909 V) =

E119905119909V[119883

(119879

1)] 119911(119905 119909 V) = E

119905119909V[(119883(119879

1))

2] Then we can

rewrite

(119905 119909 V)

= supisinΠ(119905119909V)

(119905 119909 V 119910(119905 119909 V) 119911 (119905 119909 V))

(45)

where (119905 119909 V 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

41 VerificationTheorem In this subsection we first give thedefinition of equilibrium strategy after retirement and thengive the verification theoremwhich is satisfied by the equilib-rium value function Now for any 120601(119905 119909 V) isin 119862122

(G1) let

set 119901(G

1) = 120601(119905 119909 V) | 120601(119905 119909 V) isin 119862122

(G1) and all first-

order partial derivatives of 120601(sdot 119909 V) satisfy the polynomialgrowth condition on O

1 and denote differential operator as

L120601 (119905 119909 V)

= 120601119905+ 120601

119909[119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902]

+ 120601V120572 (120575 minus V) +1

21206011199091199091199092(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V + 120601119909V119909120590VradicV (Σ minus 1205881015840

119901) 120573V

(46)

Definition 14 For any given initial state (119905 119909 V) isin G1

consider an admissible strategy lowast(119905 119909 V) and choose three

real numbers 120591 gt 0 120587119868 and 120587

119861 one defines the following

strategy

120587120591(119904 119909 V)

=

(120587119868 120587

119861) 119905 ⩽ 119904 lt 119905 + 120591 (119909 V) isin O

1

lowast(119904 119909 V) 119905 + 120591 ⩽ 119904 lt 119879

1 (119909 V) isin O

1

(47)

If lim120591rarr0

inf((lowast

(119905) minus 120587120591

(119905))120591) ⩾ 0 forall(120587119868 120587

119861) isin R times R

then lowast(119905 119909 V) is called an equilibrium strategy and the

equilibrium value function is defined as (119905 119909 V) = (119905 119909 V119910lowast

(119905 119909 V) 119911lowast

(119905 119909 V)) where

(119905) = (119905 119909 V 119910(119905 119909 V)

119911(119905 119909 V)) for short

Theorem 15 (verification theorem) For the optimal assetallocation problem (P

2) if there exist three real value functions

(119905 119909 V) (119905 119909 V) and (119905 119909 V) isin 119901(G

1) satisfying the

following conditions forall(119905 119909 V) isin G1

supisinΠ(119905119909V)

L (119905 119909 V) minus 120593

(119905 119909 V) = 0

(1198791 119909 V) = (119879

1 119909 V 119909 1199092

)

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 119909

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 1199092

(48)

where lowast= arg sup

isinΠ(119905119909V)L(119905 119909 V) minus 120593

(119905 119909 V) then(119905 119909 V) = (119905 119909 V) 119910

lowast

(119905 119909 V) = (119905 119909 V) and 119911lowast

(119905 119909

V) = (119905 119909 V) and lowast is the equilibrium strategy where

120593(119905 119909 V)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902] 119891

119909

+ 119891V120572 (120575 minus V) +1

2(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

1199092

1

+1

21205902

V V

2+ 120590VradicV119909 (

1015840Σ minus 120588

1015840

119901) 120573V

3

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

6 Mathematical Problems in Engineering

For any 120601(119905 119909 V 119897) isin 1198621222(G) we define a set 119863

119901(G) =

120601(119905 119909 V 119897) | 120601(119905 119909 V 119897) isin 1198621222

(G) and all first-orderpartial derivatives of 120601(sdot 119909 V 119897) satisfy the polynomial growthcondition on O and we define a variational operator asfollows (in the following we will omit the variable 119905 fornotation convenience)

A120587120601 (119905 119909 V 119897)

= 120601119905+ 120601

119909[119896119897 + 119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901))]

+ 120601V120572 (120575 minus V) + 120601119897120572119897119897

+1

21206011199091199091199092(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V

+1

212060111989711989711989721205731015840

119897120573119897+ 120601

119909V119909120590VradicV (120587Σ minus 1205881015840

119901) 120573V

+ 120601119909119897119909119897 (120587Σ minus 120588

1015840

119901) 120573

119897+ 120601V119897119897120590VradicV120573

1015840

119897120573V

(18)

where 120573V = (0 120588119904V)1015840 Now we give the verification theorem of

problem (P1)

Theorem 7 (verification theorem) For problem (P1) if there

exist three real value functions 119865(119905 119909 V 119897) 119866(119905 119909 V 119897) and119867(119905 119909 V 119897) isin 119863

119901(G) satisfying the following conditions

forall(119905 119909 V 119897) isin G

sup120587isinΠ(119905119909V119897)

A120587119865 (119905 119909 V 119897) minus 120585120587 (119905 119909 V 119897) = 0 (19)

119865 (119879 119909 V 119897) = 119891 (119879 119909 V 119897 119909 1199092) (20)

A120587lowast

119866 (119905 119909 V 119897) = 0

119866 (119879 119909 V 119897) = 119909(21)

A120587lowast

119867(119905 119909 V 119897) = 0

119867 (119879 119909 V 119897) = 1199092

(22)

where 120587lowast= arg sup

120587isinΠ(119905119909V119897)A120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897)

then 119881(119905 119909 V 119897) = 119865(119905 119909 V 119897) 119910120587lowast

(119905 119909 V 119897) = 119866(119905 119909 V 119897) and119911120587lowast

(119905 119909 V 119897) = 119867(119905 119909 V 119897) and 120587lowast is the equilibrium strategywhere

120585120587(119905 119909 V 119897)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ 120587Σ (120579 minus 120588

119901)) + 119896119897] 119891

119909

+ [120572 (120575 minus V)] 119891V + 120572119897119897119891119897

+1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092119880

120587

1+1

21205902

V V119880120587

2

+1

211989721205731015840

119897120573119897119880

120587

3+ 120590VradicV119909 (120587Σ minus 120588

1015840

119901) 120573V119880

120587

4

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897119880

120587

5+ 120590VradicV119897120573

1015840

119897120573V119880

120587

6

119880120587

1

= 119891119909119909+ 119891

119910119910(119910

120587

119909)2

+ 119891119911119911(119911

120587

119909)2

+ 2119891119909119910119910120587

119909+ 2119891

119909119911119911120587

119909

+ 2119891119910119911119910120587

119909119911120587

119909

119880120587

2

= 119891VV + 119891119910119910 (119910120587

V )2

+ 119891119911119911(119911

120587

V )2

+ 2119891V119910119910120587

V + 2119891V119911119911120587

V

+ 2119891119910119911119910120587

V 119911120587

V

119880120587

3

= 119891119897119897+ 119891

119910119910(119910

120587

119897)2

+ 119891119911119911(119911

120587

119897)2

+ 2119891119897119910119910120587

119897+ 2119891

119897119911119911120587

119897

+ 2119891119910119911119910120587

119897119911120587

119897

119880120587

4

= 119891119910119910119910120587

119909119910120587

V + 119891119911119911119911120587

119909119911120587

V + 119891119909V + 119891119909119910119910120587

V + 119891119909119911119911120587

V

+ 119891V119910119910120587

119909+ 119891V119911119911

120587

119909+ 119891

119910119911(119910

120587

119909119911120587

V + 119910120587

V 119911120587

119909)

119880120587

5

= 119891119910119910119910120587

119909119910120587

119897+ 119891

119911119911119911120587

119909119911120587

119897+ 119891

119909119897+ 119891

119909119910119910120587

119897+ 119891

119909119911119911120587

119897

+ 119891119897119910119910120587

119909+ 119891

119897119911119911120587

119909+ 119891

119910119911(119910

120587

119909119911120587

119897+ 119910

120587

119897119911120587

119909)

119880120587

6

= 119891119910119910119910120587

V 119910120587

119897+ 119891

119911119911119911120587

V 119911120587

119897+ 119891V119897 + 119891V119910119910

120587

119897+ 119891V119911119911

120587

119897

+ 119891119897119910119910120587

V + 119891119897119911119911120587

V + 119891119910119911 (119910120587

119897119911120587

V + 119910120587

V 119911120587

119897)

(23)

and 119891 = 119891(119905 119909 V 119897 119910 119911) 119910120587= 119910

120587(119905 119909 V 119897) and 119911120587 =

119911120587(119905 119909 V 119897)

The proof of this theorem is given in the AppendixEquations (19) (21) and (22) are called an extended

HJB equations system By solving this equations systemwe can obtain the equilibrium strategy and correspondingequilibrium value function

32 Solution to the Equilibrium Strategy Since 119891(119905 119909 V 119897 119910119911) = 119910 minus (1205742)(119911 minus 119910

2) according to Theorem 7 we have

119880120587lowast

1= 120574119866

2

119909 119880120587

lowast

2= 120574119866

2

V 119880120587lowast

3= 120574119866

2

119897 119880120587

lowast

4= 120574119866

119909119866V 119880

120587lowast

5=

120574119866119909119866

119897 and 119880120587

lowast

6= 120574119866V119866119897

so

120585120587lowast

(119905 119909 V 119897) =1

2(120587Σ minus 120588

1015840

119901) (120587Σ minus 120588

1015840

119901)1015840

1199092120574119866

2

119909

+1

21205902

V V1205741198662

V +1

211989721205731015840

119897120573119897120574119866

2

119897

+ 120590VradicV1198971205731015840

119897120573V120574119866V119866119897

+ 120590VradicV119909 (120587Σ minus 1205881015840

119901) 120573V120574119866V119866119909

+ 119909119897 (120587Σ minus 1205881015840

119901) 120573

119897120574119866

119909119866

119897

(24)

Mathematical Problems in Engineering 7

By differentiatingA120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897) with respect to

120587(119905) we can obtain the equilibrium strategy

120587lowast(119905) = minus

[119865119909(120579 minus 120588

119901)1015840

+ (119865119909V minus 120574119866119909

119866V) 120590VradicV1205731015840

V + (119865119909119897 minus 120574119866119909119866

119897) 119897120573

1015840

119897] Σ

minus1

(119865119909119909minus 120574119866

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(25)

Inspired by [24] we suppose 119865(119905 119909 V 119897) and 119866(119905 119909 V 119897) havethe following linear forms with respect to 119909 V and 119897

119865 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

119866 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

(26)

Then120587lowast(119905)

=

[119860 (119905) (120579 minus 120588119901)1015840

minus 119860 (119905) 119861 (119905) 120590VradicV1205731015840

V minus 119860 (119905) 119862 (119905) 1205741198971205731015840

119897] Σ

minus1

1205741198602

(119905) 119909

+ 1205881015840

119901Σ

minus1

(27)

Inserting 120587lowast(119905) intoA120587

lowast

119865(119905 119909 V 119897) minus 120585120587lowast

(119905 119909 V 119897) = 0 weget the following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905) minus

1198612

(119905)

21205741205902

V V

+1

21205741198602

(119905)

[1198602(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120588119904V120590VV

minus 2119860 (119905) 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897

+ 1198602

(119905) 1198612

(119905) 1205902

V1205882

119904VV] = 0

(28)

Separating with 119909 V 119897 and other terms we obtain thefollowing ordinary differential equations (ODEs)

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 minus

1198612

(119905)

21205902

V +1

21198602

(119905)

[1198602(119905) 120582

2

119904

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120590V120588119904V + 119860

2

(119905) 1198612

(119905) 1205902

V1205882

119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) 120572

119897(119905) minus

1

119860 (119905)

119860 (119905) 119862 (119905) (120582119901(119905)

minus 120590119901) (120590

119897minus 120590

119901) = 0

119863119905+ 120572120575119861 (119905) +

1

21198602

(119905)

1198602(119905) (120582

119901(119905) minus 120590

119901)2

= 0

(29)

Now we insert 120587lowast(119905) into A120587

lowast

119866(119905 119909 V 119897) = 0 and obtainthe following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905)

+1

120574119860 (119905)

[119860 (119905) ((120582119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119860 (119905) 119861 (119905) 120582119904120590V120588119904VV

minus 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897] = 0

(30)

Similarly separating with 119909 V 119897 and other terms we obtainthe following ODEs

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 +

1

119860 (119905)

[119860 (119905) 1205822

119904minus 119860 (119905) 119861 (119905) 120582

119904120590V120588119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) [120572

119897(119905) minus (120582

119901(119905) minus 120590

119901) (120590

119897minus 120590

119901)]

= 0

119863119905+ 120572120575119861 (119905) +

1

119860 (119905)

119860 (119905) (120582119901(119905) minus 120590

119901)2

= 0

(31)

By using the corresponding boundary conditions we get thesolutions of the ODEs (29) and (31) as follows

119860 (119905) = 119860 (119905) = 119890int119879

119905[119877(119904)minus120583

119901(119904)+120582

119901(119904)120590119901]119889119904= 119890

int119879

119905119903(119904)119889119904

(32)

119861 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(119879minus119905)

] (33)

8 Mathematical Problems in Engineering

119861 (119905) =1

2119890minus120572(119879minus119905)

int

119879

119905

1198921(119904) 119890

120572(119879minus119904)119889119904 (34)

119862 (119905) = 119862 (119905) = 119896int

119879

119905

119890int119904

119905119898(119906)119889119906

119890int119879

119904119903(119906)119889119906

119889119904 (35)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 +1

2int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (36)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 + int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (37)

where 1198921(119904) = 120582

2

119904minus2120582

119904120590V120588119904V119861(119904)+119861

2

(119904)1205902

V (1205882

119904Vminus1) and119898(119906) =120583119897minus 120583

119901(119906) + 120582

119901(119906)(120590

119901minus 120590

119897) Substituting the above results

into (27) and after some rearrangement we can conclude thefollowing theorem

Theorem 8 For problem (P1) the equilibrium investment

strategy is

120587lowast

119868(119905) =

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V119861 (119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879 minus 119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

(38)

120587lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(119879minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (119879 minus 119905)]

120574119909119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(39)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int119879

119905119903(119904)119889119904

+119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574 (40)

where 119861(119905) 119862(119905) and 119863(119905) are given by (34) (35) and (36)

Note that

E119905119909V119897 [119883

120587lowast

(119879)]

= 119909119890int119879

119905119903(119904)119889119904

+1

120574[119861 (119905) V + 119863 (119905)] + 119862 (119905) 119897

(41)

Var119905119909V119897 [119883

120587lowast

(119879)] = 119867 (119905 119909 V 119897) minus 1198662(119905 119909 V 119897)

=2

120574[119866 (119905 119909 V 119897) minus 119865 (119905 119909 V 119897)]

=2

1205742[(119861 (119905) minus 119861 (119905)) V + 119863 (119905) minus 119863 (119905)]

(42)

Thus we obtain the following so-called equilibrium efficientfrontier which reflects the relationship between the invest-ment risk and return under the equilibrium strategy

Corollary 9 For MV problem (P1) based on state (119905 119909 V 119897)

its equilibrium efficient frontier is

E119905119909V119897 [119883

120587lowast

(119879)] = 119909119890int119879

119905119903(119904)119889119904

+ 119862 (119905) 119897

+ 119873 (119905 V 119897) radicVar119905119909V119897 [119883

120587lowast

(119879)]

(43)

where 119873(119905 V 119897) = [119861(119905)V + 119863(119905)]

radic2[(119861(119905) minus 119861(119905))V + 119863(119905) minus 119863(119905)]

Remark 10 By (38) and (39) we find that the equilibriuminvestment proportion in the stock has the similar expressionas in [24] although their study focuses on the optimal invest-ment and reinsurance problem In addition the equilibriuminvestment money in the stock is only the function of time119905 which is independent of the current wealth However forthe inflation-linked bond the equilibrium investmentmoneydepends on current wealth and the more the wealth isthe more the inflation-linked bond is invested This resultis consistent with the economic intuition considering thatwhen the manager has more wealth the sensitivity to theinflation risk becomes higher and the corresponding hedgingdemand is improved

Remark 11 In view of (38) we find that if 120590119901gt 120590

119897 that is the

volatility rate of the inflation is larger than that of the salaryincome the equilibrium investment amount in the inflation-linked bond has positive relationship with the salary levelOtherwise it has negative relationship with the salary level

Remark 12 From (42) and (43) if Var119905119909V119897[119883

120587(119879)] = 0 it

means that the pension fund manager bears no risk at allunder the state (119905 119909 V 119897) this is equivalent to the case of120574 rarr infin that is the pension fund manager is fully averseto risk In this case 120587lowast

119878(119905) = 0 and 120587lowast

119868(119905) = 1 minus ((120590

119897minus

120590119901)119909120590

119901)119897119862(119905)119890

minusint119879

119905119903(119904)119889119904 This indicates that the manager will

only invest all the fund in the inflation-linked bond and therisk-free money market account and obtain the expected realterminal wealth of 119909119890int

119879

119905119903(119904)119889119904

+ 119862(119905)119897 at retirement time 119879 Itconsists of two parts The first part is the accumulation ofthe initial wealth 119909 and the second part can be seen as theaccumulation of the contribution

Mathematical Problems in Engineering 9

Remark 13 If we do not consider the risk of stochasticvolatility of the stock price that is let 120572 = 0 120590V = 0 thenthe equilibrium strategy is simplified as

120587lowast

119868(119905)

= [

120582119901(119905) minus 120590

119901minus 120582

119904120590119904

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1

120587lowast

119878(119905) =

120582119904119890minusint119879

119905119903(119904)119889119904

120574119909

(44)

In this case we find that 120587lowast

119878(119905) is consistent with the

result of the ordinaryMVportfolio problem under the Black-Scholes market (see [11]) This indicates that the contributionof the salary income has no influence on the equilibriuminvestment amount of the stock Furthermore if we do notconsider the risk of inflation that is 120583

119901(119905) = 120590

119901= 120590

119904= 0

then 119877(119905) = 119903(119905) and the inflation-linked bond is degeneratedto the risk-free money market account

4 Problem Formulation after Retirement andVerification Theorem

After retirement we assume that the pension plan memberpurchases a paid-up annuity during the time horizon [119879 119879 +119873] Thus the objective function of the pension plan manageris to maximize the expected surplus after paying off thebenefit to the member and minimize the variance of thesurplus at time 119879

1= 119879 + 119873 So at the state (119905 119909 V) isin G

1

the manager faces the following optimal control problem

(119905 119909 V) = supisinΠ(119905119909V)

E119905119909V [119883

(119879

1)]

minus120574

2Var

119905119909V [119883(119879

1)]

(P2)

Similarly to the method of Section 3 we denote 119910(119905 119909 V) =

E119905119909V[119883

(119879

1)] 119911(119905 119909 V) = E

119905119909V[(119883(119879

1))

2] Then we can

rewrite

(119905 119909 V)

= supisinΠ(119905119909V)

(119905 119909 V 119910(119905 119909 V) 119911 (119905 119909 V))

(45)

where (119905 119909 V 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

41 VerificationTheorem In this subsection we first give thedefinition of equilibrium strategy after retirement and thengive the verification theoremwhich is satisfied by the equilib-rium value function Now for any 120601(119905 119909 V) isin 119862122

(G1) let

set 119901(G

1) = 120601(119905 119909 V) | 120601(119905 119909 V) isin 119862122

(G1) and all first-

order partial derivatives of 120601(sdot 119909 V) satisfy the polynomialgrowth condition on O

1 and denote differential operator as

L120601 (119905 119909 V)

= 120601119905+ 120601

119909[119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902]

+ 120601V120572 (120575 minus V) +1

21206011199091199091199092(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V + 120601119909V119909120590VradicV (Σ minus 1205881015840

119901) 120573V

(46)

Definition 14 For any given initial state (119905 119909 V) isin G1

consider an admissible strategy lowast(119905 119909 V) and choose three

real numbers 120591 gt 0 120587119868 and 120587

119861 one defines the following

strategy

120587120591(119904 119909 V)

=

(120587119868 120587

119861) 119905 ⩽ 119904 lt 119905 + 120591 (119909 V) isin O

1

lowast(119904 119909 V) 119905 + 120591 ⩽ 119904 lt 119879

1 (119909 V) isin O

1

(47)

If lim120591rarr0

inf((lowast

(119905) minus 120587120591

(119905))120591) ⩾ 0 forall(120587119868 120587

119861) isin R times R

then lowast(119905 119909 V) is called an equilibrium strategy and the

equilibrium value function is defined as (119905 119909 V) = (119905 119909 V119910lowast

(119905 119909 V) 119911lowast

(119905 119909 V)) where

(119905) = (119905 119909 V 119910(119905 119909 V)

119911(119905 119909 V)) for short

Theorem 15 (verification theorem) For the optimal assetallocation problem (P

2) if there exist three real value functions

(119905 119909 V) (119905 119909 V) and (119905 119909 V) isin 119901(G

1) satisfying the

following conditions forall(119905 119909 V) isin G1

supisinΠ(119905119909V)

L (119905 119909 V) minus 120593

(119905 119909 V) = 0

(1198791 119909 V) = (119879

1 119909 V 119909 1199092

)

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 119909

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 1199092

(48)

where lowast= arg sup

isinΠ(119905119909V)L(119905 119909 V) minus 120593

(119905 119909 V) then(119905 119909 V) = (119905 119909 V) 119910

lowast

(119905 119909 V) = (119905 119909 V) and 119911lowast

(119905 119909

V) = (119905 119909 V) and lowast is the equilibrium strategy where

120593(119905 119909 V)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902] 119891

119909

+ 119891V120572 (120575 minus V) +1

2(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

1199092

1

+1

21205902

V V

2+ 120590VradicV119909 (

1015840Σ minus 120588

1015840

119901) 120573V

3

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Mathematical Problems in Engineering 7

By differentiatingA120587119865(119905 119909 V 119897) minus 120585120587(119905 119909 V 119897) with respect to

120587(119905) we can obtain the equilibrium strategy

120587lowast(119905) = minus

[119865119909(120579 minus 120588

119901)1015840

+ (119865119909V minus 120574119866119909

119866V) 120590VradicV1205731015840

V + (119865119909119897 minus 120574119866119909119866

119897) 119897120573

1015840

119897] Σ

minus1

(119865119909119909minus 120574119866

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(25)

Inspired by [24] we suppose 119865(119905 119909 V 119897) and 119866(119905 119909 V 119897) havethe following linear forms with respect to 119909 V and 119897

119865 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

119866 (119905 119909 V 119897) = 119860 (119905) 119909 +119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574

119860 (119879) = 1 119861 (119879) = 119862 (119879) = 119863 (119879) = 0

(26)

Then120587lowast(119905)

=

[119860 (119905) (120579 minus 120588119901)1015840

minus 119860 (119905) 119861 (119905) 120590VradicV1205731015840

V minus 119860 (119905) 119862 (119905) 1205741198971205731015840

119897] Σ

minus1

1205741198602

(119905) 119909

+ 1205881015840

119901Σ

minus1

(27)

Inserting 120587lowast(119905) intoA120587

lowast

119865(119905 119909 V 119897) minus 120585120587lowast

(119905 119909 V 119897) = 0 weget the following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905) minus

1198612

(119905)

21205741205902

V V

+1

21205741198602

(119905)

[1198602(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120588119904V120590VV

minus 2119860 (119905) 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897

+ 1198602

(119905) 1198612

(119905) 1205902

V1205882

119904VV] = 0

(28)

Separating with 119909 V 119897 and other terms we obtain thefollowing ordinary differential equations (ODEs)

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 minus

1198612

(119905)

21205902

V +1

21198602

(119905)

[1198602(119905) 120582

2

119904

minus 2119860 (119905) 119860 (119905) 119861 (119905) 120582119904120590V120588119904V + 119860

2

(119905) 1198612

(119905) 1205902

V1205882

119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) 120572

119897(119905) minus

1

119860 (119905)

119860 (119905) 119862 (119905) (120582119901(119905)

minus 120590119901) (120590

119897minus 120590

119901) = 0

119863119905+ 120572120575119861 (119905) +

1

21198602

(119905)

1198602(119905) (120582

119901(119905) minus 120590

119901)2

= 0

(29)

Now we insert 120587lowast(119905) into A120587

lowast

119866(119905 119909 V 119897) = 0 and obtainthe following equation

119860119905119909 +

119861119905

120574V + 119862

119905119897 +

119863119905

120574+ 119860 (119905) [119896119897

+ 119909 (119877 (119905) minus 120583119901(119905) + 120582

119901(119905) 120590

119901)] +

119861 (119905)

120574120572 (120575 minus V)

+ 119862 (119905) 119897120572119897(119905)

+1

120574119860 (119905)

[119860 (119905) ((120582119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119860 (119905) 119861 (119905) 120582119904120590V120588119904VV

minus 119860 (119905) 119862 (119905) 120574 (120582119901(119905) minus 120590

119901) (120590

119897minus 120590

119901) 119897] = 0

(30)

Similarly separating with 119909 V 119897 and other terms we obtainthe following ODEs

119860119905+ 119860 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119861119905minus 119861 (119905) 120572 +

1

119860 (119905)

[119860 (119905) 1205822

119904minus 119860 (119905) 119861 (119905) 120582

119904120590V120588119904V]

= 0

119862119905+ 119896119860 (119905) + 119862 (119905) [120572

119897(119905) minus (120582

119901(119905) minus 120590

119901) (120590

119897minus 120590

119901)]

= 0

119863119905+ 120572120575119861 (119905) +

1

119860 (119905)

119860 (119905) (120582119901(119905) minus 120590

119901)2

= 0

(31)

By using the corresponding boundary conditions we get thesolutions of the ODEs (29) and (31) as follows

119860 (119905) = 119860 (119905) = 119890int119879

119905[119877(119904)minus120583

119901(119904)+120582

119901(119904)120590119901]119889119904= 119890

int119879

119905119903(119904)119889119904

(32)

119861 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(119879minus119905)

] (33)

8 Mathematical Problems in Engineering

119861 (119905) =1

2119890minus120572(119879minus119905)

int

119879

119905

1198921(119904) 119890

120572(119879minus119904)119889119904 (34)

119862 (119905) = 119862 (119905) = 119896int

119879

119905

119890int119904

119905119898(119906)119889119906

119890int119879

119904119903(119906)119889119906

119889119904 (35)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 +1

2int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (36)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 + int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (37)

where 1198921(119904) = 120582

2

119904minus2120582

119904120590V120588119904V119861(119904)+119861

2

(119904)1205902

V (1205882

119904Vminus1) and119898(119906) =120583119897minus 120583

119901(119906) + 120582

119901(119906)(120590

119901minus 120590

119897) Substituting the above results

into (27) and after some rearrangement we can conclude thefollowing theorem

Theorem 8 For problem (P1) the equilibrium investment

strategy is

120587lowast

119868(119905) =

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V119861 (119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879 minus 119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

(38)

120587lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(119879minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (119879 minus 119905)]

120574119909119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(39)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int119879

119905119903(119904)119889119904

+119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574 (40)

where 119861(119905) 119862(119905) and 119863(119905) are given by (34) (35) and (36)

Note that

E119905119909V119897 [119883

120587lowast

(119879)]

= 119909119890int119879

119905119903(119904)119889119904

+1

120574[119861 (119905) V + 119863 (119905)] + 119862 (119905) 119897

(41)

Var119905119909V119897 [119883

120587lowast

(119879)] = 119867 (119905 119909 V 119897) minus 1198662(119905 119909 V 119897)

=2

120574[119866 (119905 119909 V 119897) minus 119865 (119905 119909 V 119897)]

=2

1205742[(119861 (119905) minus 119861 (119905)) V + 119863 (119905) minus 119863 (119905)]

(42)

Thus we obtain the following so-called equilibrium efficientfrontier which reflects the relationship between the invest-ment risk and return under the equilibrium strategy

Corollary 9 For MV problem (P1) based on state (119905 119909 V 119897)

its equilibrium efficient frontier is

E119905119909V119897 [119883

120587lowast

(119879)] = 119909119890int119879

119905119903(119904)119889119904

+ 119862 (119905) 119897

+ 119873 (119905 V 119897) radicVar119905119909V119897 [119883

120587lowast

(119879)]

(43)

where 119873(119905 V 119897) = [119861(119905)V + 119863(119905)]

radic2[(119861(119905) minus 119861(119905))V + 119863(119905) minus 119863(119905)]

Remark 10 By (38) and (39) we find that the equilibriuminvestment proportion in the stock has the similar expressionas in [24] although their study focuses on the optimal invest-ment and reinsurance problem In addition the equilibriuminvestment money in the stock is only the function of time119905 which is independent of the current wealth However forthe inflation-linked bond the equilibrium investmentmoneydepends on current wealth and the more the wealth isthe more the inflation-linked bond is invested This resultis consistent with the economic intuition considering thatwhen the manager has more wealth the sensitivity to theinflation risk becomes higher and the corresponding hedgingdemand is improved

Remark 11 In view of (38) we find that if 120590119901gt 120590

119897 that is the

volatility rate of the inflation is larger than that of the salaryincome the equilibrium investment amount in the inflation-linked bond has positive relationship with the salary levelOtherwise it has negative relationship with the salary level

Remark 12 From (42) and (43) if Var119905119909V119897[119883

120587(119879)] = 0 it

means that the pension fund manager bears no risk at allunder the state (119905 119909 V 119897) this is equivalent to the case of120574 rarr infin that is the pension fund manager is fully averseto risk In this case 120587lowast

119878(119905) = 0 and 120587lowast

119868(119905) = 1 minus ((120590

119897minus

120590119901)119909120590

119901)119897119862(119905)119890

minusint119879

119905119903(119904)119889119904 This indicates that the manager will

only invest all the fund in the inflation-linked bond and therisk-free money market account and obtain the expected realterminal wealth of 119909119890int

119879

119905119903(119904)119889119904

+ 119862(119905)119897 at retirement time 119879 Itconsists of two parts The first part is the accumulation ofthe initial wealth 119909 and the second part can be seen as theaccumulation of the contribution

Mathematical Problems in Engineering 9

Remark 13 If we do not consider the risk of stochasticvolatility of the stock price that is let 120572 = 0 120590V = 0 thenthe equilibrium strategy is simplified as

120587lowast

119868(119905)

= [

120582119901(119905) minus 120590

119901minus 120582

119904120590119904

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1

120587lowast

119878(119905) =

120582119904119890minusint119879

119905119903(119904)119889119904

120574119909

(44)

In this case we find that 120587lowast

119878(119905) is consistent with the

result of the ordinaryMVportfolio problem under the Black-Scholes market (see [11]) This indicates that the contributionof the salary income has no influence on the equilibriuminvestment amount of the stock Furthermore if we do notconsider the risk of inflation that is 120583

119901(119905) = 120590

119901= 120590

119904= 0

then 119877(119905) = 119903(119905) and the inflation-linked bond is degeneratedto the risk-free money market account

4 Problem Formulation after Retirement andVerification Theorem

After retirement we assume that the pension plan memberpurchases a paid-up annuity during the time horizon [119879 119879 +119873] Thus the objective function of the pension plan manageris to maximize the expected surplus after paying off thebenefit to the member and minimize the variance of thesurplus at time 119879

1= 119879 + 119873 So at the state (119905 119909 V) isin G

1

the manager faces the following optimal control problem

(119905 119909 V) = supisinΠ(119905119909V)

E119905119909V [119883

(119879

1)]

minus120574

2Var

119905119909V [119883(119879

1)]

(P2)

Similarly to the method of Section 3 we denote 119910(119905 119909 V) =

E119905119909V[119883

(119879

1)] 119911(119905 119909 V) = E

119905119909V[(119883(119879

1))

2] Then we can

rewrite

(119905 119909 V)

= supisinΠ(119905119909V)

(119905 119909 V 119910(119905 119909 V) 119911 (119905 119909 V))

(45)

where (119905 119909 V 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

41 VerificationTheorem In this subsection we first give thedefinition of equilibrium strategy after retirement and thengive the verification theoremwhich is satisfied by the equilib-rium value function Now for any 120601(119905 119909 V) isin 119862122

(G1) let

set 119901(G

1) = 120601(119905 119909 V) | 120601(119905 119909 V) isin 119862122

(G1) and all first-

order partial derivatives of 120601(sdot 119909 V) satisfy the polynomialgrowth condition on O

1 and denote differential operator as

L120601 (119905 119909 V)

= 120601119905+ 120601

119909[119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902]

+ 120601V120572 (120575 minus V) +1

21206011199091199091199092(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V + 120601119909V119909120590VradicV (Σ minus 1205881015840

119901) 120573V

(46)

Definition 14 For any given initial state (119905 119909 V) isin G1

consider an admissible strategy lowast(119905 119909 V) and choose three

real numbers 120591 gt 0 120587119868 and 120587

119861 one defines the following

strategy

120587120591(119904 119909 V)

=

(120587119868 120587

119861) 119905 ⩽ 119904 lt 119905 + 120591 (119909 V) isin O

1

lowast(119904 119909 V) 119905 + 120591 ⩽ 119904 lt 119879

1 (119909 V) isin O

1

(47)

If lim120591rarr0

inf((lowast

(119905) minus 120587120591

(119905))120591) ⩾ 0 forall(120587119868 120587

119861) isin R times R

then lowast(119905 119909 V) is called an equilibrium strategy and the

equilibrium value function is defined as (119905 119909 V) = (119905 119909 V119910lowast

(119905 119909 V) 119911lowast

(119905 119909 V)) where

(119905) = (119905 119909 V 119910(119905 119909 V)

119911(119905 119909 V)) for short

Theorem 15 (verification theorem) For the optimal assetallocation problem (P

2) if there exist three real value functions

(119905 119909 V) (119905 119909 V) and (119905 119909 V) isin 119901(G

1) satisfying the

following conditions forall(119905 119909 V) isin G1

supisinΠ(119905119909V)

L (119905 119909 V) minus 120593

(119905 119909 V) = 0

(1198791 119909 V) = (119879

1 119909 V 119909 1199092

)

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 119909

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 1199092

(48)

where lowast= arg sup

isinΠ(119905119909V)L(119905 119909 V) minus 120593

(119905 119909 V) then(119905 119909 V) = (119905 119909 V) 119910

lowast

(119905 119909 V) = (119905 119909 V) and 119911lowast

(119905 119909

V) = (119905 119909 V) and lowast is the equilibrium strategy where

120593(119905 119909 V)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902] 119891

119909

+ 119891V120572 (120575 minus V) +1

2(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

1199092

1

+1

21205902

V V

2+ 120590VradicV119909 (

1015840Σ minus 120588

1015840

119901) 120573V

3

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

8 Mathematical Problems in Engineering

119861 (119905) =1

2119890minus120572(119879minus119905)

int

119879

119905

1198921(119904) 119890

120572(119879minus119904)119889119904 (34)

119862 (119905) = 119862 (119905) = 119896int

119879

119905

119890int119904

119905119898(119906)119889119906

119890int119879

119904119903(119906)119889119906

119889119904 (35)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 +1

2int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (36)

119863(119905) = 120572120575int

119879

119905

119861 (119904) 119889119904 + int

119879

119905

(120582119901(119904) minus 120590

119901)2

119889119904 (37)

where 1198921(119904) = 120582

2

119904minus2120582

119904120590V120588119904V119861(119904)+119861

2

(119904)1205902

V (1205882

119904Vminus1) and119898(119906) =120583119897minus 120583

119901(119906) + 120582

119901(119906)(120590

119901minus 120590

119897) Substituting the above results

into (27) and after some rearrangement we can conclude thefollowing theorem

Theorem 8 For problem (P1) the equilibrium investment

strategy is

120587lowast

119868(119905) =

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V119861 (119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

[

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879 minus 119905)

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

(38)

120587lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(119879minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (119879 minus 119905)]

120574119909119890minusint119879

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(39)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int119879

119905119903(119904)119889119904

+119861 (119905)

120574V + 119862 (119905) 119897 +

119863 (119905)

120574 (40)

where 119861(119905) 119862(119905) and 119863(119905) are given by (34) (35) and (36)

Note that

E119905119909V119897 [119883

120587lowast

(119879)]

= 119909119890int119879

119905119903(119904)119889119904

+1

120574[119861 (119905) V + 119863 (119905)] + 119862 (119905) 119897

(41)

Var119905119909V119897 [119883

120587lowast

(119879)] = 119867 (119905 119909 V 119897) minus 1198662(119905 119909 V 119897)

=2

120574[119866 (119905 119909 V 119897) minus 119865 (119905 119909 V 119897)]

=2

1205742[(119861 (119905) minus 119861 (119905)) V + 119863 (119905) minus 119863 (119905)]

(42)

Thus we obtain the following so-called equilibrium efficientfrontier which reflects the relationship between the invest-ment risk and return under the equilibrium strategy

Corollary 9 For MV problem (P1) based on state (119905 119909 V 119897)

its equilibrium efficient frontier is

E119905119909V119897 [119883

120587lowast

(119879)] = 119909119890int119879

119905119903(119904)119889119904

+ 119862 (119905) 119897

+ 119873 (119905 V 119897) radicVar119905119909V119897 [119883

120587lowast

(119879)]

(43)

where 119873(119905 V 119897) = [119861(119905)V + 119863(119905)]

radic2[(119861(119905) minus 119861(119905))V + 119863(119905) minus 119863(119905)]

Remark 10 By (38) and (39) we find that the equilibriuminvestment proportion in the stock has the similar expressionas in [24] although their study focuses on the optimal invest-ment and reinsurance problem In addition the equilibriuminvestment money in the stock is only the function of time119905 which is independent of the current wealth However forthe inflation-linked bond the equilibrium investmentmoneydepends on current wealth and the more the wealth isthe more the inflation-linked bond is invested This resultis consistent with the economic intuition considering thatwhen the manager has more wealth the sensitivity to theinflation risk becomes higher and the corresponding hedgingdemand is improved

Remark 11 In view of (38) we find that if 120590119901gt 120590

119897 that is the

volatility rate of the inflation is larger than that of the salaryincome the equilibrium investment amount in the inflation-linked bond has positive relationship with the salary levelOtherwise it has negative relationship with the salary level

Remark 12 From (42) and (43) if Var119905119909V119897[119883

120587(119879)] = 0 it

means that the pension fund manager bears no risk at allunder the state (119905 119909 V 119897) this is equivalent to the case of120574 rarr infin that is the pension fund manager is fully averseto risk In this case 120587lowast

119878(119905) = 0 and 120587lowast

119868(119905) = 1 minus ((120590

119897minus

120590119901)119909120590

119901)119897119862(119905)119890

minusint119879

119905119903(119904)119889119904 This indicates that the manager will

only invest all the fund in the inflation-linked bond and therisk-free money market account and obtain the expected realterminal wealth of 119909119890int

119879

119905119903(119904)119889119904

+ 119862(119905)119897 at retirement time 119879 Itconsists of two parts The first part is the accumulation ofthe initial wealth 119909 and the second part can be seen as theaccumulation of the contribution

Mathematical Problems in Engineering 9

Remark 13 If we do not consider the risk of stochasticvolatility of the stock price that is let 120572 = 0 120590V = 0 thenthe equilibrium strategy is simplified as

120587lowast

119868(119905)

= [

120582119901(119905) minus 120590

119901minus 120582

119904120590119904

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1

120587lowast

119878(119905) =

120582119904119890minusint119879

119905119903(119904)119889119904

120574119909

(44)

In this case we find that 120587lowast

119878(119905) is consistent with the

result of the ordinaryMVportfolio problem under the Black-Scholes market (see [11]) This indicates that the contributionof the salary income has no influence on the equilibriuminvestment amount of the stock Furthermore if we do notconsider the risk of inflation that is 120583

119901(119905) = 120590

119901= 120590

119904= 0

then 119877(119905) = 119903(119905) and the inflation-linked bond is degeneratedto the risk-free money market account

4 Problem Formulation after Retirement andVerification Theorem

After retirement we assume that the pension plan memberpurchases a paid-up annuity during the time horizon [119879 119879 +119873] Thus the objective function of the pension plan manageris to maximize the expected surplus after paying off thebenefit to the member and minimize the variance of thesurplus at time 119879

1= 119879 + 119873 So at the state (119905 119909 V) isin G

1

the manager faces the following optimal control problem

(119905 119909 V) = supisinΠ(119905119909V)

E119905119909V [119883

(119879

1)]

minus120574

2Var

119905119909V [119883(119879

1)]

(P2)

Similarly to the method of Section 3 we denote 119910(119905 119909 V) =

E119905119909V[119883

(119879

1)] 119911(119905 119909 V) = E

119905119909V[(119883(119879

1))

2] Then we can

rewrite

(119905 119909 V)

= supisinΠ(119905119909V)

(119905 119909 V 119910(119905 119909 V) 119911 (119905 119909 V))

(45)

where (119905 119909 V 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

41 VerificationTheorem In this subsection we first give thedefinition of equilibrium strategy after retirement and thengive the verification theoremwhich is satisfied by the equilib-rium value function Now for any 120601(119905 119909 V) isin 119862122

(G1) let

set 119901(G

1) = 120601(119905 119909 V) | 120601(119905 119909 V) isin 119862122

(G1) and all first-

order partial derivatives of 120601(sdot 119909 V) satisfy the polynomialgrowth condition on O

1 and denote differential operator as

L120601 (119905 119909 V)

= 120601119905+ 120601

119909[119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902]

+ 120601V120572 (120575 minus V) +1

21206011199091199091199092(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V + 120601119909V119909120590VradicV (Σ minus 1205881015840

119901) 120573V

(46)

Definition 14 For any given initial state (119905 119909 V) isin G1

consider an admissible strategy lowast(119905 119909 V) and choose three

real numbers 120591 gt 0 120587119868 and 120587

119861 one defines the following

strategy

120587120591(119904 119909 V)

=

(120587119868 120587

119861) 119905 ⩽ 119904 lt 119905 + 120591 (119909 V) isin O

1

lowast(119904 119909 V) 119905 + 120591 ⩽ 119904 lt 119879

1 (119909 V) isin O

1

(47)

If lim120591rarr0

inf((lowast

(119905) minus 120587120591

(119905))120591) ⩾ 0 forall(120587119868 120587

119861) isin R times R

then lowast(119905 119909 V) is called an equilibrium strategy and the

equilibrium value function is defined as (119905 119909 V) = (119905 119909 V119910lowast

(119905 119909 V) 119911lowast

(119905 119909 V)) where

(119905) = (119905 119909 V 119910(119905 119909 V)

119911(119905 119909 V)) for short

Theorem 15 (verification theorem) For the optimal assetallocation problem (P

2) if there exist three real value functions

(119905 119909 V) (119905 119909 V) and (119905 119909 V) isin 119901(G

1) satisfying the

following conditions forall(119905 119909 V) isin G1

supisinΠ(119905119909V)

L (119905 119909 V) minus 120593

(119905 119909 V) = 0

(1198791 119909 V) = (119879

1 119909 V 119909 1199092

)

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 119909

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 1199092

(48)

where lowast= arg sup

isinΠ(119905119909V)L(119905 119909 V) minus 120593

(119905 119909 V) then(119905 119909 V) = (119905 119909 V) 119910

lowast

(119905 119909 V) = (119905 119909 V) and 119911lowast

(119905 119909

V) = (119905 119909 V) and lowast is the equilibrium strategy where

120593(119905 119909 V)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902] 119891

119909

+ 119891V120572 (120575 minus V) +1

2(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

1199092

1

+1

21205902

V V

2+ 120590VradicV119909 (

1015840Σ minus 120588

1015840

119901) 120573V

3

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Mathematical Problems in Engineering 9

Remark 13 If we do not consider the risk of stochasticvolatility of the stock price that is let 120572 = 0 120590V = 0 thenthe equilibrium strategy is simplified as

120587lowast

119868(119905)

= [

120582119901(119905) minus 120590

119901minus 120582

119904120590119904

120574minus 119897 (120590

119897minus 120590

119901) 119862 (119905)]

119890minusint119879

119905119903(119904)119889119904

119909120590119901

+ 1

120587lowast

119878(119905) =

120582119904119890minusint119879

119905119903(119904)119889119904

120574119909

(44)

In this case we find that 120587lowast

119878(119905) is consistent with the

result of the ordinaryMVportfolio problem under the Black-Scholes market (see [11]) This indicates that the contributionof the salary income has no influence on the equilibriuminvestment amount of the stock Furthermore if we do notconsider the risk of inflation that is 120583

119901(119905) = 120590

119901= 120590

119904= 0

then 119877(119905) = 119903(119905) and the inflation-linked bond is degeneratedto the risk-free money market account

4 Problem Formulation after Retirement andVerification Theorem

After retirement we assume that the pension plan memberpurchases a paid-up annuity during the time horizon [119879 119879 +119873] Thus the objective function of the pension plan manageris to maximize the expected surplus after paying off thebenefit to the member and minimize the variance of thesurplus at time 119879

1= 119879 + 119873 So at the state (119905 119909 V) isin G

1

the manager faces the following optimal control problem

(119905 119909 V) = supisinΠ(119905119909V)

E119905119909V [119883

(119879

1)]

minus120574

2Var

119905119909V [119883(119879

1)]

(P2)

Similarly to the method of Section 3 we denote 119910(119905 119909 V) =

E119905119909V[119883

(119879

1)] 119911(119905 119909 V) = E

119905119909V[(119883(119879

1))

2] Then we can

rewrite

(119905 119909 V)

= supisinΠ(119905119909V)

(119905 119909 V 119910(119905 119909 V) 119911 (119905 119909 V))

(45)

where (119905 119909 V 119910 119911) = 119910 minus (1205742)(119911 minus 1199102)

41 VerificationTheorem In this subsection we first give thedefinition of equilibrium strategy after retirement and thengive the verification theoremwhich is satisfied by the equilib-rium value function Now for any 120601(119905 119909 V) isin 119862122

(G1) let

set 119901(G

1) = 120601(119905 119909 V) | 120601(119905 119909 V) isin 119862122

(G1) and all first-

order partial derivatives of 120601(sdot 119909 V) satisfy the polynomialgrowth condition on O

1 and denote differential operator as

L120601 (119905 119909 V)

= 120601119905+ 120601

119909[119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902]

+ 120601V120572 (120575 minus V) +1

21206011199091199091199092(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

+1

2120601VV120590

2

V V + 120601119909V119909120590VradicV (Σ minus 1205881015840

119901) 120573V

(46)

Definition 14 For any given initial state (119905 119909 V) isin G1

consider an admissible strategy lowast(119905 119909 V) and choose three

real numbers 120591 gt 0 120587119868 and 120587

119861 one defines the following

strategy

120587120591(119904 119909 V)

=

(120587119868 120587

119861) 119905 ⩽ 119904 lt 119905 + 120591 (119909 V) isin O

1

lowast(119904 119909 V) 119905 + 120591 ⩽ 119904 lt 119879

1 (119909 V) isin O

1

(47)

If lim120591rarr0

inf((lowast

(119905) minus 120587120591

(119905))120591) ⩾ 0 forall(120587119868 120587

119861) isin R times R

then lowast(119905 119909 V) is called an equilibrium strategy and the

equilibrium value function is defined as (119905 119909 V) = (119905 119909 V119910lowast

(119905 119909 V) 119911lowast

(119905 119909 V)) where

(119905) = (119905 119909 V 119910(119905 119909 V)

119911(119905 119909 V)) for short

Theorem 15 (verification theorem) For the optimal assetallocation problem (P

2) if there exist three real value functions

(119905 119909 V) (119905 119909 V) and (119905 119909 V) isin 119901(G

1) satisfying the

following conditions forall(119905 119909 V) isin G1

supisinΠ(119905119909V)

L (119905 119909 V) minus 120593

(119905 119909 V) = 0

(1198791 119909 V) = (119879

1 119909 V 119909 1199092

)

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 119909

Llowast

(119905 119909 V) = 0

(1198791 119909 V) = 1199092

(48)

where lowast= arg sup

isinΠ(119905119909V)L(119905 119909 V) minus 120593

(119905 119909 V) then(119905 119909 V) = (119905 119909 V) 119910

lowast

(119905 119909 V) = (119905 119909 V) and 119911lowast

(119905 119909

V) = (119905 119909 V) and lowast is the equilibrium strategy where

120593(119905 119909 V)

= 119891119905+ [119909 (119877 minus 120583

119901+ 120590

2

119901+ Σ (120579 minus 120588

119901)) minus 119902] 119891

119909

+ 119891V120572 (120575 minus V) +1

2(Σ minus 120588

1015840

119901) (Σ minus 120588

1015840

119901)1015840

1199092

1

+1

21205902

V V

2+ 120590VradicV119909 (

1015840Σ minus 120588

1015840

119901) 120573V

3

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

10 Mathematical Problems in Engineering

1

= 119891119909119909+ 119891

119910119910(119910

119909)2

+ 119891119911119911(119911

119909)2

+ 2119891119909119910119910

119909+ 2119891

119909119911119911

119909

+ 2119891119910119911119910

119909119911

119909

2

= 119891VV + 119891119910119910 (119910

V )2

+ 119891119911119911(119911

V )2

+ 2119891V119910119910

V + 2119891V119911119911

V

+ 2119891119910119911119910

V 119911

V

3

= 119891119910119910119910

119909119910

V + 119891119911119911119911

119909119911

V + 119891119909V + 119891119909119910119910

V + 119891119909119911119911

V

+ 119891V119910119910

119909+ 119891V119911119911

119909+ 119891

119910119911(119910

119909119911

V + 119910

V 119911

119909)

(49)

and 119891 = 119891(119905 119909 V 119910 119911) 119910= 119910

(119905 119909 V) and 119911 = 119911(119905 119909 V)

The proof is similar to Theorem 7 and here we omit it

42 Solution to the Equilibrium Strategy Using Theorem 15nowwe calculate the equilibrium strategy and correspondingequilibrium value function By the similar method to that inSection 3 we can obtain the equilibrium strategy as followslowast(119905)

= minus

[119909(120579 minus 120588

119901)1015840

+ (119909V minus 120574119909

V) 120590VradicV1205731015840

V] Σminus1

(119909119909minus 120574

2

119909) 119909

+ 1205881015840

119901Σ

minus1

(50)

We suppose (119905 119909 V) and (119905 119909 V) have the following linearforms with respect to 119909 and V

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(119905 119909 V) = 119886 (119905) 119909 +119887 (119905)

120574V +

119888 (119905)

120574

119886 (1198791) = 1 119887 (119879

1) = 119888 (119879

1) = 0

(51)

Then

lowast(119905) =

[119886 (119905) (120579 minus 120588119901)1015840

minus 119886 (119905) 119887 (119905) 120590VradicV1205731015840

V] Σminus1

1205741198862(119905) 119909

+ 1205881015840

119901Σ

minus1

(52)

Inserting (52) intoLlowast

(119905 119909 V) minus 120593lowast

(119905 119909 V) = 0 we get thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 minus 120583

119901+ 120582

119901(119905) 120590

119901) minus 119902]

+119887 (119905)

120574120572 (120575 minus V) minus

1198872

(119905)

21205741205902

V V

+1

21205741198862(119905)

[1198862(119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120588119904V120590VV + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904VV]

= 0

(53)

Separating with 119909 V and other terms we obtain the followingODEs119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 minus

1198872

(119905)

21205902

V +1

21198862(119905)

[1198862(119905) 120582

2

119904

minus 2119886 (119905) 119886 (119905) 119887 (119905) 120582119904120590V120588119904V + 119886

2(119905) 119887

2

(119905) 1205902

V1205882

119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

21198862(119905)

1198862(119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902

= 0

(54)

Now we insert lowast(119905) into L

lowast

(119905 119909 V) = 0 and obtain thefollowing equation

119886119905119909 +

119887119905

120574V +

119888119905

120574+ 119886 (119905) [119909 (119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901)

minus 119902] +119887 (119905)

120574120572 (120575 minus V)

+1

120574119886 (119905)[119886 (119905) ((120582

119901(119905) minus 120590

119901)2

+ 1205822

119904V)

minus 119886 (119905) 119887 (119905) 120582119904120590V120588119904VV] = 0

(55)

Similarly separating with 119909 V and other terms we have thefollowing ODEs

119886119905+ 119886 (119905) [119877 (119905) minus 120583

119901(119905) + 120582

119901(119905) 120590

119901] = 0

119887119905minus 119887 (119905) 120572 +

1

119886 (119905)[119886 (119905) 120582

2

119904minus 119886 (119905) 119887 (119905) 120582

119904120590V120588119904V] = 0

119888119905+ 120572120575119887 (119905) +

1

119886 (119905)119886 (119905) (120582

119901(119905) minus 120590

119901)2

minus 120574119886 (119905) 119902 = 0

(56)

By using the boundary conditions we solve the above ODEsand yield

119886 (119905) = 119886 (119905) = 119890int1198791

119905119903(119904)119889119904

(57)

119887 (119905) =1205822

119904

120572 + 120582119904120590V120588119904V

[1 minus 119890minus(120572+120582

119904120590V120588119904V)(1198791minus119905)

] (58)

119887 (119905) =1

2119890minus120572(1198791minus119905)int

1198791

119905

1198922(119904) 119890

120572(1198791minus119904)119889119904 (59)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 +1

2int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(60)

119888 (119905) = 120572120575int

1198791

119905

119887 (119904) 119889119904 + int

1198791

119905

(120582119901(119904) minus 120590

119901)2

119889119904

minus 120574119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

(61)

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Mathematical Problems in Engineering 11

where 1198922(119904) = 120582

2

119904minus 2120582

119904120590V120588119904V119887(119904) + 119887

2

(119904)1205902

V (1205882

119904V minus 1) Inserting(57) and (58) into (52) we have the following theorem

Theorem 16 For problem (P2) the equilibrium investment

strategy is

lowast

119868(119905) =

[120582119901(119905) minus 120590

119901minus

120582119904120590119904[120572 + 120582

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)]

120572 + 120582119904120590V120588119904V

]119890minusint1198791

119905119903(119904)119889119904

120574119909120590119901

+ 1 120572 = minus120582119904120590V120588119904V

120582119901(119905) minus 120590

119901minus 120582

119904120590119904+ 120590

119904120590V120588119904V120582

2

119904(119879

1minus 119905)

120574119909120590119901

119890minusint1198791

119905119903(119904)119889119904

+ 1 120572 = minus120582119904120590V120588119904V

lowast

119878(119905) =

120582119904120572 + 120582

2

119904120590V120588119904V119890

minus(120572+120582119904120590V120588119904V)(1198791minus119905)

120574119909 (120572 + 120582119904120590V120588119904V)

119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

120582119904[1 minus 120582

119904120590V120588119904V (1198791

minus 119905)]

120574119909119890minusint1198791

119905119903(119904)119889119904

120572 = minus120582119904120590V120588119904V

(62)

and the corresponding equilibrium value function is

119881 (119905 119909 V 119897) = 119909119890int1198791

119905119903(119904)119889119904

+119887 (119905)

120574V +

119888 (119905)

120574 (63)

where 119887(119905) and 119888(119905) are given by (59) and (60)After some calculations we have the following corollary

Corollary 17 Based on state (119905 119909 V) for the MV problem(P

2) the equilibrium efficient frontier is

E119905119909V [119883

lowast

(1198791)] = 119909119890

int1198791

119905119903(119904)119889119904

minus 119902int

1198791

119905

119890int1198791

119904119903(119906)119889119906

119889119904

+ (119905 V) radicVar119905119909V [119883

lowast

(1198791)]

(64)

where

(119905 V) =119887 (119905) V + 120572120575int

1198791

119905[119887 (119904) + (120582

119901(119904) minus 120590

119901)2

] 119889119904

radic2 [(119887 (119905) minus 119887 (119905)) V + 120572120575int1198791

119905(119887 (119904) minus 119887 (119904) + (12) (120582

119901(119904) minus 120590

119901)2

) 119889119904]

(65)

Remark 18 From (62) and (64) we find that at the state(119905 119909 V) if manager does not undertake any risk in the latertime that is let Var

119905119909V[119883120587lowast

(1198791)] = 0 or 120574 rarr infin heshe will

only invest all the surplus into the inflation-linked bond afterpaying off a continuous annuity with real value of 119902 for eachtime Then at terminal time 119879

1the expected real net surplus

is 119909119890int1198791

119905119903(119904)119889119904

minus 119902 int1198791

119905119890int1198791

119904119903(119906)119889119906

119889119904 It includes two parts wherethe first part is the accumulation of the initial real wealth 119909and the second part is the accumulated payment of the realbenefit until time 119879

1

5 Sensitivity Analysis

In this section we analyze the influence of the differentparameters on the equilibrium strategy and the equilibriumefficient frontier Here we only analyze the case beforeretirement and suppose that 119877(119905) 119903(119905) and 120583

119901(119905) are all deter-

ministic constants for simplicity and the basic parameters areset in Table 1

In addition the initial values are1199090= 2119901

0= 1 V

0= 015

and 1198970= 05 Note that the parameter 120582

119901= 0015 based

on (7) To obtain the evolution process of the investmentstrategy over time using Monte Carlo method we simulate

the trajectory of the optimal wealth process with 300 timesandobtain themean investment proportion of the three assets

51 The Analysis of Equilibrium Strategies This subsectionworks on analyzing the influence of the inflation the salaryincome and the risk aversion level of the manager on theequilibrium strategy in the period before retirement Sincethe sign of the first-order derivative about the investmentstrategies to some parameters could not be obtained directlywe only give the intuitive analysis

Figure 1 depicts the mean equilibrium investment pro-portion of the three assets under the basic parameter settingWe find that the proportion of the stock decreases graduallyfrom 40 to almost 20 during time horizon [0 10] andthe proportion of the money market account also decreaseswith time However the proportion of the inflation-linkedbond is relatively low at the beginning even short sellinghappened at time 0 but after about 10 years the proportionincreases to almost 20 In the following analysis we useFigure 1 as a benchmark Figure 2 shows themean investmentproportion when 120574 = 08 Compared with Figure 1 the wholeequilibrium investment proportion of the stock moves downwhen the risk aversion level of the manager increases from120574 = 06 to 08 (this result also can be found from (39) since

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

12 Mathematical Problems in Engineering

Table 1 The basic parameters value

119877 119903 120574 120583119901

120590119901120582

119904120572 120575 120590V 120590

119904120588119904V 120583

119897120590119897119896 119879

005 002 06 0033 02 06 05 02 01 05 minus03 005 01 02 10

Inflation bondStockMoney account

1 2 3 4 5 6 7 8 9 100Time (year)

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

Figure 1 The mean investment proportion

under the basic parameter setting of this section 120597120587lowast

119878120597120574 lt

0) On the contrary the proportion of the inflation-linkedbond increases under the higher risk aversion level The casewhen the expectation inflation rate 120583

119901= 0042 is illustrated

in Figure 3 Since 120583119901is higher than that in Figure 1 the

manager invests more wealth in the inflation-linked bondto hedge the inflation risk Similarly Figure 4 shows that ifthe expected salary growth rate 120583

119897increases the investment

proportion in the inflation bond also increases This meansthat the more the wealth contributed to the pension fund thehigher the demand to hedge the inflation risk We note thatthe proportion of the stock is independent of 120583

119901and 120583

119897in

(39) so the investment proportion in the stock is the same asin Figure 1

52 The Analysis of the Equilibrium Efficient Frontier In thissubsection we analyze the influence of different parameterson the equilibrium efficient frontier in the investment periodbefore retirement Without loss of generality we only analyzethe efficient frontier at time 0

Figure 5 shows the efficient frontiers for the differentexpected inflation rate 120583

119901 Generally speaking the larger

the value of 120583119901 the lower the real value of the wealth So

as shown in Figure 5 the expected real terminal wealthhas a negative relationship with the expected inflation ratewhen the variance of the real terminal wealth is fixedFigure 6 reveals the relationship between the efficient frontier

0

01

02

03

04

05

06

07

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 2 120574 = 08

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Inflation bondStockMoney account

Figure 3 120583119901= 0042

and the volatility of the inflation rate 120590119901 We find that the

higher 120590119901leads to the efficient frontier moving upwards The

influence of the 120575 on efficient frontier is illustrated in Figure 7which shows that the value of the expected volatility of thestock has positive relationship with the efficient frontierFigure 8 depicts the influence of 120588

119904V on the efficient frontier

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 13: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Mathematical Problems in Engineering 13

Inflation bondStockMoney account

minus04

minus02

0

02

04

06

08

1

Mea

n eq

uilib

rium

inve

stmen

t pro

port

ion

1 2 3 4 5 6 7 8 9 100Time (year)

Figure 4 120583119897= 009

E[X

120587lowast

(T)]

120583p = 0033

120583p = 0038

120583p = 0042

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

Figure 5 The effect of 120583119901on efficient frontier

This indicates that the stronger negative relationship betweenthe stock price 119878(119905) and the volatility 119881(119905) will lead to theefficient frontier moving upwards Figure 9 shows that theexpected growth rate of the salary has a positive influenceon the efficient frontier that is with increasing of 120583

119897 the

efficient frontiermoves upwards In addition the intersection

E[X

120587lowast

(T)]

35

4

45

5

55

6

65

05 1 15 2 25 30Var[X120587lowast (T)]

120590p = 02

120590p = 03

120590p = 04

Figure 6 The effect of 120590119901on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120575 = 02

120575 = 03

120575 = 04

Figure 7 The effect of 120575 on efficient frontier

of the efficient frontier and the E[119883120587lowast

(119879)] axis is bigger if 120583119897

is larger This result also can be obtained from Remark 12 InFigure 10 the influence of the salary volatility 120590

119897on efficient

frontier is revealed We find that the larger the 120590119897 the more

the uncertainty about the salary income which leads to theefficient frontier moving downwards

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 14: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

14 Mathematical Problems in EngineeringE[X

120587lowast

(T)]

05 1 15 2 25 30Var[X120587lowast (T)]

36

38

4

42

44

46

48

5

52

54

56

120588s = minus01

120588s = minus05

120588s = minus08

Figure 8 The effect of 120588119904V on efficient frontier

E[X

120587lowast

(T)]

35

4

45

5

55

6

05 1 15 2 25 30Var[X120587lowast (T)]

120583l = 005

120583l = 007

120583l = 009

Figure 9 The effect of 120583119897on efficient frontier

6 Conclusion

In this paper we investigate the MV portfolio problems fora DC pension plan both before and after retirement Thebackground risks such as the stochastic volatility of the stockprice and the inflation rate are also considered in our model

E[X

120587lowast

(T)]

36

38

4

42

44

46

48

5

52

54

56

05 1 15 2 25 30Var[X120587lowast (T)]

120590l = 01

120590l = 04

120590l = 07

Figure 10 The effect of 120590119897on efficient frontier

We assume that the pension fund that can be invested inthe financial market consists of an inflation-linked bonda stock and money market account Under the frameworkof game theory we obtain the equilibrium strategies andthe corresponding equilibrium efficient frontiers for bothperiods Finally using Monte Carlo method we give somenumerical analysis and find some interesting results Toobtain the closed-form solution we assume that the riskaversion parameter of the manager is a constant in this paperIn fact it may depend on the current wealth or investorsrsquocurrent investment return (see [35]) in practice In addi-tion in the period of after retirement the investment timehorizon is assumed to be fixed in our paper However sincethe lifetime of the pension plan member is stochastic theportfolio problem with uncertain investment time horizonmay bemore realistic and reasonable and these problemswillbe studied in the future

Appendix

To proveTheorem 7 first we give a lemma

Lemma A1 For the processes 119883120587(119905) 119871(119905) and 119881(119905) defined

in Section 2 if 120601(119905 119909 V 119897) isin 119863119901(G) then forall(119905 119909 V 119897) isin G and

forall120587 isin Π(119905 119909 V 119897) the following integrals are martingales

119872120587

1(119905 119909 V 119897) = int

119879

119905

120601V (119904 119883120587(119904) 119881 (119904) 119871 (119904))

sdot 120590Vradic119881 (119904)119889119882V (119904)

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 15: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Mathematical Problems in Engineering 15

119872120587

2(119905 119909 V 119897) = int

119879

119905

120601119909(119904 119883

120587(119904) 119881 (119904) 119871 (119904))119883

120587(119904)

sdot (120587 (119904) Σ minus 1205881015840

119901) 119889119882 (119904)

119872120587

3(119905 119909 V 119897) = int

119879

119905

120601119897(119904 119883

120587(119904) 119881 (119904) 119871 (119904)) 119871 (119904)

sdot 1205731015840

119897119889119882 (119904)

(A1)

Proof We only prove that119872120587

2(119905 119909 V 119897) is martingale and the

others can be proved similarly Let (119905 119909 V 119897) isin G and 120587 isin

Π(119905 119909 V 119897) We write 120601119909= 120601

119909(119904 119883

120587(119904) 119881(119904) 119871(119904)) for short

Note that

119872120587

2(119905 119909 V 119897)

= int

119879

119905

120601119909119883

120587(119904) 120587 (119904) 119889119882

119901(119904)

+ int

119879

119905

120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904) 119889119882

119904(119904)

(A2)

where 120587(119904) = (120587119868(119904) minus 1)120590

119901+ 120587

119878(119904)120590

119904 Since 120601(119905 119909 V 119897) isin

119863119901(G) there exist two constants 119896

1gt 0 and 119896

2⩾ 1 such that

|120601119909(119905 119909 V 119897)| ⩽ 119896

1(1 + |119909|

1198962 + |V|1198962 + |119897|1198962) According to the

definition of the admissible strategy the linear growth andYamada and Watanabe conditions satisfied by 119881(119905) and 119871(119905)(see [24] for details) for the first part of (A2) we have

E119905119909V119897 int

119879

119905

1003816100381610038161003816120601119909119883

120587(119904) 120587 (119904)

1003816100381610038161003816

2

119889119904 ⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904))

4

+ 120587 (119904)4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

8+ 120587 (119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1198968

1(1 +

1003816100381610038161003816119883

120587(119904)1003816100381610038161003816

1198962

+ |119881 (119904)|1198962+ |119871 (119904)|

1198962)

8

+ 119883120587(119904)

8+ 120587 (119904)

4] 119889119904 lt infin

(A3)

Furthermore for the second part of (A2) we have

E119905119909V119897 int

119879

119905

10038161003816100381610038161003816120601119909119883

120587(119904)radic119881 (119904)120587

119878(119904)10038161003816100381610038161003816

2

119889119904

⩽ E119905119909V119897 int

119879

119905

[(120601119909119883

120587(119904)radic119881 (119904))

4

+ 120587119878(119904)

4] 119889119904

⩽ E119905119909V119897 int

119879

119905

[1206018

119909+ (119883

120587(119904)radic119881 (119904))

8

+ 120587119878(119904)

4] 119889119904 ⩽ E

119905119909V119897 int119879

119905

[1206018

119909+ 119883

120587(119904)

16

+ |119881 (119904)|8+ 120587

119878(119904)

4] 119889119904 lt infin

(A4)

By (A3) and (A4) we know that119872120587

2(119905 119909 V 119897) is martingale

Proof of Theorem 7 The proof consists of five steps

Step 1 Consider an admissible strategy 120587 isin Π(119905 119909 V 119897) Wewill claim that if there exists a real value function119884(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119884 (119905 119909 V 119897) = 0

119884 (119879 119909 V 119897) = 119909(A5)

then 119884(119905 119909 V 119897) = 119910120587(119905 119909 V 119897)

In fact if wewrite119884120587(119905) = 119884(119905 119883

120587(119905) 119881(119905) 119871(119905)) for short

by Itorsquos lemma we have

119884120587(119905) = 119884

120587(119879) minus int

119879

119905

A120587119884

120587(119904) 119889119904 minus int

119879

119905

119884120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119884120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119884120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A6)

Using Lemma A1 and taking the conditional expectation onboth sides of (A6) we have

119884 (119905 119909 V 119897) = E119905119909V119897 [119884

120587(119879)] = E

119905119909V119897 [119883120587(119879)]

= 119910120587(119905 119909 V 119897)

(A7)

Similarly by replacing 119884 and 119910 by 119885 and 119911 respectively wecan claim that if there exists a real value function119885(119905 119909 V 119897) isin119863

119901(G) such that forall(119905 119909 V 119897) isin G

A120587119885 (119905 119909 V 119897) = 0

119885 (119879 119909 V 119897) = 1199092

(A8)

then119885(119905 119909 V 119897) = 119911120587(119905 119909 V 119897)We denote119885120587(119905) = 119885(119905 119883

120587(119905)

119881(119905) 119871(119905)) for short

Step 2 Next we denote two functions 119891120587(119905) = 119891(119905 119883

120587(119905)

119881(119905) 119871(119905) 119884120587(119905) 119885

120587(119905)) and 119865120587

(119905) = 119865(119905 119883120587(119905) 119881(119905) 119871(119905))

and derive an expression for 119891120587(119879)

Note that 119891120587(119905) isin 119862

122222([0 119879] times R5

) and its allfirst-order partial derivatives satisfy the polynomial growthcondition By Itorsquos lemma we have

119891120587(119879) = 119891

120587(119905) + int

119879

119905

119889119891120587(119904) = 119891

120587(119905)

+ int

119879

119905

[119891120587

119910(119904)A

120587119884

120587(119904) + 119891

120587

119911(119904)A

120587119885

120587(119904)

+ 120585120587(119904)] 119889119904 + int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904)

+ 119891120587

119911(119904) 119885

120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119879

119905

[119891120587

119897(119904)

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 16: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

16 Mathematical Problems in Engineering

+ 119891120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A9)

Substituting (A5) and (A8) into (A9) we obtain

119891120587(119879) = 119891

120587(119905) + int

119879

119905

120585120587(119904) 119889119904

+ int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904) + 119891

120587

119911(119904) 119885

120587

119897(119904)]

sdot 119871 (119904) 1205731015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)]

sdot 119883120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A10)

Step 3 Now we show that forall(119905 119909 V 119897) isin G

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A11)

Using Itorsquos lemma we derive

119865120587(119905) = 119865

120587(119879) minus int

119879

119905

119889119865120587(119904) = 119865

120587(119879)

minus int

119879

119905

A120587119865

120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A12)

SinceA120587119865(119905 119909 V 119897) ⩽ 120585120587(119905 119909 V 119897) we have

119865120587(119905) ⩾ 119865

120587(119879) minus int

119879

119905

120585120587(119904) 119889119904 minus int

119879

119905

119865120587

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119879

119905

[119865120587

119909(119904)119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901)

+ 119865120587

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A13)

In addition according to the condition ofTheorem7119865120587(119879) =

119891120587(119879) Thus inserting (A10) into (A13) we get

119865120587(119905) ⩾ 119891

120587(119905) + int

119879

119905

[119891120587

119897(119904) + 119891

120587

119910(119904) 119884

120587

119897(119904)

+ 119891120587

119911(119904) 119885

120587

119897(119904) minus 119865

120587

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587

119909(119904) + 119891

120587

119910(119904) 119884

120587

119909(119904) + 119891

120587

119911(119904) 119885

120587

119909(119904)

minus 119865120587

119909(119904)]119883

120587(119904) (120587 (119904) Σ (119904) minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587

V (119904) + 119891120587

119910(119904) 119884

120587

V (119904) + 119891120587

119911(119904) 119885

120587

V (119904)

minus 119865120587

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A14)

Using Lemma A1 taking conditional expectation on bothsides of (A14) we obtain

119865 (119905 119909 V 119897)

⩾ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A15)

Step 4 Consider a special admissible strategy 120587lowast(1) According to the result of Step 1 119866(119905 119909 V 119897) and

119867(119905 119909 V 119897) satisfy

119866 (119905 119909 V 119897) = 119910120587lowast

(119905 119909 V 119897)

119867 (119905 119909 V 119897) = 119911120587lowast

(119905 119909 V 119897) (A16)

(2) If 120587lowast is a special strategy that makes inequation (A14)as equation then we have

119865120587lowast

(119905) = 119891120587lowast

(119905) + int

119879

119905

[119891120587lowast

119897(119904) + 119891

120587lowast

119910(119904) 119884

120587

119897(119904)

+ 119891120587lowast

119911(119904) 119885

120587lowast

119897(119904) minus 119865

120587lowast

119897(119904)] 119871 (119904) 120573

1015840

119897119889119882 (119904)

+ int

119879

119905

[119891120587lowast

119909(119904) + 119891

120587lowast

119910(119904) 119884

120587lowast

119909(119904) + 119891

120587lowast

119911(119904) 119885

120587lowast

119909(119904)

minus 119865120587lowast

119909(119904)]119883

120587lowast

(119904) (120587lowast1015840(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119879

119905

[119891120587lowast

V (119904) + 119891120587lowast

119910(119904) 119884

120587lowast

V + 119891120587lowast

119911(119904) 119885

120587lowast

V

minus 119865120587lowast

V (119904)] 120590Vradic119881 (119904)119889119882V (119904)

(A17)

By Lemma A1 and taking conditional expectation on bothsides of (A17) we have

119865 (119905 119909 V 119897)

= 119891 (119905 119909 V 119897 119910120587lowast

(119905 119909 V 119897) 119911120587lowast

(119905 119909 V 119897))

⩽ sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897))

(A18)

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 17: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Mathematical Problems in Engineering 17

Combining with (A15) and (A18) we have

119865 (119905 119909 V 119897)

= sup120587isinΠ(119905119909V119897)

119891 (119905 119909 V 119897 119910120587(119905 119909 V 119897) 119911120587 (119905 119909 V 119897)) (A19)

This means that 120587lowast is the optimal strategy

Step 5 Prove that 120587lowast is an equilibrium strategyFor any 120587

120591defined in Definition 6 we replace 120587 with 120587

120591

in (A10) Then

119891120587120591(119905 + 120591) = 119891

120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904

+ int

119905+120591

119905

[119891120587120591

119909(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119909(119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ minus 120588

1015840

119901) 119889119882 (119904)

+ int

119905+120591

119905

[119891120587120591

119897(119904) + 119891

120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904)

+ 119891120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)] 119861

1015840

119897119889119882 (119904) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A20)

When we replace 119879 = 119905 + 120591 and 120587 = 120587lowast in (A13) we have

119865120587lowast

(119905) ⩾ 119865120587lowast

(119905 + 120591) minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904 minus int

119905+120591

119905

119865120587lowast

V (119904)

sdot 120590Vradic119881 (119904)119889119882V (119904)

minus int

119905+120591

119905

[119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ minus 120588

1015840

119901)

+ 119865120587lowast

119897(119904) 119871 (119904) 120573

1015840

119897] 119889119882 (119904)

(A21)

By the definition of 120587120591 we have 119891120587

120591(119905 + 120591) = 119865120587lowast

(119905 + 120591)Replacing 119865120587

lowast

(119905 + 120591) with 119891120587120591(119905 + 120591) in (A21) we obtain

119865120587lowast

(119905) ⩾ 119891120587120591(119905) + int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904

minus int

119905+120591

119905

119865120587lowast

119909(119904)119883

120587lowast

(119904) (120587lowast(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119909(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119909(119904) + 119891

120587120591

119911(119904) 119885

120587120591

119909(119904)] (120587

120591(119904) Σ (119904)

minus 1205881015840

119901) 119889119882 (119904) + int

119905+120591

119905

[119891120587120591

119897(119904)

+ 119891120587120591

119910(119904) 119884

120587120591

119897(119904) 119871 (119904) + 119891

120587120591

119911(119904) 119885

120587120591

119897(119904) 119871 (119904)

minus 119865120587lowast

119897(119904) 119871 (119904)] 120573

1015840

119897119889119882 (119905) + int

119905+120591

119905

[119891120587120591

V (119904)

+ 119891120587120591

119910(119904) 119884

120587120591

V (119904) + 119891120587120591

119911(119904) 119885

120587120591

V (119904) minus 119865120587lowast

V (119904)]

sdot 120590Vradic119881 (119904)119889119882V (119904)

(A22)

Since 119865120587lowast

(119905) = 119891120587lowast

(119905) and taking conditional expectation onboth sides of (A22) we obtain

119891120587lowast

(119905)

⩾ 119891120587120591(119905)

+ E119905119909V119897 [int

119905+120591

119905

120585120587120591(119904) 119889119904 minus int

119905+120591

119905

120585120587lowast

(119904) 119889119904]

(A23)

and then

lim120591rarr0

inf119891

120587lowast

(119905) minus 119891120587120591 (119905)

120591⩾ 0 (A24)

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Acknowledgments

This research is supported by grants of the National NaturalScience Foundation of China (nos 71231008 and 71501176)the Project Funded by China Postdoctoral Science Founda-tion (2015M580141) Natural Science Foundation of Guang-dong Province of China (no 2014A030312003) and the Foun-dation of City Development Academy of Gansu Province ofChina (no 2014-GSCFY-KJ02)

References

[1] E Vigna and S Haberman ldquoOptimal investment strategy fordefined contribution pension schemesrdquo InsuranceMathematicsand Economics vol 28 no 2 pp 233ndash262 2001

[2] P Devolder M B Princep and I D Fabian ldquoStochasticoptimal control of annuity contractsrdquo Insurance Mathematicsand Economics vol 33 no 2 pp 227ndash238 2003

[3] P Battocchio and F Menoncin ldquoOptimal pension managementin a stochastic frameworkrdquo Insurance Mathematics and Eco-nomics vol 34 no 1 pp 79ndash95 2004

[4] J W Gao ldquoStochastic optimal control of DC pension fundsrdquoInsurance Mathematics and Economics vol 42 no 3 pp 1159ndash1164 2008

[5] N-W Han and M-W Hung ldquoOptimal asset allocation forDC pension plans under inflationrdquo Insurance Mathematics ampEconomics vol 51 no 1 pp 172ndash181 2012

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 18: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

18 Mathematical Problems in Engineering

[6] G H Guan and Z X Liang ldquoOptimal management of DCpension plan in a stochastic interest rate and stochastic volatilityframeworkrdquo Insurance Mathematics and Economics vol 57 pp58ndash66 2014

[7] P Chen andH L Yang ldquoPension funding problemwith regime-switching geometric Brownian motion assets and liabilitiesrdquoApplied Stochastic Models in Business and Industry vol 26 no2 pp 125ndash141 2010

[8] D Li andW-L Ng ldquoOptimal dynamic portfolio selection mul-tiperiod mean-variance formulationrdquo Mathematical Financevol 10 no 3 pp 387ndash406 2000

[9] X Y Zhou and D Li ldquoContinuous-time mean-variance portfo-lio selection a stochastic LQ frameworkrdquo Applied Mathematicsand Optimization vol 42 no 1 pp 19ndash33 2000

[10] S Basak and G Chabakauri ldquoDynamic mean-variance assetallocationrdquo Review of Financial Studies vol 23 no 8 pp 2970ndash3016 2010

[11] T Bjork and A Murgoci ldquoA general theory of Markoviantime inconsistent stochastic control problemsrdquo Working PaperStockholm School of Economics Stockholm Sweden 2010

[12] T Bjork A Murgoci and X Y Zhou ldquoMean-variance portfoliooptimization with state-dependent risk aversionrdquoMathematicalFinance vol 24 no 1 pp 1ndash24 2014

[13] L He and Z X Liang ldquoOptimal investment strategy for the DCplan with the return of premiums clauses in a mean-varianceframeworkrdquo Insurance Mathematics and Economics vol 53 no3 pp 643ndash649 2013

[14] X Q Liang L H Bai and J Y Guo ldquoOptimal time-consistentportfolio and contribution selection for defined benefit pensionschemes undermean-variance criterionrdquoTheANZIAM Journalvol 56 no 1 pp 66ndash90 2014

[15] F Menoncin and E Vigna ldquoMean-variance target-based opti-misation in DC plan with stochastic interest raterdquo Tech Rep337 Collegio Carlo Alberto 2013

[16] E Vigna ldquoOn efficiency ofmean-variance based portfolio selec-tion in defined contribution pension schemesrdquo QuantitativeFinance vol 14 no 2 pp 237ndash258 2014

[17] H Yao Z Yang and P Chen ldquoMarkowitzrsquos mean-variancedefined contribution pension fund management under infla-tion a continuous-time modelrdquo Insurance Mathematics andEconomics vol 53 no 3 pp 851ndash863 2013

[18] A Zhang and C-O Ewald ldquoOptimal investment for a pensionfund under inflation riskrdquoMathematical Methods of OperationsResearch vol 71 no 2 pp 353ndash369 2010

[19] H L Wu L Zhang and H Chen ldquoNash equilibrium strategiesfor a defined contribution pension managementrdquo InsuranceMathematics and Economics vol 62 pp 202ndash214 2015

[20] J C Cox ldquoThe constant elasticity of variance option pricingmodelrdquoThe Journal of Portfolio Management vol 23 pp 15ndash171996

[21] S L Heston ldquoA closed-form solution for options with stochasticvolatility with applications to bond and currency optionsrdquoReview of Financial Studies vol 6 no 2 pp 327ndash343 1993

[22] E M Stein and J C Stein ldquoStock price distributions withstochastic volatility an analytic approachrdquo Review of FinancialStudies vol 4 no 4 pp 727ndash752 1991

[23] X Lin and Y Li ldquoOptimal reinsurance and investment fora jump diffusion risk process under the CEV modelrdquo NorthAmerican Actuarial Journal vol 15 no 3 pp 417ndash431 2011

[24] Z Li Y Zeng and Y Lai ldquoOptimal time-consistent investmentand reinsurance strategies for insurers under Hestonrsquos SV

modelrdquo InsuranceMathematics and Economics vol 51 no 1 pp191ndash203 2012

[25] Y Shen and Y Zeng ldquoOptimal investment-reinsurance strategyfor mean-variance insurers with square-root factor processrdquoInsurance Mathematics and Economics vol 62 pp 118ndash1372015

[26] J W Gao ldquoOptimal portfolios for DC pension plans under aCEV modelrdquo Insurance Mathematics amp Economics vol 44 no3 pp 479ndash490 2009

[27] J W Xiao Z Hong and C L Qin ldquoThe constant elasticityof variance (CEV) model and the Legendre transform-dualsolution for annuity contractsrdquo Insurance Mathematics andEconomics vol 40 no 2 pp 302ndash310 2007

[28] M J Brennan and Y Xia ldquoDynamic asset allocation underinflationrdquo Journal of Finance vol 57 no 3 pp 1201ndash1238 2002

[29] M Kwak and B H Lim ldquoOptimal portfolio selection with lifeinsurance under inflation riskrdquo Journal of Banking and Financevol 46 no 1 pp 59ndash71 2014

[30] A Anari and J Kolari ldquoStock prices and inflationrdquo Journal ofFinancial Research vol 24 no 4 pp 587ndash602 2001

[31] B S Lee ldquoStock returns and inflation revisited an evaluationof the inflation illusion hypothesisrdquo Journal of Banking andFinance vol 34 no 6 pp 1257ndash1273 2010

[32] J Liu and J Pan ldquoDynamic derivative strategiesrdquo Journal ofFinancial Economics vol 69 no 3 pp 401ndash430 2003

[33] R Gerrard S Haberman and E Vigna ldquoOptimal investmentchoices post-retirement in a defined contribution pensionschemerdquo Insurance Mathematics and Economics vol 35 no 2pp 321ndash342 2004

[34] M Di Giacinto S Federico F Gozzi and E Vigna ldquoIncomedrawdown option with minimum guaranteerdquo European Journalof Operational Research vol 234 no 3 pp 610ndash624 2014

[35] F H Wen Z F He Z F Dai and X G Yang ldquoCharacteristicsof investorsrsquo risk preference for stock marketsrdquo EconomicComputation and Economic Cybernetics Studies and Researchvol 48 no 3 pp 235ndash254 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 19: Research Article Equilibrium Investment Strategy for DC Pension …downloads.hindawi.com/journals/mpe/2016/2391849.pdf · 2019. 7. 30. · Equilibrium Investment Strategy for DC Pension

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended