+ All Categories
Home > Documents > Research Article Estimates for Parameter Littlewood-Paley...

Research Article Estimates for Parameter Littlewood-Paley...

Date post: 06-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
13
Research Article Estimates for Parameter Littlewood-Paley Functions on Nonhomogeneous Metric Measure Spaces Guanghui Lu and Shuangping Tao College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China Correspondence should be addressed to Shuangping Tao; [email protected] Received 18 January 2016; Accepted 17 March 2016 Academic Editor: Yoshihiro Sawano Copyright © 2016 G. Lu and S. Tao. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let (X, , ) be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measure conditions. In this paper, the authors prove that, under the assumption that the kernel of M satisfies a certain H¨ ormander-type condition, M ∗, is bounded from Lebesgue spaces () to Lebesgue spaces () for ≥2 and is bounded from 1 () into 1,∞ (). As a corollary, M ∗, is bounded on () for 1<<2. In addition, the authors also obtain that M ∗, is bounded from the atomic Hardy space 1 () into the Lebesgue space 1 (). 1. Introduction In 1958, Stein in [1] firstly introduced the Littlewood-Paley operators of the higher-dimensional case; meanwhile, the author also obtained the boundedness of the Marcinkiewicz integrals and area integrals. In 1970, Fefferman in [2] proved that the Littlewood-Paley function is weak type (, ) for ∈ (1, 2) and = 2/. With further research about Little- wood-Paley operators, some authors turn their attentions to study the parameter Littlewood-Paley operators. For exam- ple, in 1999, Sakamoto and Yabuta in [3] considered the parameter function. Since then, many papers focus on the behaviours of the operators; among them we refer readers to see [4–6]. In the past ten years or so, most authors mainly study the classical theory of harmonic analysis on R under nondou- bling measures which only satisfy the polynomial growth condition; see [7–12]. Exactly, we assume that which is a positive Radon measure on R satisfies the following growth conditions; namely, for all R and ∈ (0, ∞), there exist constant and 0<≤ such that ( (, )) ≤ , (1) where (, ) { ∈ R : | − | < }. e analysis associated with nondoubling measures as in (1) has important applications in solving long-standing open Pain- lev´ e’s problem and Vitushkin’s conjecture (see [13, 14]). Besides, Coifman and Weiss have showed that the measure is a key assumption in harmonic analysis on homogeneous- type spaces (see [15, 16]). However, Hyt¨ onen in [17] pointed that the measure as in (1) may not contain the doubling measure as special cases. To solve the problem, in 2010, Hyt¨ onen in [17] introduced a new class of metric measure spaces satisfying the so-called upper doubling conditions and the geometrically doubling (resp., see Definitions 1 and 2 below), which are now claimed non- homogeneous metric measure spaces. erefore, if we replace the underlying spaces with nonhomogeneous metric measure spaces, many known-consequences have been proved still true; for example, see [18–22]. In this paper, we always assume that (X, , ) is a non- homogeneous metric measure space. In this setting, we will establish the boundedness of the parameter Littlewood-Paley functions on (X, , ). In order to state our main results, we firstly recall some necessary notions and notation. Hyt¨ onen in [17] gave out the definition of upper doubling metric spaces as follows. Hindawi Publishing Corporation Journal of Function Spaces Volume 2016, Article ID 9091478, 12 pages http://dx.doi.org/10.1155/2016/9091478
Transcript
Page 1: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

Research ArticleEstimates for Parameter Littlewood-Paley 119892lowast

120581Functions on

Nonhomogeneous Metric Measure Spaces

Guanghui Lu and Shuangping Tao

College of Mathematics and Statistics Northwest Normal University Lanzhou 730070 China

Correspondence should be addressed to Shuangping Tao taospnwnueducn

Received 18 January 2016 Accepted 17 March 2016

Academic Editor Yoshihiro Sawano

Copyright copy 2016 G Lu and S Tao This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

Let (X 119889 120583) be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measureconditions In this paper the authors prove that under the assumption that the kernel of Mlowast

120581satisfies a certain Hormander-type

condition Mlowast120588

120581is bounded from Lebesgue spaces 119871119901

(120583) to Lebesgue spaces 119871119901

(120583) for 119901 ge 2 and is bounded from 1198711

(120583) into1198711infin

(120583) As a corollary Mlowast120588

120581is bounded on 119871

119901

(120583) for 1 lt 119901 lt 2 In addition the authors also obtain that Mlowast120588

120581is bounded from

the atomic Hardy space1198671

(120583) into the Lebesgue space 1198711

(120583)

1 Introduction

In 1958 Stein in [1] firstly introduced the Littlewood-Paleyoperators of the higher-dimensional case meanwhile theauthor also obtained the boundedness of the Marcinkiewiczintegrals and area integrals In 1970 Fefferman in [2] provedthat the Littlewood-Paley 119892lowast

120581function is weak type (119901 119901) for

119901 isin (1 2) and 120581 = 2119901 With further research about Little-wood-Paley operators some authors turn their attentions tostudy the parameter Littlewood-Paley operators For exam-ple in 1999 Sakamoto and Yabuta in [3] considered theparameter 119892lowast

120581function Since then many papers focus on the

behaviours of the operators among them we refer readers tosee [4ndash6]

In the past ten years or so most authors mainly study theclassical theory of harmonic analysis on R119899 under nondou-bling measures which only satisfy the polynomial growthcondition see [7ndash12] Exactly we assume that 120583 which is apositive Radon measure on R119899 satisfies the following growthconditions namely for all 119909 isin R119899 and 119903 isin (0infin) there existconstant 119862 and 0 lt 119889 le 119899 such that

120583 (119861 (119909 119903)) le 119862119903119889

(1)

where 119861(119909 119903) fl 119910 isin R119899

|119909 minus 119910| lt 119903 The analysisassociated with nondoubling measures 120583 as in (1) hasimportant applications in solving long-standing open Pain-leversquos problem and Vitushkinrsquos conjecture (see [13 14])Besides Coifman andWeiss have showed that the measure 120583is a key assumption in harmonic analysis on homogeneous-type spaces (see [15 16])

HoweverHytonen in [17] pointed that themeasure120583 as in(1) may not contain the doubling measure as special cases Tosolve the problem in 2010 Hytonen in [17] introduced a newclass of metric measure spaces satisfying the so-called upperdoubling conditions and the geometrically doubling (respsee Definitions 1 and 2 below) which are now claimed non-homogeneousmetricmeasure spacesTherefore if we replacethe underlying spaceswith nonhomogeneousmetricmeasurespaces many known-consequences have been proved stilltrue for example see [18ndash22]

In this paper we always assume that (X 119889 120583) is a non-homogeneous metric measure space In this setting we willestablish the boundedness of the parameter Littlewood-Paley119892lowast

120581functions on (X 119889 120583)In order to state our main results we firstly recall some

necessary notions and notation Hytonen in [17] gave out thedefinition of upper doubling metric spaces as follows

Hindawi Publishing CorporationJournal of Function SpacesVolume 2016 Article ID 9091478 12 pageshttpdxdoiorg10115520169091478

2 Journal of Function Spaces

Definition 1 (see [17]) A metric measure space (X 119889 120583) issaid to be upper doubling if 120583 is Borel measure on X andthere exist a dominating function 120582 X times (0infin) rarr (0infin)

and a positive constant 119862120582such that for each 119909 isin X 119903 rarr

120582(119909 119903) is nondecreasing and for all 119909 isin X and 119903 isin (0infin)

120583 (119861 (119909 119903)) le 120582 (119909 119903) le 119862120582120582 (119909

119903

2

) (2)

Htyonen et al in [18] proved that there exists anotherdominating function

120582 such that 120582 le 120582 119862120582le 119862

120582and

120582 (119909 119910) le 119862

120582

120582 (119910 119903) (3)

where 119909 119910 isin X and 119889(119909 119910) le 119903 Based on this from now onlet the dominating function in (2) also satisfy (3)

Now we recall the notion of geometrically doubling con-ditions given in [17]

Definition 2 (see [17]) A metric space (X 119889) is said to begeometrically doubling if there exists some 119873

0isin N such

that for any ball 119861(119909 119903) sub X there exists a finite ball cover-ing 119861(119909

119894 1199032)

119894of 119861(119909 119903) such that the cardinality of this

covering is at most1198730

Remark 3 (see [17]) Let (X 119889) be a metric space Hytonen in[17] showed that the following statements aremutually equiv-alent

(1) (X 119889) is geometrically doubling

(2) For any 120598 isin (0 1) and ball 119861(119909 119903) sub X there exists afinite ball covering 119861(119909

119894 120598119903)

119894of 119861(119909 119903) such that the

cardinality of this covering is at most1198730120598minus119899 Here and

in what follows1198730is as Definition 2 and 119899 = log

2119873

0

(3) For every 120598 isin (0 1) any ball 119861(119909 119903) sub X can containat most119873

0120598minus119899 centers of disjoint balls 119861(119909

119894 120598119903)

119894

(4) There exists 119872 isin N such that any ball 119861(119909 119903) sub X

can contain at most 119872 centers 119909119894119894of disjoint balls

119861(119909119894 1199034)

119872

119894=1

Hytonen in [17] introduced the following coefficients119870119861119878

analogous to Tolsarsquos number 119870119876119877

in [7]Given any two balls 119861 sub 119878 set

119870119861119878

fl 1 + int

2119878119861

1

120582 (119888119861 119889 (119909 119888

119861))

d120583 (119909) (4)

where 119888119861represents the center of the ball 119861

Remark 4 Bui and Duong in [21] firstly introduced the fol-lowing discrete version

119870119861119878

of 119870119861119878

as in (4) on (X 119889 120583)

which is very similar to the number119870119876119877

introduced in [7] byTolsa For any two balls 119861 sub 119878 119870

119861119878is defined by

119870

119861119878= 1 +

119873119861119878

sum

119894=1

120583 (6119894

119861)

120582 (119888119861 6

119894119903119861)

(5)

where the radii of the balls 119861 and 119878 are denoted by 119903119861and

119903119878 respectively and 119873

119861119878is the smallest integer satisfying

6119873119861119878

119903119861ge 119903

119904 It is easy to obtain

119870119861119878

le 119862119870119861119878 Bui and Duong

in [21] also pointed out that it is incorrect that119870119861119878

sim119870

119861119878

Now we recall the following notion of (120572 120573)-doublingproperty (see [17])

Definition 5 (see [17]) Let 120572 120573 isin (1infin) A ball 119861 sub X isclaimed to be (120572 120573)-doubling if 120583(120572119861) le 120573120583(119861)

It was stated in [17] that there exist many balls whichhave the above (120572 120573)-doubling property In the latter part ofthe paper if 120572 and 120573

120572are not specified (120572 120573

120572)-doubling ball

always stands for (6 1205736)-doubling ball with a fixed number

1205736gt max1198623 log

26

120582 6

119899

where 119899 fl log2119873

0is considered as

a geometric dimension of the space Moreover the smallest(6 120573

6)-doubling ball of the form 6

119895

119861 with 119895 isin N is denotedby

119861

6 and sometimes 1198616 can be simply denoted by 119861

Now we give the definition of the parameter Littlewood-Paley 119892lowast

120581functions on (X 119889 120583)

Definition 6 (see [22]) Let 119870(119909 119910) be a locally integrablefunction on (X times X) (119909 119910) 119909 = 119910 Assume that thereexists a positive constant 119862 such that for all 119909 119910 isin X with119909 = 119910

1003816100381610038161003816119870 (119909 119910)

1003816100381610038161003816le 119862

119889 (119909 119910)

120582 (119909 119889 (119909 119910))

(6)

and for all 119909 119910 1199101015840

isin X

int

119889(119909119910)ge2119889(1199101199101015840)

[

10038161003816100381610038161003816119870 (119909 119910) minus 119870 (119909 119910

1015840

)

10038161003816100381610038161003816

+

10038161003816100381610038161003816119870 (119910 119909) minus 119870 (119910

1015840

119909)

10038161003816100381610038161003816]

1

119889 (119909 119910)

d120583 (119909) le 119862

(7)

The parameter Marcinkiewicz integral M120588 associatedwith the above 119870(119909 119910) which satisfies (6) and (7) is definedby

M120588

(119891) (119909) = (int

infin

0

1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

sdot int

119889(119909119910)le119905

119870(119909 119910)

[119889 (119909 119910)]

1minus120588119891 (119910) d120583 (119910)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d119905119905

)

12

119909 isin X

(8)

Journal of Function Spaces 3

where 120588 isin (0infin)The parameter 119892lowast

120581functionMlowast120588

120581is defined

by

Mlowast120588

120581(119891) (119909) = ∬

Xtimes(0infin)

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

sdot int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910)

120582 (119910 119905)

d119905119905

12

(9)

where 119909 isin X X times (0infin) fl (119910 119905) 119910 isin X 119905 gt 0 120588 gt 0

and 120581 isin (1infin)

Remark 7 (1) When 120588 = 1 the operator M120588 as in (8) is justthe Marcinkiewicz integral on (X 119889 120583) (see [22])

(2) If we take (X 119889 120583) = (R119899

|sdot| 120583) and 120582(119910 119905) fl 119905119899 then

the parameter 119892lowast

120581functionMlowast120588

120581as in (9) is just a parameter

Littlewood-Paley operatorwith nondoublingmeasures in [8]

The following definition of the atomic Hardy space wasintroduced by Htyonen et al (see [18])

Definition 8 (see [18]) Let 120577 isin (1infin) and 119901 isin (1infin] Afunction 119887 isin 119871

1

loc(120583) is called a (119901 1)120592-atomic block if

(a) there exists a ball 119861 such that supp 119887 sub 119861

(b) intX119887(119909)d120583(119909) = 0

(c) for any 119894 isin 1 2 there exist a function 119886119894supported

on ball 119861119894sub 119861 and a number 120592

119894isin C such that

119887 = 12059211198861+ 120592

21198862

1003817100381710038171003817119886119894

1003817100381710038171003817119871119901(120583)

le [120583 (120577119861119894)]

1119901minus1

119870minus1

119861119894 119861

(10)

Moreover let |119887|119867

1119901

atb (120583)fl |120592

1| + |120592

2|

We say a function 119891 isin 1198711

(120583) belongs to the atomicHardy space 119867

1119901

atb (120583) if there are atomic blocks 119887119894infin

119894=1such

that 119891 = suminfin

119894=1119887119894with sum

infin

119894=1|119887

119894|119867

1119901

atb (120583)lt infin The 1198671119901

atb (120583) normof 119891 is denoted by 119891

119867

1119901

atb (120583)= infsuminfin

119894=1|119887

119894|119867

1119901

atb (120583) where the

infimum is taken over all the possible decompositions of 119891 asabove

It was proved by Htyonen et al in [18] that the definitionof 1198671119901

atb (120583) is not related to the choice of 120577 and the spaces119867

1119901

atb (120583) and 1198671infin

atb (120583) have the same norms for 119901 isin (1infin]Thus for convenience we always denote1198671119901

atb (120583) by1198671

(120583)Nowwe give the Hormander-type condition on (X 119889 120583)

that is there exists a positive 119862 such that

sup119903gt0

119889(1199101199101015840)le119903

infin

sum

119894=1

119894 int

6119894119903lt119889(119909119910)le6

119894+1119903

[

10038161003816100381610038161003816119870 (119909 119910) minus 119870 (119909 119910

1015840

)

10038161003816100381610038161003816+

10038161003816100381610038161003816119870 (119910 119909) minus 119870 (119910

1015840

119909)

10038161003816100381610038161003816]

d120583 (119909)

119889 (119909 119910)

le 119862 (11)

Notice this condition is slightly stronger than (7)Now let us state the main theorems which generalize and

improve the corresponding results in [8]

Theorem 9 Let119870(119909 119910) satisfy (6) and (7) and letMlowast120588

120581be as

in (9) with 120588 isin (0infin) and 120581 isin (1infin) ThenMlowast120588

120581is bounded

on 119871119901

(120583) for any 119901 isin [2infin)

Theorem 10 Let 119870(119909 119910) satisfy (6) and (11) and letMlowast120588

120581be

as in (9) with 120588 isin (12infin) and 120581 isin (1infin) Then Mlowast120588

120581is

bounded from 1198711

(120583) into weak 1198711

(120583) namely there exists apositive constant 119862 such that for any 120591 gt 0 and 119891 isin 119871

1

(120583)

120583 (119909 isin X Mlowast120588

120581(119891) (119909) gt 120591) le 119862

100381710038171003817100381711989110038171003817100381710038171198711(120583)

120591

(12)

Theorem 11 Let 119870(119909 119910) satisfy (6) and (11) and let Mlowast120588

120581be

as in (9) with 120588 gt 12 and 120581 gt 1 Suppose thatMlowast120588

120581is bounded

on 1198712

(120583) ThenMlowast120588

120581is bounded from119867

1

(120583) into 1198711

(120583)

Applying the Marcinkiewicz interpolation theorem andTheorems 9 and 10 it is easy to get the following result

Corollary 12 Under the assumption of Theorem 10 Mlowast120588

120581is

bounded on 119871119901

(120583) for 119901 isin (1 2)

The organization of this paper is as follows In Section 2wewill give somepreliminary lemmasTheproofs of themaintheorems will be given in Section 3 Throughout this paper119862 stands for a positive constant which is independent of themain parameters but it may be different from line to line Forany 119864 sub X we use 120594

119864to denote its characteristic function

2 Preliminary Lemmas

In this section we make some preliminary lemmas which areused in the proof of the main results Firstly we recall someproperties of119870

119861119878as in (4) (see [17])

Lemma 13 (see [17]) (1) For all balls 119861 sub 119877 sub 119878 it holds truethat 119870

119861119877le 119870

119861119878

(2) For any 120585 isin [1infin) there exists a positive constant 119862120585

such that for all balls 119861 sub 119878 with 119903119878le 120585119903

119861 119870

119861119878le 119862

120585

(3) For any 984858 isin (1infin) there exists a positive constant 119862984858

depending on 984858 such that for all balls 119861119870119861

119861

984858 le 119862984858

(4) There exists a positive constant 119888 such that for all balls119861 sub 119877 sub 119878 119870

119861119878le 119870

119861119877+ 119888119870

119877119878 In particular if 119861 and 119877 are

concentric then 119888 = 1(5) There exists a positive constant such that for all balls

119861 sub 119877 sub 119878 119870119861119877

le 119870119861119878 moreover if 119861 and 119877 are concentric

then 119870119877119878

le 119870119861119878

4 Journal of Function Spaces

To state the following lemmas let us give a known-result(see [19]) For 120578 isin (0infin) the maximal operator is defined bysetting that for all 119891 isin 119871

1

loc(120583) and 119909 isin X

119872(120578)119891 (119909) fl sup

119876ni119909119876doubling

1

120583 (120578119876)

int

119876

1003816100381610038161003816119891 (119910)

1003816100381610038161003816d120583 (119910) (13)

is bounded on 119871119901

(120583) provided that 119901 isin (1infin) and alsobounded from 119871

1

(120583) into 1198711infin

(120583)The following lemma is slightly changed from [8]

Lemma 14 Let 119870(119909 119910) satisfy (6) and (7) and 120578 isin (0infin)Assume that M120588 is as in (8) and Mlowast120588

120581is as in (9) with

120588 isin (0infin) and 120581 isin (1infin) Then for any nonnegative function120601 there exists a positive constant 119862 such that for all 119891 isin 119871

119901

(120583)

with 119901 isin (1infin)

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

le 119862int

X

[M120588

(119891) (119909)]

2

119872120578(120601) (119909) d120583 (119909)

(14)

Proof By the definition ofMlowast120588

120581(119891) we have

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

= int

X

Xtimes(0infin)

(

119905

119905 + 119889 (119909 119910)

)

120573 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588119891 (119910) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910)

120582 (119910 119905)

d119905119905

120601 (119909) d120583 (119909)

le int

X

int

infin

0

1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119910) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d119905119905

sup119905gt0

[int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)] d120583 (119910)

= int

X

[M120588

(119891) (119910)]

2 sup119905gt0

[int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)] d120583 (119910)

(15)

Thus to prove Lemma 14 we only need to estimate that

sup119905gt0

int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

le 119862119872120578(120601) (119910)

(16)

For any 119910 isin X and 119905 gt 0 write

int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

= int

119861(119910119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

+ int

X119861(119910119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

š 1198631+ 119863

2

(17)

For1198631 it is not difficult to obtain that

1198631le int

119861(119910119905)

120601 (119909)

120582 (119910 119905)

d120583 (119909)

=

120583 (120578119861 (119910 119905))

120582 (119910 119905)

1

120583 (120578119861 (119910 119905))

int

119861(119910119905)

120601 (119909) d120583 (119909)

le 119862119872120578(120601) (119910)

(18)

Now we turn to estimate1198632 by (2) and (13) we have

1198632le

infin

sum

119896=1

int

119861(1199106119896119905)119861(1199106

119896minus1119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

sdot

120601 (119909)

120582 (119910 119905)

d120583 (119909) le 119862

infin

sum

119896=1

6minus(119896minus1)120573

sdot int

119861(1199106119896119905)

120601 (119909)

120582 (119910 119905)

d120583 (119909) le 119862

infin

sum

119896=1

6minus(119896minus1)120573

sdot

120583 (119861 (119910 6119896

119905))

120582 (119910 119905)

1

120583 (119861 (119910 6119896119905))

int

119861(1199106119896119905)

120601 (119909) d120583 (119909)

le 119862

infin

sum

119896=1

6minus(119896minus1)120573

120583 (119861 (119910 6119896

119905))

120582 (119910 119905)

119872120578(120601) (119910) le 119862

sdot

120582 (119910 6119896

119905)

120582 (119910 119905)

119872120578(120601) (119910)

infin

sum

119896=1

6minus(119896minus1)120573

120582 (119910 6119896

119905)

120582 (119910 119905)

le 119862

sdot

120582 (119910 6119896

119905)

120582 (119910 119905)

119872120578(120601) (119910)

infin

sum

119896=1

6minus(119896minus1)120573

le 119862119872120578(120601) (119910)

(19)

Combining the estimates for 1198631and 119863

2 we obtain (16) and

hence complete the proof of Lemma 14

Finally we recall the Calderon-Zygmund decompositiontheorem (see [21]) Suppose that 120574

0is a fixed positive constant

Journal of Function Spaces 5

satisfying that 1205740gt max1198623 log

26

120582 6

3119899

where 119862120582is as in (2)

and 119899 as in Remark 3

Lemma 15 (see [21]) Let 119901 isin [1infin) 119891 isin 119871119901

(120583) and 119905 isin

(0infin) (119905 gt 1205740119891

119871119901(120583)

120583(X) when 120583(X) lt infin) Then

(1) there exists a family of finite overlapping balls 6119861119894119894

such that 119861119894119894is pairwise disjoint

1

120583 (62119861119894)

int

119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) gt

119905119901

1205740

forall119894 (20)

1

120583 (62120591119861

119894)

int

120591119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) le

119905119901

1205740

forall119894 forall120591 isin (2infin)

(21)

1003816100381610038161003816119891 (119909)

1003816100381610038161003816le 119905

119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X (⋃

119894

6119861119894)

(22)

(2) for each 119894 let 119878119894be a (3 times 6

2

119862

log2(3times62)+1

120582)-doubling ball

of the family (3times62

)119896

119861119894119896isinN and 120596119894

= 1205946119861119894

(sum1198961205946119861119896

)Then there exists a family 120593

119894119894of functions that for

each 119894 supp(120593119894) sub 119878

119894 120593

119894has a constant sign on 119878

119894and

int

X

120593119894(119909) 119889120583 (119909) = int

6119861119894

119891 (119909) 120596119894(119909) 119889120583 (119909)

sum

119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816le 120574119905 119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X

(23)

where 120574 is some positive constant depending only on (X 120583)and there exists a positive constant 119862 independent of 119891 119905 and119894 such that if 119901 = 1 then

1003817100381710038171003817120593119894

1003817100381710038171003817119871infin(120583)

120583 (119878119894) le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816119889120583 (119909) (24)

and if 119901 isin (1infin)

(int

119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

119901

119889120583 (119909))

1119901

[120583 (119878119894)]

11199011015840

le

119862

119905119901minus1

int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816

119901

119889120583 (119909)

(25)

3 Proofs of Theorems

Proof ofTheorem 9 For the case of 119901 = 2 assume 120601(119909) = 1 inLemma 14 then it is easy to get that

int

X

[Mlowast120588

120581(119891) (119909)]

2 d120583 (119909)

le 119862int

X

[M120588

(119891) (119909)]

2 d120583 (119909)

(26)

which along with 1198712

(120583)-boundedness of M120588 easily yieldsthat Theorem 9 holds

For the case of 119901 gt 2 let 119902 be the index conjugate to1199012 By applying Holder inequality and Lemma 14 we canconclude

1003817100381710038171003817M

lowast120588

120581(119891)

1003817100381710038171003817

2

119871119901(120583)

= sup120601ge0

120601119871119902(120583)

le1

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

le 119862 sup120601ge0

120601119871119902(120583)

le1

int

X

[M120588

(119891) (119909)]

2

119872120578120601 (119909) d120583 (119909)

le 1198621003817100381710038171003817M

120588

(119891)1003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171003817119872

120578(120601)

10038171003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171206011003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

(27)

which is desired Thus we complete the proof of Theorem 9

Proof of Theorem 10 Without loss of generality we mayassume that 119891

1198711(120583)

= 1 It is easy to see that the conclusionofTheorem 10 naturally holds if 120591 le 120573

6(119891

1198711(120583)

120583(X)) when120583(X) lt infin Thus we only need to discuss the case that120591 gt 120573

6(119891

1198711(120583)

120583(X)) Applying Lemma 15 to119891 at the level 120591and letting120596

119894120593

119894119861

119894 and 119878

119894be the same as in Lemma 15 we see

that119891(119909) = 119887(119909)+ℎ(119909) where 119887(119909) fl 119891120594X⋃1198946119861119894

(119909)+sum119894120593119894(119909)

and ℎ(119909) fl sum119894[120596

119894(119909)119891(119909) minus 120593

119894(119909)] š sum

119894ℎ119894(119909) It is easy

to obtain that 119887119871infin(120583)

le 119862120591 and 1198871198711(120583)

le 119862 By 1198712

(120583)-boundedness ofMlowast120588

120581 we have

120583 (119909 isin X Mlowast120588

120581(119887) (119909) gt 120591) le

1003817100381710038171003817Mlowast120588

120581(119887)

1003817100381710038171003817

2

1198712(120583)

1205912

le 119862

1198872

1198712(120583)

1205912

le 119862120591minus1

(28)

On the other hand by (20) with 119901 = 1 and the fact that thesequence of balls 119861

119894119894 is pairwise disjoint we see that

120583(⋃

119894

62

119861119894) le 119862120591

minus1

int

X

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) le 119862120591

minus1

(29)

and thus the proof of theTheorem 10 can be reduced to provethat

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591) le 119862120591

minus1

(30)

For each fixed 119894 denote the center of 119861119894by 119909

119894 and let 119873

1

be the positive integer satisfying 119878119894= (3 times 6

2

)1198731119861119894 We have

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591)

le 120591minus1

sum

119894

int

X⋃11989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

6 Journal of Function Spaces

le 120591minus1

sum

119894

int

X6119878119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

+ 120591minus1

sum

119894

int

611987811989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

š 120591minus1

sum

119894

(1198641+ 119864

2)

(31)

Firstly let us estimate 1198642and write it as

1198642le int

611987811989462119861119894

Mlowast120588

120581(119891120596

119894) (119909) d120583 (119909)

+ int

611987811989462119861119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909) š 119864

21+ 119864

22

(32)

where ℎ119894fl 120596

119894119891 minus 120593

119894 By Holder inequality (24) and 119871

2

(120583)-boundedness ofMlowast120588

120581 we have

11986422

le int

6119878119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909)

le (int

6119878119894

1003816100381610038161003816M

lowast120588

120581(120593

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862(int

6119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816d120583 (119909)

(33)

For 11986421 by Minkowski inequality and (6) write

11986421

= int

611987811989462119861119894

[

[

Xtimes(0infin)

1003816100381610038161003816100381610038161003816100381610038161003816

(

119905

119905 + 119889 (119909 119910)

)

1205812

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119911) 120596119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

le 119862int

611987811989462119861119894

int

X

1003816100381610038161003816119891 (119911) 120596

119894(119911)

1003816100381610038161003816[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905

2119889(119910119911)gt119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)lt119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

š 1198651+ 119865

2+ 119865

3

(34)

To this end let 119861119894be as in Lemma 15 with 119888

119861119894and 119903

119861119894being

respectively its center and radius For any 119909 isin 6119878119894 6

2

119861119894and

119911 isin 6119861119894 by (2) and (3) we have

1198651le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

int

infin

119889(119910119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) dt120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119911))

(int

infin

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119910 119911))]

3

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

Journal of Function Spaces 7

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

d120583 (119910)

[120582 (119910 (12) 119889 (119909 119911))]

2

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 (12) 119889 (119909 119911))]2int

2119889(119910119911)gt119889(119909119911)

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))119861(1199112119896minus2

119889(119909119911))

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

1

120582 (119911 119889 (119909 119911))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))

d120583 (119910)

120582 (119910 2119896minus2

119889 (119909 119911))

]

12

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(35)

where we use the fact that

int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) le 119862119870119861119894 119878119894

(36)

Next we estimate 1198652 For any 119909 isin 6119878

119894 6

2

119861119894 119910 isin X

and 119911 isin 6119861119894satisfying 119889(119910 119909) lt 119905 2119889(119910 119911) le 119889(119909 119911) and

(12)119889(119909 119911) lt 119905 we have

1198652le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

int

infin

(12)119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

d120583 (119910)

120583 (119861 (119910 119889 (119909 119911)))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(37)

Finally for any 119909 isin 6119878119894 6

2

119861119894 119910 isin X and 119911 isin 6119861

119894sat-

isfying 2119889(119910 119911) le 119889(119909 119911) 2119889(119910 119911) ge 119889(119909 119911) and 119889(119909 119910) lt

(32)119889(119909 119911) by applying (2) we have

1198653le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

1

120582 (119910 119889 (119909 119911))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 119889 (119909 119911))]2

120583 (119861 (119911 (12) 119889 (119909 119911)))

120582 (119911 119889 (119909 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(38)

8 Journal of Function Spaces

Combining the estimates for 1198651 119865

2 and 119865

3 we obtain that

11986421

le 119862int6119861119894

|119891(119911)|d120583(119911) where together with the fact that119864

22le 119862int

6119861119894

|119891(119911)|d120583(119911) we have

1198642le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (39)

Now we turn to estimate for 1198641 Let 119876

119894= 119861(119888

119861119894 119903

119878119894) and

write

1198641le int

X6119878119894

[∬

119889(119909119910)lt119905

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isin119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isinX119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 11986411

+ 11986412

+ 11986413

(40)

For each fixed 119894 decompose 11986411as

11986411

le int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isin2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isinX2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 1198681+ 119868

2

(41)

For any 119909 isin X 6119878119894 119910 isin 2119878

119894with 119889(119910 119909) lt 119905 and

119911 isin 119878119894 119889(119909 119888

119861119894) minus 2119903

119878119894le 119889(119909 119910) lt 119905 and 119889(119910 119911) lt 3119903

119878119894

togetherwithMinkowski inequality and (6) we can conclude

1198681le 119862int

X6119878119894

int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

∬119889(119909119910)lt119905119889(119910119911)le119905

119910isin2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

(int

infin

119889(119909119888119861119894)minus2119903119878119894

d119905120582 (119910 119905) 119905

1+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

1

[119889 (119909 119888119861119894) minus 2119903

119878119894]

2120588

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(42)

Journal of Function Spaces 9

For 1198682 write

1198682le int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905le119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

š 11986821

+ 11986822

(43)

For 11986821 by Minkowski inequality and (6) we deduce

11986821

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

119889(119910119888119861119894)+119903119878119894

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[int

2119896+1

611987811989421198966119878119894

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(44)

Nowwe estimate 11986822 ApplyingMinkowski inequality and the

vanishing moment we have

11986822

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870(119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588+

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

+ 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909) š 1198691+ 119869

2

(45)

With a way similar to that used in the proof of 1198681 we have

1198691le 119862ℎ

1198941198711(120583) Thus we only need to estimate 119869

2 by Mink-

owski inequality and (11) it follows that

1198692le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2minus2120588

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

infin

119889(119910119888119861119894)+119903119878119894

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

2 Journal of Function Spaces

Definition 1 (see [17]) A metric measure space (X 119889 120583) issaid to be upper doubling if 120583 is Borel measure on X andthere exist a dominating function 120582 X times (0infin) rarr (0infin)

and a positive constant 119862120582such that for each 119909 isin X 119903 rarr

120582(119909 119903) is nondecreasing and for all 119909 isin X and 119903 isin (0infin)

120583 (119861 (119909 119903)) le 120582 (119909 119903) le 119862120582120582 (119909

119903

2

) (2)

Htyonen et al in [18] proved that there exists anotherdominating function

120582 such that 120582 le 120582 119862120582le 119862

120582and

120582 (119909 119910) le 119862

120582

120582 (119910 119903) (3)

where 119909 119910 isin X and 119889(119909 119910) le 119903 Based on this from now onlet the dominating function in (2) also satisfy (3)

Now we recall the notion of geometrically doubling con-ditions given in [17]

Definition 2 (see [17]) A metric space (X 119889) is said to begeometrically doubling if there exists some 119873

0isin N such

that for any ball 119861(119909 119903) sub X there exists a finite ball cover-ing 119861(119909

119894 1199032)

119894of 119861(119909 119903) such that the cardinality of this

covering is at most1198730

Remark 3 (see [17]) Let (X 119889) be a metric space Hytonen in[17] showed that the following statements aremutually equiv-alent

(1) (X 119889) is geometrically doubling

(2) For any 120598 isin (0 1) and ball 119861(119909 119903) sub X there exists afinite ball covering 119861(119909

119894 120598119903)

119894of 119861(119909 119903) such that the

cardinality of this covering is at most1198730120598minus119899 Here and

in what follows1198730is as Definition 2 and 119899 = log

2119873

0

(3) For every 120598 isin (0 1) any ball 119861(119909 119903) sub X can containat most119873

0120598minus119899 centers of disjoint balls 119861(119909

119894 120598119903)

119894

(4) There exists 119872 isin N such that any ball 119861(119909 119903) sub X

can contain at most 119872 centers 119909119894119894of disjoint balls

119861(119909119894 1199034)

119872

119894=1

Hytonen in [17] introduced the following coefficients119870119861119878

analogous to Tolsarsquos number 119870119876119877

in [7]Given any two balls 119861 sub 119878 set

119870119861119878

fl 1 + int

2119878119861

1

120582 (119888119861 119889 (119909 119888

119861))

d120583 (119909) (4)

where 119888119861represents the center of the ball 119861

Remark 4 Bui and Duong in [21] firstly introduced the fol-lowing discrete version

119870119861119878

of 119870119861119878

as in (4) on (X 119889 120583)

which is very similar to the number119870119876119877

introduced in [7] byTolsa For any two balls 119861 sub 119878 119870

119861119878is defined by

119870

119861119878= 1 +

119873119861119878

sum

119894=1

120583 (6119894

119861)

120582 (119888119861 6

119894119903119861)

(5)

where the radii of the balls 119861 and 119878 are denoted by 119903119861and

119903119878 respectively and 119873

119861119878is the smallest integer satisfying

6119873119861119878

119903119861ge 119903

119904 It is easy to obtain

119870119861119878

le 119862119870119861119878 Bui and Duong

in [21] also pointed out that it is incorrect that119870119861119878

sim119870

119861119878

Now we recall the following notion of (120572 120573)-doublingproperty (see [17])

Definition 5 (see [17]) Let 120572 120573 isin (1infin) A ball 119861 sub X isclaimed to be (120572 120573)-doubling if 120583(120572119861) le 120573120583(119861)

It was stated in [17] that there exist many balls whichhave the above (120572 120573)-doubling property In the latter part ofthe paper if 120572 and 120573

120572are not specified (120572 120573

120572)-doubling ball

always stands for (6 1205736)-doubling ball with a fixed number

1205736gt max1198623 log

26

120582 6

119899

where 119899 fl log2119873

0is considered as

a geometric dimension of the space Moreover the smallest(6 120573

6)-doubling ball of the form 6

119895

119861 with 119895 isin N is denotedby

119861

6 and sometimes 1198616 can be simply denoted by 119861

Now we give the definition of the parameter Littlewood-Paley 119892lowast

120581functions on (X 119889 120583)

Definition 6 (see [22]) Let 119870(119909 119910) be a locally integrablefunction on (X times X) (119909 119910) 119909 = 119910 Assume that thereexists a positive constant 119862 such that for all 119909 119910 isin X with119909 = 119910

1003816100381610038161003816119870 (119909 119910)

1003816100381610038161003816le 119862

119889 (119909 119910)

120582 (119909 119889 (119909 119910))

(6)

and for all 119909 119910 1199101015840

isin X

int

119889(119909119910)ge2119889(1199101199101015840)

[

10038161003816100381610038161003816119870 (119909 119910) minus 119870 (119909 119910

1015840

)

10038161003816100381610038161003816

+

10038161003816100381610038161003816119870 (119910 119909) minus 119870 (119910

1015840

119909)

10038161003816100381610038161003816]

1

119889 (119909 119910)

d120583 (119909) le 119862

(7)

The parameter Marcinkiewicz integral M120588 associatedwith the above 119870(119909 119910) which satisfies (6) and (7) is definedby

M120588

(119891) (119909) = (int

infin

0

1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

sdot int

119889(119909119910)le119905

119870(119909 119910)

[119889 (119909 119910)]

1minus120588119891 (119910) d120583 (119910)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d119905119905

)

12

119909 isin X

(8)

Journal of Function Spaces 3

where 120588 isin (0infin)The parameter 119892lowast

120581functionMlowast120588

120581is defined

by

Mlowast120588

120581(119891) (119909) = ∬

Xtimes(0infin)

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

sdot int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910)

120582 (119910 119905)

d119905119905

12

(9)

where 119909 isin X X times (0infin) fl (119910 119905) 119910 isin X 119905 gt 0 120588 gt 0

and 120581 isin (1infin)

Remark 7 (1) When 120588 = 1 the operator M120588 as in (8) is justthe Marcinkiewicz integral on (X 119889 120583) (see [22])

(2) If we take (X 119889 120583) = (R119899

|sdot| 120583) and 120582(119910 119905) fl 119905119899 then

the parameter 119892lowast

120581functionMlowast120588

120581as in (9) is just a parameter

Littlewood-Paley operatorwith nondoublingmeasures in [8]

The following definition of the atomic Hardy space wasintroduced by Htyonen et al (see [18])

Definition 8 (see [18]) Let 120577 isin (1infin) and 119901 isin (1infin] Afunction 119887 isin 119871

1

loc(120583) is called a (119901 1)120592-atomic block if

(a) there exists a ball 119861 such that supp 119887 sub 119861

(b) intX119887(119909)d120583(119909) = 0

(c) for any 119894 isin 1 2 there exist a function 119886119894supported

on ball 119861119894sub 119861 and a number 120592

119894isin C such that

119887 = 12059211198861+ 120592

21198862

1003817100381710038171003817119886119894

1003817100381710038171003817119871119901(120583)

le [120583 (120577119861119894)]

1119901minus1

119870minus1

119861119894 119861

(10)

Moreover let |119887|119867

1119901

atb (120583)fl |120592

1| + |120592

2|

We say a function 119891 isin 1198711

(120583) belongs to the atomicHardy space 119867

1119901

atb (120583) if there are atomic blocks 119887119894infin

119894=1such

that 119891 = suminfin

119894=1119887119894with sum

infin

119894=1|119887

119894|119867

1119901

atb (120583)lt infin The 1198671119901

atb (120583) normof 119891 is denoted by 119891

119867

1119901

atb (120583)= infsuminfin

119894=1|119887

119894|119867

1119901

atb (120583) where the

infimum is taken over all the possible decompositions of 119891 asabove

It was proved by Htyonen et al in [18] that the definitionof 1198671119901

atb (120583) is not related to the choice of 120577 and the spaces119867

1119901

atb (120583) and 1198671infin

atb (120583) have the same norms for 119901 isin (1infin]Thus for convenience we always denote1198671119901

atb (120583) by1198671

(120583)Nowwe give the Hormander-type condition on (X 119889 120583)

that is there exists a positive 119862 such that

sup119903gt0

119889(1199101199101015840)le119903

infin

sum

119894=1

119894 int

6119894119903lt119889(119909119910)le6

119894+1119903

[

10038161003816100381610038161003816119870 (119909 119910) minus 119870 (119909 119910

1015840

)

10038161003816100381610038161003816+

10038161003816100381610038161003816119870 (119910 119909) minus 119870 (119910

1015840

119909)

10038161003816100381610038161003816]

d120583 (119909)

119889 (119909 119910)

le 119862 (11)

Notice this condition is slightly stronger than (7)Now let us state the main theorems which generalize and

improve the corresponding results in [8]

Theorem 9 Let119870(119909 119910) satisfy (6) and (7) and letMlowast120588

120581be as

in (9) with 120588 isin (0infin) and 120581 isin (1infin) ThenMlowast120588

120581is bounded

on 119871119901

(120583) for any 119901 isin [2infin)

Theorem 10 Let 119870(119909 119910) satisfy (6) and (11) and letMlowast120588

120581be

as in (9) with 120588 isin (12infin) and 120581 isin (1infin) Then Mlowast120588

120581is

bounded from 1198711

(120583) into weak 1198711

(120583) namely there exists apositive constant 119862 such that for any 120591 gt 0 and 119891 isin 119871

1

(120583)

120583 (119909 isin X Mlowast120588

120581(119891) (119909) gt 120591) le 119862

100381710038171003817100381711989110038171003817100381710038171198711(120583)

120591

(12)

Theorem 11 Let 119870(119909 119910) satisfy (6) and (11) and let Mlowast120588

120581be

as in (9) with 120588 gt 12 and 120581 gt 1 Suppose thatMlowast120588

120581is bounded

on 1198712

(120583) ThenMlowast120588

120581is bounded from119867

1

(120583) into 1198711

(120583)

Applying the Marcinkiewicz interpolation theorem andTheorems 9 and 10 it is easy to get the following result

Corollary 12 Under the assumption of Theorem 10 Mlowast120588

120581is

bounded on 119871119901

(120583) for 119901 isin (1 2)

The organization of this paper is as follows In Section 2wewill give somepreliminary lemmasTheproofs of themaintheorems will be given in Section 3 Throughout this paper119862 stands for a positive constant which is independent of themain parameters but it may be different from line to line Forany 119864 sub X we use 120594

119864to denote its characteristic function

2 Preliminary Lemmas

In this section we make some preliminary lemmas which areused in the proof of the main results Firstly we recall someproperties of119870

119861119878as in (4) (see [17])

Lemma 13 (see [17]) (1) For all balls 119861 sub 119877 sub 119878 it holds truethat 119870

119861119877le 119870

119861119878

(2) For any 120585 isin [1infin) there exists a positive constant 119862120585

such that for all balls 119861 sub 119878 with 119903119878le 120585119903

119861 119870

119861119878le 119862

120585

(3) For any 984858 isin (1infin) there exists a positive constant 119862984858

depending on 984858 such that for all balls 119861119870119861

119861

984858 le 119862984858

(4) There exists a positive constant 119888 such that for all balls119861 sub 119877 sub 119878 119870

119861119878le 119870

119861119877+ 119888119870

119877119878 In particular if 119861 and 119877 are

concentric then 119888 = 1(5) There exists a positive constant such that for all balls

119861 sub 119877 sub 119878 119870119861119877

le 119870119861119878 moreover if 119861 and 119877 are concentric

then 119870119877119878

le 119870119861119878

4 Journal of Function Spaces

To state the following lemmas let us give a known-result(see [19]) For 120578 isin (0infin) the maximal operator is defined bysetting that for all 119891 isin 119871

1

loc(120583) and 119909 isin X

119872(120578)119891 (119909) fl sup

119876ni119909119876doubling

1

120583 (120578119876)

int

119876

1003816100381610038161003816119891 (119910)

1003816100381610038161003816d120583 (119910) (13)

is bounded on 119871119901

(120583) provided that 119901 isin (1infin) and alsobounded from 119871

1

(120583) into 1198711infin

(120583)The following lemma is slightly changed from [8]

Lemma 14 Let 119870(119909 119910) satisfy (6) and (7) and 120578 isin (0infin)Assume that M120588 is as in (8) and Mlowast120588

120581is as in (9) with

120588 isin (0infin) and 120581 isin (1infin) Then for any nonnegative function120601 there exists a positive constant 119862 such that for all 119891 isin 119871

119901

(120583)

with 119901 isin (1infin)

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

le 119862int

X

[M120588

(119891) (119909)]

2

119872120578(120601) (119909) d120583 (119909)

(14)

Proof By the definition ofMlowast120588

120581(119891) we have

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

= int

X

Xtimes(0infin)

(

119905

119905 + 119889 (119909 119910)

)

120573 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588119891 (119910) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910)

120582 (119910 119905)

d119905119905

120601 (119909) d120583 (119909)

le int

X

int

infin

0

1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119910) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d119905119905

sup119905gt0

[int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)] d120583 (119910)

= int

X

[M120588

(119891) (119910)]

2 sup119905gt0

[int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)] d120583 (119910)

(15)

Thus to prove Lemma 14 we only need to estimate that

sup119905gt0

int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

le 119862119872120578(120601) (119910)

(16)

For any 119910 isin X and 119905 gt 0 write

int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

= int

119861(119910119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

+ int

X119861(119910119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

š 1198631+ 119863

2

(17)

For1198631 it is not difficult to obtain that

1198631le int

119861(119910119905)

120601 (119909)

120582 (119910 119905)

d120583 (119909)

=

120583 (120578119861 (119910 119905))

120582 (119910 119905)

1

120583 (120578119861 (119910 119905))

int

119861(119910119905)

120601 (119909) d120583 (119909)

le 119862119872120578(120601) (119910)

(18)

Now we turn to estimate1198632 by (2) and (13) we have

1198632le

infin

sum

119896=1

int

119861(1199106119896119905)119861(1199106

119896minus1119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

sdot

120601 (119909)

120582 (119910 119905)

d120583 (119909) le 119862

infin

sum

119896=1

6minus(119896minus1)120573

sdot int

119861(1199106119896119905)

120601 (119909)

120582 (119910 119905)

d120583 (119909) le 119862

infin

sum

119896=1

6minus(119896minus1)120573

sdot

120583 (119861 (119910 6119896

119905))

120582 (119910 119905)

1

120583 (119861 (119910 6119896119905))

int

119861(1199106119896119905)

120601 (119909) d120583 (119909)

le 119862

infin

sum

119896=1

6minus(119896minus1)120573

120583 (119861 (119910 6119896

119905))

120582 (119910 119905)

119872120578(120601) (119910) le 119862

sdot

120582 (119910 6119896

119905)

120582 (119910 119905)

119872120578(120601) (119910)

infin

sum

119896=1

6minus(119896minus1)120573

120582 (119910 6119896

119905)

120582 (119910 119905)

le 119862

sdot

120582 (119910 6119896

119905)

120582 (119910 119905)

119872120578(120601) (119910)

infin

sum

119896=1

6minus(119896minus1)120573

le 119862119872120578(120601) (119910)

(19)

Combining the estimates for 1198631and 119863

2 we obtain (16) and

hence complete the proof of Lemma 14

Finally we recall the Calderon-Zygmund decompositiontheorem (see [21]) Suppose that 120574

0is a fixed positive constant

Journal of Function Spaces 5

satisfying that 1205740gt max1198623 log

26

120582 6

3119899

where 119862120582is as in (2)

and 119899 as in Remark 3

Lemma 15 (see [21]) Let 119901 isin [1infin) 119891 isin 119871119901

(120583) and 119905 isin

(0infin) (119905 gt 1205740119891

119871119901(120583)

120583(X) when 120583(X) lt infin) Then

(1) there exists a family of finite overlapping balls 6119861119894119894

such that 119861119894119894is pairwise disjoint

1

120583 (62119861119894)

int

119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) gt

119905119901

1205740

forall119894 (20)

1

120583 (62120591119861

119894)

int

120591119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) le

119905119901

1205740

forall119894 forall120591 isin (2infin)

(21)

1003816100381610038161003816119891 (119909)

1003816100381610038161003816le 119905

119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X (⋃

119894

6119861119894)

(22)

(2) for each 119894 let 119878119894be a (3 times 6

2

119862

log2(3times62)+1

120582)-doubling ball

of the family (3times62

)119896

119861119894119896isinN and 120596119894

= 1205946119861119894

(sum1198961205946119861119896

)Then there exists a family 120593

119894119894of functions that for

each 119894 supp(120593119894) sub 119878

119894 120593

119894has a constant sign on 119878

119894and

int

X

120593119894(119909) 119889120583 (119909) = int

6119861119894

119891 (119909) 120596119894(119909) 119889120583 (119909)

sum

119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816le 120574119905 119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X

(23)

where 120574 is some positive constant depending only on (X 120583)and there exists a positive constant 119862 independent of 119891 119905 and119894 such that if 119901 = 1 then

1003817100381710038171003817120593119894

1003817100381710038171003817119871infin(120583)

120583 (119878119894) le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816119889120583 (119909) (24)

and if 119901 isin (1infin)

(int

119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

119901

119889120583 (119909))

1119901

[120583 (119878119894)]

11199011015840

le

119862

119905119901minus1

int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816

119901

119889120583 (119909)

(25)

3 Proofs of Theorems

Proof ofTheorem 9 For the case of 119901 = 2 assume 120601(119909) = 1 inLemma 14 then it is easy to get that

int

X

[Mlowast120588

120581(119891) (119909)]

2 d120583 (119909)

le 119862int

X

[M120588

(119891) (119909)]

2 d120583 (119909)

(26)

which along with 1198712

(120583)-boundedness of M120588 easily yieldsthat Theorem 9 holds

For the case of 119901 gt 2 let 119902 be the index conjugate to1199012 By applying Holder inequality and Lemma 14 we canconclude

1003817100381710038171003817M

lowast120588

120581(119891)

1003817100381710038171003817

2

119871119901(120583)

= sup120601ge0

120601119871119902(120583)

le1

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

le 119862 sup120601ge0

120601119871119902(120583)

le1

int

X

[M120588

(119891) (119909)]

2

119872120578120601 (119909) d120583 (119909)

le 1198621003817100381710038171003817M

120588

(119891)1003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171003817119872

120578(120601)

10038171003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171206011003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

(27)

which is desired Thus we complete the proof of Theorem 9

Proof of Theorem 10 Without loss of generality we mayassume that 119891

1198711(120583)

= 1 It is easy to see that the conclusionofTheorem 10 naturally holds if 120591 le 120573

6(119891

1198711(120583)

120583(X)) when120583(X) lt infin Thus we only need to discuss the case that120591 gt 120573

6(119891

1198711(120583)

120583(X)) Applying Lemma 15 to119891 at the level 120591and letting120596

119894120593

119894119861

119894 and 119878

119894be the same as in Lemma 15 we see

that119891(119909) = 119887(119909)+ℎ(119909) where 119887(119909) fl 119891120594X⋃1198946119861119894

(119909)+sum119894120593119894(119909)

and ℎ(119909) fl sum119894[120596

119894(119909)119891(119909) minus 120593

119894(119909)] š sum

119894ℎ119894(119909) It is easy

to obtain that 119887119871infin(120583)

le 119862120591 and 1198871198711(120583)

le 119862 By 1198712

(120583)-boundedness ofMlowast120588

120581 we have

120583 (119909 isin X Mlowast120588

120581(119887) (119909) gt 120591) le

1003817100381710038171003817Mlowast120588

120581(119887)

1003817100381710038171003817

2

1198712(120583)

1205912

le 119862

1198872

1198712(120583)

1205912

le 119862120591minus1

(28)

On the other hand by (20) with 119901 = 1 and the fact that thesequence of balls 119861

119894119894 is pairwise disjoint we see that

120583(⋃

119894

62

119861119894) le 119862120591

minus1

int

X

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) le 119862120591

minus1

(29)

and thus the proof of theTheorem 10 can be reduced to provethat

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591) le 119862120591

minus1

(30)

For each fixed 119894 denote the center of 119861119894by 119909

119894 and let 119873

1

be the positive integer satisfying 119878119894= (3 times 6

2

)1198731119861119894 We have

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591)

le 120591minus1

sum

119894

int

X⋃11989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

6 Journal of Function Spaces

le 120591minus1

sum

119894

int

X6119878119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

+ 120591minus1

sum

119894

int

611987811989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

š 120591minus1

sum

119894

(1198641+ 119864

2)

(31)

Firstly let us estimate 1198642and write it as

1198642le int

611987811989462119861119894

Mlowast120588

120581(119891120596

119894) (119909) d120583 (119909)

+ int

611987811989462119861119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909) š 119864

21+ 119864

22

(32)

where ℎ119894fl 120596

119894119891 minus 120593

119894 By Holder inequality (24) and 119871

2

(120583)-boundedness ofMlowast120588

120581 we have

11986422

le int

6119878119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909)

le (int

6119878119894

1003816100381610038161003816M

lowast120588

120581(120593

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862(int

6119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816d120583 (119909)

(33)

For 11986421 by Minkowski inequality and (6) write

11986421

= int

611987811989462119861119894

[

[

Xtimes(0infin)

1003816100381610038161003816100381610038161003816100381610038161003816

(

119905

119905 + 119889 (119909 119910)

)

1205812

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119911) 120596119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

le 119862int

611987811989462119861119894

int

X

1003816100381610038161003816119891 (119911) 120596

119894(119911)

1003816100381610038161003816[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905

2119889(119910119911)gt119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)lt119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

š 1198651+ 119865

2+ 119865

3

(34)

To this end let 119861119894be as in Lemma 15 with 119888

119861119894and 119903

119861119894being

respectively its center and radius For any 119909 isin 6119878119894 6

2

119861119894and

119911 isin 6119861119894 by (2) and (3) we have

1198651le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

int

infin

119889(119910119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) dt120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119911))

(int

infin

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119910 119911))]

3

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

Journal of Function Spaces 7

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

d120583 (119910)

[120582 (119910 (12) 119889 (119909 119911))]

2

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 (12) 119889 (119909 119911))]2int

2119889(119910119911)gt119889(119909119911)

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))119861(1199112119896minus2

119889(119909119911))

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

1

120582 (119911 119889 (119909 119911))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))

d120583 (119910)

120582 (119910 2119896minus2

119889 (119909 119911))

]

12

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(35)

where we use the fact that

int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) le 119862119870119861119894 119878119894

(36)

Next we estimate 1198652 For any 119909 isin 6119878

119894 6

2

119861119894 119910 isin X

and 119911 isin 6119861119894satisfying 119889(119910 119909) lt 119905 2119889(119910 119911) le 119889(119909 119911) and

(12)119889(119909 119911) lt 119905 we have

1198652le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

int

infin

(12)119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

d120583 (119910)

120583 (119861 (119910 119889 (119909 119911)))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(37)

Finally for any 119909 isin 6119878119894 6

2

119861119894 119910 isin X and 119911 isin 6119861

119894sat-

isfying 2119889(119910 119911) le 119889(119909 119911) 2119889(119910 119911) ge 119889(119909 119911) and 119889(119909 119910) lt

(32)119889(119909 119911) by applying (2) we have

1198653le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

1

120582 (119910 119889 (119909 119911))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 119889 (119909 119911))]2

120583 (119861 (119911 (12) 119889 (119909 119911)))

120582 (119911 119889 (119909 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(38)

8 Journal of Function Spaces

Combining the estimates for 1198651 119865

2 and 119865

3 we obtain that

11986421

le 119862int6119861119894

|119891(119911)|d120583(119911) where together with the fact that119864

22le 119862int

6119861119894

|119891(119911)|d120583(119911) we have

1198642le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (39)

Now we turn to estimate for 1198641 Let 119876

119894= 119861(119888

119861119894 119903

119878119894) and

write

1198641le int

X6119878119894

[∬

119889(119909119910)lt119905

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isin119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isinX119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 11986411

+ 11986412

+ 11986413

(40)

For each fixed 119894 decompose 11986411as

11986411

le int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isin2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isinX2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 1198681+ 119868

2

(41)

For any 119909 isin X 6119878119894 119910 isin 2119878

119894with 119889(119910 119909) lt 119905 and

119911 isin 119878119894 119889(119909 119888

119861119894) minus 2119903

119878119894le 119889(119909 119910) lt 119905 and 119889(119910 119911) lt 3119903

119878119894

togetherwithMinkowski inequality and (6) we can conclude

1198681le 119862int

X6119878119894

int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

∬119889(119909119910)lt119905119889(119910119911)le119905

119910isin2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

(int

infin

119889(119909119888119861119894)minus2119903119878119894

d119905120582 (119910 119905) 119905

1+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

1

[119889 (119909 119888119861119894) minus 2119903

119878119894]

2120588

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(42)

Journal of Function Spaces 9

For 1198682 write

1198682le int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905le119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

š 11986821

+ 11986822

(43)

For 11986821 by Minkowski inequality and (6) we deduce

11986821

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

119889(119910119888119861119894)+119903119878119894

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[int

2119896+1

611987811989421198966119878119894

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(44)

Nowwe estimate 11986822 ApplyingMinkowski inequality and the

vanishing moment we have

11986822

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870(119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588+

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

+ 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909) š 1198691+ 119869

2

(45)

With a way similar to that used in the proof of 1198681 we have

1198691le 119862ℎ

1198941198711(120583) Thus we only need to estimate 119869

2 by Mink-

owski inequality and (11) it follows that

1198692le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2minus2120588

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

infin

119889(119910119888119861119894)+119903119878119894

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

Journal of Function Spaces 3

where 120588 isin (0infin)The parameter 119892lowast

120581functionMlowast120588

120581is defined

by

Mlowast120588

120581(119891) (119909) = ∬

Xtimes(0infin)

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

sdot int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910)

120582 (119910 119905)

d119905119905

12

(9)

where 119909 isin X X times (0infin) fl (119910 119905) 119910 isin X 119905 gt 0 120588 gt 0

and 120581 isin (1infin)

Remark 7 (1) When 120588 = 1 the operator M120588 as in (8) is justthe Marcinkiewicz integral on (X 119889 120583) (see [22])

(2) If we take (X 119889 120583) = (R119899

|sdot| 120583) and 120582(119910 119905) fl 119905119899 then

the parameter 119892lowast

120581functionMlowast120588

120581as in (9) is just a parameter

Littlewood-Paley operatorwith nondoublingmeasures in [8]

The following definition of the atomic Hardy space wasintroduced by Htyonen et al (see [18])

Definition 8 (see [18]) Let 120577 isin (1infin) and 119901 isin (1infin] Afunction 119887 isin 119871

1

loc(120583) is called a (119901 1)120592-atomic block if

(a) there exists a ball 119861 such that supp 119887 sub 119861

(b) intX119887(119909)d120583(119909) = 0

(c) for any 119894 isin 1 2 there exist a function 119886119894supported

on ball 119861119894sub 119861 and a number 120592

119894isin C such that

119887 = 12059211198861+ 120592

21198862

1003817100381710038171003817119886119894

1003817100381710038171003817119871119901(120583)

le [120583 (120577119861119894)]

1119901minus1

119870minus1

119861119894 119861

(10)

Moreover let |119887|119867

1119901

atb (120583)fl |120592

1| + |120592

2|

We say a function 119891 isin 1198711

(120583) belongs to the atomicHardy space 119867

1119901

atb (120583) if there are atomic blocks 119887119894infin

119894=1such

that 119891 = suminfin

119894=1119887119894with sum

infin

119894=1|119887

119894|119867

1119901

atb (120583)lt infin The 1198671119901

atb (120583) normof 119891 is denoted by 119891

119867

1119901

atb (120583)= infsuminfin

119894=1|119887

119894|119867

1119901

atb (120583) where the

infimum is taken over all the possible decompositions of 119891 asabove

It was proved by Htyonen et al in [18] that the definitionof 1198671119901

atb (120583) is not related to the choice of 120577 and the spaces119867

1119901

atb (120583) and 1198671infin

atb (120583) have the same norms for 119901 isin (1infin]Thus for convenience we always denote1198671119901

atb (120583) by1198671

(120583)Nowwe give the Hormander-type condition on (X 119889 120583)

that is there exists a positive 119862 such that

sup119903gt0

119889(1199101199101015840)le119903

infin

sum

119894=1

119894 int

6119894119903lt119889(119909119910)le6

119894+1119903

[

10038161003816100381610038161003816119870 (119909 119910) minus 119870 (119909 119910

1015840

)

10038161003816100381610038161003816+

10038161003816100381610038161003816119870 (119910 119909) minus 119870 (119910

1015840

119909)

10038161003816100381610038161003816]

d120583 (119909)

119889 (119909 119910)

le 119862 (11)

Notice this condition is slightly stronger than (7)Now let us state the main theorems which generalize and

improve the corresponding results in [8]

Theorem 9 Let119870(119909 119910) satisfy (6) and (7) and letMlowast120588

120581be as

in (9) with 120588 isin (0infin) and 120581 isin (1infin) ThenMlowast120588

120581is bounded

on 119871119901

(120583) for any 119901 isin [2infin)

Theorem 10 Let 119870(119909 119910) satisfy (6) and (11) and letMlowast120588

120581be

as in (9) with 120588 isin (12infin) and 120581 isin (1infin) Then Mlowast120588

120581is

bounded from 1198711

(120583) into weak 1198711

(120583) namely there exists apositive constant 119862 such that for any 120591 gt 0 and 119891 isin 119871

1

(120583)

120583 (119909 isin X Mlowast120588

120581(119891) (119909) gt 120591) le 119862

100381710038171003817100381711989110038171003817100381710038171198711(120583)

120591

(12)

Theorem 11 Let 119870(119909 119910) satisfy (6) and (11) and let Mlowast120588

120581be

as in (9) with 120588 gt 12 and 120581 gt 1 Suppose thatMlowast120588

120581is bounded

on 1198712

(120583) ThenMlowast120588

120581is bounded from119867

1

(120583) into 1198711

(120583)

Applying the Marcinkiewicz interpolation theorem andTheorems 9 and 10 it is easy to get the following result

Corollary 12 Under the assumption of Theorem 10 Mlowast120588

120581is

bounded on 119871119901

(120583) for 119901 isin (1 2)

The organization of this paper is as follows In Section 2wewill give somepreliminary lemmasTheproofs of themaintheorems will be given in Section 3 Throughout this paper119862 stands for a positive constant which is independent of themain parameters but it may be different from line to line Forany 119864 sub X we use 120594

119864to denote its characteristic function

2 Preliminary Lemmas

In this section we make some preliminary lemmas which areused in the proof of the main results Firstly we recall someproperties of119870

119861119878as in (4) (see [17])

Lemma 13 (see [17]) (1) For all balls 119861 sub 119877 sub 119878 it holds truethat 119870

119861119877le 119870

119861119878

(2) For any 120585 isin [1infin) there exists a positive constant 119862120585

such that for all balls 119861 sub 119878 with 119903119878le 120585119903

119861 119870

119861119878le 119862

120585

(3) For any 984858 isin (1infin) there exists a positive constant 119862984858

depending on 984858 such that for all balls 119861119870119861

119861

984858 le 119862984858

(4) There exists a positive constant 119888 such that for all balls119861 sub 119877 sub 119878 119870

119861119878le 119870

119861119877+ 119888119870

119877119878 In particular if 119861 and 119877 are

concentric then 119888 = 1(5) There exists a positive constant such that for all balls

119861 sub 119877 sub 119878 119870119861119877

le 119870119861119878 moreover if 119861 and 119877 are concentric

then 119870119877119878

le 119870119861119878

4 Journal of Function Spaces

To state the following lemmas let us give a known-result(see [19]) For 120578 isin (0infin) the maximal operator is defined bysetting that for all 119891 isin 119871

1

loc(120583) and 119909 isin X

119872(120578)119891 (119909) fl sup

119876ni119909119876doubling

1

120583 (120578119876)

int

119876

1003816100381610038161003816119891 (119910)

1003816100381610038161003816d120583 (119910) (13)

is bounded on 119871119901

(120583) provided that 119901 isin (1infin) and alsobounded from 119871

1

(120583) into 1198711infin

(120583)The following lemma is slightly changed from [8]

Lemma 14 Let 119870(119909 119910) satisfy (6) and (7) and 120578 isin (0infin)Assume that M120588 is as in (8) and Mlowast120588

120581is as in (9) with

120588 isin (0infin) and 120581 isin (1infin) Then for any nonnegative function120601 there exists a positive constant 119862 such that for all 119891 isin 119871

119901

(120583)

with 119901 isin (1infin)

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

le 119862int

X

[M120588

(119891) (119909)]

2

119872120578(120601) (119909) d120583 (119909)

(14)

Proof By the definition ofMlowast120588

120581(119891) we have

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

= int

X

Xtimes(0infin)

(

119905

119905 + 119889 (119909 119910)

)

120573 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588119891 (119910) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910)

120582 (119910 119905)

d119905119905

120601 (119909) d120583 (119909)

le int

X

int

infin

0

1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119910) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d119905119905

sup119905gt0

[int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)] d120583 (119910)

= int

X

[M120588

(119891) (119910)]

2 sup119905gt0

[int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)] d120583 (119910)

(15)

Thus to prove Lemma 14 we only need to estimate that

sup119905gt0

int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

le 119862119872120578(120601) (119910)

(16)

For any 119910 isin X and 119905 gt 0 write

int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

= int

119861(119910119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

+ int

X119861(119910119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

š 1198631+ 119863

2

(17)

For1198631 it is not difficult to obtain that

1198631le int

119861(119910119905)

120601 (119909)

120582 (119910 119905)

d120583 (119909)

=

120583 (120578119861 (119910 119905))

120582 (119910 119905)

1

120583 (120578119861 (119910 119905))

int

119861(119910119905)

120601 (119909) d120583 (119909)

le 119862119872120578(120601) (119910)

(18)

Now we turn to estimate1198632 by (2) and (13) we have

1198632le

infin

sum

119896=1

int

119861(1199106119896119905)119861(1199106

119896minus1119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

sdot

120601 (119909)

120582 (119910 119905)

d120583 (119909) le 119862

infin

sum

119896=1

6minus(119896minus1)120573

sdot int

119861(1199106119896119905)

120601 (119909)

120582 (119910 119905)

d120583 (119909) le 119862

infin

sum

119896=1

6minus(119896minus1)120573

sdot

120583 (119861 (119910 6119896

119905))

120582 (119910 119905)

1

120583 (119861 (119910 6119896119905))

int

119861(1199106119896119905)

120601 (119909) d120583 (119909)

le 119862

infin

sum

119896=1

6minus(119896minus1)120573

120583 (119861 (119910 6119896

119905))

120582 (119910 119905)

119872120578(120601) (119910) le 119862

sdot

120582 (119910 6119896

119905)

120582 (119910 119905)

119872120578(120601) (119910)

infin

sum

119896=1

6minus(119896minus1)120573

120582 (119910 6119896

119905)

120582 (119910 119905)

le 119862

sdot

120582 (119910 6119896

119905)

120582 (119910 119905)

119872120578(120601) (119910)

infin

sum

119896=1

6minus(119896minus1)120573

le 119862119872120578(120601) (119910)

(19)

Combining the estimates for 1198631and 119863

2 we obtain (16) and

hence complete the proof of Lemma 14

Finally we recall the Calderon-Zygmund decompositiontheorem (see [21]) Suppose that 120574

0is a fixed positive constant

Journal of Function Spaces 5

satisfying that 1205740gt max1198623 log

26

120582 6

3119899

where 119862120582is as in (2)

and 119899 as in Remark 3

Lemma 15 (see [21]) Let 119901 isin [1infin) 119891 isin 119871119901

(120583) and 119905 isin

(0infin) (119905 gt 1205740119891

119871119901(120583)

120583(X) when 120583(X) lt infin) Then

(1) there exists a family of finite overlapping balls 6119861119894119894

such that 119861119894119894is pairwise disjoint

1

120583 (62119861119894)

int

119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) gt

119905119901

1205740

forall119894 (20)

1

120583 (62120591119861

119894)

int

120591119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) le

119905119901

1205740

forall119894 forall120591 isin (2infin)

(21)

1003816100381610038161003816119891 (119909)

1003816100381610038161003816le 119905

119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X (⋃

119894

6119861119894)

(22)

(2) for each 119894 let 119878119894be a (3 times 6

2

119862

log2(3times62)+1

120582)-doubling ball

of the family (3times62

)119896

119861119894119896isinN and 120596119894

= 1205946119861119894

(sum1198961205946119861119896

)Then there exists a family 120593

119894119894of functions that for

each 119894 supp(120593119894) sub 119878

119894 120593

119894has a constant sign on 119878

119894and

int

X

120593119894(119909) 119889120583 (119909) = int

6119861119894

119891 (119909) 120596119894(119909) 119889120583 (119909)

sum

119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816le 120574119905 119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X

(23)

where 120574 is some positive constant depending only on (X 120583)and there exists a positive constant 119862 independent of 119891 119905 and119894 such that if 119901 = 1 then

1003817100381710038171003817120593119894

1003817100381710038171003817119871infin(120583)

120583 (119878119894) le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816119889120583 (119909) (24)

and if 119901 isin (1infin)

(int

119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

119901

119889120583 (119909))

1119901

[120583 (119878119894)]

11199011015840

le

119862

119905119901minus1

int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816

119901

119889120583 (119909)

(25)

3 Proofs of Theorems

Proof ofTheorem 9 For the case of 119901 = 2 assume 120601(119909) = 1 inLemma 14 then it is easy to get that

int

X

[Mlowast120588

120581(119891) (119909)]

2 d120583 (119909)

le 119862int

X

[M120588

(119891) (119909)]

2 d120583 (119909)

(26)

which along with 1198712

(120583)-boundedness of M120588 easily yieldsthat Theorem 9 holds

For the case of 119901 gt 2 let 119902 be the index conjugate to1199012 By applying Holder inequality and Lemma 14 we canconclude

1003817100381710038171003817M

lowast120588

120581(119891)

1003817100381710038171003817

2

119871119901(120583)

= sup120601ge0

120601119871119902(120583)

le1

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

le 119862 sup120601ge0

120601119871119902(120583)

le1

int

X

[M120588

(119891) (119909)]

2

119872120578120601 (119909) d120583 (119909)

le 1198621003817100381710038171003817M

120588

(119891)1003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171003817119872

120578(120601)

10038171003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171206011003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

(27)

which is desired Thus we complete the proof of Theorem 9

Proof of Theorem 10 Without loss of generality we mayassume that 119891

1198711(120583)

= 1 It is easy to see that the conclusionofTheorem 10 naturally holds if 120591 le 120573

6(119891

1198711(120583)

120583(X)) when120583(X) lt infin Thus we only need to discuss the case that120591 gt 120573

6(119891

1198711(120583)

120583(X)) Applying Lemma 15 to119891 at the level 120591and letting120596

119894120593

119894119861

119894 and 119878

119894be the same as in Lemma 15 we see

that119891(119909) = 119887(119909)+ℎ(119909) where 119887(119909) fl 119891120594X⋃1198946119861119894

(119909)+sum119894120593119894(119909)

and ℎ(119909) fl sum119894[120596

119894(119909)119891(119909) minus 120593

119894(119909)] š sum

119894ℎ119894(119909) It is easy

to obtain that 119887119871infin(120583)

le 119862120591 and 1198871198711(120583)

le 119862 By 1198712

(120583)-boundedness ofMlowast120588

120581 we have

120583 (119909 isin X Mlowast120588

120581(119887) (119909) gt 120591) le

1003817100381710038171003817Mlowast120588

120581(119887)

1003817100381710038171003817

2

1198712(120583)

1205912

le 119862

1198872

1198712(120583)

1205912

le 119862120591minus1

(28)

On the other hand by (20) with 119901 = 1 and the fact that thesequence of balls 119861

119894119894 is pairwise disjoint we see that

120583(⋃

119894

62

119861119894) le 119862120591

minus1

int

X

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) le 119862120591

minus1

(29)

and thus the proof of theTheorem 10 can be reduced to provethat

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591) le 119862120591

minus1

(30)

For each fixed 119894 denote the center of 119861119894by 119909

119894 and let 119873

1

be the positive integer satisfying 119878119894= (3 times 6

2

)1198731119861119894 We have

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591)

le 120591minus1

sum

119894

int

X⋃11989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

6 Journal of Function Spaces

le 120591minus1

sum

119894

int

X6119878119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

+ 120591minus1

sum

119894

int

611987811989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

š 120591minus1

sum

119894

(1198641+ 119864

2)

(31)

Firstly let us estimate 1198642and write it as

1198642le int

611987811989462119861119894

Mlowast120588

120581(119891120596

119894) (119909) d120583 (119909)

+ int

611987811989462119861119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909) š 119864

21+ 119864

22

(32)

where ℎ119894fl 120596

119894119891 minus 120593

119894 By Holder inequality (24) and 119871

2

(120583)-boundedness ofMlowast120588

120581 we have

11986422

le int

6119878119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909)

le (int

6119878119894

1003816100381610038161003816M

lowast120588

120581(120593

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862(int

6119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816d120583 (119909)

(33)

For 11986421 by Minkowski inequality and (6) write

11986421

= int

611987811989462119861119894

[

[

Xtimes(0infin)

1003816100381610038161003816100381610038161003816100381610038161003816

(

119905

119905 + 119889 (119909 119910)

)

1205812

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119911) 120596119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

le 119862int

611987811989462119861119894

int

X

1003816100381610038161003816119891 (119911) 120596

119894(119911)

1003816100381610038161003816[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905

2119889(119910119911)gt119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)lt119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

š 1198651+ 119865

2+ 119865

3

(34)

To this end let 119861119894be as in Lemma 15 with 119888

119861119894and 119903

119861119894being

respectively its center and radius For any 119909 isin 6119878119894 6

2

119861119894and

119911 isin 6119861119894 by (2) and (3) we have

1198651le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

int

infin

119889(119910119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) dt120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119911))

(int

infin

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119910 119911))]

3

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

Journal of Function Spaces 7

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

d120583 (119910)

[120582 (119910 (12) 119889 (119909 119911))]

2

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 (12) 119889 (119909 119911))]2int

2119889(119910119911)gt119889(119909119911)

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))119861(1199112119896minus2

119889(119909119911))

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

1

120582 (119911 119889 (119909 119911))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))

d120583 (119910)

120582 (119910 2119896minus2

119889 (119909 119911))

]

12

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(35)

where we use the fact that

int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) le 119862119870119861119894 119878119894

(36)

Next we estimate 1198652 For any 119909 isin 6119878

119894 6

2

119861119894 119910 isin X

and 119911 isin 6119861119894satisfying 119889(119910 119909) lt 119905 2119889(119910 119911) le 119889(119909 119911) and

(12)119889(119909 119911) lt 119905 we have

1198652le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

int

infin

(12)119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

d120583 (119910)

120583 (119861 (119910 119889 (119909 119911)))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(37)

Finally for any 119909 isin 6119878119894 6

2

119861119894 119910 isin X and 119911 isin 6119861

119894sat-

isfying 2119889(119910 119911) le 119889(119909 119911) 2119889(119910 119911) ge 119889(119909 119911) and 119889(119909 119910) lt

(32)119889(119909 119911) by applying (2) we have

1198653le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

1

120582 (119910 119889 (119909 119911))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 119889 (119909 119911))]2

120583 (119861 (119911 (12) 119889 (119909 119911)))

120582 (119911 119889 (119909 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(38)

8 Journal of Function Spaces

Combining the estimates for 1198651 119865

2 and 119865

3 we obtain that

11986421

le 119862int6119861119894

|119891(119911)|d120583(119911) where together with the fact that119864

22le 119862int

6119861119894

|119891(119911)|d120583(119911) we have

1198642le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (39)

Now we turn to estimate for 1198641 Let 119876

119894= 119861(119888

119861119894 119903

119878119894) and

write

1198641le int

X6119878119894

[∬

119889(119909119910)lt119905

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isin119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isinX119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 11986411

+ 11986412

+ 11986413

(40)

For each fixed 119894 decompose 11986411as

11986411

le int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isin2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isinX2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 1198681+ 119868

2

(41)

For any 119909 isin X 6119878119894 119910 isin 2119878

119894with 119889(119910 119909) lt 119905 and

119911 isin 119878119894 119889(119909 119888

119861119894) minus 2119903

119878119894le 119889(119909 119910) lt 119905 and 119889(119910 119911) lt 3119903

119878119894

togetherwithMinkowski inequality and (6) we can conclude

1198681le 119862int

X6119878119894

int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

∬119889(119909119910)lt119905119889(119910119911)le119905

119910isin2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

(int

infin

119889(119909119888119861119894)minus2119903119878119894

d119905120582 (119910 119905) 119905

1+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

1

[119889 (119909 119888119861119894) minus 2119903

119878119894]

2120588

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(42)

Journal of Function Spaces 9

For 1198682 write

1198682le int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905le119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

š 11986821

+ 11986822

(43)

For 11986821 by Minkowski inequality and (6) we deduce

11986821

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

119889(119910119888119861119894)+119903119878119894

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[int

2119896+1

611987811989421198966119878119894

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(44)

Nowwe estimate 11986822 ApplyingMinkowski inequality and the

vanishing moment we have

11986822

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870(119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588+

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

+ 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909) š 1198691+ 119869

2

(45)

With a way similar to that used in the proof of 1198681 we have

1198691le 119862ℎ

1198941198711(120583) Thus we only need to estimate 119869

2 by Mink-

owski inequality and (11) it follows that

1198692le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2minus2120588

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

infin

119889(119910119888119861119894)+119903119878119894

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

4 Journal of Function Spaces

To state the following lemmas let us give a known-result(see [19]) For 120578 isin (0infin) the maximal operator is defined bysetting that for all 119891 isin 119871

1

loc(120583) and 119909 isin X

119872(120578)119891 (119909) fl sup

119876ni119909119876doubling

1

120583 (120578119876)

int

119876

1003816100381610038161003816119891 (119910)

1003816100381610038161003816d120583 (119910) (13)

is bounded on 119871119901

(120583) provided that 119901 isin (1infin) and alsobounded from 119871

1

(120583) into 1198711infin

(120583)The following lemma is slightly changed from [8]

Lemma 14 Let 119870(119909 119910) satisfy (6) and (7) and 120578 isin (0infin)Assume that M120588 is as in (8) and Mlowast120588

120581is as in (9) with

120588 isin (0infin) and 120581 isin (1infin) Then for any nonnegative function120601 there exists a positive constant 119862 such that for all 119891 isin 119871

119901

(120583)

with 119901 isin (1infin)

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

le 119862int

X

[M120588

(119891) (119909)]

2

119872120578(120601) (119909) d120583 (119909)

(14)

Proof By the definition ofMlowast120588

120581(119891) we have

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

= int

X

Xtimes(0infin)

(

119905

119905 + 119889 (119909 119910)

)

120573 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588119891 (119910) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910)

120582 (119910 119905)

d119905119905

120601 (119909) d120583 (119909)

le int

X

int

infin

0

1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119910) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d119905119905

sup119905gt0

[int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)] d120583 (119910)

= int

X

[M120588

(119891) (119910)]

2 sup119905gt0

[int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)] d120583 (119910)

(15)

Thus to prove Lemma 14 we only need to estimate that

sup119905gt0

int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

le 119862119872120578(120601) (119910)

(16)

For any 119910 isin X and 119905 gt 0 write

int

X

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

= int

119861(119910119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

+ int

X119861(119910119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

120601 (119909)

120582 (119910 119905)

d120583 (119909)

š 1198631+ 119863

2

(17)

For1198631 it is not difficult to obtain that

1198631le int

119861(119910119905)

120601 (119909)

120582 (119910 119905)

d120583 (119909)

=

120583 (120578119861 (119910 119905))

120582 (119910 119905)

1

120583 (120578119861 (119910 119905))

int

119861(119910119905)

120601 (119909) d120583 (119909)

le 119862119872120578(120601) (119910)

(18)

Now we turn to estimate1198632 by (2) and (13) we have

1198632le

infin

sum

119896=1

int

119861(1199106119896119905)119861(1199106

119896minus1119905)

(

119905

119905 + 119889 (119909 119910)

)

120573

sdot

120601 (119909)

120582 (119910 119905)

d120583 (119909) le 119862

infin

sum

119896=1

6minus(119896minus1)120573

sdot int

119861(1199106119896119905)

120601 (119909)

120582 (119910 119905)

d120583 (119909) le 119862

infin

sum

119896=1

6minus(119896minus1)120573

sdot

120583 (119861 (119910 6119896

119905))

120582 (119910 119905)

1

120583 (119861 (119910 6119896119905))

int

119861(1199106119896119905)

120601 (119909) d120583 (119909)

le 119862

infin

sum

119896=1

6minus(119896minus1)120573

120583 (119861 (119910 6119896

119905))

120582 (119910 119905)

119872120578(120601) (119910) le 119862

sdot

120582 (119910 6119896

119905)

120582 (119910 119905)

119872120578(120601) (119910)

infin

sum

119896=1

6minus(119896minus1)120573

120582 (119910 6119896

119905)

120582 (119910 119905)

le 119862

sdot

120582 (119910 6119896

119905)

120582 (119910 119905)

119872120578(120601) (119910)

infin

sum

119896=1

6minus(119896minus1)120573

le 119862119872120578(120601) (119910)

(19)

Combining the estimates for 1198631and 119863

2 we obtain (16) and

hence complete the proof of Lemma 14

Finally we recall the Calderon-Zygmund decompositiontheorem (see [21]) Suppose that 120574

0is a fixed positive constant

Journal of Function Spaces 5

satisfying that 1205740gt max1198623 log

26

120582 6

3119899

where 119862120582is as in (2)

and 119899 as in Remark 3

Lemma 15 (see [21]) Let 119901 isin [1infin) 119891 isin 119871119901

(120583) and 119905 isin

(0infin) (119905 gt 1205740119891

119871119901(120583)

120583(X) when 120583(X) lt infin) Then

(1) there exists a family of finite overlapping balls 6119861119894119894

such that 119861119894119894is pairwise disjoint

1

120583 (62119861119894)

int

119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) gt

119905119901

1205740

forall119894 (20)

1

120583 (62120591119861

119894)

int

120591119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) le

119905119901

1205740

forall119894 forall120591 isin (2infin)

(21)

1003816100381610038161003816119891 (119909)

1003816100381610038161003816le 119905

119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X (⋃

119894

6119861119894)

(22)

(2) for each 119894 let 119878119894be a (3 times 6

2

119862

log2(3times62)+1

120582)-doubling ball

of the family (3times62

)119896

119861119894119896isinN and 120596119894

= 1205946119861119894

(sum1198961205946119861119896

)Then there exists a family 120593

119894119894of functions that for

each 119894 supp(120593119894) sub 119878

119894 120593

119894has a constant sign on 119878

119894and

int

X

120593119894(119909) 119889120583 (119909) = int

6119861119894

119891 (119909) 120596119894(119909) 119889120583 (119909)

sum

119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816le 120574119905 119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X

(23)

where 120574 is some positive constant depending only on (X 120583)and there exists a positive constant 119862 independent of 119891 119905 and119894 such that if 119901 = 1 then

1003817100381710038171003817120593119894

1003817100381710038171003817119871infin(120583)

120583 (119878119894) le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816119889120583 (119909) (24)

and if 119901 isin (1infin)

(int

119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

119901

119889120583 (119909))

1119901

[120583 (119878119894)]

11199011015840

le

119862

119905119901minus1

int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816

119901

119889120583 (119909)

(25)

3 Proofs of Theorems

Proof ofTheorem 9 For the case of 119901 = 2 assume 120601(119909) = 1 inLemma 14 then it is easy to get that

int

X

[Mlowast120588

120581(119891) (119909)]

2 d120583 (119909)

le 119862int

X

[M120588

(119891) (119909)]

2 d120583 (119909)

(26)

which along with 1198712

(120583)-boundedness of M120588 easily yieldsthat Theorem 9 holds

For the case of 119901 gt 2 let 119902 be the index conjugate to1199012 By applying Holder inequality and Lemma 14 we canconclude

1003817100381710038171003817M

lowast120588

120581(119891)

1003817100381710038171003817

2

119871119901(120583)

= sup120601ge0

120601119871119902(120583)

le1

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

le 119862 sup120601ge0

120601119871119902(120583)

le1

int

X

[M120588

(119891) (119909)]

2

119872120578120601 (119909) d120583 (119909)

le 1198621003817100381710038171003817M

120588

(119891)1003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171003817119872

120578(120601)

10038171003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171206011003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

(27)

which is desired Thus we complete the proof of Theorem 9

Proof of Theorem 10 Without loss of generality we mayassume that 119891

1198711(120583)

= 1 It is easy to see that the conclusionofTheorem 10 naturally holds if 120591 le 120573

6(119891

1198711(120583)

120583(X)) when120583(X) lt infin Thus we only need to discuss the case that120591 gt 120573

6(119891

1198711(120583)

120583(X)) Applying Lemma 15 to119891 at the level 120591and letting120596

119894120593

119894119861

119894 and 119878

119894be the same as in Lemma 15 we see

that119891(119909) = 119887(119909)+ℎ(119909) where 119887(119909) fl 119891120594X⋃1198946119861119894

(119909)+sum119894120593119894(119909)

and ℎ(119909) fl sum119894[120596

119894(119909)119891(119909) minus 120593

119894(119909)] š sum

119894ℎ119894(119909) It is easy

to obtain that 119887119871infin(120583)

le 119862120591 and 1198871198711(120583)

le 119862 By 1198712

(120583)-boundedness ofMlowast120588

120581 we have

120583 (119909 isin X Mlowast120588

120581(119887) (119909) gt 120591) le

1003817100381710038171003817Mlowast120588

120581(119887)

1003817100381710038171003817

2

1198712(120583)

1205912

le 119862

1198872

1198712(120583)

1205912

le 119862120591minus1

(28)

On the other hand by (20) with 119901 = 1 and the fact that thesequence of balls 119861

119894119894 is pairwise disjoint we see that

120583(⋃

119894

62

119861119894) le 119862120591

minus1

int

X

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) le 119862120591

minus1

(29)

and thus the proof of theTheorem 10 can be reduced to provethat

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591) le 119862120591

minus1

(30)

For each fixed 119894 denote the center of 119861119894by 119909

119894 and let 119873

1

be the positive integer satisfying 119878119894= (3 times 6

2

)1198731119861119894 We have

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591)

le 120591minus1

sum

119894

int

X⋃11989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

6 Journal of Function Spaces

le 120591minus1

sum

119894

int

X6119878119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

+ 120591minus1

sum

119894

int

611987811989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

š 120591minus1

sum

119894

(1198641+ 119864

2)

(31)

Firstly let us estimate 1198642and write it as

1198642le int

611987811989462119861119894

Mlowast120588

120581(119891120596

119894) (119909) d120583 (119909)

+ int

611987811989462119861119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909) š 119864

21+ 119864

22

(32)

where ℎ119894fl 120596

119894119891 minus 120593

119894 By Holder inequality (24) and 119871

2

(120583)-boundedness ofMlowast120588

120581 we have

11986422

le int

6119878119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909)

le (int

6119878119894

1003816100381610038161003816M

lowast120588

120581(120593

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862(int

6119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816d120583 (119909)

(33)

For 11986421 by Minkowski inequality and (6) write

11986421

= int

611987811989462119861119894

[

[

Xtimes(0infin)

1003816100381610038161003816100381610038161003816100381610038161003816

(

119905

119905 + 119889 (119909 119910)

)

1205812

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119911) 120596119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

le 119862int

611987811989462119861119894

int

X

1003816100381610038161003816119891 (119911) 120596

119894(119911)

1003816100381610038161003816[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905

2119889(119910119911)gt119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)lt119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

š 1198651+ 119865

2+ 119865

3

(34)

To this end let 119861119894be as in Lemma 15 with 119888

119861119894and 119903

119861119894being

respectively its center and radius For any 119909 isin 6119878119894 6

2

119861119894and

119911 isin 6119861119894 by (2) and (3) we have

1198651le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

int

infin

119889(119910119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) dt120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119911))

(int

infin

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119910 119911))]

3

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

Journal of Function Spaces 7

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

d120583 (119910)

[120582 (119910 (12) 119889 (119909 119911))]

2

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 (12) 119889 (119909 119911))]2int

2119889(119910119911)gt119889(119909119911)

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))119861(1199112119896minus2

119889(119909119911))

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

1

120582 (119911 119889 (119909 119911))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))

d120583 (119910)

120582 (119910 2119896minus2

119889 (119909 119911))

]

12

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(35)

where we use the fact that

int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) le 119862119870119861119894 119878119894

(36)

Next we estimate 1198652 For any 119909 isin 6119878

119894 6

2

119861119894 119910 isin X

and 119911 isin 6119861119894satisfying 119889(119910 119909) lt 119905 2119889(119910 119911) le 119889(119909 119911) and

(12)119889(119909 119911) lt 119905 we have

1198652le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

int

infin

(12)119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

d120583 (119910)

120583 (119861 (119910 119889 (119909 119911)))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(37)

Finally for any 119909 isin 6119878119894 6

2

119861119894 119910 isin X and 119911 isin 6119861

119894sat-

isfying 2119889(119910 119911) le 119889(119909 119911) 2119889(119910 119911) ge 119889(119909 119911) and 119889(119909 119910) lt

(32)119889(119909 119911) by applying (2) we have

1198653le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

1

120582 (119910 119889 (119909 119911))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 119889 (119909 119911))]2

120583 (119861 (119911 (12) 119889 (119909 119911)))

120582 (119911 119889 (119909 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(38)

8 Journal of Function Spaces

Combining the estimates for 1198651 119865

2 and 119865

3 we obtain that

11986421

le 119862int6119861119894

|119891(119911)|d120583(119911) where together with the fact that119864

22le 119862int

6119861119894

|119891(119911)|d120583(119911) we have

1198642le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (39)

Now we turn to estimate for 1198641 Let 119876

119894= 119861(119888

119861119894 119903

119878119894) and

write

1198641le int

X6119878119894

[∬

119889(119909119910)lt119905

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isin119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isinX119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 11986411

+ 11986412

+ 11986413

(40)

For each fixed 119894 decompose 11986411as

11986411

le int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isin2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isinX2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 1198681+ 119868

2

(41)

For any 119909 isin X 6119878119894 119910 isin 2119878

119894with 119889(119910 119909) lt 119905 and

119911 isin 119878119894 119889(119909 119888

119861119894) minus 2119903

119878119894le 119889(119909 119910) lt 119905 and 119889(119910 119911) lt 3119903

119878119894

togetherwithMinkowski inequality and (6) we can conclude

1198681le 119862int

X6119878119894

int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

∬119889(119909119910)lt119905119889(119910119911)le119905

119910isin2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

(int

infin

119889(119909119888119861119894)minus2119903119878119894

d119905120582 (119910 119905) 119905

1+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

1

[119889 (119909 119888119861119894) minus 2119903

119878119894]

2120588

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(42)

Journal of Function Spaces 9

For 1198682 write

1198682le int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905le119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

š 11986821

+ 11986822

(43)

For 11986821 by Minkowski inequality and (6) we deduce

11986821

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

119889(119910119888119861119894)+119903119878119894

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[int

2119896+1

611987811989421198966119878119894

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(44)

Nowwe estimate 11986822 ApplyingMinkowski inequality and the

vanishing moment we have

11986822

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870(119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588+

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

+ 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909) š 1198691+ 119869

2

(45)

With a way similar to that used in the proof of 1198681 we have

1198691le 119862ℎ

1198941198711(120583) Thus we only need to estimate 119869

2 by Mink-

owski inequality and (11) it follows that

1198692le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2minus2120588

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

infin

119889(119910119888119861119894)+119903119878119894

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

Journal of Function Spaces 5

satisfying that 1205740gt max1198623 log

26

120582 6

3119899

where 119862120582is as in (2)

and 119899 as in Remark 3

Lemma 15 (see [21]) Let 119901 isin [1infin) 119891 isin 119871119901

(120583) and 119905 isin

(0infin) (119905 gt 1205740119891

119871119901(120583)

120583(X) when 120583(X) lt infin) Then

(1) there exists a family of finite overlapping balls 6119861119894119894

such that 119861119894119894is pairwise disjoint

1

120583 (62119861119894)

int

119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) gt

119905119901

1205740

forall119894 (20)

1

120583 (62120591119861

119894)

int

120591119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816

119901

119889120583 (119909) le

119905119901

1205740

forall119894 forall120591 isin (2infin)

(21)

1003816100381610038161003816119891 (119909)

1003816100381610038161003816le 119905

119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X (⋃

119894

6119861119894)

(22)

(2) for each 119894 let 119878119894be a (3 times 6

2

119862

log2(3times62)+1

120582)-doubling ball

of the family (3times62

)119896

119861119894119896isinN and 120596119894

= 1205946119861119894

(sum1198961205946119861119896

)Then there exists a family 120593

119894119894of functions that for

each 119894 supp(120593119894) sub 119878

119894 120593

119894has a constant sign on 119878

119894and

int

X

120593119894(119909) 119889120583 (119909) = int

6119861119894

119891 (119909) 120596119894(119909) 119889120583 (119909)

sum

119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816le 120574119905 119891119900119903 120583-119886119897119898119900119904119905 119890V119890119903119910 119909 isin X

(23)

where 120574 is some positive constant depending only on (X 120583)and there exists a positive constant 119862 independent of 119891 119905 and119894 such that if 119901 = 1 then

1003817100381710038171003817120593119894

1003817100381710038171003817119871infin(120583)

120583 (119878119894) le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816119889120583 (119909) (24)

and if 119901 isin (1infin)

(int

119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

119901

119889120583 (119909))

1119901

[120583 (119878119894)]

11199011015840

le

119862

119905119901minus1

int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816

119901

119889120583 (119909)

(25)

3 Proofs of Theorems

Proof ofTheorem 9 For the case of 119901 = 2 assume 120601(119909) = 1 inLemma 14 then it is easy to get that

int

X

[Mlowast120588

120581(119891) (119909)]

2 d120583 (119909)

le 119862int

X

[M120588

(119891) (119909)]

2 d120583 (119909)

(26)

which along with 1198712

(120583)-boundedness of M120588 easily yieldsthat Theorem 9 holds

For the case of 119901 gt 2 let 119902 be the index conjugate to1199012 By applying Holder inequality and Lemma 14 we canconclude

1003817100381710038171003817M

lowast120588

120581(119891)

1003817100381710038171003817

2

119871119901(120583)

= sup120601ge0

120601119871119902(120583)

le1

int

X

[Mlowast120588

120581(119891) (119909)]

2

120601 (119909) d120583 (119909)

le 119862 sup120601ge0

120601119871119902(120583)

le1

int

X

[M120588

(119891) (119909)]

2

119872120578120601 (119909) d120583 (119909)

le 1198621003817100381710038171003817M

120588

(119891)1003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171003817119872

120578(120601)

10038171003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

sup120601ge0

120601119871119902(120583)

le1

10038171003817100381710038171206011003817100381710038171003817119871119902(120583)

le 11986210038171003817100381710038171198911003817100381710038171003817

2

119871119901(120583)

(27)

which is desired Thus we complete the proof of Theorem 9

Proof of Theorem 10 Without loss of generality we mayassume that 119891

1198711(120583)

= 1 It is easy to see that the conclusionofTheorem 10 naturally holds if 120591 le 120573

6(119891

1198711(120583)

120583(X)) when120583(X) lt infin Thus we only need to discuss the case that120591 gt 120573

6(119891

1198711(120583)

120583(X)) Applying Lemma 15 to119891 at the level 120591and letting120596

119894120593

119894119861

119894 and 119878

119894be the same as in Lemma 15 we see

that119891(119909) = 119887(119909)+ℎ(119909) where 119887(119909) fl 119891120594X⋃1198946119861119894

(119909)+sum119894120593119894(119909)

and ℎ(119909) fl sum119894[120596

119894(119909)119891(119909) minus 120593

119894(119909)] š sum

119894ℎ119894(119909) It is easy

to obtain that 119887119871infin(120583)

le 119862120591 and 1198871198711(120583)

le 119862 By 1198712

(120583)-boundedness ofMlowast120588

120581 we have

120583 (119909 isin X Mlowast120588

120581(119887) (119909) gt 120591) le

1003817100381710038171003817Mlowast120588

120581(119887)

1003817100381710038171003817

2

1198712(120583)

1205912

le 119862

1198872

1198712(120583)

1205912

le 119862120591minus1

(28)

On the other hand by (20) with 119901 = 1 and the fact that thesequence of balls 119861

119894119894 is pairwise disjoint we see that

120583(⋃

119894

62

119861119894) le 119862120591

minus1

int

X

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) le 119862120591

minus1

(29)

and thus the proof of theTheorem 10 can be reduced to provethat

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591) le 119862120591

minus1

(30)

For each fixed 119894 denote the center of 119861119894by 119909

119894 and let 119873

1

be the positive integer satisfying 119878119894= (3 times 6

2

)1198731119861119894 We have

120583(119909 isin X ⋃

119894

62

119861119894 M

lowast120588

120581(ℎ) (119909) gt 120591)

le 120591minus1

sum

119894

int

X⋃11989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

6 Journal of Function Spaces

le 120591minus1

sum

119894

int

X6119878119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

+ 120591minus1

sum

119894

int

611987811989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

š 120591minus1

sum

119894

(1198641+ 119864

2)

(31)

Firstly let us estimate 1198642and write it as

1198642le int

611987811989462119861119894

Mlowast120588

120581(119891120596

119894) (119909) d120583 (119909)

+ int

611987811989462119861119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909) š 119864

21+ 119864

22

(32)

where ℎ119894fl 120596

119894119891 minus 120593

119894 By Holder inequality (24) and 119871

2

(120583)-boundedness ofMlowast120588

120581 we have

11986422

le int

6119878119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909)

le (int

6119878119894

1003816100381610038161003816M

lowast120588

120581(120593

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862(int

6119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816d120583 (119909)

(33)

For 11986421 by Minkowski inequality and (6) write

11986421

= int

611987811989462119861119894

[

[

Xtimes(0infin)

1003816100381610038161003816100381610038161003816100381610038161003816

(

119905

119905 + 119889 (119909 119910)

)

1205812

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119911) 120596119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

le 119862int

611987811989462119861119894

int

X

1003816100381610038161003816119891 (119911) 120596

119894(119911)

1003816100381610038161003816[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905

2119889(119910119911)gt119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)lt119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

š 1198651+ 119865

2+ 119865

3

(34)

To this end let 119861119894be as in Lemma 15 with 119888

119861119894and 119903

119861119894being

respectively its center and radius For any 119909 isin 6119878119894 6

2

119861119894and

119911 isin 6119861119894 by (2) and (3) we have

1198651le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

int

infin

119889(119910119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) dt120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119911))

(int

infin

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119910 119911))]

3

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

Journal of Function Spaces 7

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

d120583 (119910)

[120582 (119910 (12) 119889 (119909 119911))]

2

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 (12) 119889 (119909 119911))]2int

2119889(119910119911)gt119889(119909119911)

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))119861(1199112119896minus2

119889(119909119911))

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

1

120582 (119911 119889 (119909 119911))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))

d120583 (119910)

120582 (119910 2119896minus2

119889 (119909 119911))

]

12

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(35)

where we use the fact that

int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) le 119862119870119861119894 119878119894

(36)

Next we estimate 1198652 For any 119909 isin 6119878

119894 6

2

119861119894 119910 isin X

and 119911 isin 6119861119894satisfying 119889(119910 119909) lt 119905 2119889(119910 119911) le 119889(119909 119911) and

(12)119889(119909 119911) lt 119905 we have

1198652le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

int

infin

(12)119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

d120583 (119910)

120583 (119861 (119910 119889 (119909 119911)))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(37)

Finally for any 119909 isin 6119878119894 6

2

119861119894 119910 isin X and 119911 isin 6119861

119894sat-

isfying 2119889(119910 119911) le 119889(119909 119911) 2119889(119910 119911) ge 119889(119909 119911) and 119889(119909 119910) lt

(32)119889(119909 119911) by applying (2) we have

1198653le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

1

120582 (119910 119889 (119909 119911))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 119889 (119909 119911))]2

120583 (119861 (119911 (12) 119889 (119909 119911)))

120582 (119911 119889 (119909 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(38)

8 Journal of Function Spaces

Combining the estimates for 1198651 119865

2 and 119865

3 we obtain that

11986421

le 119862int6119861119894

|119891(119911)|d120583(119911) where together with the fact that119864

22le 119862int

6119861119894

|119891(119911)|d120583(119911) we have

1198642le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (39)

Now we turn to estimate for 1198641 Let 119876

119894= 119861(119888

119861119894 119903

119878119894) and

write

1198641le int

X6119878119894

[∬

119889(119909119910)lt119905

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isin119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isinX119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 11986411

+ 11986412

+ 11986413

(40)

For each fixed 119894 decompose 11986411as

11986411

le int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isin2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isinX2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 1198681+ 119868

2

(41)

For any 119909 isin X 6119878119894 119910 isin 2119878

119894with 119889(119910 119909) lt 119905 and

119911 isin 119878119894 119889(119909 119888

119861119894) minus 2119903

119878119894le 119889(119909 119910) lt 119905 and 119889(119910 119911) lt 3119903

119878119894

togetherwithMinkowski inequality and (6) we can conclude

1198681le 119862int

X6119878119894

int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

∬119889(119909119910)lt119905119889(119910119911)le119905

119910isin2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

(int

infin

119889(119909119888119861119894)minus2119903119878119894

d119905120582 (119910 119905) 119905

1+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

1

[119889 (119909 119888119861119894) minus 2119903

119878119894]

2120588

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(42)

Journal of Function Spaces 9

For 1198682 write

1198682le int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905le119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

š 11986821

+ 11986822

(43)

For 11986821 by Minkowski inequality and (6) we deduce

11986821

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

119889(119910119888119861119894)+119903119878119894

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[int

2119896+1

611987811989421198966119878119894

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(44)

Nowwe estimate 11986822 ApplyingMinkowski inequality and the

vanishing moment we have

11986822

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870(119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588+

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

+ 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909) š 1198691+ 119869

2

(45)

With a way similar to that used in the proof of 1198681 we have

1198691le 119862ℎ

1198941198711(120583) Thus we only need to estimate 119869

2 by Mink-

owski inequality and (11) it follows that

1198692le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2minus2120588

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

infin

119889(119910119888119861119894)+119903119878119894

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

6 Journal of Function Spaces

le 120591minus1

sum

119894

int

X6119878119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

+ 120591minus1

sum

119894

int

611987811989462119861119894

Mlowast120588

120581(ℎ

119894) (119909) d120583 (119909)

š 120591minus1

sum

119894

(1198641+ 119864

2)

(31)

Firstly let us estimate 1198642and write it as

1198642le int

611987811989462119861119894

Mlowast120588

120581(119891120596

119894) (119909) d120583 (119909)

+ int

611987811989462119861119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909) š 119864

21+ 119864

22

(32)

where ℎ119894fl 120596

119894119891 minus 120593

119894 By Holder inequality (24) and 119871

2

(120583)-boundedness ofMlowast120588

120581 we have

11986422

le int

6119878119894

Mlowast120588

120581(120593

119894) (119909) d120583 (119909)

le (int

6119878119894

1003816100381610038161003816M

lowast120588

120581(120593

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862(int

6119878119894

1003816100381610038161003816120593119894(119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (6119878119894)

12

le 119862int

X

1003816100381610038161003816119891 (119909) 120596

119894(119909)

1003816100381610038161003816d120583 (119909)

(33)

For 11986421 by Minkowski inequality and (6) write

11986421

= int

611987811989462119861119894

[

[

Xtimes(0infin)

1003816100381610038161003816100381610038161003816100381610038161003816

(

119905

119905 + 119889 (119909 119910)

)

1205812

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

119891 (119911) 120596119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

le 119862int

611987811989462119861119894

int

X

1003816100381610038161003816119891 (119911) 120596

119894(119911)

1003816100381610038161003816[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[∬

119889(119910119911)le119905

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905

2119889(119910119911)gt119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)lt119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

+ 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

š 1198651+ 119865

2+ 119865

3

(34)

To this end let 119861119894be as in Lemma 15 with 119888

119861119894and 119903

119861119894being

respectively its center and radius For any 119909 isin 6119878119894 6

2

119861119894and

119911 isin 6119861119894 by (2) and (3) we have

1198651le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

int

infin

119889(119910119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) dt120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119911))

(int

infin

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119910 119911))]

3

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

Journal of Function Spaces 7

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

d120583 (119910)

[120582 (119910 (12) 119889 (119909 119911))]

2

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 (12) 119889 (119909 119911))]2int

2119889(119910119911)gt119889(119909119911)

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))119861(1199112119896minus2

119889(119909119911))

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

1

120582 (119911 119889 (119909 119911))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))

d120583 (119910)

120582 (119910 2119896minus2

119889 (119909 119911))

]

12

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(35)

where we use the fact that

int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) le 119862119870119861119894 119878119894

(36)

Next we estimate 1198652 For any 119909 isin 6119878

119894 6

2

119861119894 119910 isin X

and 119911 isin 6119861119894satisfying 119889(119910 119909) lt 119905 2119889(119910 119911) le 119889(119909 119911) and

(12)119889(119909 119911) lt 119905 we have

1198652le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

int

infin

(12)119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

d120583 (119910)

120583 (119861 (119910 119889 (119909 119911)))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(37)

Finally for any 119909 isin 6119878119894 6

2

119861119894 119910 isin X and 119911 isin 6119861

119894sat-

isfying 2119889(119910 119911) le 119889(119909 119911) 2119889(119910 119911) ge 119889(119909 119911) and 119889(119909 119910) lt

(32)119889(119909 119911) by applying (2) we have

1198653le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

1

120582 (119910 119889 (119909 119911))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 119889 (119909 119911))]2

120583 (119861 (119911 (12) 119889 (119909 119911)))

120582 (119911 119889 (119909 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(38)

8 Journal of Function Spaces

Combining the estimates for 1198651 119865

2 and 119865

3 we obtain that

11986421

le 119862int6119861119894

|119891(119911)|d120583(119911) where together with the fact that119864

22le 119862int

6119861119894

|119891(119911)|d120583(119911) we have

1198642le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (39)

Now we turn to estimate for 1198641 Let 119876

119894= 119861(119888

119861119894 119903

119878119894) and

write

1198641le int

X6119878119894

[∬

119889(119909119910)lt119905

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isin119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isinX119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 11986411

+ 11986412

+ 11986413

(40)

For each fixed 119894 decompose 11986411as

11986411

le int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isin2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isinX2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 1198681+ 119868

2

(41)

For any 119909 isin X 6119878119894 119910 isin 2119878

119894with 119889(119910 119909) lt 119905 and

119911 isin 119878119894 119889(119909 119888

119861119894) minus 2119903

119878119894le 119889(119909 119910) lt 119905 and 119889(119910 119911) lt 3119903

119878119894

togetherwithMinkowski inequality and (6) we can conclude

1198681le 119862int

X6119878119894

int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

∬119889(119909119910)lt119905119889(119910119911)le119905

119910isin2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

(int

infin

119889(119909119888119861119894)minus2119903119878119894

d119905120582 (119910 119905) 119905

1+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

1

[119889 (119909 119888119861119894) minus 2119903

119878119894]

2120588

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(42)

Journal of Function Spaces 9

For 1198682 write

1198682le int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905le119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

š 11986821

+ 11986822

(43)

For 11986821 by Minkowski inequality and (6) we deduce

11986821

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

119889(119910119888119861119894)+119903119878119894

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[int

2119896+1

611987811989421198966119878119894

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(44)

Nowwe estimate 11986822 ApplyingMinkowski inequality and the

vanishing moment we have

11986822

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870(119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588+

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

+ 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909) š 1198691+ 119869

2

(45)

With a way similar to that used in the proof of 1198681 we have

1198691le 119862ℎ

1198941198711(120583) Thus we only need to estimate 119869

2 by Mink-

owski inequality and (11) it follows that

1198692le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2minus2120588

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

infin

119889(119910119888119861119894)+119903119878119894

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

Journal of Function Spaces 7

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)gt119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

d120583 (119910)

[120582 (119910 (12) 119889 (119909 119911))]

2

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 (12) 119889 (119909 119911))]2int

2119889(119910119911)gt119889(119909119911)

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))119861(1199112119896minus2

119889(119909119911))

d120583 (119910)

120582 (119910 119889 (119910 119911))

]

12

1

120582 (119911 119889 (119909 119911))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

infin

sum

119896=1

int

119861(1199112119896minus1

119889(119909119911))

d120583 (119910)

120582 (119910 2119896minus2

119889 (119909 119911))

]

12

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(35)

where we use the fact that

int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) le 119862119870119861119894 119878119894

(36)

Next we estimate 1198652 For any 119909 isin 6119878

119894 6

2

119861119894 119910 isin X

and 119911 isin 6119861119894satisfying 119889(119910 119909) lt 119905 2119889(119910 119911) le 119889(119909 119911) and

(12)119889(119909 119911) lt 119905 we have

1198652le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

int

infin

(12)119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

d120583 (119910)

120583 (119861 (119910 119889 (119909 119911)))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(37)

Finally for any 119909 isin 6119878119894 6

2

119861119894 119910 isin X and 119911 isin 6119861

119894sat-

isfying 2119889(119910 119911) le 119889(119909 119911) 2119889(119910 119911) ge 119889(119909 119911) and 119889(119909 119910) lt

(32)119889(119909 119911) by applying (2) we have

1198653le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

[

∬119889(119910119911)le119905119889(119909119910)ge119905

2119889(119910119911)le119889(119909119911)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[int

2119889(119910119911)le119889(119909119911)

1

[120582 (119910 119889 (119909 119911))]

2

1

120582 (119910 119889 (119909 119911))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

[

1

[120582 (119911 119889 (119909 119911))]2

120583 (119861 (119911 (12) 119889 (119909 119911)))

120582 (119911 119889 (119909 119911))

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816int

611987811989462119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862int

6119861119894

1003816100381610038161003816119891 (119911)

1003816100381610038161003816d120583 (119911)

(38)

8 Journal of Function Spaces

Combining the estimates for 1198651 119865

2 and 119865

3 we obtain that

11986421

le 119862int6119861119894

|119891(119911)|d120583(119911) where together with the fact that119864

22le 119862int

6119861119894

|119891(119911)|d120583(119911) we have

1198642le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (39)

Now we turn to estimate for 1198641 Let 119876

119894= 119861(119888

119861119894 119903

119878119894) and

write

1198641le int

X6119878119894

[∬

119889(119909119910)lt119905

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isin119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isinX119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 11986411

+ 11986412

+ 11986413

(40)

For each fixed 119894 decompose 11986411as

11986411

le int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isin2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isinX2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 1198681+ 119868

2

(41)

For any 119909 isin X 6119878119894 119910 isin 2119878

119894with 119889(119910 119909) lt 119905 and

119911 isin 119878119894 119889(119909 119888

119861119894) minus 2119903

119878119894le 119889(119909 119910) lt 119905 and 119889(119910 119911) lt 3119903

119878119894

togetherwithMinkowski inequality and (6) we can conclude

1198681le 119862int

X6119878119894

int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

∬119889(119909119910)lt119905119889(119910119911)le119905

119910isin2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

(int

infin

119889(119909119888119861119894)minus2119903119878119894

d119905120582 (119910 119905) 119905

1+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

1

[119889 (119909 119888119861119894) minus 2119903

119878119894]

2120588

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(42)

Journal of Function Spaces 9

For 1198682 write

1198682le int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905le119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

š 11986821

+ 11986822

(43)

For 11986821 by Minkowski inequality and (6) we deduce

11986821

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

119889(119910119888119861119894)+119903119878119894

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[int

2119896+1

611987811989421198966119878119894

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(44)

Nowwe estimate 11986822 ApplyingMinkowski inequality and the

vanishing moment we have

11986822

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870(119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588+

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

+ 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909) š 1198691+ 119869

2

(45)

With a way similar to that used in the proof of 1198681 we have

1198691le 119862ℎ

1198941198711(120583) Thus we only need to estimate 119869

2 by Mink-

owski inequality and (11) it follows that

1198692le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2minus2120588

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

infin

119889(119910119888119861119894)+119903119878119894

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

8 Journal of Function Spaces

Combining the estimates for 1198651 119865

2 and 119865

3 we obtain that

11986421

le 119862int6119861119894

|119891(119911)|d120583(119911) where together with the fact that119864

22le 119862int

6119861119894

|119891(119911)|d120583(119911) we have

1198642le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (39)

Now we turn to estimate for 1198641 Let 119876

119894= 119861(119888

119861119894 119903

119878119894) and

write

1198641le int

X6119878119894

[∬

119889(119909119910)lt119905

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isin119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)ge119905

119910isinX119876119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 11986411

+ 11986412

+ 11986413

(40)

For each fixed 119894 decompose 11986411as

11986411

le int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isin2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905

119910isinX2119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909) š 1198681+ 119868

2

(41)

For any 119909 isin X 6119878119894 119910 isin 2119878

119894with 119889(119910 119909) lt 119905 and

119911 isin 119878119894 119889(119909 119888

119861119894) minus 2119903

119878119894le 119889(119909 119910) lt 119905 and 119889(119910 119911) lt 3119903

119878119894

togetherwithMinkowski inequality and (6) we can conclude

1198681le 119862int

X6119878119894

int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

∬119889(119909119910)lt119905119889(119910119911)le119905

119910isin2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

(int

infin

119889(119909119888119861119894)minus2119903119878119894

d119905120582 (119910 119905) 119905

1+2120588

) d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int

119889(119910119911)le3119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

1

[119889 (119909 119888119861119894) minus 2119903

119878119894]

2120588

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[int

119889(119910119911)le3119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120583 (119861 (119910 119889 (119909 119888119861119894)))

d120583 (119910)]

12

d120583 (119909) d120583 (119911)

le 119862int

6119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(42)

Journal of Function Spaces 9

For 1198682 write

1198682le int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905le119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

š 11986821

+ 11986822

(43)

For 11986821 by Minkowski inequality and (6) we deduce

11986821

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

119889(119910119888119861119894)+119903119878119894

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[int

2119896+1

611987811989421198966119878119894

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(44)

Nowwe estimate 11986822 ApplyingMinkowski inequality and the

vanishing moment we have

11986822

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870(119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588+

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

+ 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909) š 1198691+ 119869

2

(45)

With a way similar to that used in the proof of 1198681 we have

1198691le 119862ℎ

1198941198711(120583) Thus we only need to estimate 119869

2 by Mink-

owski inequality and (11) it follows that

1198692le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2minus2120588

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

infin

119889(119910119888119861119894)+119903119878119894

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

Journal of Function Spaces 9

For 1198682 write

1198682le int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905le119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

+ int

X6119878119894

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

(

119905

119905 + 119889 (119909 119910)

)

120581 1003816100381610038161003816100381610038161003816100381610038161003816

1

119905120588

int

119889(119910119911)le119905

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

ℎ119894(119911) d120583 (119911)

1003816100381610038161003816100381610038161003816100381610038161003816

2 d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119909)

š 11986821

+ 11986822

(43)

For 11986821 by Minkowski inequality and (6) we deduce

11986821

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

119889(119910119888119861119894)+119903119878119894

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119910isinX2119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[int

2119896+1

611987811989421198966119878119894

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

d120583 (119910)]

12

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(44)

Nowwe estimate 11986822 ApplyingMinkowski inequality and the

vanishing moment we have

11986822

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870(119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588+

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

le 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119911)]

1minus120588

minus

119870 (119910 119911)

[119889 (119910 119888119861119894)]

1minus120588

)ℎ119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909)

+ 119862int

X6119878119894

[

[

[

∬119889(119909119910)lt119905119910isinX2119878119894

119905gt119889(119910119888119861119894)+119903119878119894

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

int

119889(119910119911)le119905

(

119870(119910 119911)

[119889 (119910 119888119861119894)]

1minus120588minus

119870 (119910 119888119861119894)

[119889 (119910 119888119861119894)]

1minus120588)ℎ

119894(119911) d120583 (119911)

100381610038161003816100381610038161003816100381610038161003816100381610038161003816

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119909) š 1198691+ 119869

2

(45)

With a way similar to that used in the proof of 1198681 we have

1198691le 119862ℎ

1198941198711(120583) Thus we only need to estimate 119869

2 by Mink-

owski inequality and (11) it follows that

1198692le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2minus2120588

1

120582 (119910 119889 (119910 119888119861119894) + 119903

119878119894)

(int

infin

119889(119910119888119861119894)+119903119878119894

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

10 Journal of Function Spaces

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int

X2119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

sdot int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

infin

sum

119896=1

[

[

int

2119896119903119878119894

lt119889(1199101198881198611)le2119896+1

119903119878119894

10038161003816100381610038161003816119870 (119910 119911) minus 119870 (119910 119888

119861119894)

10038161003816100381610038161003816

2 1

[119889 (119910 119888119861119894)]

2d120583 (119910)

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(46)

Combining the estimates for 1198691 119869

2 119868

21 and 119868

1 we obtain that

11986411

le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(47)

Next we estimate 11986412 For any 119910 isin 119861

119894 119909 isin X 6119878

119894 and

119911 isin 119878119894 we have 119889(119909 119910) ge (12)119889(119909 119888

119861119894) 119889(119910 119911) le 2119903

119878119894 and

119889(119909 119910) sim 119889(119909 119888119861119894) and together with this fact Minkowski

inequality and (6) we get

11986412

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

[

∬119889(119909119910)ge119905

119889(119910119911)le119905

119910isin119876119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

1+2120588

]

]

]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816[int

119889(119910119911)le2119903119878119894

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119888119861119894))

d120583 (119910)]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(48)

It remains to estimate 11986413 Applying Minkowski inequality

and (6) we have

11986413

le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

+ 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119909)

1003816100381610038161003816

[

[

∬119889(119910119911)le119905le119889(119909119910)119910isinX119876119894

119889(119909119888119861119894)gt2119889(119910119888119861119894

)

(

119905

119905 + 119889 (119909 119910)

)

120581

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

d120583 (119910) d119905120582 (119910 119905) 119905

]

]

12

d120583 (119911) d120583 (119909)

š 1198801+ 119880

2

(49)

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 11: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

Journal of Function Spaces 11

Now we estimate 1198801 For any 119910 isin X 119876

119894 119911 isin 119878

119894 and 119889(119910

119911) le 119905 le 119889(119909 119911) it is easy to see 119889(119910 119911) sim 119889(119910 119888119861119894) So we have

1198801le 119862int

X6119878119894

int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

[119889 (119910 119911)]

2120588

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

(int

119889(119909119910)

119889(119910119911)

d1199051199051+2120588

) d120583 (119910)]

]

12

d120583 (119911) d120583 (119909)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

1

[120582 (119910 119889 (119910 119911))]

2

1

120582 (119910 119889 (119909 119910))

d120583 (119910)]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

[

[

int119910isinX119876119894

119889(119909119888119861119894)le2119889(119910119888119861119894

)

d120583 (119910)

120582 (119910 119889 (119910 119888119861119894))

]

]

12

d120583 (119909) d120583 (119911)

le 119862int

119878119894

1003816100381610038161003816ℎ119894(119911)

1003816100381610038161003816int

X6119878119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909) d120583 (119911) le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(50)

On the other hand by a method similar to that used inthe proof of 119880

1 we have

1198802le 119862

1003817100381710038171003817ℎ119894

10038171003817100381710038171198711(120583)

(51)

Combining the estimates 1198801 119880

2 119864

11 119864

12 and the fact that

ℎ1198941198711(120583)

le 119862int6119861119894

|119891(119909)|d120583(119909) we conclude that

1198641le 119862int

6119861119894

1003816100381610038161003816119891 (119909)

1003816100381610038161003816d120583 (119909) (52)

which together with 1198642 implies (30) and the proof of

Theorem 10 is finished

Proof ofTheorem 11 Without loss of generality we assume 120577 =

2 By a standard argument it suffices to show that for any(infin 1)-atomic block 119887

1003817100381710038171003817M

lowast120588

120581(119887)

10038171003817100381710038171198711(120583)

le 119862 |119887|1198671infin

atb (120583) (53)

Assume that supp 119887 sub 119877 and 119887 = sum2

119894=1120592119894119886119894 where for

119894 isin 1 2 119886119894is a function supported in 119861

119894sub 119877 such that

119886119894119871infin(120583)

le [120583(4119861119894)]

minus1

119870minus1

119861119894 119877and |120592

1| + |120592

2| sim |119887|

1198671infin

atb (120583) Write

int

X

Mlowast120588

120581(119887) (119909) d120583 (119909)

= int

2119877

Mlowast120588

120581(119887) (119909) d120583 (119909)

+ int

X2119877

Mlowast120588

120581(119887) (119909) d120583 (119909) š 119881

1+ 119881

2

(54)

For 1198811 we see that

1198811le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

2119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

+

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816int

21198772119861119894

Mlowast120588

120581(119886

119894) (119909) d120583 (119909)

š 11988111

+ 11988112

(55)

Applying the Holder inequality 1198712

(120583)-boundedness ofMlowast120588

120581

and the fact that 119886119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877for 119894 isin 1 2

we have

11988111

le

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816(int

2119861119894

1003816100381610038161003816M

lowast120588

120581(119886

119894) (119909)

1003816100381610038161003816

2 d120583 (119909))

12

120583 (2119861119894)

12

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198712(120583)

120583 (2119861119894)

12

le 119862 |119887|1198671infin

atb (120583)

(56)

Now we estimate 11988112 with a method similar to that used in

the proof of 1198651and 119886

119894119871infin(120583)

le 119862[120583(4119861119894)]

minus1

119870minus1

119861119894 119877 and we see

that

11988112

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816

1003817100381710038171003817119886119894

10038171003817100381710038171198711(120583)

int

21198772119861119894

1

120582 (119888119861119894 119889 (119909 119888

119861119894))

d120583 (119909)

le 119862

2

sum

119894=1

1003816100381610038161003816120592119894

1003816100381610038161003816119870

119861119894 119877

1003817100381710038171003817119886119894

1003817100381710038171003817119871infin(120583)

120583 (119861119894) le 119862 |119887|

1198671infin

atb (120583)

(57)

Therefore 1198811le 119862|119887|

1198671infin

atb (120583)

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 12: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

12 Journal of Function Spaces

On the other hand based on the proof of 1198641and

Definition 8 it is easy to obtain that

1198812le 119862 119887

1198711(120583)

le 119862 |119887|1198671infin

atb (120583) (58)

Combining the estimates for 1198811and 119881

2 (53) holds Thus

Theorem 11 is completed

Competing Interests

The authors declare that there are no competing interestsregarding the publication of this paper

Authorsrsquo Contributions

All authors contributed equally to the writing of this paperAll authors read and approved the final paper

Acknowledgments

This paper is supported by National Natural Foundation ofChina (Grant no 11561062)

References

[1] E M Stein ldquoOn the functions of Littlewood-Paley Lusin andMarcinkiewiczrdquo Transactions of the American MathematicalSociety vol 88 no 2 pp 430ndash466 1958

[2] C Fefferman ldquoInequalities for strongly singular convolutionoperatorsrdquo Acta Mathematica vol 124 pp 9ndash36 1970

[3] M Sakamoto and K Yabuta ldquoBoundedness of marcinkiewiczfunctionsrdquo StudiaMathematica vol 135 no 2 pp 103ndash142 1999

[4] Y Ding S Lu and K Yabuta ldquoA problem on rough parametricMarcinkiewicz functionsrdquo Journal of the Australian Mathemat-ical Society vol 72 no 1 pp 13ndash21 2002

[5] Y Ding and Q Xue ldquoEndpoint estimates for commutators ofa class of Littlewood-Paley operatorsrdquo Hokkaido MathematicalJournal vol 36 no 2 pp 245ndash282 2007

[6] L Wang and S Tao ldquoBoundedness of Littlewood-Paley oper-ators and their commutators on Herz-Morrey spaces withvariable exponentrdquo Journal of Inequalities and Applications vol2014 article 227 2014

[7] X Tolsa ldquoBMO H1 and Calderon-Zygmund operator for non-doubling measuresrdquoMathematische Annalen vol 319 no 1 pp89ndash149 2001

[8] H Lin andYMeng ldquoBoundedness of parametrized Littlewood-Paley operators with nondoubling measuresrdquo Journal ofInequalities and Applications vol 2008 Article ID 141379 25pages 2008

[9] X Tolsa ldquoThe spaces H1 for non-doubling measures in termsof a grand maximal operatorrdquo Transactions of the AmericanMathematical Society vol 355 no 1 pp 315ndash348 2003

[10] G Hu H Lin and D Yang ldquoMarcinkiewicz integrals with non-doubling measuresrdquo Integral Equations and Operator Theoryvol 58 no 2 pp 205ndash238 2007

[11] Q Xue and J Zhang ldquoEndpoint estimates for a class ofLittlewood-Paley operators with nondoubling measuresrdquo Jour-nal of Inequalities and Applications vol 2009 Article ID 17523028 pages 2009

[12] X Tolsa ldquoLittlewood-Paley theory and the T(1) theorem withnon-doublingmeasuresrdquoAdvances inMathematics vol 164 no1 pp 57ndash116 2001

[13] X Tolsa ldquoPainleversquos problem and the semiadditivity of analyticcapacityrdquo Acta Mathematica vol 190 no 1 pp 105ndash149 2003

[14] X Tolsa ldquoThe semiadditivity of continuous analytic capacityand the inner boundary conjecturerdquo American Journal ofMathematics vol 126 no 3 pp 523ndash567 2004

[15] R R Coifman and G Weiss Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes vol 242 ofLecture Notes in Mthematics Springer Berlin Germany 1971

[16] R R Coifman and G Weiss ldquoExtensions of Hardy spaces andtheir use in analysisrdquo Bulletin of the American MathematicalSociety vol 83 no 4 pp 569ndash645 1977

[17] T Hytonen ldquoA framework for non-homogeneous analysis onmetric spaces and the RBMO space of Tolsardquo PublicacionsMatematiques vol 54 no 2 pp 485ndash504 2010

[18] THtyonen D Yang andD Yang ldquoTheHardy spaceH1 on non-homogeneous metric spacesrdquo Mathematical Proceedings of theCambridge Philosophical Society vol 153 no 1 pp 9ndash31 2012

[19] X Fu D Yang and W Yuan ldquoGeneralized fractional integralsand their commutators over non-homogeneousmetricmeasurespacesrdquo Taiwanese Journal of Mathematics vol 18 no 2 pp509ndash557 2014

[20] G Lu and S Tao ldquoBoundedness of commutators ofMarcinkiewicz integrals on nonhomogeneous metric measurespacesrdquo Journal of Function Spaces vol 2015 Article ID 54816512 pages 2015

[21] T A Bui and X T Duong ldquoHardy spaces regularized BMOspaces and the boundedness of Caldern-Zygmund operators onnon-homogeneous spacesrdquo Journal of Geometric Analysis vol23 no 2 pp 895ndash932 2013

[22] H Lin andD Yang ldquoEquivalent boundedness ofMarcinkiewiczintegrals on non-homogeneous metric measure spacesrdquo ScienceChina Mathematics vol 57 no 1 pp 123ndash144 2014

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 13: Research Article Estimates for Parameter Littlewood-Paley ...downloads.hindawi.com/journals/jfs/2016/9091478.pdf · that the Littlewood-Paley function is weak type (,) for (1,2) and

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended