+ All Categories
Home > Documents > Research Article Estimating Risk of Natural Gas Portfolios ...

Research Article Estimating Risk of Natural Gas Portfolios ...

Date post: 15-Apr-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
8
Research Article Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model Jiechen Tang, 1 Chao Zhou, 2,3 Xinyu Yuan, 4 and Songsak Sriboonchitta 1 1 Faculty of Economics, Chiang Mai University, 2397 Suthep, A. Mueang, Chiang Mai 200060, ailand 2 School of Economics, Northwest Normal University, Lanzhou, China 3 e People’s Bank of China, Zhang Ye City Branch, Zhangye, China 4 Faculty of Economics and Management, Yunnan Normal University, Yunnan, China Correspondence should be addressed to Jiechen Tang; [email protected] Received 25 July 2014; Revised 9 November 2014; Accepted 30 November 2014 Academic Editor: WingKeung Wong Copyright © 2015 Jiechen Tang et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. is paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH- EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. ird, multivariate Gaussian copula and Student -copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student -copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student -copula and different confidence levels. 1. Introduction Natural gas has become an important commodity for global economy today and is commonly regarded as a strategic commodity. Since the momentous arrival of hedge funds and other new players that have their focus on this strategic com- modity, the market for natural gas has become increasingly volatile and risky. Hence, managing the risks associated with spot and futures natural gas prices has become a crucial issue for financial institutions, regulators, and portfolio managers. One of the most popular and usual tools for measuring market risk is VaR. VaR is defined as the amount of loss in a portfolio under given probability over a certain time period [1]. VaR is considered as a benchmark for measuring market risk, which is the main reason that it can summarize risks in a single number. Additionally, CVaR is a supplement to VaR, and it measures the expected loss, given that the loss is greater than or equal to the VaR at certain confidence levels [2]. e purpose of this study is to apply the GARCH-EVT- copula model to estimate the risk measures (VaR and CVaR) for natural gas portfolios. More and more empirical studies concerned with VaR estimation have been using the copula-GARCH model. Many research literatures have proved that the copula method is a better method to estimate VaR. For example, Huang et al. [3] proposed a new method, conditional copula-GARCH, to measure the VaR of stock portfolios. eir empirical results suggested that conditional copula-GARCH could be quite robust in estimating VaR. Low et al. [4] investigated whether applying copula models to forecast returns for portfolios could produce superior investment performance compared to traditional models. ey found that when managing larger portfolios, the Clayton canonical vine copula outperforms the Clayton standard copula. Aloui et al. [5] used the copula- GARCH approach to investigate the conditional dependence structure between crude oil prices and U.S. dollar exchange rates. e empirical results suggested that using the Student -copula improved the accuracy of VaR forecasts. Chen and Tu [6] estimated the risk (VaR) of hedged portfolio to illustrate the potential model risk. ey found that copula- based HPVaR outperforms the conventional CCC- and DCC-GARCH estimators. Weiß and Supper [7] estimated Hindawi Publishing Corporation e Scientific World Journal Volume 2015, Article ID 125958, 7 pages http://dx.doi.org/10.1155/2015/125958
Transcript
Page 1: Research Article Estimating Risk of Natural Gas Portfolios ...

Research ArticleEstimating Risk of Natural Gas Portfolios by UsingGARCH-EVT-Copula Model

Jiechen Tang1 Chao Zhou23 Xinyu Yuan4 and Songsak Sriboonchitta1

1Faculty of Economics Chiang Mai University 2397 Suthep A Mueang Chiang Mai 200060 Thailand2School of Economics Northwest Normal University Lanzhou China3The Peoplersquos Bank of China Zhang Ye City Branch Zhangye China4Faculty of Economics and Management Yunnan Normal University Yunnan China

Correspondence should be addressed to Jiechen Tang tangjiechen1002163com

Received 25 July 2014 Revised 9 November 2014 Accepted 30 November 2014

Academic Editor WingKeung Wong

Copyright copy 2015 Jiechen Tang et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula modelWe first use the univariate ARMA-GARCHmodel tomodel each natural gas return series Second the extremevalue distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributionsThird multivariate Gaussiancopula and Student 119905-copula are employed to describe the natural gas portfolio risk dependence structure Finally we simulate Nportfolios and estimate value at risk (VaR) and conditional value at risk (CVaR) Our empirical results show that for an equallyweighted portfolio of five natural gases the VaR and CVaR values obtained from the Student 119905-copula are larger than those obtainedfrom the Gaussian copula Moreover when minimizing the portfolio risk the optimal natural gas portfolio weights are found to besimilar across the multivariate Gaussian copula and Student 119905-copula and different confidence levels

1 Introduction

Natural gas has become an important commodity for globaleconomy today and is commonly regarded as a strategiccommodity Since the momentous arrival of hedge funds andother new players that have their focus on this strategic com-modity the market for natural gas has become increasinglyvolatile and risky Hence managing the risks associated withspot and futures natural gas prices has become a crucial issuefor financial institutions regulators and portfolio managersOne of the most popular and usual tools for measuringmarket risk is VaR VaR is defined as the amount of loss ina portfolio under given probability over a certain time period[1] VaR is considered as a benchmark for measuring marketrisk which is the main reason that it can summarize risksin a single number Additionally CVaR is a supplement toVaR and it measures the expected loss given that the loss isgreater than or equal to the VaR at certain confidence levels[2] The purpose of this study is to apply the GARCH-EVT-copula model to estimate the risk measures (VaR and CVaR)for natural gas portfolios

More and more empirical studies concerned with VaRestimation have been using the copula-GARCHmodelManyresearch literatures have proved that the copula method isa better method to estimate VaR For example Huang et al[3] proposed a new method conditional copula-GARCH tomeasure the VaR of stock portfolios Their empirical resultssuggested that conditional copula-GARCH could be quiterobust in estimating VaR Low et al [4] investigated whetherapplying copula models to forecast returns for portfolioscould produce superior investment performance comparedto traditional modelsThey found that whenmanaging largerportfolios theClayton canonical vine copula outperforms theClayton standard copula Aloui et al [5] used the copula-GARCH approach to investigate the conditional dependencestructure between crude oil prices and US dollar exchangerates The empirical results suggested that using the Student119905-copula improved the accuracy of VaR forecasts Chen andTu [6] estimated the risk (VaR) of hedged portfolio toillustrate the potential model risk They found that copula-based HPVaR outperforms the conventional CCC- andDCC-GARCH estimators Weiszlig and Supper [7] estimated

Hindawi Publishing Corporatione Scientific World JournalVolume 2015 Article ID 125958 7 pageshttpdxdoiorg1011552015125958

2 The Scientific World Journal

the liquidity-adjusted intraday VaR of stock portfolio byusing vine copulas for the dependence structure and theACDP (Autoregressive Conditional Double Poisson) andGARCH processes for the marginal distribution The empir-ical evidences showed that the GARCH-Vine copula modelperformed well in estimating the liquidity-adjusted intradayportfolio profits and losses Berger [8] used time-varyingcopulas combined with EVT-based margins He pointed outthat when forecasting the VaR of a portfolio it is crucialto find the ldquorightrdquo portfolio return distribution They foundthat reliable copulas combined with EVT-based margins cancapture reliable VaR figures Aloui et al [9] investigatedthe conditional dependence structure between the crude oiland natural gas markets and derived implications for riskmanagement issues related to an oil and gas portfolio withina VaR framework

The contributions of this paper are twofold First tothe best of our knowledge there are no previous empir-ical papers estimating the risks of natural gas portfoliosusing the GARCH-EVT-copula model In this sense thisstudy can perfectly contribute to this area of the litera-ture Second risk measures of natural gas portfolios whichare computed by the GARCH-EVT-copula model can beutilized to have implications for natural gas portfolio riskmanagement

The outline of this paper is as follows The next sectiondescribes the GARCH-EVT-copula model used in the paperSection 3 discusses the data and their properties Section 4presents the empirical results of the model and estimatethe VaR and the CVaR five-dimensional natural gas port-folios and the optimal natural gas portfolio weights underminimized portfolio risk The last section delivers the finalconcluding remarks

2 Data Description

This study focuses on natural gas portfolios consisting ofspot and futures prices at the Title Transfer Facility (TTF)Hub Our dataset consists of daily series of one-day-aheadgas prices (TTFFD) one-month-ahead cash-settled futuresnatural gas prices (TTFFM) one-quarter-ahead cash-settledfutures natural gas prices (TTFFQ) one-season-ahead cash-settled futures natural gas prices (TTFFS) and one-year-ahead cash-settled futures natural gas prices (denoted byTTFFY) The natural gas price series are expressed in europer megawatt hour (CMWh) The data are sourced fromDatastream and are from January 1 2007 to May 30 2014The data used in this paper are from Monday to Friday withtotal of 1934 observations

Figure 1 is plotted to illustrate the natural gas spot andfutures prices at the TTF Hub The figures of the spot andfutures prices reveal the typical properties of natural gasprices extreme price spikes and volatility clustered Thedescriptive statistics for natural gas spot and futures returnsare reported in Table 1 The natural gas spot and futuresreturns (119903

119905) are computed on a continuous compounding

basis as 119903119905= ln(119875

119905119875119905minus1) where 119875

119905and 119875

119905minus1are current

and one-period lagged daily natural gas spot or futuresprices The mean returns for all spot and futures series

are very small and near zero indicating that there is nosignificant trend in the data All the returns exhibit significantskewness except for TTFFD and kurtosis All the returnsexhibit positive skewness except for TTFFD Second all thereturns strongly reject the null hypotheses for the JB (Jarque-Bera) test of normality Finally augmentedDickey-Fuller [10]and Kwiatkowski-Phillips-Schmidt-Shin [11] tests are usedfor the unit root test Table 1 shows the results indicatingthat all return series are stationary at the 1 significancelevel

3 Methodology

31 Model forMarginal Distribution We adopt the univariatestandard GARCH model for natural gas price to obtain ourmarginal distributions in this study The univariate standardGARCH(1 1) model [12] is defined as follows

119903119904119905= 1198881199040+

119901

sum

119894=1

120601119904119894119903119904119905minus119894

+

119902

sum

119895=1

120579119904119895119903119904119905minus119895

+ 119890119904119905

119890119904119905= radicℎ119904119905119911119904119905

ℎ119904119905= 120596119904+ 1205721199041198902

119904119905minus1+ 120573119904ℎ119904119905minus1

(1)

where 119904 is TTFFD TTFFM TTFFQ TTFFS and TTFFYrespectively 119903

119904119905denotes the spot or futures return of natural

gas ℎ119904119905

is the conditional variance of volatility 120601119904119894

is the119894th lag AR parameter 120579

119904119895is the 119894th lag MA parameter 120572

119904is

the ARCH parameter and 120573119904is the GARCH parameter The

conditions 120596119904gt 0 120572

119904 120573119904ge 0 and 120572

119904+ 120573119904lt 1 are to ensure

that the conditional variance process remains positive andstationary 119911

119904119905is the standardized error In Section 2 we know

that all series are not normal distribution Hence we assumethat 119911

119904119905is 119905-distribution df

119904is the degree of freedom which

is denoted as 120582119904 In order to better estimate the tails of the

distribution this paper applied EVT to those residuals Wemodel residuals by using the generalized Pareto distribution(GPD) estimate for the upper and lower tails and theGaussiankernel estimate for the remaining part The CDF of a GPDdistribution is parameterized as follows

119865 (119911119904119905)

=

119873119898119871

119873((1 +

120585119871(119898119871minus 119911119904119905)

120573119871

)

minus1120585119871

) 119911119904119905lt 119898119871

120593 (119911119904119905) 119898

119871lt 119911119904119905lt 119898119877

1 minus

119873119898119877

119873((1 +

120585119877(119898119877minus 119911119904119905)

120573119877

)

minus1120585119877

) 119911119904119905gt 119898119877

(2)

where 120585 is the shape parameter 120573 is the scale parameter and119898119871(119898119877) is the lower (upper) threshold

There is a trade-off between high precision and low vari-ance the critical step is the choice of the optimal thresholdFollowing DuMouchel [13] this paper chose the exceedancesto be the 10th percentile of the sample

The Scientific World Journal 3

40

30

20

10

0

40

35

30

25

20

15

10

5

50

40

30

20

10

0

2007 2008 2009 2010 2011 2012 2013 2014

TTFFD TTFFM

TTFFQ TTFFS

TTFFY

2007 2008 2009 2010 2011 2012 2013 2014

2007 2008 2009 2010 2011 2012 2013 2014

2007 2008 2009 2010 2011 2012 2013 2014

2007 2008 2009 2010 2011 2012 2013 2014

50

40

30

20

10

0

50

40

30

20

10

Figure 1 The time series plots of daily natural gas spot and futures prices at the Title Transfer Facility (TTF) Hub

Table 1 Descriptive statistics of spot and generic futures returns for natural gas portfolio

TTFFD TTFFM TTFFQ TTFFS TTFFYMean 00002 00000 00001 00002 00001Median 00000 00000 minus00007 minus00005 00000Maximum 03923 02672 05462 07724 03476Minimum minus03538 minus01171 minus02027 minus01780 minus03482Std dev 00453 00273 00286 00289 00214Skewness minus00396 17707lowastlowast 63836lowastlowast 125263lowastlowast 23924lowastlowast

Kurtosis 117180lowastlowast 181748lowastlowast 1114036lowastlowast 3060295lowastlowast 1150176lowastlowast

JB 61251020lowastlowast 195669600lowastlowast 9600978000lowastlowast 74502940000lowastlowast 10130000000lowastlowast

ADF minus493317lowastlowast minus272174lowastlowast minus435283lowastlowast minus422873lowastlowast minus276217lowastlowast

KPSS 005345 00805 007311 004966 00614Observations 1934 1934 1934 1934 1934Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 significance levels respectively

4 The Scientific World Journal

32 Copula Let1198831 119883

119899be the random variables with the

marginal distribution 1198651 119865

119899 Then there exists a copula

119862 [0 1]119899rarr [0 1] that satisfies the following function

119865 (1199091 119909

119899) = 119862 (119865

1(1199091) 119865

119899(119909119899)) = 119862 (119906

1 119906

119899)

(3)

where 119906119894= 119865119894(119909119894) If themarginal distribution119865

119894(119909119894) is contin-

uous then 119862 is unique otherwise 119862 is uniquely determinedby Ran119865

1times Ran119865

2times sdot sdot sdot times Ran119865

119899

The multivariate Gaussian copula [14] is given as

119862Gausum120588

(1199061119905 1199062119905 119906

119899119905| 120588)

= Φsum120588(Φminus1(1199061119905) Φminus1(1199062119905) Φ

minus1(119906119899119905))

(4)

where 119906119899119905

is the cumulative distribution function of thestandardized error from the marginal models Φ

sum120588denotes

the standardized multivariate normal distribution with thecorrelation matrix sum120588 Φminus1 is the inverse of the univariatestandard normal distribution and 120588 isin (minus1 1) measures thedependence

The Gaussian copula cannot capture the dependence of afat tail In order to capture the fat tail we also introduced themultivariate Student 119905-copula in this study The multivariateStudent 119905-copula [14] is defined as

119862Stusum120588V (1199061119905 1199062119905 119906119899119905 | 120588 119899)

= 119905sum120588V [119905

minus1

V (1199061119905) 119905minus1

V (1199062119905) 119905

minus1

V (119906119899119905)]

(5)

where 119905sum120588V is the standardized multivariate Student 119905-

distribution with correlation and degrees of freedom matrixsum120588 V correlation 120588 isin (minus1 1) 119905minus1V denotes the inverse of theunivariate Student 119905-distribution The parameters of V and 120588determine the extent of symmetric extreme dependence bythe upper and lower tail dependences 120582

119871and 120582

119877 such that

120582119871= 120582119877= 2119905V+1(minus((radicV + 1radic1 minus 120588)radic1 + 120588)) gt 0

33 Portfolio Risk Analysis

331 VaR and CVaR In order to analyze risk managementthis paper used VaR and CVaR to measure the risk Weestimate the VaR and the CVaR by taking the 120572-quantilesof the portfolio return forecasts as given in the followingequation

VaR119905+1|119905

(120572) = 119865minus1(119902) 119903119905+1119875

CVaR119905+(1119905)

(120572) = 119864 (119903119905+1119901

| 119903119905+1119901

gt VaR119905+1|119905

(120572))

(6)

We assume that the weight in each asset is the same thatis 120596 = [(15) (15) (15) (15) (15)]

1015840 As a result wecan compute the VaR and the CVaR of the equally weightedportfolio

332 Optimal Portfolio with Minimum Risk We estimatethe VaR and the CVaR of an equally weighted portfoliobut the major concern for commercial banks and individual

investors is to minimize the risk of the investment portfolioTo address this concern in this paper we also compute theoptimal weights of each asset thatminimize the portfolio riskAccording to Wang et al [2] the algorithm is as follows Weassume that the weight in individual asset within a portfoliois 120596 = [120596

1 1205962 1205963 1205964 1205965]1015840 where 0 le 120596

119904le 1 (119904 = 1 2 5)

and 1205961+ 1205962+ 1205963+ 1205964+ 1205965= 1 Many weight vectors

can satisfy these conditions Given a weight vector 120596 119873returns of the portfolio are obtained this means that returns= 119903119905+1

times 120596 Subsequently the VaR of these portfolios at agiven confidence level can be computed After getting allthe VaR values corresponding to all the weight vectors theminimumVaR can be calculatedThus we can get the weightof each asset that minimizes the VaR that is minVaR

120572=

risk(1198871 1198872 1198873 1198874 1198875)

34 Estimation Procedure We follow a seven-step estimationprocedure in this paper

(1) We first complete the parameter estimation andobtain the standardized residuals by fitting the uni-variate ARMA(119901 119902)-GARCH(1 1) model for eachnatural gas return series

(2) For EVT we chose the exceedances to be the 10thpercentile of the sample and used the sample MEFplot and the Hill plot to determine an appropriatethreshold for the upper and lower tails of the dis-tribution of the residuals We assume that excessresiduals over this threshold follow the generalizedPareto distribution (GPD) and estimate for the upperand lower tails and use theGaussian kernel estimationfor the remaining part

(3) We transform the standardized residuals 119911119904119905from the

GARCHmodel into the variates 119906119904119905 using the ECDFs

(empirical cumulative distribution functions)There-after we perform the goodness-of-fit test for each 119906

119904119905

(4) We fit a copula model and estimate its parameter(5) We simulate 119873 times from the estimated copula

model to convert to 119873 standardized residuals usingthe inverse of the corresponding distribution functionfor each model

(6) We forecast 119873 portfolio returns using the ARMA(119901119902)-GARCH(1 1)model

(7) We estimate the VaR and the CVaR of the equallyweighted portfolio Additionally we compute theoptimal portfolio with the minimum risk

4 Empirical Results

41 Results for Marginal Model Firstly estimate theARMA(119901 119902)-GARCH(1 1) model for each natural gasreturn The AIC BIC and Loglik statistics are adopted toselect the most suitable models The estimated coefficientsand standard errors for the marginal model are presentedin Table 2 Table 2 shows that the AR(1) estimates 120601

1199041are

significant in all the series except for TTFFM and TTFFQwhich implies that the current returns have spillover effects

The Scientific World Journal 5

Table 2 Estimated parameters of agricultural commodity returnsfor marginal model

TTFFD TTFFM TTFFQ TTFFS TTFFY

119888119904119900

minus00002(00004)

minus00007lowastlowast(00003)

minus00008(00003)

minus00005lowast(00002)

minus00003(00002)

1206011199041

minus01350lowastlowast(00234)

00363(00206)

00206(00190)

00668lowastlowast(00218)

00588lowastlowast(00223)

120596119904

00000lowastlowast(00000)

00000(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

120572119904

02045lowastlowast(00263)

00560lowastlowast(00169)

00120lowastlowast(00035)

01865lowastlowast(00341)

01661lowastlowast(00243)

120573119904

07945lowastlowast(00238)

09430lowastlowast(00170)

09848lowastlowast(00030)

08125lowastlowast(00305)

08329lowastlowast(00213)

120582119904

43963lowastlowast(03857)

32386lowastlowast(02172)

28659lowastlowast(01965)

31684lowastlowast(01866)

36138lowastlowast(02616)

LL 39100000 49437790 51541850 54091680 57945190AIC minus40372 minus51063 minus53239 minus55876 minus59861ARCH(10) 07074 08258 09988 10000 09996NoteThe table shows the estimates and the standard errors of the parametersfor the marginal distribution model defined in (3) and (4) lowastlowast and lowastdenote rejection of the null hypothesis at the 1 and 5 significance levelsrespectively ARCH(10) is the P value of Englersquos LM test for the ARCH effectin the residuals up to the 10th order

from their returns in one of the previous periods Secondit can be observed that the ARCH parameter 120572

119904and the

GARCH parameter 120573119904are statistically significant implying

that all the returns experience ARCH and GARCH effectsThe 119875 values of ARCH(10) are more than 10 which showsthat there is no heteroskedasticity effect in the residualsAdditionally the degrees of freedom 120582

119904of the Student

119905-distribution for all the returns are significant suggestingthat the error terms are not normal distribution and thatthe Student 119905-distribution works reasonably well for all thereturn series

As described in Section 31 we apply EVT to thoseresiduals GPD specially is for tail estimation and we choosethe exceedances to be the 10th percentile of the sampleThe Gaussian kernel estimate is for the remaining partThe parameter estimation for each natural gasrsquos residuals isdemonstrated in Table 3

Given the availability of the estimates ofmarginalmodelswe proceed to estimate the copula functions For that wetransform the standardized residuals 119911

119904119905from the GARCH

model into the variates 119906119904119905 using the ECDF Each variate 119906

119904119905

should be uniform (0 1) otherwise the copula model couldbe misspecifiedThis paper follows Patton [15] and Reboredo[16] to carry out the goodness-of-fit test which are Ljung-Box(LB) test and Kolmogorov-Smirnov (KS) test LB test is usedto examine the serial correlation under the null hypothesisof serial independence To do so (119906

119904119905minus 119906119904)119896 is regressed on

the first 10 lags of the variables And KS test is used to testthe null hypothesis that the 119906

119894119905are uniform (0 1) Table 4

reports the 119875 values of these two tests At the 5 significancelevel all the null hypotheses are rejected which implies thatthe marginal distribution model demonstrates that these are

Table 3 Parameter estimation for each natural gasrsquos residuals

TTFFD TTFFM TTFFQ TTFFS TTFFYThreshold119898

119871minus12278 minus10081 minus10463 minus10491 minus10857

120585119871

00489 00588 01494 02596 00817120573119877

07085 05076 04999 05140 05243Threshold119898

11987711688 10944 11152 10989 11696

120585119877

01999 03183 05386 04963 02987120573119877

05327 06823 05883 05606 06718

Table 4 Goodness-of-fit test for marginal distributions

TTFFD TTFFM TTFFQ TTFFS TTFFYFirst momentLB test 04000 01278 02771 02530 01008

First momentLB test 02171 06031 00562 00862 01753

First momentLB test 05548 00791 04020 00503 01164

First momentLB test 01283 00651 01357 01247 02840

KS test 09997 10000 09436 09997 08967Note This table reports the P values from the Ljung-Box (LB) test for serialindependence of the first four moments of the variable 119906

119904119905 We regress

(119906119904119905minus 119906119904)119896 on the first five lags of the variables for 119896 = 1 2 3 4 In

addition we present the P values of the Kolmogorov-Smirnov (KS) test forthe adequacy of the distribution model

not misspecified Hence it can be concluded that the copulamodel can correctly capture the dependence

42 Results for Copula After estimating the parameters ofthe marginal distribution we proceed further to estimatethe copula parameter The multivariate Gaussian copula andStudent 119905-copula are applied in this study The dependencematrix is estimated by the maximum-likelihood estimation(MLE) method The results of the dependence matrix forthe multivariate Gaussian copula model and the Student 119905-copula model are reported in Tables 5 and 6 respectivelyThedependence parameters are positive and strongly significantat 10 level for theGaussian and the Student 119905-copulamodelsThese findings point out the presence of significantly strongpositive relationships between the TTF natural gas portfoliosSecond the degree of freedom for the multivariate Student119905-copula V is reasonably low (49837) which suggests theexistence of substantially extreme comovements and taildependence for all the pairs of the TTF natural gas portfoliosThis finding indicates that extreme events or crises are likelyto spread from one series to another during the bull and bearperiods

43 Portfolio Risk Analysis After modeling the dependencestructure we simulate one-month natural gas portfolioreturns based on the dependence structure specified in boththe multivariate Gaussian copula and the Student 119905-copulaand estimate the risk of a five-dimensional natural gasportfolio With an equally weighted portfolio of five natural

6 The Scientific World Journal

Table 5 Estimated parameters of natural gas portfolio for multi-variate Gaussian copula

TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05247lowastlowast(00146)

04945lowastlowast(00156)

04203lowastlowast(00172)

03772lowastlowast(00178)

TTFFM 05247lowastlowast(00146) 10000 06884lowastlowast

(00098)06780lowastlowast(00102)

06258lowastlowast(00114)

TTFFQ 04945lowastlowast(00156)

06884lowastlowast(00098) 10000 07018lowastlowast

(00056)06864lowastlowast(00099)

TTFFS 04203lowastlowast(00172)

06780lowastlowast(00102)

07018lowastlowast(00056) 10000 08250lowastlowast

(00095)

TTFFY 03772lowastlowast(00178)

06258lowastlowast(00114)

06864lowastlowast(00099)

08250lowastlowast(00095)

10000(00095)

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

Table 6 Estimated parameters of natural gas portfolio for themultivariate Student 119905-copula

V = 49837 TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05525lowastlowast(00161)

04995lowastlowast(00177)

04408lowastlowast(00190)

04003lowastlowast(00194)

TTFFM 05525lowastlowast(00161) 10000 07755lowastlowast

(00087)07681lowastlowast(00089)

07071lowastlowast(00107)

TTFFQ 04995lowastlowast(00177)

07755lowastlowast(00087) 10000 07830lowastlowast

(00084)08753lowastlowast(00089)

TTFFS 04408lowastlowast(00190)

07681lowastlowast(00089)

07830lowastlowast(00084) 10000 07514lowastlowast

(00093)

TTFFY 04003lowastlowast(00194)

07071lowastlowast(00107)

08753lowastlowast(00089)

07514lowastlowast(00093) 10000

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

gas returns (TTFFD TTFFM TTFFQ TTFFS and TTFFY)we can calculate the VaR and the CVaR of the portfolio Theresults of the VaR and the CVaR calculations are presentedin Table 7 From Table 7 we can perceive that the VaR andthe CVaR calculated from the Student 119905-copula are more thanthose from the Gaussian copula under the same confidencelevel The reason is that the Student 119905-copula considers theextreme dependence whereas the Gaussian copula does not

Likewise in this paper we also compute the optimalweights of each asset that minimize the portfolio risk Theoptimal portfolio weight under the minimum portfolio riskand the VaR (CVaR) under different copulas and confidencelevels are presented in Table 8 From Table 8 we can draw thefollowing interesting conclusions

(1) The optimal portfolio weights are similar acrossthe multivariate Gaussian copula and Student 119905-copula and different confidence levels The optimalinvestment tends to concentrate on TTFFM TTFFQTTFFS and TTFFY Moreover the optimal portfolioweights of TTFFM TTFFQ TTFFS and TTFFY arealmost equal However the optimal portfolio weightof TTFFD is nearly zero This is because TTFFD isthe spot (one-day-ahead) price and TTFFM TTFFQTTFFS and TTFFY are the futures prices Futures

Table 7 Portfolio risk under equally weighted natural gas portfolio

Confidence level Risk value Normal copula 119905-copula

090 VaR 00746 00755CVaR 01094 01112

095 VaR 00977 00991CVaR 01344 01365

099 VaR 01565 01624CVaR 01989 01994

markets have risk aversion functionUnderminimumportfolio risk investors prefer the futures market Onthe other hand with higher confidence levels theweight of TTFFD investment becomes larger Thereason is that with higher confidence levels investorswill be more risk tolerant and therefore willing totake more risk to achieve higher expected returns

(2) Comparing the risk value calculated by the Gaussiancopula and Student 119905-copula we observe that mostof the VaR and all the CVaR from the Gaussiancopula are less than those from the Student 119905-copulaThis result is consistent with the conclusions whencomputing the VaR and the CVaR of the equallyweighted foreign exchange portfolio This is becausethe Student 119905-copula on account of its heavy tail isable to capture the extreme dependence The extremeevents of the asset returns have higher dependenceand hence larger VaR and CVaR

5 Conclusion

We employed the GARCH-EVT-copula model to estimatethe risk of a multidimensional natural gas portfolio Thisstudy focuses on the natural gas portfolio at the Title TransferFacility (TTF) Hub The data consist of daily series ofone-day-ahead gas prices (TTFFD) one-month-ahead cash-settled futures natural gas prices (TTFFM) one-quarter-ahead cash-settled futures natural gas prices (TTFFQ) one-season-ahead cash-settled futures natural gas prices (TTFFS)and one-year-ahead cash-settled futures natural gas prices(denoted by TTFFY) Our dataset is from January 1 2007 toMay 30 2014 The multivariate Gaussian copula and Student119905-copula have been employed to model the dependencestructure

The empirical results show that for an equally weightedportfolio of five natural gases theVaR and theCVaR obtainedfrom the Student 119905-copula are larger than those obtained fromthe Gaussian copula The reason is that the Gaussian copulacannot capture the extreme dependence but the Student119905-copula can Second the optimal portfolio weights arefound to be similar across the multivariate Gaussian copulaand Student 119905-copula and different confidence levels uponminimizing the portfolio risk The optimal investment tendsto concentrate on TTFFM TTFFQ TTFFS and TTFFY Inaddition the optimal portfolio weights of TTFFM TTFFQTTFFS and TTFFY are almost equal At the same timethe optimal portfolio weight of TTFFD is nearly zero With

The Scientific World Journal 7

Table 8 Optimal investment proportion of natural gas portfolio with minimum risk

Copula Confidence level VaR Corresponding CVaR Optimal coefficientsTTFFD TTFFM TTFFQ TTFFS TTFFY

Normal copula090 00130 00154 00001 02499 02500 02500 02500095 00169 00189 00001 02498 02500 02500 02500099 00260 00274 00158 02389 02453 02450 02500

Student 119905-copula090 00126 00159 00001 02498 02499 02501 02500095 00171 00195 00001 02499 02499 02501 02500099 00280 00287 00064 02468 02480 02492 02496

higher confidence levels theweight of the TTFFD investmentbecomes larger

Further studies on estimating the risk of natural gasportfolios should concentrate on modeling dependenceSpecifically we should employ more copulas multivariateClaytonmultivariateGumbel and vine copula Furthermorethe risk of natural gas portfolio in different Hubs should beconsidered Third we should work on backtesting to checkthe performance of the approach compared to other popularapproaches of VaR estimation We intend to address thesematters in our future research

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] A Ghorbel and A Trabelsi ldquoEnergy portfolio risk managementusing time-varying extreme value copula methodsrdquo EconomicModelling vol 38 pp 470ndash485 2014

[2] Z-R Wang X-H Chen Y-B Jin and Y-J Zhou ldquoEstimatingrisk of foreign exchange portfolio using VaR and CVaR basedonGARCH-EVT-CopulamodelrdquoPhysicaA StatisticalMechan-ics and Its Applications vol 389 no 21 pp 4918ndash4928 2010

[3] J-J Huang K-J Lee H Liang andW-F Lin ldquoEstimating valueat risk of portfolio by conditional copula-GARCH methodrdquoInsurance Mathematics amp Economics vol 45 no 3 pp 315ndash3242009

[4] R K Y Low J Alcock R Faff and T Brailsford ldquoCanonicalvine copulas in the context of modern portfolio managementare they worth itrdquo Journal of Banking and Finance vol 37 no8 pp 3085ndash3099 2013

[5] R Aloui M S Aıssa and D K Nguyen ldquoConditional depen-dence structure between oil prices and exchange rates a copula-GARCHapproachrdquo Journal of InternationalMoney and Financevol 32 no 1 pp 719ndash738 2013

[6] YH Chen andAH Tu ldquoEstimating hedged portfolio value-at-risk using the conditional copula an illustration of model riskrdquoInternational Review of Economics and Finance vol 27 pp 514ndash528 2013

[7] G N F Weiszlig and H Supper ldquoForecasting liquidity-adjustedintraday value-at-riskwith vine copulasrdquo Journal of Banking andFinance vol 37 no 9 pp 3334ndash3350 2013

[8] T Berger ldquoForecasting value-at-risk using time varying copulasandEVT return distributionsrdquo International Economics vol 133pp 93ndash106 2013

[9] R Aloui M S B Aıssa S Hammoudeh and D K NguyenldquoDependence and extreme dependence of crude oil and naturalgas prices with applications to risk managementrdquo Energy Eco-nomics vol 42 pp 332ndash342 2014

[10] D A Dickey and W A Fuller ldquoDistribution of the estimatorsfor autoregressive time series with a unit rootrdquo Journal of theAmerican Statistical Association vol 74 no 366 pp 427ndash4311979

[11] D Kwiatkowski P C B Phillips P Schmidt and Y Shin ldquoTest-ing the null hypothesis of stationarity against the alternative ofa unit root How sure are we that economic time series have aunit rootrdquo Journal of Econometrics vol 54 no 1ndash3 pp 159ndash1781992

[12] T Bollerslev ldquoGeneralized autoregressive conditional het-eroskedasticityrdquo Journal of Econometrics vol 31 no 3 pp 307ndash327 1986

[13] W H DuMouchel ldquoEstimating the stable index 120572 in order tomeasure tail thickness a critiquerdquo The Annals of Statistics vol11 no 4 pp 1019ndash1031 1983

[14] P Embrechts F Lindskog and A McNeil ldquoModelling depen-dence with copulas and applications to risk managementrdquo inHandbook of Heavy Tailed Distributions in Finance S RachevEd pp 25ndash26 Elsevier Amsterdam The Netherlands 2003

[15] A J Patton ldquoModelling asymmetric exchange rate depen-dencerdquo International Economic Review vol 47 no 2 pp 527ndash556 2006

[16] J C Reboredo ldquoHow do crude oil prices co-move A copulaapproachrdquo Energy Economics vol 33 no 5 pp 948ndash955 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Estimating Risk of Natural Gas Portfolios ...

2 The Scientific World Journal

the liquidity-adjusted intraday VaR of stock portfolio byusing vine copulas for the dependence structure and theACDP (Autoregressive Conditional Double Poisson) andGARCH processes for the marginal distribution The empir-ical evidences showed that the GARCH-Vine copula modelperformed well in estimating the liquidity-adjusted intradayportfolio profits and losses Berger [8] used time-varyingcopulas combined with EVT-based margins He pointed outthat when forecasting the VaR of a portfolio it is crucialto find the ldquorightrdquo portfolio return distribution They foundthat reliable copulas combined with EVT-based margins cancapture reliable VaR figures Aloui et al [9] investigatedthe conditional dependence structure between the crude oiland natural gas markets and derived implications for riskmanagement issues related to an oil and gas portfolio withina VaR framework

The contributions of this paper are twofold First tothe best of our knowledge there are no previous empir-ical papers estimating the risks of natural gas portfoliosusing the GARCH-EVT-copula model In this sense thisstudy can perfectly contribute to this area of the litera-ture Second risk measures of natural gas portfolios whichare computed by the GARCH-EVT-copula model can beutilized to have implications for natural gas portfolio riskmanagement

The outline of this paper is as follows The next sectiondescribes the GARCH-EVT-copula model used in the paperSection 3 discusses the data and their properties Section 4presents the empirical results of the model and estimatethe VaR and the CVaR five-dimensional natural gas port-folios and the optimal natural gas portfolio weights underminimized portfolio risk The last section delivers the finalconcluding remarks

2 Data Description

This study focuses on natural gas portfolios consisting ofspot and futures prices at the Title Transfer Facility (TTF)Hub Our dataset consists of daily series of one-day-aheadgas prices (TTFFD) one-month-ahead cash-settled futuresnatural gas prices (TTFFM) one-quarter-ahead cash-settledfutures natural gas prices (TTFFQ) one-season-ahead cash-settled futures natural gas prices (TTFFS) and one-year-ahead cash-settled futures natural gas prices (denoted byTTFFY) The natural gas price series are expressed in europer megawatt hour (CMWh) The data are sourced fromDatastream and are from January 1 2007 to May 30 2014The data used in this paper are from Monday to Friday withtotal of 1934 observations

Figure 1 is plotted to illustrate the natural gas spot andfutures prices at the TTF Hub The figures of the spot andfutures prices reveal the typical properties of natural gasprices extreme price spikes and volatility clustered Thedescriptive statistics for natural gas spot and futures returnsare reported in Table 1 The natural gas spot and futuresreturns (119903

119905) are computed on a continuous compounding

basis as 119903119905= ln(119875

119905119875119905minus1) where 119875

119905and 119875

119905minus1are current

and one-period lagged daily natural gas spot or futuresprices The mean returns for all spot and futures series

are very small and near zero indicating that there is nosignificant trend in the data All the returns exhibit significantskewness except for TTFFD and kurtosis All the returnsexhibit positive skewness except for TTFFD Second all thereturns strongly reject the null hypotheses for the JB (Jarque-Bera) test of normality Finally augmentedDickey-Fuller [10]and Kwiatkowski-Phillips-Schmidt-Shin [11] tests are usedfor the unit root test Table 1 shows the results indicatingthat all return series are stationary at the 1 significancelevel

3 Methodology

31 Model forMarginal Distribution We adopt the univariatestandard GARCH model for natural gas price to obtain ourmarginal distributions in this study The univariate standardGARCH(1 1) model [12] is defined as follows

119903119904119905= 1198881199040+

119901

sum

119894=1

120601119904119894119903119904119905minus119894

+

119902

sum

119895=1

120579119904119895119903119904119905minus119895

+ 119890119904119905

119890119904119905= radicℎ119904119905119911119904119905

ℎ119904119905= 120596119904+ 1205721199041198902

119904119905minus1+ 120573119904ℎ119904119905minus1

(1)

where 119904 is TTFFD TTFFM TTFFQ TTFFS and TTFFYrespectively 119903

119904119905denotes the spot or futures return of natural

gas ℎ119904119905

is the conditional variance of volatility 120601119904119894

is the119894th lag AR parameter 120579

119904119895is the 119894th lag MA parameter 120572

119904is

the ARCH parameter and 120573119904is the GARCH parameter The

conditions 120596119904gt 0 120572

119904 120573119904ge 0 and 120572

119904+ 120573119904lt 1 are to ensure

that the conditional variance process remains positive andstationary 119911

119904119905is the standardized error In Section 2 we know

that all series are not normal distribution Hence we assumethat 119911

119904119905is 119905-distribution df

119904is the degree of freedom which

is denoted as 120582119904 In order to better estimate the tails of the

distribution this paper applied EVT to those residuals Wemodel residuals by using the generalized Pareto distribution(GPD) estimate for the upper and lower tails and theGaussiankernel estimate for the remaining part The CDF of a GPDdistribution is parameterized as follows

119865 (119911119904119905)

=

119873119898119871

119873((1 +

120585119871(119898119871minus 119911119904119905)

120573119871

)

minus1120585119871

) 119911119904119905lt 119898119871

120593 (119911119904119905) 119898

119871lt 119911119904119905lt 119898119877

1 minus

119873119898119877

119873((1 +

120585119877(119898119877minus 119911119904119905)

120573119877

)

minus1120585119877

) 119911119904119905gt 119898119877

(2)

where 120585 is the shape parameter 120573 is the scale parameter and119898119871(119898119877) is the lower (upper) threshold

There is a trade-off between high precision and low vari-ance the critical step is the choice of the optimal thresholdFollowing DuMouchel [13] this paper chose the exceedancesto be the 10th percentile of the sample

The Scientific World Journal 3

40

30

20

10

0

40

35

30

25

20

15

10

5

50

40

30

20

10

0

2007 2008 2009 2010 2011 2012 2013 2014

TTFFD TTFFM

TTFFQ TTFFS

TTFFY

2007 2008 2009 2010 2011 2012 2013 2014

2007 2008 2009 2010 2011 2012 2013 2014

2007 2008 2009 2010 2011 2012 2013 2014

2007 2008 2009 2010 2011 2012 2013 2014

50

40

30

20

10

0

50

40

30

20

10

Figure 1 The time series plots of daily natural gas spot and futures prices at the Title Transfer Facility (TTF) Hub

Table 1 Descriptive statistics of spot and generic futures returns for natural gas portfolio

TTFFD TTFFM TTFFQ TTFFS TTFFYMean 00002 00000 00001 00002 00001Median 00000 00000 minus00007 minus00005 00000Maximum 03923 02672 05462 07724 03476Minimum minus03538 minus01171 minus02027 minus01780 minus03482Std dev 00453 00273 00286 00289 00214Skewness minus00396 17707lowastlowast 63836lowastlowast 125263lowastlowast 23924lowastlowast

Kurtosis 117180lowastlowast 181748lowastlowast 1114036lowastlowast 3060295lowastlowast 1150176lowastlowast

JB 61251020lowastlowast 195669600lowastlowast 9600978000lowastlowast 74502940000lowastlowast 10130000000lowastlowast

ADF minus493317lowastlowast minus272174lowastlowast minus435283lowastlowast minus422873lowastlowast minus276217lowastlowast

KPSS 005345 00805 007311 004966 00614Observations 1934 1934 1934 1934 1934Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 significance levels respectively

4 The Scientific World Journal

32 Copula Let1198831 119883

119899be the random variables with the

marginal distribution 1198651 119865

119899 Then there exists a copula

119862 [0 1]119899rarr [0 1] that satisfies the following function

119865 (1199091 119909

119899) = 119862 (119865

1(1199091) 119865

119899(119909119899)) = 119862 (119906

1 119906

119899)

(3)

where 119906119894= 119865119894(119909119894) If themarginal distribution119865

119894(119909119894) is contin-

uous then 119862 is unique otherwise 119862 is uniquely determinedby Ran119865

1times Ran119865

2times sdot sdot sdot times Ran119865

119899

The multivariate Gaussian copula [14] is given as

119862Gausum120588

(1199061119905 1199062119905 119906

119899119905| 120588)

= Φsum120588(Φminus1(1199061119905) Φminus1(1199062119905) Φ

minus1(119906119899119905))

(4)

where 119906119899119905

is the cumulative distribution function of thestandardized error from the marginal models Φ

sum120588denotes

the standardized multivariate normal distribution with thecorrelation matrix sum120588 Φminus1 is the inverse of the univariatestandard normal distribution and 120588 isin (minus1 1) measures thedependence

The Gaussian copula cannot capture the dependence of afat tail In order to capture the fat tail we also introduced themultivariate Student 119905-copula in this study The multivariateStudent 119905-copula [14] is defined as

119862Stusum120588V (1199061119905 1199062119905 119906119899119905 | 120588 119899)

= 119905sum120588V [119905

minus1

V (1199061119905) 119905minus1

V (1199062119905) 119905

minus1

V (119906119899119905)]

(5)

where 119905sum120588V is the standardized multivariate Student 119905-

distribution with correlation and degrees of freedom matrixsum120588 V correlation 120588 isin (minus1 1) 119905minus1V denotes the inverse of theunivariate Student 119905-distribution The parameters of V and 120588determine the extent of symmetric extreme dependence bythe upper and lower tail dependences 120582

119871and 120582

119877 such that

120582119871= 120582119877= 2119905V+1(minus((radicV + 1radic1 minus 120588)radic1 + 120588)) gt 0

33 Portfolio Risk Analysis

331 VaR and CVaR In order to analyze risk managementthis paper used VaR and CVaR to measure the risk Weestimate the VaR and the CVaR by taking the 120572-quantilesof the portfolio return forecasts as given in the followingequation

VaR119905+1|119905

(120572) = 119865minus1(119902) 119903119905+1119875

CVaR119905+(1119905)

(120572) = 119864 (119903119905+1119901

| 119903119905+1119901

gt VaR119905+1|119905

(120572))

(6)

We assume that the weight in each asset is the same thatis 120596 = [(15) (15) (15) (15) (15)]

1015840 As a result wecan compute the VaR and the CVaR of the equally weightedportfolio

332 Optimal Portfolio with Minimum Risk We estimatethe VaR and the CVaR of an equally weighted portfoliobut the major concern for commercial banks and individual

investors is to minimize the risk of the investment portfolioTo address this concern in this paper we also compute theoptimal weights of each asset thatminimize the portfolio riskAccording to Wang et al [2] the algorithm is as follows Weassume that the weight in individual asset within a portfoliois 120596 = [120596

1 1205962 1205963 1205964 1205965]1015840 where 0 le 120596

119904le 1 (119904 = 1 2 5)

and 1205961+ 1205962+ 1205963+ 1205964+ 1205965= 1 Many weight vectors

can satisfy these conditions Given a weight vector 120596 119873returns of the portfolio are obtained this means that returns= 119903119905+1

times 120596 Subsequently the VaR of these portfolios at agiven confidence level can be computed After getting allthe VaR values corresponding to all the weight vectors theminimumVaR can be calculatedThus we can get the weightof each asset that minimizes the VaR that is minVaR

120572=

risk(1198871 1198872 1198873 1198874 1198875)

34 Estimation Procedure We follow a seven-step estimationprocedure in this paper

(1) We first complete the parameter estimation andobtain the standardized residuals by fitting the uni-variate ARMA(119901 119902)-GARCH(1 1) model for eachnatural gas return series

(2) For EVT we chose the exceedances to be the 10thpercentile of the sample and used the sample MEFplot and the Hill plot to determine an appropriatethreshold for the upper and lower tails of the dis-tribution of the residuals We assume that excessresiduals over this threshold follow the generalizedPareto distribution (GPD) and estimate for the upperand lower tails and use theGaussian kernel estimationfor the remaining part

(3) We transform the standardized residuals 119911119904119905from the

GARCHmodel into the variates 119906119904119905 using the ECDFs

(empirical cumulative distribution functions)There-after we perform the goodness-of-fit test for each 119906

119904119905

(4) We fit a copula model and estimate its parameter(5) We simulate 119873 times from the estimated copula

model to convert to 119873 standardized residuals usingthe inverse of the corresponding distribution functionfor each model

(6) We forecast 119873 portfolio returns using the ARMA(119901119902)-GARCH(1 1)model

(7) We estimate the VaR and the CVaR of the equallyweighted portfolio Additionally we compute theoptimal portfolio with the minimum risk

4 Empirical Results

41 Results for Marginal Model Firstly estimate theARMA(119901 119902)-GARCH(1 1) model for each natural gasreturn The AIC BIC and Loglik statistics are adopted toselect the most suitable models The estimated coefficientsand standard errors for the marginal model are presentedin Table 2 Table 2 shows that the AR(1) estimates 120601

1199041are

significant in all the series except for TTFFM and TTFFQwhich implies that the current returns have spillover effects

The Scientific World Journal 5

Table 2 Estimated parameters of agricultural commodity returnsfor marginal model

TTFFD TTFFM TTFFQ TTFFS TTFFY

119888119904119900

minus00002(00004)

minus00007lowastlowast(00003)

minus00008(00003)

minus00005lowast(00002)

minus00003(00002)

1206011199041

minus01350lowastlowast(00234)

00363(00206)

00206(00190)

00668lowastlowast(00218)

00588lowastlowast(00223)

120596119904

00000lowastlowast(00000)

00000(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

120572119904

02045lowastlowast(00263)

00560lowastlowast(00169)

00120lowastlowast(00035)

01865lowastlowast(00341)

01661lowastlowast(00243)

120573119904

07945lowastlowast(00238)

09430lowastlowast(00170)

09848lowastlowast(00030)

08125lowastlowast(00305)

08329lowastlowast(00213)

120582119904

43963lowastlowast(03857)

32386lowastlowast(02172)

28659lowastlowast(01965)

31684lowastlowast(01866)

36138lowastlowast(02616)

LL 39100000 49437790 51541850 54091680 57945190AIC minus40372 minus51063 minus53239 minus55876 minus59861ARCH(10) 07074 08258 09988 10000 09996NoteThe table shows the estimates and the standard errors of the parametersfor the marginal distribution model defined in (3) and (4) lowastlowast and lowastdenote rejection of the null hypothesis at the 1 and 5 significance levelsrespectively ARCH(10) is the P value of Englersquos LM test for the ARCH effectin the residuals up to the 10th order

from their returns in one of the previous periods Secondit can be observed that the ARCH parameter 120572

119904and the

GARCH parameter 120573119904are statistically significant implying

that all the returns experience ARCH and GARCH effectsThe 119875 values of ARCH(10) are more than 10 which showsthat there is no heteroskedasticity effect in the residualsAdditionally the degrees of freedom 120582

119904of the Student

119905-distribution for all the returns are significant suggestingthat the error terms are not normal distribution and thatthe Student 119905-distribution works reasonably well for all thereturn series

As described in Section 31 we apply EVT to thoseresiduals GPD specially is for tail estimation and we choosethe exceedances to be the 10th percentile of the sampleThe Gaussian kernel estimate is for the remaining partThe parameter estimation for each natural gasrsquos residuals isdemonstrated in Table 3

Given the availability of the estimates ofmarginalmodelswe proceed to estimate the copula functions For that wetransform the standardized residuals 119911

119904119905from the GARCH

model into the variates 119906119904119905 using the ECDF Each variate 119906

119904119905

should be uniform (0 1) otherwise the copula model couldbe misspecifiedThis paper follows Patton [15] and Reboredo[16] to carry out the goodness-of-fit test which are Ljung-Box(LB) test and Kolmogorov-Smirnov (KS) test LB test is usedto examine the serial correlation under the null hypothesisof serial independence To do so (119906

119904119905minus 119906119904)119896 is regressed on

the first 10 lags of the variables And KS test is used to testthe null hypothesis that the 119906

119894119905are uniform (0 1) Table 4

reports the 119875 values of these two tests At the 5 significancelevel all the null hypotheses are rejected which implies thatthe marginal distribution model demonstrates that these are

Table 3 Parameter estimation for each natural gasrsquos residuals

TTFFD TTFFM TTFFQ TTFFS TTFFYThreshold119898

119871minus12278 minus10081 minus10463 minus10491 minus10857

120585119871

00489 00588 01494 02596 00817120573119877

07085 05076 04999 05140 05243Threshold119898

11987711688 10944 11152 10989 11696

120585119877

01999 03183 05386 04963 02987120573119877

05327 06823 05883 05606 06718

Table 4 Goodness-of-fit test for marginal distributions

TTFFD TTFFM TTFFQ TTFFS TTFFYFirst momentLB test 04000 01278 02771 02530 01008

First momentLB test 02171 06031 00562 00862 01753

First momentLB test 05548 00791 04020 00503 01164

First momentLB test 01283 00651 01357 01247 02840

KS test 09997 10000 09436 09997 08967Note This table reports the P values from the Ljung-Box (LB) test for serialindependence of the first four moments of the variable 119906

119904119905 We regress

(119906119904119905minus 119906119904)119896 on the first five lags of the variables for 119896 = 1 2 3 4 In

addition we present the P values of the Kolmogorov-Smirnov (KS) test forthe adequacy of the distribution model

not misspecified Hence it can be concluded that the copulamodel can correctly capture the dependence

42 Results for Copula After estimating the parameters ofthe marginal distribution we proceed further to estimatethe copula parameter The multivariate Gaussian copula andStudent 119905-copula are applied in this study The dependencematrix is estimated by the maximum-likelihood estimation(MLE) method The results of the dependence matrix forthe multivariate Gaussian copula model and the Student 119905-copula model are reported in Tables 5 and 6 respectivelyThedependence parameters are positive and strongly significantat 10 level for theGaussian and the Student 119905-copulamodelsThese findings point out the presence of significantly strongpositive relationships between the TTF natural gas portfoliosSecond the degree of freedom for the multivariate Student119905-copula V is reasonably low (49837) which suggests theexistence of substantially extreme comovements and taildependence for all the pairs of the TTF natural gas portfoliosThis finding indicates that extreme events or crises are likelyto spread from one series to another during the bull and bearperiods

43 Portfolio Risk Analysis After modeling the dependencestructure we simulate one-month natural gas portfolioreturns based on the dependence structure specified in boththe multivariate Gaussian copula and the Student 119905-copulaand estimate the risk of a five-dimensional natural gasportfolio With an equally weighted portfolio of five natural

6 The Scientific World Journal

Table 5 Estimated parameters of natural gas portfolio for multi-variate Gaussian copula

TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05247lowastlowast(00146)

04945lowastlowast(00156)

04203lowastlowast(00172)

03772lowastlowast(00178)

TTFFM 05247lowastlowast(00146) 10000 06884lowastlowast

(00098)06780lowastlowast(00102)

06258lowastlowast(00114)

TTFFQ 04945lowastlowast(00156)

06884lowastlowast(00098) 10000 07018lowastlowast

(00056)06864lowastlowast(00099)

TTFFS 04203lowastlowast(00172)

06780lowastlowast(00102)

07018lowastlowast(00056) 10000 08250lowastlowast

(00095)

TTFFY 03772lowastlowast(00178)

06258lowastlowast(00114)

06864lowastlowast(00099)

08250lowastlowast(00095)

10000(00095)

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

Table 6 Estimated parameters of natural gas portfolio for themultivariate Student 119905-copula

V = 49837 TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05525lowastlowast(00161)

04995lowastlowast(00177)

04408lowastlowast(00190)

04003lowastlowast(00194)

TTFFM 05525lowastlowast(00161) 10000 07755lowastlowast

(00087)07681lowastlowast(00089)

07071lowastlowast(00107)

TTFFQ 04995lowastlowast(00177)

07755lowastlowast(00087) 10000 07830lowastlowast

(00084)08753lowastlowast(00089)

TTFFS 04408lowastlowast(00190)

07681lowastlowast(00089)

07830lowastlowast(00084) 10000 07514lowastlowast

(00093)

TTFFY 04003lowastlowast(00194)

07071lowastlowast(00107)

08753lowastlowast(00089)

07514lowastlowast(00093) 10000

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

gas returns (TTFFD TTFFM TTFFQ TTFFS and TTFFY)we can calculate the VaR and the CVaR of the portfolio Theresults of the VaR and the CVaR calculations are presentedin Table 7 From Table 7 we can perceive that the VaR andthe CVaR calculated from the Student 119905-copula are more thanthose from the Gaussian copula under the same confidencelevel The reason is that the Student 119905-copula considers theextreme dependence whereas the Gaussian copula does not

Likewise in this paper we also compute the optimalweights of each asset that minimize the portfolio risk Theoptimal portfolio weight under the minimum portfolio riskand the VaR (CVaR) under different copulas and confidencelevels are presented in Table 8 From Table 8 we can draw thefollowing interesting conclusions

(1) The optimal portfolio weights are similar acrossthe multivariate Gaussian copula and Student 119905-copula and different confidence levels The optimalinvestment tends to concentrate on TTFFM TTFFQTTFFS and TTFFY Moreover the optimal portfolioweights of TTFFM TTFFQ TTFFS and TTFFY arealmost equal However the optimal portfolio weightof TTFFD is nearly zero This is because TTFFD isthe spot (one-day-ahead) price and TTFFM TTFFQTTFFS and TTFFY are the futures prices Futures

Table 7 Portfolio risk under equally weighted natural gas portfolio

Confidence level Risk value Normal copula 119905-copula

090 VaR 00746 00755CVaR 01094 01112

095 VaR 00977 00991CVaR 01344 01365

099 VaR 01565 01624CVaR 01989 01994

markets have risk aversion functionUnderminimumportfolio risk investors prefer the futures market Onthe other hand with higher confidence levels theweight of TTFFD investment becomes larger Thereason is that with higher confidence levels investorswill be more risk tolerant and therefore willing totake more risk to achieve higher expected returns

(2) Comparing the risk value calculated by the Gaussiancopula and Student 119905-copula we observe that mostof the VaR and all the CVaR from the Gaussiancopula are less than those from the Student 119905-copulaThis result is consistent with the conclusions whencomputing the VaR and the CVaR of the equallyweighted foreign exchange portfolio This is becausethe Student 119905-copula on account of its heavy tail isable to capture the extreme dependence The extremeevents of the asset returns have higher dependenceand hence larger VaR and CVaR

5 Conclusion

We employed the GARCH-EVT-copula model to estimatethe risk of a multidimensional natural gas portfolio Thisstudy focuses on the natural gas portfolio at the Title TransferFacility (TTF) Hub The data consist of daily series ofone-day-ahead gas prices (TTFFD) one-month-ahead cash-settled futures natural gas prices (TTFFM) one-quarter-ahead cash-settled futures natural gas prices (TTFFQ) one-season-ahead cash-settled futures natural gas prices (TTFFS)and one-year-ahead cash-settled futures natural gas prices(denoted by TTFFY) Our dataset is from January 1 2007 toMay 30 2014 The multivariate Gaussian copula and Student119905-copula have been employed to model the dependencestructure

The empirical results show that for an equally weightedportfolio of five natural gases theVaR and theCVaR obtainedfrom the Student 119905-copula are larger than those obtained fromthe Gaussian copula The reason is that the Gaussian copulacannot capture the extreme dependence but the Student119905-copula can Second the optimal portfolio weights arefound to be similar across the multivariate Gaussian copulaand Student 119905-copula and different confidence levels uponminimizing the portfolio risk The optimal investment tendsto concentrate on TTFFM TTFFQ TTFFS and TTFFY Inaddition the optimal portfolio weights of TTFFM TTFFQTTFFS and TTFFY are almost equal At the same timethe optimal portfolio weight of TTFFD is nearly zero With

The Scientific World Journal 7

Table 8 Optimal investment proportion of natural gas portfolio with minimum risk

Copula Confidence level VaR Corresponding CVaR Optimal coefficientsTTFFD TTFFM TTFFQ TTFFS TTFFY

Normal copula090 00130 00154 00001 02499 02500 02500 02500095 00169 00189 00001 02498 02500 02500 02500099 00260 00274 00158 02389 02453 02450 02500

Student 119905-copula090 00126 00159 00001 02498 02499 02501 02500095 00171 00195 00001 02499 02499 02501 02500099 00280 00287 00064 02468 02480 02492 02496

higher confidence levels theweight of the TTFFD investmentbecomes larger

Further studies on estimating the risk of natural gasportfolios should concentrate on modeling dependenceSpecifically we should employ more copulas multivariateClaytonmultivariateGumbel and vine copula Furthermorethe risk of natural gas portfolio in different Hubs should beconsidered Third we should work on backtesting to checkthe performance of the approach compared to other popularapproaches of VaR estimation We intend to address thesematters in our future research

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] A Ghorbel and A Trabelsi ldquoEnergy portfolio risk managementusing time-varying extreme value copula methodsrdquo EconomicModelling vol 38 pp 470ndash485 2014

[2] Z-R Wang X-H Chen Y-B Jin and Y-J Zhou ldquoEstimatingrisk of foreign exchange portfolio using VaR and CVaR basedonGARCH-EVT-CopulamodelrdquoPhysicaA StatisticalMechan-ics and Its Applications vol 389 no 21 pp 4918ndash4928 2010

[3] J-J Huang K-J Lee H Liang andW-F Lin ldquoEstimating valueat risk of portfolio by conditional copula-GARCH methodrdquoInsurance Mathematics amp Economics vol 45 no 3 pp 315ndash3242009

[4] R K Y Low J Alcock R Faff and T Brailsford ldquoCanonicalvine copulas in the context of modern portfolio managementare they worth itrdquo Journal of Banking and Finance vol 37 no8 pp 3085ndash3099 2013

[5] R Aloui M S Aıssa and D K Nguyen ldquoConditional depen-dence structure between oil prices and exchange rates a copula-GARCHapproachrdquo Journal of InternationalMoney and Financevol 32 no 1 pp 719ndash738 2013

[6] YH Chen andAH Tu ldquoEstimating hedged portfolio value-at-risk using the conditional copula an illustration of model riskrdquoInternational Review of Economics and Finance vol 27 pp 514ndash528 2013

[7] G N F Weiszlig and H Supper ldquoForecasting liquidity-adjustedintraday value-at-riskwith vine copulasrdquo Journal of Banking andFinance vol 37 no 9 pp 3334ndash3350 2013

[8] T Berger ldquoForecasting value-at-risk using time varying copulasandEVT return distributionsrdquo International Economics vol 133pp 93ndash106 2013

[9] R Aloui M S B Aıssa S Hammoudeh and D K NguyenldquoDependence and extreme dependence of crude oil and naturalgas prices with applications to risk managementrdquo Energy Eco-nomics vol 42 pp 332ndash342 2014

[10] D A Dickey and W A Fuller ldquoDistribution of the estimatorsfor autoregressive time series with a unit rootrdquo Journal of theAmerican Statistical Association vol 74 no 366 pp 427ndash4311979

[11] D Kwiatkowski P C B Phillips P Schmidt and Y Shin ldquoTest-ing the null hypothesis of stationarity against the alternative ofa unit root How sure are we that economic time series have aunit rootrdquo Journal of Econometrics vol 54 no 1ndash3 pp 159ndash1781992

[12] T Bollerslev ldquoGeneralized autoregressive conditional het-eroskedasticityrdquo Journal of Econometrics vol 31 no 3 pp 307ndash327 1986

[13] W H DuMouchel ldquoEstimating the stable index 120572 in order tomeasure tail thickness a critiquerdquo The Annals of Statistics vol11 no 4 pp 1019ndash1031 1983

[14] P Embrechts F Lindskog and A McNeil ldquoModelling depen-dence with copulas and applications to risk managementrdquo inHandbook of Heavy Tailed Distributions in Finance S RachevEd pp 25ndash26 Elsevier Amsterdam The Netherlands 2003

[15] A J Patton ldquoModelling asymmetric exchange rate depen-dencerdquo International Economic Review vol 47 no 2 pp 527ndash556 2006

[16] J C Reboredo ldquoHow do crude oil prices co-move A copulaapproachrdquo Energy Economics vol 33 no 5 pp 948ndash955 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Estimating Risk of Natural Gas Portfolios ...

The Scientific World Journal 3

40

30

20

10

0

40

35

30

25

20

15

10

5

50

40

30

20

10

0

2007 2008 2009 2010 2011 2012 2013 2014

TTFFD TTFFM

TTFFQ TTFFS

TTFFY

2007 2008 2009 2010 2011 2012 2013 2014

2007 2008 2009 2010 2011 2012 2013 2014

2007 2008 2009 2010 2011 2012 2013 2014

2007 2008 2009 2010 2011 2012 2013 2014

50

40

30

20

10

0

50

40

30

20

10

Figure 1 The time series plots of daily natural gas spot and futures prices at the Title Transfer Facility (TTF) Hub

Table 1 Descriptive statistics of spot and generic futures returns for natural gas portfolio

TTFFD TTFFM TTFFQ TTFFS TTFFYMean 00002 00000 00001 00002 00001Median 00000 00000 minus00007 minus00005 00000Maximum 03923 02672 05462 07724 03476Minimum minus03538 minus01171 minus02027 minus01780 minus03482Std dev 00453 00273 00286 00289 00214Skewness minus00396 17707lowastlowast 63836lowastlowast 125263lowastlowast 23924lowastlowast

Kurtosis 117180lowastlowast 181748lowastlowast 1114036lowastlowast 3060295lowastlowast 1150176lowastlowast

JB 61251020lowastlowast 195669600lowastlowast 9600978000lowastlowast 74502940000lowastlowast 10130000000lowastlowast

ADF minus493317lowastlowast minus272174lowastlowast minus435283lowastlowast minus422873lowastlowast minus276217lowastlowast

KPSS 005345 00805 007311 004966 00614Observations 1934 1934 1934 1934 1934Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 significance levels respectively

4 The Scientific World Journal

32 Copula Let1198831 119883

119899be the random variables with the

marginal distribution 1198651 119865

119899 Then there exists a copula

119862 [0 1]119899rarr [0 1] that satisfies the following function

119865 (1199091 119909

119899) = 119862 (119865

1(1199091) 119865

119899(119909119899)) = 119862 (119906

1 119906

119899)

(3)

where 119906119894= 119865119894(119909119894) If themarginal distribution119865

119894(119909119894) is contin-

uous then 119862 is unique otherwise 119862 is uniquely determinedby Ran119865

1times Ran119865

2times sdot sdot sdot times Ran119865

119899

The multivariate Gaussian copula [14] is given as

119862Gausum120588

(1199061119905 1199062119905 119906

119899119905| 120588)

= Φsum120588(Φminus1(1199061119905) Φminus1(1199062119905) Φ

minus1(119906119899119905))

(4)

where 119906119899119905

is the cumulative distribution function of thestandardized error from the marginal models Φ

sum120588denotes

the standardized multivariate normal distribution with thecorrelation matrix sum120588 Φminus1 is the inverse of the univariatestandard normal distribution and 120588 isin (minus1 1) measures thedependence

The Gaussian copula cannot capture the dependence of afat tail In order to capture the fat tail we also introduced themultivariate Student 119905-copula in this study The multivariateStudent 119905-copula [14] is defined as

119862Stusum120588V (1199061119905 1199062119905 119906119899119905 | 120588 119899)

= 119905sum120588V [119905

minus1

V (1199061119905) 119905minus1

V (1199062119905) 119905

minus1

V (119906119899119905)]

(5)

where 119905sum120588V is the standardized multivariate Student 119905-

distribution with correlation and degrees of freedom matrixsum120588 V correlation 120588 isin (minus1 1) 119905minus1V denotes the inverse of theunivariate Student 119905-distribution The parameters of V and 120588determine the extent of symmetric extreme dependence bythe upper and lower tail dependences 120582

119871and 120582

119877 such that

120582119871= 120582119877= 2119905V+1(minus((radicV + 1radic1 minus 120588)radic1 + 120588)) gt 0

33 Portfolio Risk Analysis

331 VaR and CVaR In order to analyze risk managementthis paper used VaR and CVaR to measure the risk Weestimate the VaR and the CVaR by taking the 120572-quantilesof the portfolio return forecasts as given in the followingequation

VaR119905+1|119905

(120572) = 119865minus1(119902) 119903119905+1119875

CVaR119905+(1119905)

(120572) = 119864 (119903119905+1119901

| 119903119905+1119901

gt VaR119905+1|119905

(120572))

(6)

We assume that the weight in each asset is the same thatis 120596 = [(15) (15) (15) (15) (15)]

1015840 As a result wecan compute the VaR and the CVaR of the equally weightedportfolio

332 Optimal Portfolio with Minimum Risk We estimatethe VaR and the CVaR of an equally weighted portfoliobut the major concern for commercial banks and individual

investors is to minimize the risk of the investment portfolioTo address this concern in this paper we also compute theoptimal weights of each asset thatminimize the portfolio riskAccording to Wang et al [2] the algorithm is as follows Weassume that the weight in individual asset within a portfoliois 120596 = [120596

1 1205962 1205963 1205964 1205965]1015840 where 0 le 120596

119904le 1 (119904 = 1 2 5)

and 1205961+ 1205962+ 1205963+ 1205964+ 1205965= 1 Many weight vectors

can satisfy these conditions Given a weight vector 120596 119873returns of the portfolio are obtained this means that returns= 119903119905+1

times 120596 Subsequently the VaR of these portfolios at agiven confidence level can be computed After getting allthe VaR values corresponding to all the weight vectors theminimumVaR can be calculatedThus we can get the weightof each asset that minimizes the VaR that is minVaR

120572=

risk(1198871 1198872 1198873 1198874 1198875)

34 Estimation Procedure We follow a seven-step estimationprocedure in this paper

(1) We first complete the parameter estimation andobtain the standardized residuals by fitting the uni-variate ARMA(119901 119902)-GARCH(1 1) model for eachnatural gas return series

(2) For EVT we chose the exceedances to be the 10thpercentile of the sample and used the sample MEFplot and the Hill plot to determine an appropriatethreshold for the upper and lower tails of the dis-tribution of the residuals We assume that excessresiduals over this threshold follow the generalizedPareto distribution (GPD) and estimate for the upperand lower tails and use theGaussian kernel estimationfor the remaining part

(3) We transform the standardized residuals 119911119904119905from the

GARCHmodel into the variates 119906119904119905 using the ECDFs

(empirical cumulative distribution functions)There-after we perform the goodness-of-fit test for each 119906

119904119905

(4) We fit a copula model and estimate its parameter(5) We simulate 119873 times from the estimated copula

model to convert to 119873 standardized residuals usingthe inverse of the corresponding distribution functionfor each model

(6) We forecast 119873 portfolio returns using the ARMA(119901119902)-GARCH(1 1)model

(7) We estimate the VaR and the CVaR of the equallyweighted portfolio Additionally we compute theoptimal portfolio with the minimum risk

4 Empirical Results

41 Results for Marginal Model Firstly estimate theARMA(119901 119902)-GARCH(1 1) model for each natural gasreturn The AIC BIC and Loglik statistics are adopted toselect the most suitable models The estimated coefficientsand standard errors for the marginal model are presentedin Table 2 Table 2 shows that the AR(1) estimates 120601

1199041are

significant in all the series except for TTFFM and TTFFQwhich implies that the current returns have spillover effects

The Scientific World Journal 5

Table 2 Estimated parameters of agricultural commodity returnsfor marginal model

TTFFD TTFFM TTFFQ TTFFS TTFFY

119888119904119900

minus00002(00004)

minus00007lowastlowast(00003)

minus00008(00003)

minus00005lowast(00002)

minus00003(00002)

1206011199041

minus01350lowastlowast(00234)

00363(00206)

00206(00190)

00668lowastlowast(00218)

00588lowastlowast(00223)

120596119904

00000lowastlowast(00000)

00000(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

120572119904

02045lowastlowast(00263)

00560lowastlowast(00169)

00120lowastlowast(00035)

01865lowastlowast(00341)

01661lowastlowast(00243)

120573119904

07945lowastlowast(00238)

09430lowastlowast(00170)

09848lowastlowast(00030)

08125lowastlowast(00305)

08329lowastlowast(00213)

120582119904

43963lowastlowast(03857)

32386lowastlowast(02172)

28659lowastlowast(01965)

31684lowastlowast(01866)

36138lowastlowast(02616)

LL 39100000 49437790 51541850 54091680 57945190AIC minus40372 minus51063 minus53239 minus55876 minus59861ARCH(10) 07074 08258 09988 10000 09996NoteThe table shows the estimates and the standard errors of the parametersfor the marginal distribution model defined in (3) and (4) lowastlowast and lowastdenote rejection of the null hypothesis at the 1 and 5 significance levelsrespectively ARCH(10) is the P value of Englersquos LM test for the ARCH effectin the residuals up to the 10th order

from their returns in one of the previous periods Secondit can be observed that the ARCH parameter 120572

119904and the

GARCH parameter 120573119904are statistically significant implying

that all the returns experience ARCH and GARCH effectsThe 119875 values of ARCH(10) are more than 10 which showsthat there is no heteroskedasticity effect in the residualsAdditionally the degrees of freedom 120582

119904of the Student

119905-distribution for all the returns are significant suggestingthat the error terms are not normal distribution and thatthe Student 119905-distribution works reasonably well for all thereturn series

As described in Section 31 we apply EVT to thoseresiduals GPD specially is for tail estimation and we choosethe exceedances to be the 10th percentile of the sampleThe Gaussian kernel estimate is for the remaining partThe parameter estimation for each natural gasrsquos residuals isdemonstrated in Table 3

Given the availability of the estimates ofmarginalmodelswe proceed to estimate the copula functions For that wetransform the standardized residuals 119911

119904119905from the GARCH

model into the variates 119906119904119905 using the ECDF Each variate 119906

119904119905

should be uniform (0 1) otherwise the copula model couldbe misspecifiedThis paper follows Patton [15] and Reboredo[16] to carry out the goodness-of-fit test which are Ljung-Box(LB) test and Kolmogorov-Smirnov (KS) test LB test is usedto examine the serial correlation under the null hypothesisof serial independence To do so (119906

119904119905minus 119906119904)119896 is regressed on

the first 10 lags of the variables And KS test is used to testthe null hypothesis that the 119906

119894119905are uniform (0 1) Table 4

reports the 119875 values of these two tests At the 5 significancelevel all the null hypotheses are rejected which implies thatthe marginal distribution model demonstrates that these are

Table 3 Parameter estimation for each natural gasrsquos residuals

TTFFD TTFFM TTFFQ TTFFS TTFFYThreshold119898

119871minus12278 minus10081 minus10463 minus10491 minus10857

120585119871

00489 00588 01494 02596 00817120573119877

07085 05076 04999 05140 05243Threshold119898

11987711688 10944 11152 10989 11696

120585119877

01999 03183 05386 04963 02987120573119877

05327 06823 05883 05606 06718

Table 4 Goodness-of-fit test for marginal distributions

TTFFD TTFFM TTFFQ TTFFS TTFFYFirst momentLB test 04000 01278 02771 02530 01008

First momentLB test 02171 06031 00562 00862 01753

First momentLB test 05548 00791 04020 00503 01164

First momentLB test 01283 00651 01357 01247 02840

KS test 09997 10000 09436 09997 08967Note This table reports the P values from the Ljung-Box (LB) test for serialindependence of the first four moments of the variable 119906

119904119905 We regress

(119906119904119905minus 119906119904)119896 on the first five lags of the variables for 119896 = 1 2 3 4 In

addition we present the P values of the Kolmogorov-Smirnov (KS) test forthe adequacy of the distribution model

not misspecified Hence it can be concluded that the copulamodel can correctly capture the dependence

42 Results for Copula After estimating the parameters ofthe marginal distribution we proceed further to estimatethe copula parameter The multivariate Gaussian copula andStudent 119905-copula are applied in this study The dependencematrix is estimated by the maximum-likelihood estimation(MLE) method The results of the dependence matrix forthe multivariate Gaussian copula model and the Student 119905-copula model are reported in Tables 5 and 6 respectivelyThedependence parameters are positive and strongly significantat 10 level for theGaussian and the Student 119905-copulamodelsThese findings point out the presence of significantly strongpositive relationships between the TTF natural gas portfoliosSecond the degree of freedom for the multivariate Student119905-copula V is reasonably low (49837) which suggests theexistence of substantially extreme comovements and taildependence for all the pairs of the TTF natural gas portfoliosThis finding indicates that extreme events or crises are likelyto spread from one series to another during the bull and bearperiods

43 Portfolio Risk Analysis After modeling the dependencestructure we simulate one-month natural gas portfolioreturns based on the dependence structure specified in boththe multivariate Gaussian copula and the Student 119905-copulaand estimate the risk of a five-dimensional natural gasportfolio With an equally weighted portfolio of five natural

6 The Scientific World Journal

Table 5 Estimated parameters of natural gas portfolio for multi-variate Gaussian copula

TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05247lowastlowast(00146)

04945lowastlowast(00156)

04203lowastlowast(00172)

03772lowastlowast(00178)

TTFFM 05247lowastlowast(00146) 10000 06884lowastlowast

(00098)06780lowastlowast(00102)

06258lowastlowast(00114)

TTFFQ 04945lowastlowast(00156)

06884lowastlowast(00098) 10000 07018lowastlowast

(00056)06864lowastlowast(00099)

TTFFS 04203lowastlowast(00172)

06780lowastlowast(00102)

07018lowastlowast(00056) 10000 08250lowastlowast

(00095)

TTFFY 03772lowastlowast(00178)

06258lowastlowast(00114)

06864lowastlowast(00099)

08250lowastlowast(00095)

10000(00095)

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

Table 6 Estimated parameters of natural gas portfolio for themultivariate Student 119905-copula

V = 49837 TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05525lowastlowast(00161)

04995lowastlowast(00177)

04408lowastlowast(00190)

04003lowastlowast(00194)

TTFFM 05525lowastlowast(00161) 10000 07755lowastlowast

(00087)07681lowastlowast(00089)

07071lowastlowast(00107)

TTFFQ 04995lowastlowast(00177)

07755lowastlowast(00087) 10000 07830lowastlowast

(00084)08753lowastlowast(00089)

TTFFS 04408lowastlowast(00190)

07681lowastlowast(00089)

07830lowastlowast(00084) 10000 07514lowastlowast

(00093)

TTFFY 04003lowastlowast(00194)

07071lowastlowast(00107)

08753lowastlowast(00089)

07514lowastlowast(00093) 10000

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

gas returns (TTFFD TTFFM TTFFQ TTFFS and TTFFY)we can calculate the VaR and the CVaR of the portfolio Theresults of the VaR and the CVaR calculations are presentedin Table 7 From Table 7 we can perceive that the VaR andthe CVaR calculated from the Student 119905-copula are more thanthose from the Gaussian copula under the same confidencelevel The reason is that the Student 119905-copula considers theextreme dependence whereas the Gaussian copula does not

Likewise in this paper we also compute the optimalweights of each asset that minimize the portfolio risk Theoptimal portfolio weight under the minimum portfolio riskand the VaR (CVaR) under different copulas and confidencelevels are presented in Table 8 From Table 8 we can draw thefollowing interesting conclusions

(1) The optimal portfolio weights are similar acrossthe multivariate Gaussian copula and Student 119905-copula and different confidence levels The optimalinvestment tends to concentrate on TTFFM TTFFQTTFFS and TTFFY Moreover the optimal portfolioweights of TTFFM TTFFQ TTFFS and TTFFY arealmost equal However the optimal portfolio weightof TTFFD is nearly zero This is because TTFFD isthe spot (one-day-ahead) price and TTFFM TTFFQTTFFS and TTFFY are the futures prices Futures

Table 7 Portfolio risk under equally weighted natural gas portfolio

Confidence level Risk value Normal copula 119905-copula

090 VaR 00746 00755CVaR 01094 01112

095 VaR 00977 00991CVaR 01344 01365

099 VaR 01565 01624CVaR 01989 01994

markets have risk aversion functionUnderminimumportfolio risk investors prefer the futures market Onthe other hand with higher confidence levels theweight of TTFFD investment becomes larger Thereason is that with higher confidence levels investorswill be more risk tolerant and therefore willing totake more risk to achieve higher expected returns

(2) Comparing the risk value calculated by the Gaussiancopula and Student 119905-copula we observe that mostof the VaR and all the CVaR from the Gaussiancopula are less than those from the Student 119905-copulaThis result is consistent with the conclusions whencomputing the VaR and the CVaR of the equallyweighted foreign exchange portfolio This is becausethe Student 119905-copula on account of its heavy tail isable to capture the extreme dependence The extremeevents of the asset returns have higher dependenceand hence larger VaR and CVaR

5 Conclusion

We employed the GARCH-EVT-copula model to estimatethe risk of a multidimensional natural gas portfolio Thisstudy focuses on the natural gas portfolio at the Title TransferFacility (TTF) Hub The data consist of daily series ofone-day-ahead gas prices (TTFFD) one-month-ahead cash-settled futures natural gas prices (TTFFM) one-quarter-ahead cash-settled futures natural gas prices (TTFFQ) one-season-ahead cash-settled futures natural gas prices (TTFFS)and one-year-ahead cash-settled futures natural gas prices(denoted by TTFFY) Our dataset is from January 1 2007 toMay 30 2014 The multivariate Gaussian copula and Student119905-copula have been employed to model the dependencestructure

The empirical results show that for an equally weightedportfolio of five natural gases theVaR and theCVaR obtainedfrom the Student 119905-copula are larger than those obtained fromthe Gaussian copula The reason is that the Gaussian copulacannot capture the extreme dependence but the Student119905-copula can Second the optimal portfolio weights arefound to be similar across the multivariate Gaussian copulaand Student 119905-copula and different confidence levels uponminimizing the portfolio risk The optimal investment tendsto concentrate on TTFFM TTFFQ TTFFS and TTFFY Inaddition the optimal portfolio weights of TTFFM TTFFQTTFFS and TTFFY are almost equal At the same timethe optimal portfolio weight of TTFFD is nearly zero With

The Scientific World Journal 7

Table 8 Optimal investment proportion of natural gas portfolio with minimum risk

Copula Confidence level VaR Corresponding CVaR Optimal coefficientsTTFFD TTFFM TTFFQ TTFFS TTFFY

Normal copula090 00130 00154 00001 02499 02500 02500 02500095 00169 00189 00001 02498 02500 02500 02500099 00260 00274 00158 02389 02453 02450 02500

Student 119905-copula090 00126 00159 00001 02498 02499 02501 02500095 00171 00195 00001 02499 02499 02501 02500099 00280 00287 00064 02468 02480 02492 02496

higher confidence levels theweight of the TTFFD investmentbecomes larger

Further studies on estimating the risk of natural gasportfolios should concentrate on modeling dependenceSpecifically we should employ more copulas multivariateClaytonmultivariateGumbel and vine copula Furthermorethe risk of natural gas portfolio in different Hubs should beconsidered Third we should work on backtesting to checkthe performance of the approach compared to other popularapproaches of VaR estimation We intend to address thesematters in our future research

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] A Ghorbel and A Trabelsi ldquoEnergy portfolio risk managementusing time-varying extreme value copula methodsrdquo EconomicModelling vol 38 pp 470ndash485 2014

[2] Z-R Wang X-H Chen Y-B Jin and Y-J Zhou ldquoEstimatingrisk of foreign exchange portfolio using VaR and CVaR basedonGARCH-EVT-CopulamodelrdquoPhysicaA StatisticalMechan-ics and Its Applications vol 389 no 21 pp 4918ndash4928 2010

[3] J-J Huang K-J Lee H Liang andW-F Lin ldquoEstimating valueat risk of portfolio by conditional copula-GARCH methodrdquoInsurance Mathematics amp Economics vol 45 no 3 pp 315ndash3242009

[4] R K Y Low J Alcock R Faff and T Brailsford ldquoCanonicalvine copulas in the context of modern portfolio managementare they worth itrdquo Journal of Banking and Finance vol 37 no8 pp 3085ndash3099 2013

[5] R Aloui M S Aıssa and D K Nguyen ldquoConditional depen-dence structure between oil prices and exchange rates a copula-GARCHapproachrdquo Journal of InternationalMoney and Financevol 32 no 1 pp 719ndash738 2013

[6] YH Chen andAH Tu ldquoEstimating hedged portfolio value-at-risk using the conditional copula an illustration of model riskrdquoInternational Review of Economics and Finance vol 27 pp 514ndash528 2013

[7] G N F Weiszlig and H Supper ldquoForecasting liquidity-adjustedintraday value-at-riskwith vine copulasrdquo Journal of Banking andFinance vol 37 no 9 pp 3334ndash3350 2013

[8] T Berger ldquoForecasting value-at-risk using time varying copulasandEVT return distributionsrdquo International Economics vol 133pp 93ndash106 2013

[9] R Aloui M S B Aıssa S Hammoudeh and D K NguyenldquoDependence and extreme dependence of crude oil and naturalgas prices with applications to risk managementrdquo Energy Eco-nomics vol 42 pp 332ndash342 2014

[10] D A Dickey and W A Fuller ldquoDistribution of the estimatorsfor autoregressive time series with a unit rootrdquo Journal of theAmerican Statistical Association vol 74 no 366 pp 427ndash4311979

[11] D Kwiatkowski P C B Phillips P Schmidt and Y Shin ldquoTest-ing the null hypothesis of stationarity against the alternative ofa unit root How sure are we that economic time series have aunit rootrdquo Journal of Econometrics vol 54 no 1ndash3 pp 159ndash1781992

[12] T Bollerslev ldquoGeneralized autoregressive conditional het-eroskedasticityrdquo Journal of Econometrics vol 31 no 3 pp 307ndash327 1986

[13] W H DuMouchel ldquoEstimating the stable index 120572 in order tomeasure tail thickness a critiquerdquo The Annals of Statistics vol11 no 4 pp 1019ndash1031 1983

[14] P Embrechts F Lindskog and A McNeil ldquoModelling depen-dence with copulas and applications to risk managementrdquo inHandbook of Heavy Tailed Distributions in Finance S RachevEd pp 25ndash26 Elsevier Amsterdam The Netherlands 2003

[15] A J Patton ldquoModelling asymmetric exchange rate depen-dencerdquo International Economic Review vol 47 no 2 pp 527ndash556 2006

[16] J C Reboredo ldquoHow do crude oil prices co-move A copulaapproachrdquo Energy Economics vol 33 no 5 pp 948ndash955 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Estimating Risk of Natural Gas Portfolios ...

4 The Scientific World Journal

32 Copula Let1198831 119883

119899be the random variables with the

marginal distribution 1198651 119865

119899 Then there exists a copula

119862 [0 1]119899rarr [0 1] that satisfies the following function

119865 (1199091 119909

119899) = 119862 (119865

1(1199091) 119865

119899(119909119899)) = 119862 (119906

1 119906

119899)

(3)

where 119906119894= 119865119894(119909119894) If themarginal distribution119865

119894(119909119894) is contin-

uous then 119862 is unique otherwise 119862 is uniquely determinedby Ran119865

1times Ran119865

2times sdot sdot sdot times Ran119865

119899

The multivariate Gaussian copula [14] is given as

119862Gausum120588

(1199061119905 1199062119905 119906

119899119905| 120588)

= Φsum120588(Φminus1(1199061119905) Φminus1(1199062119905) Φ

minus1(119906119899119905))

(4)

where 119906119899119905

is the cumulative distribution function of thestandardized error from the marginal models Φ

sum120588denotes

the standardized multivariate normal distribution with thecorrelation matrix sum120588 Φminus1 is the inverse of the univariatestandard normal distribution and 120588 isin (minus1 1) measures thedependence

The Gaussian copula cannot capture the dependence of afat tail In order to capture the fat tail we also introduced themultivariate Student 119905-copula in this study The multivariateStudent 119905-copula [14] is defined as

119862Stusum120588V (1199061119905 1199062119905 119906119899119905 | 120588 119899)

= 119905sum120588V [119905

minus1

V (1199061119905) 119905minus1

V (1199062119905) 119905

minus1

V (119906119899119905)]

(5)

where 119905sum120588V is the standardized multivariate Student 119905-

distribution with correlation and degrees of freedom matrixsum120588 V correlation 120588 isin (minus1 1) 119905minus1V denotes the inverse of theunivariate Student 119905-distribution The parameters of V and 120588determine the extent of symmetric extreme dependence bythe upper and lower tail dependences 120582

119871and 120582

119877 such that

120582119871= 120582119877= 2119905V+1(minus((radicV + 1radic1 minus 120588)radic1 + 120588)) gt 0

33 Portfolio Risk Analysis

331 VaR and CVaR In order to analyze risk managementthis paper used VaR and CVaR to measure the risk Weestimate the VaR and the CVaR by taking the 120572-quantilesof the portfolio return forecasts as given in the followingequation

VaR119905+1|119905

(120572) = 119865minus1(119902) 119903119905+1119875

CVaR119905+(1119905)

(120572) = 119864 (119903119905+1119901

| 119903119905+1119901

gt VaR119905+1|119905

(120572))

(6)

We assume that the weight in each asset is the same thatis 120596 = [(15) (15) (15) (15) (15)]

1015840 As a result wecan compute the VaR and the CVaR of the equally weightedportfolio

332 Optimal Portfolio with Minimum Risk We estimatethe VaR and the CVaR of an equally weighted portfoliobut the major concern for commercial banks and individual

investors is to minimize the risk of the investment portfolioTo address this concern in this paper we also compute theoptimal weights of each asset thatminimize the portfolio riskAccording to Wang et al [2] the algorithm is as follows Weassume that the weight in individual asset within a portfoliois 120596 = [120596

1 1205962 1205963 1205964 1205965]1015840 where 0 le 120596

119904le 1 (119904 = 1 2 5)

and 1205961+ 1205962+ 1205963+ 1205964+ 1205965= 1 Many weight vectors

can satisfy these conditions Given a weight vector 120596 119873returns of the portfolio are obtained this means that returns= 119903119905+1

times 120596 Subsequently the VaR of these portfolios at agiven confidence level can be computed After getting allthe VaR values corresponding to all the weight vectors theminimumVaR can be calculatedThus we can get the weightof each asset that minimizes the VaR that is minVaR

120572=

risk(1198871 1198872 1198873 1198874 1198875)

34 Estimation Procedure We follow a seven-step estimationprocedure in this paper

(1) We first complete the parameter estimation andobtain the standardized residuals by fitting the uni-variate ARMA(119901 119902)-GARCH(1 1) model for eachnatural gas return series

(2) For EVT we chose the exceedances to be the 10thpercentile of the sample and used the sample MEFplot and the Hill plot to determine an appropriatethreshold for the upper and lower tails of the dis-tribution of the residuals We assume that excessresiduals over this threshold follow the generalizedPareto distribution (GPD) and estimate for the upperand lower tails and use theGaussian kernel estimationfor the remaining part

(3) We transform the standardized residuals 119911119904119905from the

GARCHmodel into the variates 119906119904119905 using the ECDFs

(empirical cumulative distribution functions)There-after we perform the goodness-of-fit test for each 119906

119904119905

(4) We fit a copula model and estimate its parameter(5) We simulate 119873 times from the estimated copula

model to convert to 119873 standardized residuals usingthe inverse of the corresponding distribution functionfor each model

(6) We forecast 119873 portfolio returns using the ARMA(119901119902)-GARCH(1 1)model

(7) We estimate the VaR and the CVaR of the equallyweighted portfolio Additionally we compute theoptimal portfolio with the minimum risk

4 Empirical Results

41 Results for Marginal Model Firstly estimate theARMA(119901 119902)-GARCH(1 1) model for each natural gasreturn The AIC BIC and Loglik statistics are adopted toselect the most suitable models The estimated coefficientsand standard errors for the marginal model are presentedin Table 2 Table 2 shows that the AR(1) estimates 120601

1199041are

significant in all the series except for TTFFM and TTFFQwhich implies that the current returns have spillover effects

The Scientific World Journal 5

Table 2 Estimated parameters of agricultural commodity returnsfor marginal model

TTFFD TTFFM TTFFQ TTFFS TTFFY

119888119904119900

minus00002(00004)

minus00007lowastlowast(00003)

minus00008(00003)

minus00005lowast(00002)

minus00003(00002)

1206011199041

minus01350lowastlowast(00234)

00363(00206)

00206(00190)

00668lowastlowast(00218)

00588lowastlowast(00223)

120596119904

00000lowastlowast(00000)

00000(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

120572119904

02045lowastlowast(00263)

00560lowastlowast(00169)

00120lowastlowast(00035)

01865lowastlowast(00341)

01661lowastlowast(00243)

120573119904

07945lowastlowast(00238)

09430lowastlowast(00170)

09848lowastlowast(00030)

08125lowastlowast(00305)

08329lowastlowast(00213)

120582119904

43963lowastlowast(03857)

32386lowastlowast(02172)

28659lowastlowast(01965)

31684lowastlowast(01866)

36138lowastlowast(02616)

LL 39100000 49437790 51541850 54091680 57945190AIC minus40372 minus51063 minus53239 minus55876 minus59861ARCH(10) 07074 08258 09988 10000 09996NoteThe table shows the estimates and the standard errors of the parametersfor the marginal distribution model defined in (3) and (4) lowastlowast and lowastdenote rejection of the null hypothesis at the 1 and 5 significance levelsrespectively ARCH(10) is the P value of Englersquos LM test for the ARCH effectin the residuals up to the 10th order

from their returns in one of the previous periods Secondit can be observed that the ARCH parameter 120572

119904and the

GARCH parameter 120573119904are statistically significant implying

that all the returns experience ARCH and GARCH effectsThe 119875 values of ARCH(10) are more than 10 which showsthat there is no heteroskedasticity effect in the residualsAdditionally the degrees of freedom 120582

119904of the Student

119905-distribution for all the returns are significant suggestingthat the error terms are not normal distribution and thatthe Student 119905-distribution works reasonably well for all thereturn series

As described in Section 31 we apply EVT to thoseresiduals GPD specially is for tail estimation and we choosethe exceedances to be the 10th percentile of the sampleThe Gaussian kernel estimate is for the remaining partThe parameter estimation for each natural gasrsquos residuals isdemonstrated in Table 3

Given the availability of the estimates ofmarginalmodelswe proceed to estimate the copula functions For that wetransform the standardized residuals 119911

119904119905from the GARCH

model into the variates 119906119904119905 using the ECDF Each variate 119906

119904119905

should be uniform (0 1) otherwise the copula model couldbe misspecifiedThis paper follows Patton [15] and Reboredo[16] to carry out the goodness-of-fit test which are Ljung-Box(LB) test and Kolmogorov-Smirnov (KS) test LB test is usedto examine the serial correlation under the null hypothesisof serial independence To do so (119906

119904119905minus 119906119904)119896 is regressed on

the first 10 lags of the variables And KS test is used to testthe null hypothesis that the 119906

119894119905are uniform (0 1) Table 4

reports the 119875 values of these two tests At the 5 significancelevel all the null hypotheses are rejected which implies thatthe marginal distribution model demonstrates that these are

Table 3 Parameter estimation for each natural gasrsquos residuals

TTFFD TTFFM TTFFQ TTFFS TTFFYThreshold119898

119871minus12278 minus10081 minus10463 minus10491 minus10857

120585119871

00489 00588 01494 02596 00817120573119877

07085 05076 04999 05140 05243Threshold119898

11987711688 10944 11152 10989 11696

120585119877

01999 03183 05386 04963 02987120573119877

05327 06823 05883 05606 06718

Table 4 Goodness-of-fit test for marginal distributions

TTFFD TTFFM TTFFQ TTFFS TTFFYFirst momentLB test 04000 01278 02771 02530 01008

First momentLB test 02171 06031 00562 00862 01753

First momentLB test 05548 00791 04020 00503 01164

First momentLB test 01283 00651 01357 01247 02840

KS test 09997 10000 09436 09997 08967Note This table reports the P values from the Ljung-Box (LB) test for serialindependence of the first four moments of the variable 119906

119904119905 We regress

(119906119904119905minus 119906119904)119896 on the first five lags of the variables for 119896 = 1 2 3 4 In

addition we present the P values of the Kolmogorov-Smirnov (KS) test forthe adequacy of the distribution model

not misspecified Hence it can be concluded that the copulamodel can correctly capture the dependence

42 Results for Copula After estimating the parameters ofthe marginal distribution we proceed further to estimatethe copula parameter The multivariate Gaussian copula andStudent 119905-copula are applied in this study The dependencematrix is estimated by the maximum-likelihood estimation(MLE) method The results of the dependence matrix forthe multivariate Gaussian copula model and the Student 119905-copula model are reported in Tables 5 and 6 respectivelyThedependence parameters are positive and strongly significantat 10 level for theGaussian and the Student 119905-copulamodelsThese findings point out the presence of significantly strongpositive relationships between the TTF natural gas portfoliosSecond the degree of freedom for the multivariate Student119905-copula V is reasonably low (49837) which suggests theexistence of substantially extreme comovements and taildependence for all the pairs of the TTF natural gas portfoliosThis finding indicates that extreme events or crises are likelyto spread from one series to another during the bull and bearperiods

43 Portfolio Risk Analysis After modeling the dependencestructure we simulate one-month natural gas portfolioreturns based on the dependence structure specified in boththe multivariate Gaussian copula and the Student 119905-copulaand estimate the risk of a five-dimensional natural gasportfolio With an equally weighted portfolio of five natural

6 The Scientific World Journal

Table 5 Estimated parameters of natural gas portfolio for multi-variate Gaussian copula

TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05247lowastlowast(00146)

04945lowastlowast(00156)

04203lowastlowast(00172)

03772lowastlowast(00178)

TTFFM 05247lowastlowast(00146) 10000 06884lowastlowast

(00098)06780lowastlowast(00102)

06258lowastlowast(00114)

TTFFQ 04945lowastlowast(00156)

06884lowastlowast(00098) 10000 07018lowastlowast

(00056)06864lowastlowast(00099)

TTFFS 04203lowastlowast(00172)

06780lowastlowast(00102)

07018lowastlowast(00056) 10000 08250lowastlowast

(00095)

TTFFY 03772lowastlowast(00178)

06258lowastlowast(00114)

06864lowastlowast(00099)

08250lowastlowast(00095)

10000(00095)

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

Table 6 Estimated parameters of natural gas portfolio for themultivariate Student 119905-copula

V = 49837 TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05525lowastlowast(00161)

04995lowastlowast(00177)

04408lowastlowast(00190)

04003lowastlowast(00194)

TTFFM 05525lowastlowast(00161) 10000 07755lowastlowast

(00087)07681lowastlowast(00089)

07071lowastlowast(00107)

TTFFQ 04995lowastlowast(00177)

07755lowastlowast(00087) 10000 07830lowastlowast

(00084)08753lowastlowast(00089)

TTFFS 04408lowastlowast(00190)

07681lowastlowast(00089)

07830lowastlowast(00084) 10000 07514lowastlowast

(00093)

TTFFY 04003lowastlowast(00194)

07071lowastlowast(00107)

08753lowastlowast(00089)

07514lowastlowast(00093) 10000

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

gas returns (TTFFD TTFFM TTFFQ TTFFS and TTFFY)we can calculate the VaR and the CVaR of the portfolio Theresults of the VaR and the CVaR calculations are presentedin Table 7 From Table 7 we can perceive that the VaR andthe CVaR calculated from the Student 119905-copula are more thanthose from the Gaussian copula under the same confidencelevel The reason is that the Student 119905-copula considers theextreme dependence whereas the Gaussian copula does not

Likewise in this paper we also compute the optimalweights of each asset that minimize the portfolio risk Theoptimal portfolio weight under the minimum portfolio riskand the VaR (CVaR) under different copulas and confidencelevels are presented in Table 8 From Table 8 we can draw thefollowing interesting conclusions

(1) The optimal portfolio weights are similar acrossthe multivariate Gaussian copula and Student 119905-copula and different confidence levels The optimalinvestment tends to concentrate on TTFFM TTFFQTTFFS and TTFFY Moreover the optimal portfolioweights of TTFFM TTFFQ TTFFS and TTFFY arealmost equal However the optimal portfolio weightof TTFFD is nearly zero This is because TTFFD isthe spot (one-day-ahead) price and TTFFM TTFFQTTFFS and TTFFY are the futures prices Futures

Table 7 Portfolio risk under equally weighted natural gas portfolio

Confidence level Risk value Normal copula 119905-copula

090 VaR 00746 00755CVaR 01094 01112

095 VaR 00977 00991CVaR 01344 01365

099 VaR 01565 01624CVaR 01989 01994

markets have risk aversion functionUnderminimumportfolio risk investors prefer the futures market Onthe other hand with higher confidence levels theweight of TTFFD investment becomes larger Thereason is that with higher confidence levels investorswill be more risk tolerant and therefore willing totake more risk to achieve higher expected returns

(2) Comparing the risk value calculated by the Gaussiancopula and Student 119905-copula we observe that mostof the VaR and all the CVaR from the Gaussiancopula are less than those from the Student 119905-copulaThis result is consistent with the conclusions whencomputing the VaR and the CVaR of the equallyweighted foreign exchange portfolio This is becausethe Student 119905-copula on account of its heavy tail isable to capture the extreme dependence The extremeevents of the asset returns have higher dependenceand hence larger VaR and CVaR

5 Conclusion

We employed the GARCH-EVT-copula model to estimatethe risk of a multidimensional natural gas portfolio Thisstudy focuses on the natural gas portfolio at the Title TransferFacility (TTF) Hub The data consist of daily series ofone-day-ahead gas prices (TTFFD) one-month-ahead cash-settled futures natural gas prices (TTFFM) one-quarter-ahead cash-settled futures natural gas prices (TTFFQ) one-season-ahead cash-settled futures natural gas prices (TTFFS)and one-year-ahead cash-settled futures natural gas prices(denoted by TTFFY) Our dataset is from January 1 2007 toMay 30 2014 The multivariate Gaussian copula and Student119905-copula have been employed to model the dependencestructure

The empirical results show that for an equally weightedportfolio of five natural gases theVaR and theCVaR obtainedfrom the Student 119905-copula are larger than those obtained fromthe Gaussian copula The reason is that the Gaussian copulacannot capture the extreme dependence but the Student119905-copula can Second the optimal portfolio weights arefound to be similar across the multivariate Gaussian copulaand Student 119905-copula and different confidence levels uponminimizing the portfolio risk The optimal investment tendsto concentrate on TTFFM TTFFQ TTFFS and TTFFY Inaddition the optimal portfolio weights of TTFFM TTFFQTTFFS and TTFFY are almost equal At the same timethe optimal portfolio weight of TTFFD is nearly zero With

The Scientific World Journal 7

Table 8 Optimal investment proportion of natural gas portfolio with minimum risk

Copula Confidence level VaR Corresponding CVaR Optimal coefficientsTTFFD TTFFM TTFFQ TTFFS TTFFY

Normal copula090 00130 00154 00001 02499 02500 02500 02500095 00169 00189 00001 02498 02500 02500 02500099 00260 00274 00158 02389 02453 02450 02500

Student 119905-copula090 00126 00159 00001 02498 02499 02501 02500095 00171 00195 00001 02499 02499 02501 02500099 00280 00287 00064 02468 02480 02492 02496

higher confidence levels theweight of the TTFFD investmentbecomes larger

Further studies on estimating the risk of natural gasportfolios should concentrate on modeling dependenceSpecifically we should employ more copulas multivariateClaytonmultivariateGumbel and vine copula Furthermorethe risk of natural gas portfolio in different Hubs should beconsidered Third we should work on backtesting to checkthe performance of the approach compared to other popularapproaches of VaR estimation We intend to address thesematters in our future research

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] A Ghorbel and A Trabelsi ldquoEnergy portfolio risk managementusing time-varying extreme value copula methodsrdquo EconomicModelling vol 38 pp 470ndash485 2014

[2] Z-R Wang X-H Chen Y-B Jin and Y-J Zhou ldquoEstimatingrisk of foreign exchange portfolio using VaR and CVaR basedonGARCH-EVT-CopulamodelrdquoPhysicaA StatisticalMechan-ics and Its Applications vol 389 no 21 pp 4918ndash4928 2010

[3] J-J Huang K-J Lee H Liang andW-F Lin ldquoEstimating valueat risk of portfolio by conditional copula-GARCH methodrdquoInsurance Mathematics amp Economics vol 45 no 3 pp 315ndash3242009

[4] R K Y Low J Alcock R Faff and T Brailsford ldquoCanonicalvine copulas in the context of modern portfolio managementare they worth itrdquo Journal of Banking and Finance vol 37 no8 pp 3085ndash3099 2013

[5] R Aloui M S Aıssa and D K Nguyen ldquoConditional depen-dence structure between oil prices and exchange rates a copula-GARCHapproachrdquo Journal of InternationalMoney and Financevol 32 no 1 pp 719ndash738 2013

[6] YH Chen andAH Tu ldquoEstimating hedged portfolio value-at-risk using the conditional copula an illustration of model riskrdquoInternational Review of Economics and Finance vol 27 pp 514ndash528 2013

[7] G N F Weiszlig and H Supper ldquoForecasting liquidity-adjustedintraday value-at-riskwith vine copulasrdquo Journal of Banking andFinance vol 37 no 9 pp 3334ndash3350 2013

[8] T Berger ldquoForecasting value-at-risk using time varying copulasandEVT return distributionsrdquo International Economics vol 133pp 93ndash106 2013

[9] R Aloui M S B Aıssa S Hammoudeh and D K NguyenldquoDependence and extreme dependence of crude oil and naturalgas prices with applications to risk managementrdquo Energy Eco-nomics vol 42 pp 332ndash342 2014

[10] D A Dickey and W A Fuller ldquoDistribution of the estimatorsfor autoregressive time series with a unit rootrdquo Journal of theAmerican Statistical Association vol 74 no 366 pp 427ndash4311979

[11] D Kwiatkowski P C B Phillips P Schmidt and Y Shin ldquoTest-ing the null hypothesis of stationarity against the alternative ofa unit root How sure are we that economic time series have aunit rootrdquo Journal of Econometrics vol 54 no 1ndash3 pp 159ndash1781992

[12] T Bollerslev ldquoGeneralized autoregressive conditional het-eroskedasticityrdquo Journal of Econometrics vol 31 no 3 pp 307ndash327 1986

[13] W H DuMouchel ldquoEstimating the stable index 120572 in order tomeasure tail thickness a critiquerdquo The Annals of Statistics vol11 no 4 pp 1019ndash1031 1983

[14] P Embrechts F Lindskog and A McNeil ldquoModelling depen-dence with copulas and applications to risk managementrdquo inHandbook of Heavy Tailed Distributions in Finance S RachevEd pp 25ndash26 Elsevier Amsterdam The Netherlands 2003

[15] A J Patton ldquoModelling asymmetric exchange rate depen-dencerdquo International Economic Review vol 47 no 2 pp 527ndash556 2006

[16] J C Reboredo ldquoHow do crude oil prices co-move A copulaapproachrdquo Energy Economics vol 33 no 5 pp 948ndash955 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Estimating Risk of Natural Gas Portfolios ...

The Scientific World Journal 5

Table 2 Estimated parameters of agricultural commodity returnsfor marginal model

TTFFD TTFFM TTFFQ TTFFS TTFFY

119888119904119900

minus00002(00004)

minus00007lowastlowast(00003)

minus00008(00003)

minus00005lowast(00002)

minus00003(00002)

1206011199041

minus01350lowastlowast(00234)

00363(00206)

00206(00190)

00668lowastlowast(00218)

00588lowastlowast(00223)

120596119904

00000lowastlowast(00000)

00000(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

00000lowastlowast(00000)

120572119904

02045lowastlowast(00263)

00560lowastlowast(00169)

00120lowastlowast(00035)

01865lowastlowast(00341)

01661lowastlowast(00243)

120573119904

07945lowastlowast(00238)

09430lowastlowast(00170)

09848lowastlowast(00030)

08125lowastlowast(00305)

08329lowastlowast(00213)

120582119904

43963lowastlowast(03857)

32386lowastlowast(02172)

28659lowastlowast(01965)

31684lowastlowast(01866)

36138lowastlowast(02616)

LL 39100000 49437790 51541850 54091680 57945190AIC minus40372 minus51063 minus53239 minus55876 minus59861ARCH(10) 07074 08258 09988 10000 09996NoteThe table shows the estimates and the standard errors of the parametersfor the marginal distribution model defined in (3) and (4) lowastlowast and lowastdenote rejection of the null hypothesis at the 1 and 5 significance levelsrespectively ARCH(10) is the P value of Englersquos LM test for the ARCH effectin the residuals up to the 10th order

from their returns in one of the previous periods Secondit can be observed that the ARCH parameter 120572

119904and the

GARCH parameter 120573119904are statistically significant implying

that all the returns experience ARCH and GARCH effectsThe 119875 values of ARCH(10) are more than 10 which showsthat there is no heteroskedasticity effect in the residualsAdditionally the degrees of freedom 120582

119904of the Student

119905-distribution for all the returns are significant suggestingthat the error terms are not normal distribution and thatthe Student 119905-distribution works reasonably well for all thereturn series

As described in Section 31 we apply EVT to thoseresiduals GPD specially is for tail estimation and we choosethe exceedances to be the 10th percentile of the sampleThe Gaussian kernel estimate is for the remaining partThe parameter estimation for each natural gasrsquos residuals isdemonstrated in Table 3

Given the availability of the estimates ofmarginalmodelswe proceed to estimate the copula functions For that wetransform the standardized residuals 119911

119904119905from the GARCH

model into the variates 119906119904119905 using the ECDF Each variate 119906

119904119905

should be uniform (0 1) otherwise the copula model couldbe misspecifiedThis paper follows Patton [15] and Reboredo[16] to carry out the goodness-of-fit test which are Ljung-Box(LB) test and Kolmogorov-Smirnov (KS) test LB test is usedto examine the serial correlation under the null hypothesisof serial independence To do so (119906

119904119905minus 119906119904)119896 is regressed on

the first 10 lags of the variables And KS test is used to testthe null hypothesis that the 119906

119894119905are uniform (0 1) Table 4

reports the 119875 values of these two tests At the 5 significancelevel all the null hypotheses are rejected which implies thatthe marginal distribution model demonstrates that these are

Table 3 Parameter estimation for each natural gasrsquos residuals

TTFFD TTFFM TTFFQ TTFFS TTFFYThreshold119898

119871minus12278 minus10081 minus10463 minus10491 minus10857

120585119871

00489 00588 01494 02596 00817120573119877

07085 05076 04999 05140 05243Threshold119898

11987711688 10944 11152 10989 11696

120585119877

01999 03183 05386 04963 02987120573119877

05327 06823 05883 05606 06718

Table 4 Goodness-of-fit test for marginal distributions

TTFFD TTFFM TTFFQ TTFFS TTFFYFirst momentLB test 04000 01278 02771 02530 01008

First momentLB test 02171 06031 00562 00862 01753

First momentLB test 05548 00791 04020 00503 01164

First momentLB test 01283 00651 01357 01247 02840

KS test 09997 10000 09436 09997 08967Note This table reports the P values from the Ljung-Box (LB) test for serialindependence of the first four moments of the variable 119906

119904119905 We regress

(119906119904119905minus 119906119904)119896 on the first five lags of the variables for 119896 = 1 2 3 4 In

addition we present the P values of the Kolmogorov-Smirnov (KS) test forthe adequacy of the distribution model

not misspecified Hence it can be concluded that the copulamodel can correctly capture the dependence

42 Results for Copula After estimating the parameters ofthe marginal distribution we proceed further to estimatethe copula parameter The multivariate Gaussian copula andStudent 119905-copula are applied in this study The dependencematrix is estimated by the maximum-likelihood estimation(MLE) method The results of the dependence matrix forthe multivariate Gaussian copula model and the Student 119905-copula model are reported in Tables 5 and 6 respectivelyThedependence parameters are positive and strongly significantat 10 level for theGaussian and the Student 119905-copulamodelsThese findings point out the presence of significantly strongpositive relationships between the TTF natural gas portfoliosSecond the degree of freedom for the multivariate Student119905-copula V is reasonably low (49837) which suggests theexistence of substantially extreme comovements and taildependence for all the pairs of the TTF natural gas portfoliosThis finding indicates that extreme events or crises are likelyto spread from one series to another during the bull and bearperiods

43 Portfolio Risk Analysis After modeling the dependencestructure we simulate one-month natural gas portfolioreturns based on the dependence structure specified in boththe multivariate Gaussian copula and the Student 119905-copulaand estimate the risk of a five-dimensional natural gasportfolio With an equally weighted portfolio of five natural

6 The Scientific World Journal

Table 5 Estimated parameters of natural gas portfolio for multi-variate Gaussian copula

TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05247lowastlowast(00146)

04945lowastlowast(00156)

04203lowastlowast(00172)

03772lowastlowast(00178)

TTFFM 05247lowastlowast(00146) 10000 06884lowastlowast

(00098)06780lowastlowast(00102)

06258lowastlowast(00114)

TTFFQ 04945lowastlowast(00156)

06884lowastlowast(00098) 10000 07018lowastlowast

(00056)06864lowastlowast(00099)

TTFFS 04203lowastlowast(00172)

06780lowastlowast(00102)

07018lowastlowast(00056) 10000 08250lowastlowast

(00095)

TTFFY 03772lowastlowast(00178)

06258lowastlowast(00114)

06864lowastlowast(00099)

08250lowastlowast(00095)

10000(00095)

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

Table 6 Estimated parameters of natural gas portfolio for themultivariate Student 119905-copula

V = 49837 TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05525lowastlowast(00161)

04995lowastlowast(00177)

04408lowastlowast(00190)

04003lowastlowast(00194)

TTFFM 05525lowastlowast(00161) 10000 07755lowastlowast

(00087)07681lowastlowast(00089)

07071lowastlowast(00107)

TTFFQ 04995lowastlowast(00177)

07755lowastlowast(00087) 10000 07830lowastlowast

(00084)08753lowastlowast(00089)

TTFFS 04408lowastlowast(00190)

07681lowastlowast(00089)

07830lowastlowast(00084) 10000 07514lowastlowast

(00093)

TTFFY 04003lowastlowast(00194)

07071lowastlowast(00107)

08753lowastlowast(00089)

07514lowastlowast(00093) 10000

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

gas returns (TTFFD TTFFM TTFFQ TTFFS and TTFFY)we can calculate the VaR and the CVaR of the portfolio Theresults of the VaR and the CVaR calculations are presentedin Table 7 From Table 7 we can perceive that the VaR andthe CVaR calculated from the Student 119905-copula are more thanthose from the Gaussian copula under the same confidencelevel The reason is that the Student 119905-copula considers theextreme dependence whereas the Gaussian copula does not

Likewise in this paper we also compute the optimalweights of each asset that minimize the portfolio risk Theoptimal portfolio weight under the minimum portfolio riskand the VaR (CVaR) under different copulas and confidencelevels are presented in Table 8 From Table 8 we can draw thefollowing interesting conclusions

(1) The optimal portfolio weights are similar acrossthe multivariate Gaussian copula and Student 119905-copula and different confidence levels The optimalinvestment tends to concentrate on TTFFM TTFFQTTFFS and TTFFY Moreover the optimal portfolioweights of TTFFM TTFFQ TTFFS and TTFFY arealmost equal However the optimal portfolio weightof TTFFD is nearly zero This is because TTFFD isthe spot (one-day-ahead) price and TTFFM TTFFQTTFFS and TTFFY are the futures prices Futures

Table 7 Portfolio risk under equally weighted natural gas portfolio

Confidence level Risk value Normal copula 119905-copula

090 VaR 00746 00755CVaR 01094 01112

095 VaR 00977 00991CVaR 01344 01365

099 VaR 01565 01624CVaR 01989 01994

markets have risk aversion functionUnderminimumportfolio risk investors prefer the futures market Onthe other hand with higher confidence levels theweight of TTFFD investment becomes larger Thereason is that with higher confidence levels investorswill be more risk tolerant and therefore willing totake more risk to achieve higher expected returns

(2) Comparing the risk value calculated by the Gaussiancopula and Student 119905-copula we observe that mostof the VaR and all the CVaR from the Gaussiancopula are less than those from the Student 119905-copulaThis result is consistent with the conclusions whencomputing the VaR and the CVaR of the equallyweighted foreign exchange portfolio This is becausethe Student 119905-copula on account of its heavy tail isable to capture the extreme dependence The extremeevents of the asset returns have higher dependenceand hence larger VaR and CVaR

5 Conclusion

We employed the GARCH-EVT-copula model to estimatethe risk of a multidimensional natural gas portfolio Thisstudy focuses on the natural gas portfolio at the Title TransferFacility (TTF) Hub The data consist of daily series ofone-day-ahead gas prices (TTFFD) one-month-ahead cash-settled futures natural gas prices (TTFFM) one-quarter-ahead cash-settled futures natural gas prices (TTFFQ) one-season-ahead cash-settled futures natural gas prices (TTFFS)and one-year-ahead cash-settled futures natural gas prices(denoted by TTFFY) Our dataset is from January 1 2007 toMay 30 2014 The multivariate Gaussian copula and Student119905-copula have been employed to model the dependencestructure

The empirical results show that for an equally weightedportfolio of five natural gases theVaR and theCVaR obtainedfrom the Student 119905-copula are larger than those obtained fromthe Gaussian copula The reason is that the Gaussian copulacannot capture the extreme dependence but the Student119905-copula can Second the optimal portfolio weights arefound to be similar across the multivariate Gaussian copulaand Student 119905-copula and different confidence levels uponminimizing the portfolio risk The optimal investment tendsto concentrate on TTFFM TTFFQ TTFFS and TTFFY Inaddition the optimal portfolio weights of TTFFM TTFFQTTFFS and TTFFY are almost equal At the same timethe optimal portfolio weight of TTFFD is nearly zero With

The Scientific World Journal 7

Table 8 Optimal investment proportion of natural gas portfolio with minimum risk

Copula Confidence level VaR Corresponding CVaR Optimal coefficientsTTFFD TTFFM TTFFQ TTFFS TTFFY

Normal copula090 00130 00154 00001 02499 02500 02500 02500095 00169 00189 00001 02498 02500 02500 02500099 00260 00274 00158 02389 02453 02450 02500

Student 119905-copula090 00126 00159 00001 02498 02499 02501 02500095 00171 00195 00001 02499 02499 02501 02500099 00280 00287 00064 02468 02480 02492 02496

higher confidence levels theweight of the TTFFD investmentbecomes larger

Further studies on estimating the risk of natural gasportfolios should concentrate on modeling dependenceSpecifically we should employ more copulas multivariateClaytonmultivariateGumbel and vine copula Furthermorethe risk of natural gas portfolio in different Hubs should beconsidered Third we should work on backtesting to checkthe performance of the approach compared to other popularapproaches of VaR estimation We intend to address thesematters in our future research

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] A Ghorbel and A Trabelsi ldquoEnergy portfolio risk managementusing time-varying extreme value copula methodsrdquo EconomicModelling vol 38 pp 470ndash485 2014

[2] Z-R Wang X-H Chen Y-B Jin and Y-J Zhou ldquoEstimatingrisk of foreign exchange portfolio using VaR and CVaR basedonGARCH-EVT-CopulamodelrdquoPhysicaA StatisticalMechan-ics and Its Applications vol 389 no 21 pp 4918ndash4928 2010

[3] J-J Huang K-J Lee H Liang andW-F Lin ldquoEstimating valueat risk of portfolio by conditional copula-GARCH methodrdquoInsurance Mathematics amp Economics vol 45 no 3 pp 315ndash3242009

[4] R K Y Low J Alcock R Faff and T Brailsford ldquoCanonicalvine copulas in the context of modern portfolio managementare they worth itrdquo Journal of Banking and Finance vol 37 no8 pp 3085ndash3099 2013

[5] R Aloui M S Aıssa and D K Nguyen ldquoConditional depen-dence structure between oil prices and exchange rates a copula-GARCHapproachrdquo Journal of InternationalMoney and Financevol 32 no 1 pp 719ndash738 2013

[6] YH Chen andAH Tu ldquoEstimating hedged portfolio value-at-risk using the conditional copula an illustration of model riskrdquoInternational Review of Economics and Finance vol 27 pp 514ndash528 2013

[7] G N F Weiszlig and H Supper ldquoForecasting liquidity-adjustedintraday value-at-riskwith vine copulasrdquo Journal of Banking andFinance vol 37 no 9 pp 3334ndash3350 2013

[8] T Berger ldquoForecasting value-at-risk using time varying copulasandEVT return distributionsrdquo International Economics vol 133pp 93ndash106 2013

[9] R Aloui M S B Aıssa S Hammoudeh and D K NguyenldquoDependence and extreme dependence of crude oil and naturalgas prices with applications to risk managementrdquo Energy Eco-nomics vol 42 pp 332ndash342 2014

[10] D A Dickey and W A Fuller ldquoDistribution of the estimatorsfor autoregressive time series with a unit rootrdquo Journal of theAmerican Statistical Association vol 74 no 366 pp 427ndash4311979

[11] D Kwiatkowski P C B Phillips P Schmidt and Y Shin ldquoTest-ing the null hypothesis of stationarity against the alternative ofa unit root How sure are we that economic time series have aunit rootrdquo Journal of Econometrics vol 54 no 1ndash3 pp 159ndash1781992

[12] T Bollerslev ldquoGeneralized autoregressive conditional het-eroskedasticityrdquo Journal of Econometrics vol 31 no 3 pp 307ndash327 1986

[13] W H DuMouchel ldquoEstimating the stable index 120572 in order tomeasure tail thickness a critiquerdquo The Annals of Statistics vol11 no 4 pp 1019ndash1031 1983

[14] P Embrechts F Lindskog and A McNeil ldquoModelling depen-dence with copulas and applications to risk managementrdquo inHandbook of Heavy Tailed Distributions in Finance S RachevEd pp 25ndash26 Elsevier Amsterdam The Netherlands 2003

[15] A J Patton ldquoModelling asymmetric exchange rate depen-dencerdquo International Economic Review vol 47 no 2 pp 527ndash556 2006

[16] J C Reboredo ldquoHow do crude oil prices co-move A copulaapproachrdquo Energy Economics vol 33 no 5 pp 948ndash955 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Estimating Risk of Natural Gas Portfolios ...

6 The Scientific World Journal

Table 5 Estimated parameters of natural gas portfolio for multi-variate Gaussian copula

TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05247lowastlowast(00146)

04945lowastlowast(00156)

04203lowastlowast(00172)

03772lowastlowast(00178)

TTFFM 05247lowastlowast(00146) 10000 06884lowastlowast

(00098)06780lowastlowast(00102)

06258lowastlowast(00114)

TTFFQ 04945lowastlowast(00156)

06884lowastlowast(00098) 10000 07018lowastlowast

(00056)06864lowastlowast(00099)

TTFFS 04203lowastlowast(00172)

06780lowastlowast(00102)

07018lowastlowast(00056) 10000 08250lowastlowast

(00095)

TTFFY 03772lowastlowast(00178)

06258lowastlowast(00114)

06864lowastlowast(00099)

08250lowastlowast(00095)

10000(00095)

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

Table 6 Estimated parameters of natural gas portfolio for themultivariate Student 119905-copula

V = 49837 TTFFD TTFFM TTFFQ TTFFS TTFFY

TTFFD 10000 05525lowastlowast(00161)

04995lowastlowast(00177)

04408lowastlowast(00190)

04003lowastlowast(00194)

TTFFM 05525lowastlowast(00161) 10000 07755lowastlowast

(00087)07681lowastlowast(00089)

07071lowastlowast(00107)

TTFFQ 04995lowastlowast(00177)

07755lowastlowast(00087) 10000 07830lowastlowast

(00084)08753lowastlowast(00089)

TTFFS 04408lowastlowast(00190)

07681lowastlowast(00089)

07830lowastlowast(00084) 10000 07514lowastlowast

(00093)

TTFFY 04003lowastlowast(00194)

07071lowastlowast(00107)

08753lowastlowast(00089)

07514lowastlowast(00093) 10000

Note lowastlowast denotes rejection of the null hypothesis at the 1 and 5 signifi-cance levels respectively

gas returns (TTFFD TTFFM TTFFQ TTFFS and TTFFY)we can calculate the VaR and the CVaR of the portfolio Theresults of the VaR and the CVaR calculations are presentedin Table 7 From Table 7 we can perceive that the VaR andthe CVaR calculated from the Student 119905-copula are more thanthose from the Gaussian copula under the same confidencelevel The reason is that the Student 119905-copula considers theextreme dependence whereas the Gaussian copula does not

Likewise in this paper we also compute the optimalweights of each asset that minimize the portfolio risk Theoptimal portfolio weight under the minimum portfolio riskand the VaR (CVaR) under different copulas and confidencelevels are presented in Table 8 From Table 8 we can draw thefollowing interesting conclusions

(1) The optimal portfolio weights are similar acrossthe multivariate Gaussian copula and Student 119905-copula and different confidence levels The optimalinvestment tends to concentrate on TTFFM TTFFQTTFFS and TTFFY Moreover the optimal portfolioweights of TTFFM TTFFQ TTFFS and TTFFY arealmost equal However the optimal portfolio weightof TTFFD is nearly zero This is because TTFFD isthe spot (one-day-ahead) price and TTFFM TTFFQTTFFS and TTFFY are the futures prices Futures

Table 7 Portfolio risk under equally weighted natural gas portfolio

Confidence level Risk value Normal copula 119905-copula

090 VaR 00746 00755CVaR 01094 01112

095 VaR 00977 00991CVaR 01344 01365

099 VaR 01565 01624CVaR 01989 01994

markets have risk aversion functionUnderminimumportfolio risk investors prefer the futures market Onthe other hand with higher confidence levels theweight of TTFFD investment becomes larger Thereason is that with higher confidence levels investorswill be more risk tolerant and therefore willing totake more risk to achieve higher expected returns

(2) Comparing the risk value calculated by the Gaussiancopula and Student 119905-copula we observe that mostof the VaR and all the CVaR from the Gaussiancopula are less than those from the Student 119905-copulaThis result is consistent with the conclusions whencomputing the VaR and the CVaR of the equallyweighted foreign exchange portfolio This is becausethe Student 119905-copula on account of its heavy tail isable to capture the extreme dependence The extremeevents of the asset returns have higher dependenceand hence larger VaR and CVaR

5 Conclusion

We employed the GARCH-EVT-copula model to estimatethe risk of a multidimensional natural gas portfolio Thisstudy focuses on the natural gas portfolio at the Title TransferFacility (TTF) Hub The data consist of daily series ofone-day-ahead gas prices (TTFFD) one-month-ahead cash-settled futures natural gas prices (TTFFM) one-quarter-ahead cash-settled futures natural gas prices (TTFFQ) one-season-ahead cash-settled futures natural gas prices (TTFFS)and one-year-ahead cash-settled futures natural gas prices(denoted by TTFFY) Our dataset is from January 1 2007 toMay 30 2014 The multivariate Gaussian copula and Student119905-copula have been employed to model the dependencestructure

The empirical results show that for an equally weightedportfolio of five natural gases theVaR and theCVaR obtainedfrom the Student 119905-copula are larger than those obtained fromthe Gaussian copula The reason is that the Gaussian copulacannot capture the extreme dependence but the Student119905-copula can Second the optimal portfolio weights arefound to be similar across the multivariate Gaussian copulaand Student 119905-copula and different confidence levels uponminimizing the portfolio risk The optimal investment tendsto concentrate on TTFFM TTFFQ TTFFS and TTFFY Inaddition the optimal portfolio weights of TTFFM TTFFQTTFFS and TTFFY are almost equal At the same timethe optimal portfolio weight of TTFFD is nearly zero With

The Scientific World Journal 7

Table 8 Optimal investment proportion of natural gas portfolio with minimum risk

Copula Confidence level VaR Corresponding CVaR Optimal coefficientsTTFFD TTFFM TTFFQ TTFFS TTFFY

Normal copula090 00130 00154 00001 02499 02500 02500 02500095 00169 00189 00001 02498 02500 02500 02500099 00260 00274 00158 02389 02453 02450 02500

Student 119905-copula090 00126 00159 00001 02498 02499 02501 02500095 00171 00195 00001 02499 02499 02501 02500099 00280 00287 00064 02468 02480 02492 02496

higher confidence levels theweight of the TTFFD investmentbecomes larger

Further studies on estimating the risk of natural gasportfolios should concentrate on modeling dependenceSpecifically we should employ more copulas multivariateClaytonmultivariateGumbel and vine copula Furthermorethe risk of natural gas portfolio in different Hubs should beconsidered Third we should work on backtesting to checkthe performance of the approach compared to other popularapproaches of VaR estimation We intend to address thesematters in our future research

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] A Ghorbel and A Trabelsi ldquoEnergy portfolio risk managementusing time-varying extreme value copula methodsrdquo EconomicModelling vol 38 pp 470ndash485 2014

[2] Z-R Wang X-H Chen Y-B Jin and Y-J Zhou ldquoEstimatingrisk of foreign exchange portfolio using VaR and CVaR basedonGARCH-EVT-CopulamodelrdquoPhysicaA StatisticalMechan-ics and Its Applications vol 389 no 21 pp 4918ndash4928 2010

[3] J-J Huang K-J Lee H Liang andW-F Lin ldquoEstimating valueat risk of portfolio by conditional copula-GARCH methodrdquoInsurance Mathematics amp Economics vol 45 no 3 pp 315ndash3242009

[4] R K Y Low J Alcock R Faff and T Brailsford ldquoCanonicalvine copulas in the context of modern portfolio managementare they worth itrdquo Journal of Banking and Finance vol 37 no8 pp 3085ndash3099 2013

[5] R Aloui M S Aıssa and D K Nguyen ldquoConditional depen-dence structure between oil prices and exchange rates a copula-GARCHapproachrdquo Journal of InternationalMoney and Financevol 32 no 1 pp 719ndash738 2013

[6] YH Chen andAH Tu ldquoEstimating hedged portfolio value-at-risk using the conditional copula an illustration of model riskrdquoInternational Review of Economics and Finance vol 27 pp 514ndash528 2013

[7] G N F Weiszlig and H Supper ldquoForecasting liquidity-adjustedintraday value-at-riskwith vine copulasrdquo Journal of Banking andFinance vol 37 no 9 pp 3334ndash3350 2013

[8] T Berger ldquoForecasting value-at-risk using time varying copulasandEVT return distributionsrdquo International Economics vol 133pp 93ndash106 2013

[9] R Aloui M S B Aıssa S Hammoudeh and D K NguyenldquoDependence and extreme dependence of crude oil and naturalgas prices with applications to risk managementrdquo Energy Eco-nomics vol 42 pp 332ndash342 2014

[10] D A Dickey and W A Fuller ldquoDistribution of the estimatorsfor autoregressive time series with a unit rootrdquo Journal of theAmerican Statistical Association vol 74 no 366 pp 427ndash4311979

[11] D Kwiatkowski P C B Phillips P Schmidt and Y Shin ldquoTest-ing the null hypothesis of stationarity against the alternative ofa unit root How sure are we that economic time series have aunit rootrdquo Journal of Econometrics vol 54 no 1ndash3 pp 159ndash1781992

[12] T Bollerslev ldquoGeneralized autoregressive conditional het-eroskedasticityrdquo Journal of Econometrics vol 31 no 3 pp 307ndash327 1986

[13] W H DuMouchel ldquoEstimating the stable index 120572 in order tomeasure tail thickness a critiquerdquo The Annals of Statistics vol11 no 4 pp 1019ndash1031 1983

[14] P Embrechts F Lindskog and A McNeil ldquoModelling depen-dence with copulas and applications to risk managementrdquo inHandbook of Heavy Tailed Distributions in Finance S RachevEd pp 25ndash26 Elsevier Amsterdam The Netherlands 2003

[15] A J Patton ldquoModelling asymmetric exchange rate depen-dencerdquo International Economic Review vol 47 no 2 pp 527ndash556 2006

[16] J C Reboredo ldquoHow do crude oil prices co-move A copulaapproachrdquo Energy Economics vol 33 no 5 pp 948ndash955 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Estimating Risk of Natural Gas Portfolios ...

The Scientific World Journal 7

Table 8 Optimal investment proportion of natural gas portfolio with minimum risk

Copula Confidence level VaR Corresponding CVaR Optimal coefficientsTTFFD TTFFM TTFFQ TTFFS TTFFY

Normal copula090 00130 00154 00001 02499 02500 02500 02500095 00169 00189 00001 02498 02500 02500 02500099 00260 00274 00158 02389 02453 02450 02500

Student 119905-copula090 00126 00159 00001 02498 02499 02501 02500095 00171 00195 00001 02499 02499 02501 02500099 00280 00287 00064 02468 02480 02492 02496

higher confidence levels theweight of the TTFFD investmentbecomes larger

Further studies on estimating the risk of natural gasportfolios should concentrate on modeling dependenceSpecifically we should employ more copulas multivariateClaytonmultivariateGumbel and vine copula Furthermorethe risk of natural gas portfolio in different Hubs should beconsidered Third we should work on backtesting to checkthe performance of the approach compared to other popularapproaches of VaR estimation We intend to address thesematters in our future research

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

References

[1] A Ghorbel and A Trabelsi ldquoEnergy portfolio risk managementusing time-varying extreme value copula methodsrdquo EconomicModelling vol 38 pp 470ndash485 2014

[2] Z-R Wang X-H Chen Y-B Jin and Y-J Zhou ldquoEstimatingrisk of foreign exchange portfolio using VaR and CVaR basedonGARCH-EVT-CopulamodelrdquoPhysicaA StatisticalMechan-ics and Its Applications vol 389 no 21 pp 4918ndash4928 2010

[3] J-J Huang K-J Lee H Liang andW-F Lin ldquoEstimating valueat risk of portfolio by conditional copula-GARCH methodrdquoInsurance Mathematics amp Economics vol 45 no 3 pp 315ndash3242009

[4] R K Y Low J Alcock R Faff and T Brailsford ldquoCanonicalvine copulas in the context of modern portfolio managementare they worth itrdquo Journal of Banking and Finance vol 37 no8 pp 3085ndash3099 2013

[5] R Aloui M S Aıssa and D K Nguyen ldquoConditional depen-dence structure between oil prices and exchange rates a copula-GARCHapproachrdquo Journal of InternationalMoney and Financevol 32 no 1 pp 719ndash738 2013

[6] YH Chen andAH Tu ldquoEstimating hedged portfolio value-at-risk using the conditional copula an illustration of model riskrdquoInternational Review of Economics and Finance vol 27 pp 514ndash528 2013

[7] G N F Weiszlig and H Supper ldquoForecasting liquidity-adjustedintraday value-at-riskwith vine copulasrdquo Journal of Banking andFinance vol 37 no 9 pp 3334ndash3350 2013

[8] T Berger ldquoForecasting value-at-risk using time varying copulasandEVT return distributionsrdquo International Economics vol 133pp 93ndash106 2013

[9] R Aloui M S B Aıssa S Hammoudeh and D K NguyenldquoDependence and extreme dependence of crude oil and naturalgas prices with applications to risk managementrdquo Energy Eco-nomics vol 42 pp 332ndash342 2014

[10] D A Dickey and W A Fuller ldquoDistribution of the estimatorsfor autoregressive time series with a unit rootrdquo Journal of theAmerican Statistical Association vol 74 no 366 pp 427ndash4311979

[11] D Kwiatkowski P C B Phillips P Schmidt and Y Shin ldquoTest-ing the null hypothesis of stationarity against the alternative ofa unit root How sure are we that economic time series have aunit rootrdquo Journal of Econometrics vol 54 no 1ndash3 pp 159ndash1781992

[12] T Bollerslev ldquoGeneralized autoregressive conditional het-eroskedasticityrdquo Journal of Econometrics vol 31 no 3 pp 307ndash327 1986

[13] W H DuMouchel ldquoEstimating the stable index 120572 in order tomeasure tail thickness a critiquerdquo The Annals of Statistics vol11 no 4 pp 1019ndash1031 1983

[14] P Embrechts F Lindskog and A McNeil ldquoModelling depen-dence with copulas and applications to risk managementrdquo inHandbook of Heavy Tailed Distributions in Finance S RachevEd pp 25ndash26 Elsevier Amsterdam The Netherlands 2003

[15] A J Patton ldquoModelling asymmetric exchange rate depen-dencerdquo International Economic Review vol 47 no 2 pp 527ndash556 2006

[16] J C Reboredo ldquoHow do crude oil prices co-move A copulaapproachrdquo Energy Economics vol 33 no 5 pp 948ndash955 2011

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Estimating Risk of Natural Gas Portfolios ...

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended