+ All Categories
Home > Documents > Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices...

Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices...

Date post: 11-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
10
Research Article Explicit Determinants of the RFPLR Circulant and RLPFL Circulant Matrices Involving Some Famous Numbers Tingting Xu, 1,2 Zhaolin Jiang, 1 and Ziwu Jiang 1 1 Department of Mathematics, Linyi University, Linyi, Shandong 276005, China 2 School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China Correspondence should be addressed to Zhaolin Jiang; [email protected] Received 28 April 2014; Accepted 5 June 2014; Published 19 June 2014 Academic Editor: Tongxing Li Copyright © 2014 Tingting Xu et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Circulant matrices may play a crucial role in solving various differential equations. In this paper, the techniques used herein are based on the inverse factorization of polynomial. We give the explicit determinants of the RFPLR circulant matrices and RLPFL circulant matrices involving Fibonacci, Lucas, Pell, and Pell-Lucas number, respectively. 1. Introduction It has been found out that circulant matrices play an impor- tant role in solving differential equations in various fields such as Lin and Yang discretized the partial integrodifferential equation (PIDE) in pricing options with the preconditioned conjugate gradient (PCG) method, where constructed the circulant preconditioners. By using the FFT, the cost for each linear system is ( log ) where is the size of the system in [1]. Lei and Sun [2] proposed the preconditioned CGNR (PCGNR) method with a circulant preconditioner to solve such Toeplitz-like systems. Kloeden et al. adopted the simplest approximation schemes for (1) in [3] with the Euler method, which reads (5) in [3]. ey exploited that the covariance matrix of the increments can be embedded in a circulant matrix. e total loops can be done by fast Fourier transformation, which leads to a total computational cost of ( log ) = ( log ). By using a Strang-type block-circulant preconditioner, Zhang et al. [4] speeded up the convergent rate of boundary-value methods. In [5], the resulting dense linear system exhibits so much structure that it can be solved very efficiently by a circulant preconditioned conjugate gradient method. Ahmed et al. used coupled map lattices (CML) as an alternative approach to include spatial effects in FOS. Consider the 1-system CML (10) in [6]. ey claimed that the system is stable if all the eigenvalues of the circulant matrix satisfy (2) in [6]. Wu and Zou in [7] discussed the existence and approximation of solutions of asymptotic or periodic boundary-value problems of mixed functional differential equations. ey focused on (5.13) in [7] with a circulant matrix, whose principal diagonal entries are zeroes. Circulant matrix family have important applications in various disciplines including image processing, communica- tions, signal processing, encoding, and preconditioner. ey have been put on firm basis with the work of Davis [8] and Jiang and Zhou [9]. e circulant matrices, long a fruitful subject of research, have in recent years been extended in many directions [1013]. e ()-circulant matrices are another natural extension of this well-studied class and can be found in [1420]. e ()-circulant matrix has a wide application, especially on the generalized cyclic codes in [14]. e properties and structures of the − − -circulant matrices, which are called RFPLR circulant matrices, are better than those of the general ()-circulant matrices, so there are good algorithms for determinants. ere are many interests in properties and generalization of some special matrices with famous numbers. Jaiswal evaluated some determinants of circulant whose elements are the generalized Fibonacci numbers [21]. Dazheng gave the determinant of the Fibonacci-Lucas quasicyclic matrices [22]. Lind presented the determinants of circulant and skew circulant involving Fibonacci numbers in [23]. Shen et al. [24] discussed the determinant of circulant matrix involving Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2014, Article ID 647030, 9 pages http://dx.doi.org/10.1155/2014/647030
Transcript
Page 1: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

Research ArticleExplicit Determinants of the RFP119903L119903R Circulant and RLP119903F119903LCirculant Matrices Involving Some Famous Numbers

Tingting Xu12 Zhaolin Jiang1 and Ziwu Jiang1

1 Department of Mathematics Linyi University Linyi Shandong 276005 China2 School of Mathematical Sciences Shandong Normal University Jinan 250014 China

Correspondence should be addressed to Zhaolin Jiang jzh1208sinacom

Received 28 April 2014 Accepted 5 June 2014 Published 19 June 2014

Academic Editor Tongxing Li

Copyright copy 2014 Tingting Xu et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

Circulant matrices may play a crucial role in solving various differential equations In this paper the techniques used herein arebased on the inverse factorization of polynomialWe give the explicit determinants of the RFP119903L119903R circulantmatrices and RLP119903F119903Lcirculant matrices involving Fibonacci Lucas Pell and Pell-Lucas number respectively

1 Introduction

It has been found out that circulant matrices play an impor-tant role in solving differential equations in various fields suchas Lin and Yang discretized the partial integrodifferentialequation (PIDE) in pricing options with the preconditionedconjugate gradient (PCG) method where constructed thecirculant preconditioners By using the FFT the cost foreach linear system is 119874(119899 log 119899) where 119899 is the size of thesystem in [1] Lei and Sun [2] proposed the preconditionedCGNR (PCGNR) method with a circulant preconditionerto solve such Toeplitz-like systems Kloeden et al adoptedthe simplest approximation schemes for (1) in [3] with theEuler method which reads (5) in [3] They exploited thatthe covariance matrix of the increments can be embeddedin a circulant matrix The total loops can be done by fastFourier transformation which leads to a total computationalcost of 119874(119898 log119898) = 119874(119899 log 119899) By using a Strang-typeblock-circulant preconditioner Zhang et al [4] speeded upthe convergent rate of boundary-value methods In [5] theresulting dense linear system exhibits so much structure thatit can be solved very efficiently by a circulant preconditionedconjugate gradient method Ahmed et al used coupled maplattices (CML) as an alternative approach to include spatialeffects in FOS Consider the 1-system CML (10) in [6] Theyclaimed that the system is stable if all the eigenvalues ofthe circulant matrix satisfy (2) in [6] Wu and Zou in [7]

discussed the existence and approximation of solutions ofasymptotic or periodic boundary-value problems of mixedfunctional differential equationsThey focused on (513) in [7]with a circulant matrix whose principal diagonal entries arezeroes

Circulant matrix family have important applications invarious disciplines including image processing communica-tions signal processing encoding and preconditioner Theyhave been put on firm basis with the work of Davis [8] andJiang and Zhou [9] The circulant matrices long a fruitfulsubject of research have in recent years been extended inmany directions [10ndash13] The 119891(119909)-circulant matrices areanother natural extension of this well-studied class and canbe found in [14ndash20] The 119891(119909)-circulant matrix has a wideapplication especially on the generalized cyclic codes in [14]The properties and structures of the 119909119899 minus 119903119909 minus 119903-circulantmatrices which are called RFP119903L119903R circulant matrices arebetter than those of the general 119891(119909)-circulant matrices sothere are good algorithms for determinants

There are many interests in properties and generalizationof some special matrices with famous numbers Jaiswalevaluated some determinants of circulant whose elementsare the generalized Fibonacci numbers [21] Dazheng gavethe determinant of the Fibonacci-Lucas quasicyclic matrices[22] Lind presented the determinants of circulant and skewcirculant involving Fibonacci numbers in [23] Shen et al[24] discussed the determinant of circulant matrix involving

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2014 Article ID 647030 9 pageshttpdxdoiorg1011552014647030

2 Abstract and Applied Analysis

Fibonacci and Lucas numbers Akbulak and Bozkurt [25]gave the norms of Toeplitz involving Fibonacci and Lucasnumbers The authors [26 27] discussed some propertiesof Fibonacci and Lucas matrices Stanimirovic et al gavegeneralized Fibonacci and Lucas matrix in [28] Z Zhangand Y Zhang [29] investigated the Lucas matrix and somecombinatorial identities

Firstly we introduce the definitions of theRFP119903L119903Rcircu-lant matrices and RLP119903F119903L circulant matrices and propertiesof the related famous numbers Then we present the mainresults and the detailed process

2 Definition and Lemma

Definition 1 A row first-plus-119903last 119903-right (RFP119903L119903R) circu-lant matrix with the first row (119886

0 1198861 119886

119899minus1) denoted by

RFP119903LRcirc119903fr(1198860 1198861 119886

119899minus1) means a square matrix of the

form

119860 =(

1198860

1198861

sdot sdot sdot 119886119899minus1

119903119886119899minus1

1198860+ 119903119886119899minus1

sdot sdot sdot 119886119899minus2

119903119886119899minus2

119903119886119899minus1

+ 119903119886119899minus2

sdot sdot sdot 119886119899minus3

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

1199031198861

1199031198862+ 1199031198861

sdot sdot sdot 1198860+ 119903119886119899minus1

) (1)

Note that the RFP119903L119903R circulant matrix is a 119909119899 minus 119903119909 minus 119903circulant matrix which is neither an extension nor specialcase of the circulant matrix [8] They are two completelydifferent kinds of special matrices

We define Θ(119903119903)

as the basic RFP119903L119903R circulant matrixthat is

Θ(119903119903)

=(

0 1 0 sdot sdot sdot 0 0

0 0 1 sdot sdot sdot 0 0

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

0 0 0 sdot sdot sdot 0 1

119903 119903 0 sdot sdot sdot 0 0

)

119899times119899

= RFP119903LRcirc119903fr (0 1 0 0)

(2)

Both the minimal polynomial and the characteristic poly-nomial of Θ

(119903119903)are 119892(119909) = 119909

119899

minus 119903119909 minus 119903 which has onlysimple roots denoted by 120576

119896(119896 = 1 2 119899) In addition

Θ(119903119903)

satisfiesΘ119895(119903119903)

= RFP119903LRcirc119903fr(0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119895

1 0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119899minus119895minus1

) and

Θ119899

(119903119903)= 119903119868119899+ 119903Θ(119903119903)

Then a matrix 119860 can be written in theform

119860 = 119891 (Θ(119903119903)

) =

119899minus1

sum

119894=0

119886119894Θ119894

(119903119903) (3)

if and only if 119860 is a RFP119903L119903R circulant matrix where thepolynomial 119891(119909) = sum

119899minus1

119894=0119886119894119909119894 is called the representer of the

RFP119903L119903R circulant matrix 119860Since Θ

(119903119903)is nonderogatory then 119860 is a RFM119903L119903R

circulant matrix if and only if119860 commutes withΘ(119903119903)

that is119860Θ(119903119903)

= Θ(119903119903)

119860 Because of the representation RFM119903L119903Rcirculant matrices have very nice structure and the algebraicproperties also can be easily attained Moreover the productof two RFM119903L119903R circulant matrices and the inverse 119860minus1 areagain RFM119903L119903R circulant matrices

Definition 2 A row last-plus-119903first 119903-left (RLP119903F119903L) circu-lant matrix with the first row (119886

0 1198861 119886

119899minus1) denoted by

RLP119903FLcirc119903fr(1198860 1198861 119886

119899minus1) means a square matrix of the

form

119861 =(

1198860

sdot sdot sdot 119886119899minus2

119886119899minus1

1198861

sdot sdot sdot 119886119899minus1

+ 1199031198860

1199031198860

1198862

sdot sdot sdot 1199031198860+ 1199031198861

1199031198861

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

119886119899minus1

+ 1199031198860sdot sdot sdot 119903119886

119899minus3+ 119903119886119899minus2

119903119886119899minus2

) (4)

Let 119860 = RLP119903FLcirc119903fr(1198860 1198861 119886

119899minus1) and 119861 =

RFP119903LRcirc119903fr(119886119899minus1

119886119899minus2

1198860) By explicit computation

we find

119860 = 119861119868119899 (5)

where 119868119899is the backward identity matrix of the form

119868119899=(

1

1

c1

1

) (6)

The Fibonacci Lucas Pell and the Pell-Lucas sequences[30ndash36] are defined by the following recurrence relationsrespectively

119865119899+1

= 119865119899+ 119865119899minus1

where 1198650= 0 119865

1= 1

119871119899+1

= 119871119899+ 119871119899minus1

where 1198710= 2 119871

1= 1

119875119899+1

= 2119875119899+ 119875119899minus1

where 1198750= 0 119875

1= 1

119876119899+1

= 2119876119899+ 119876119899minus1

where 1198760= 2 119876

1= 2

(7)

The first few values of these sequences are given by thefollowing table (119899 ge 0)

119899 0 1 2 3 4 5 6 7

1198651198990 1 1 2 3 5 8 13

1198711198992 1 3 4 7 11 18 29

1198751198990 1 2 5 12 29 70 169

1198761198992 2 6 14 34 82 198 478

(8)

The sequences 119865119899 119871119899 119875119899 and 119876

119899 are given by the

Binet formulae

119865119899=

120572119899

minus 120573119899

120572 minus 120573

119871119899= 120572119899

+ 120573119899

119875119899=

120572119899

1minus 120573119899

1

1205721minus 1205731

119876119899= 120572119899

1+ 120573119899

1

(9)

where 120572 120573 are the roots of the characteristic equation 1199092minus119909minus1 = 0 and 120572

1 1205731are the roots of the characteristic equation

1199092

minus 2119909 minus 1 = 0By Proposition 51 in [14] we deduce the following

lemma

Abstract and Applied Analysis 3

Lemma 3 Let 119860 = RFP119903LRcirc119903fr(1198860 119886

119899minus1) then the

eigenvalues of 119860 are

119891 (120576119896) =

119899minus1

sum

119894=0

(119886119894120576119894

119896) (10)

and in addition

det119860 =

119899

prod

119896=1

119899minus1

sum

119894=0

(119886119894120576119894

119896) (11)

where 120576119896(119896 = 1 2 119899) are the roots of the equation

119909119899

minus 119903119909 minus 119903 = 0 (12)

Lemma 4 Consider

119899

prod

119896=1

(119888 + 120576119896119887 + 1205762

119896119886)

= 119888119899

minus 119903119888 [(119886119904)119899minus1

+ (119886119905)119899minus1

]

minus 119903 [(119886119904)119899

+ (119886119905)119899

] + 1199032

119886119899minus1

(119888 minus 119887 + 119886)

(13)

where

119904 =

minus119887 + radic1198872minus 4119886119888

2119886

119905 =

minus119887 minus radic1198872minus 4119886119888

2119886

(14)

and 120576119896(119896 = 1 2 119899) satisfy (12) 119886 119887 119888 isin R 119886 = 0

Proof Consider

119899

prod

119896=1

(119888 + 120576119896119887 + 1205762

119896119886) = 119886

119899

119899

prod

119896=1

(1205762

119896+

119887

119886

120576119896+

119888

119886

)

= 119886119899

119899

prod

119896=1

(120576119896minus 119904) (120576

119896minus 119905)

= 119886119899

119899

prod

119896=1

(119904 minus 120576119896) (119905 minus 120576

119896)

(15)

while

119904 + 119905 = minus

119887

119886

119904119905 =

119888

119886

119904 =

minus119887 + radic1198872minus 4119886119888

2119886

119905 =

minus119887 minus radic1198872minus 4119886119888

2119886

(16)

Since 120576119896(119896 = 1 2 119899) satisfy (12) we must have

119909119899

minus 119903119909 minus 119903 =

119899

prod

119896=1

(119909 minus 120576119896) (17)

So119899

prod

119896=1

(119888 + 120576119896119887 + 1205762

119896119886)

= 119886119899

(119904119899

minus 119904119903 minus 119903) (119905119899

minus 119905119903 minus 119903)

= 119886119899

[(119904119905)119899

minus 119903119904119905 (119904119899minus1

+ 119905119899minus1

) minus 119903 (119904119899

+ 119905119899

)]

+ 119886119899

[1199032

(119904 + 119905 + 119904119905 + 1)]

= 119886119899

[(

119888

119886

)

119899

minus 119903

119888

119886

(119904119899minus1

+ 119905119899minus1

) minus 119903 (119904119899

+ 119905119899

)]

+ 119886119899

[1199032

(

119888

119886

minus

119887

119886

+ 1)]

= 119888119899

minus 119903119888 [(119886119904)119899minus1

+ (119886119905)119899minus1

] minus 119903 [(119886119904)119899

+ (119886119905)119899

]

+ 1199032

119886119899minus1

(119888 minus 119887 + 119886)

(18)

3 Determinant of the RFP119903L119903R and RLP119903F119903LCirculant Matrices with the FibonacciNumbers

Theorem 5 Let A = RFP119903LRcirc119903fr(1198650 1198651 119865

119899minus1) Then

detA =

(minus119903119865119899)119899

minus (minus119903)119899+1

119865119899minus1

119899minus1

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899minus1

119899minus1119865119899(119892119899minus1

1+ ℎ119899minus1

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899

119899minus1(119892119899

1+ ℎ119899

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(19)

where

1198921=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

+

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

ℎ1=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

minus

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

(20)

Proof Thematrix A can be written as

A =(

1198650

1198651

sdot sdot sdot 119865119899minus1

119903119865119899minus1

1198650+ 119903119865119899minus1

sdot sdot sdot 119865119899minus2

d

1199031198652

1199031198653+ 1199031198652

sdot sdot sdot 1198651

1199031198651

1199031198652+ 1199031198651

sdot sdot sdot 1198650+ 119903119865119899minus1

)

119899times119899

(21)

4 Abstract and Applied Analysis

Using Lemma 3 the determinant of A is

detA =

119899

prod

119896=1

(1198650+ 1198651120576119896+ sdot sdot sdot + 119865

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

120572 minus 120573

120572 minus 120573

120576119896+ sdot sdot sdot +

120572119899minus1

minus 120573119899minus1

120572 minus 120573

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119865119899minus1

1205762

119896+ (1 minus 119903119865

119899minus1minus 119903119865119899) 120576119896minus 119903119865119899

1 minus 120576119896minus 1205762

119896

(22)

Using Lemma 4 we obtain

detA =

(minus119903119865119899)119899

minus (minus119903)119899+1

119865119899minus1

119899minus1

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899minus1

119899minus1119865119899(119892119899minus1

1+ ℎ119899minus1

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899

119899minus1(119892119899

1+ ℎ119899

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(23)

where

1198921=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

+

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

ℎ1=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

minus

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

(24)

Using the method in Theorem 5 similarly we also havethe following

Theorem 6 Let A1015840 = RFP119903LRcirc119903fr(119865119899minus1

1198650) Then

detA1015840 =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(25)

Theorem 7 Let F = RLP119903FLcirc119903fr(1198650 119865

119899minus1) Then

det F =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

(26)

Proof Thematrix F can be written as

F = (

1198650

sdot sdot sdot 119865119899minus2

119865119899minus1

1198651

sdot sdot sdot 119865119899minus1

+ 1199031198650

1199031198650

1198652

sdot sdot sdot 1199031198650+ 1199031198651

1199031198651

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

119865119899minus1

+ 1199031198650sdot sdot sdot 119903119865

119899minus3+ 119903119865119899minus2

119903119865119899minus2

)

= (

119865119899minus1

119865119899minus2

sdot sdot sdot 1198650

1199031198650

119865119899minus1

+ 1199031198650

sdot sdot sdot 1198651

d

119903119865119899minus3

119903119865119899minus4

+ 119903119865119899minus3

sdot sdot sdot 119865119899minus2

119903119865119899minus2

119903119865119899minus3

+ 119903119865119899minus2

sdot sdot sdot 119865119899minus1

+ 1199031198650

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = A1015840

Γ

(27)

Hence we have

det F = detA1015840 det Γ (28)

where A1015840 = RFP119903LRcirc119903fr(119865119899minus1

119865119899minus2

1198650) and its deter-

minant is obtained fromTheorem 6

detA1015840 =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(29)

In addition

det Γ = (minus1)119899(119899minus1)2 (30)

so

det F =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

(31)

4 Determinant of the RFM119903L119903R and RLM119903F119903LCirculant Matrices with the Lucas Numbers

Theorem 8 Let B = RFP119903LRcirc119903fr(1198710 1198711 119871

119899minus1) Then

detB =

(2 minus 119903119871119899)119899

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

minus

(minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(32)

Abstract and Applied Analysis 5

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(33)

Proof Thematrix B can be written as

B =(

1198710

1198711

sdot sdot sdot 119871119899minus1

119903119871119899minus1

1198711+ 119903119871119899minus1

sdot sdot sdot 119871119899minus2

d

1199031198712

1199031198713+ 1199031198712

sdot sdot sdot 1198711

1199031198711

1199031198712+ 1199031198711

sdot sdot sdot 1198710+ 119903119871119899minus1

) (34)

Using Lemma 3 we have

detB =

119899

prod

119896=1

(1198710+ 1198711120576119896+ sdot sdot sdot + 119871

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

[2 + (120572 + 120573) 120576119896+ sdot sdot sdot + (120572

119899minus1

+ 120573119899minus1

) 120576119899minus1

119896]

=

119899

prod

119896=1

minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896minus 2 + 119903119871

119899

1 minus 120576119896minus 1205762

119896

(35)

According to Lemma 4 we obtain

119899

prod

119896=1

[minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896+ 2 minus 119903119871

119899]

= (2 minus 119903119871119899)119899

+ (minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

minus (minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

(36)

Then we get

detB =

(2 minus 119903119871119899)119899

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

minus

(minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(37)

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(38)

Using the method in Theorem 8 similarly we also havethe following

Theorem 9 Let B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) Then

detB1015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(39)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(40)

Theorem 10 Let L = RLP119903FLcirc119903fr(1198710 1198711 119871

119899minus1) Then

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(41)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(42)

6 Abstract and Applied Analysis

Proof Thematrix L can be written as

L = (

1198710

sdot sdot sdot 119871119899minus2

119871119899minus1

1198711

sdot sdot sdot 119871119899minus1

+ 1199031198710

1199031198710

d

119871119899minus2

sdot sdot sdot 119903119871119899minus4

+ 119903119871119899minus3

119903119871119899minus3

119871119899minus1

minus 1199031198710sdot sdot sdot 119903119871

119899minus3+ 119903119871119899minus2

119903119871119899minus2

)

= (

119871119899minus1

119871119899minus2

sdot sdot sdot 1198710

1199031198710

119871119899minus1

+ 1199031198710

sdot sdot sdot 1198711

d

119903119871119899minus3

119903119871119899minus4

+ 119903119871119899minus3

sdot sdot sdot 119871119899minus2

119903119871119899minus2

119903119871119899minus3

+ 119903119871119899minus2

sdot sdot sdot 119871119899minus1

+ 1199031198710

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = B1015840

Γ

(43)

Thus we have

detL = detB1015840 det Γ (44)

where matrix B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) and its

determinant can be obtained fromTheorem 9

det1198611015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(45)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(46)

In addition

det Γ = (minus1)119899(119899minus1)2 (47)

so the determinant of matrix L is

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(48)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(49)

5 Determinants of the RFP119903L119903R and RLP119903F119903LCirculant Matrix with the Pell Numbers

Theorem 11 If C = RFP119903LRcirc119903fr(1198750 1198751 119875

119899minus1) then

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(50)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(51)

Proof Thematrix C can be written as

C =(

(

1198750

1198751

sdot sdot sdot 119875119899minus1

119903119875119899minus1

1198750+ 119903119875119899minus1

1198751

119875119899minus2

119903119875119899minus1

+ 119903119875119899minus2

d

1199031198752

sdot sdot sdot 1198751

1199031198751

1199031198752+ 1199031198751

sdot sdot sdot 1198750+ 119903119875119899minus1

)

)119899times119899

(52)

Using Lemma 3 the determinant of C is

detC =

119899

prod

119896=1

(1198750+ 1198751120576119896+ sdot sdot sdot + 119875

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

1205721minus 1205731

1205721minus 1205731

120576119896+ sdot sdot sdot +

120572119899minus1

1minus 120573119899minus1

1

1205721minus 1205731

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119875119899minus1

1205762

119896+ (1 minus 119903119875

119899minus1minus 119903119875119899) 120576119896minus 119903119875119899

1 minus 2120576119896minus 1205762

119896

(53)

Abstract and Applied Analysis 7

According to Lemma 4 we can get

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(54)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(55)

Using the method in Theorem 11 similarly we also havethe following

Theorem 12 If C1015840 = RFP119903LRcirc119903fr(119875119899minus1

119875119899minus2

1198750) then

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(56)

Theorem 13 If P = RLP119903FLcirc119903fr(1198750 1198751 119875

119899minus1) then one

has

detP =

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(57)

Proof Thematrix P can be written as

P =(

(

1198750

sdot sdot sdot 119875119899minus2

119875119899minus1

1198751

c 119875119899minus1

+ 1199031198750

1199031198750

c 1199031198750+ 1199031198751

119875119899minus2

c 119903119875

119899minus3

119875119899minus1

+ 1199031198750sdot sdot sdot 119903119875

119899minus3+ 119903119875119899minus2

119903119875119899minus2

)

)

= (

119875119899minus1

119875119899minus2

sdot sdot sdot 1198750

1199031198750

119875119899minus1

+ 1199031198750

sdot sdot sdot 1198751

d

119903119875119899minus2

119903119875119899minus3

+ 119903119875119899minus2

sdot sdot sdot 119875119899minus1

+ 1199031198750

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

)

(58)

Then we can get

detP = detC1015840 det Γ (59)

where C1015840 = RFPLRcircfr(119875119899minus1

119875119899minus2

1198750) and its determi-

nant could be obtained throughTheorem 12 namely

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(60)

det Γ = (minus1)119899(119899minus1)2 (61)

So

detP = detC1015840 det Γ

=

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(62)

6 Determinants of the RFP119903L119903R andRLP119903F119903L Circulant Matrix with thePell-Lucas Numbers

Theorem 14 If D = RFP119903LRcirc119903fr(1198760 1198761 119876

119899minus1) then

one has

detD =

(2 minus 119903119876119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

(2 minus 119903119876119899) (119892119899minus1

5+ ℎ119899minus1

5) minus 119903119876

119899minus1(119892119899

5+ ℎ119899

5) minus 4119903

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899

119876119899minus1

119899minus1

(63)

where

1198925=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

+

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

ℎ5=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

minus

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

(64)

Proof Themethod is similar to Theorem 11

Certainly we can get the following theorem

8 Abstract and Applied Analysis

Theorem 15 If D1015840 = RFP119903LRcirc119903fr(119876119899minus1

1198761 1198760) then

one gets

detD1015840 =(minus2119903 minus 119903119876

119899minus1)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032 (65)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(66)

Theorem 16 IfQ = RLP119903LFcirc119903fr(1198760 1198761 119876

119899minus1) then

detQ =

(minus2119903 minus 119903119876119899minus1

)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032(minus1)119899(119899minus1)2

(67)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(68)

7 Conclusion

Thedeterminant problems of the RFP119903L119903R circulantmatricesand RLP119903F119903L circulant matrices involving the FibonacciLucas Pell and Pell-Lucas number are considered in thispaperThe explicit determinants are presented by using someterms of these numbers

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by the Development Project ofScience amp Technology of Shandong Province (Grant no2012GGX10115) and NSFC (Grant no 11301252) and theAMEP of Linyi University China

References

[1] F-R Lin and H-X Yang ldquoA fast stationary iterative methodfor a partial integro-differential equation in pricing optionsrdquoCalcolo vol 50 no 4 pp 313ndash327 2013

[2] S-L Lei and H-W Sun ldquoA circulant preconditioner for frac-tional diffusion equationsrdquo Journal of Computational Physicsvol 242 pp 715ndash725 2013

[3] P E Kloeden A Neuenkirch and R Pavani ldquoMultilevelMonte Carlo for stochastic differential equations with additivefractional noiserdquo Annals of Operations Research vol 189 pp255ndash276 2011

[4] C Zhang H Chen and L Wang ldquoStrang-type preconditionersapplied to ordinary and neutral differential-algebraic equa-tionsrdquo Numerical Linear Algebra with Applications vol 18 no5 pp 843ndash855 2011

[5] E W Sachs and A K Strauss ldquoEfficient solution of a partialintegro-differential equation in financerdquo Applied NumericalMathematics An IMACS Journal vol 58 no 11 pp 1687ndash17032008

[6] E Ahmed and A S Elgazzar ldquoOn fractional order differentialequations model for nonlocal epidemicsrdquo Physica A StatisticalMechanics and its Applications vol 379 no 2 pp 607ndash614 2007

[7] J Wu and X Zou ldquoAsymptotic and periodic boundary valueproblems of mixed FDEs and wave solutions of lattice differ-ential equationsrdquo Journal of Differential Equations vol 135 no2 pp 315ndash357 1997

[8] P J Davis Circulant Matrices John Wiley amp Sons New YorkNY USA 1979

[9] Z L Jiang and Z X Zhou Circulant Matrices ChengduTechnology University Chengdu China 1999

[10] Z L Jiang ldquoOn the minimal polynomials and the inversesof multilevel scaled factor circulant matricesrdquo Abstract andApplied Analysis vol 2014 Article ID 521643 10 pages 2014

[11] Z Jiang T Xu and F Lu ldquoIsomorphic operators and functionalequations for the skew-circulant algebrardquo Abstract and AppliedAnalysis vol 2014 Article ID 418194 8 pages 2014

[12] Z Jiang Y Gong and Y Gao ldquoInvertibility and explicitinverses of circulant-type matrices with 119896-Fibonacci and 119896-Lucas numbersrdquoAbstract andAppliedAnalysis vol 2014 ArticleID 238953 9 pages 2014

[13] J Li Z Jiang and F Lu ldquoDeterminants norms and the spreadof circulant matrices with tribonacci and generalized Lucasnumbersrdquo Abstract and Applied Analysis vol 2014 Article ID381829 9 pages 2014

[14] D Chillag ldquoRegular representations of semisimple algebrasseparable field extensions group characters generalized cir-culants and generalized cyclic codesrdquo Linear Algebra and itsApplications vol 218 pp 147ndash183 1995

[15] Z-L Jiang and Z-B Xu ldquoEfficient algorithm for finding theinverse and the group inverse of FLS 119903-circulantmatrixrdquo Journalof Applied Mathematics amp Computing vol 18 no 1-2 pp 45ndash572005

[16] Z L Jiang and D H Sun ldquoFast algorithms for solving theinverse problem of Ax = brdquo in Proceedings of the 8th Inter-national Conference on Matrix Theory and Its Applications inChina pp 121Cndash124C 2008

[17] J Li Z Jiang and N Shen ldquoExplicit determinants of theFibonacci RFPLR circulant and Lucas RFPLR circulant matrixrdquoJP Journal of Algebra Number Theory and Applications vol 28no 2 pp 167ndash179 2013

[18] Z P Tian ldquoFast algorithm for solving the first-plus last-circulantlinear systemrdquo Journal of Shandong University Natural Sciencevol 46 no 12 pp 96ndash103 2011

[19] N Shen Z L Jiang and J Li ldquoOn explicit determinants ofthe RFMLR and RLMFL circulant matrices involving certain

Abstract and Applied Analysis 9

famous numbersrdquoWSEAS Transactions onMathematics vol 12no 1 pp 42ndash53 2013

[20] Z Tian ldquoFast algorithms for solving the inverse problem of119860119883 = 119887 in four different families of patterned matricesrdquo FarEast Journal of AppliedMathematics vol 52 no 1 pp 1ndash12 2011

[21] D V Jaiswal ldquoOn determinants involving generalized Fibonaccinumbersrdquo The Fibonacci Quarterly Official Organ of theFibonacci Association vol 7 pp 319ndash330 1969

[22] L Dazheng ldquoFibonacci-Lucas quasi-cyclic matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 280ndash286 2002

[23] D A Lind ldquoA Fibonacci circulantrdquo The Fibonacci QuarterlyOfficial Organ of the Fibonacci Association vol 8 no 5 pp 449ndash455 1970

[24] S-Q Shen J-M Cen and Y Hao ldquoOn the determinantsand inverses of circulant matrices with Fibonacci and Lucasnumbersrdquo Applied Mathematics and Computation vol 217 no23 pp 9790ndash9797 2011

[25] MAkbulak andD Bozkurt ldquoOn the norms of Toeplitzmatricesinvolving Fibonacci and Lucas numbersrdquo Hacettepe Journal ofMathematics and Statistics vol 37 no 2 pp 89ndash95 2008

[26] G-Y Lee J-S Kim and S-G Lee ldquoFactorizations and eigen-values of Fibonacci and symmetric Fibonacci matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 203ndash211 2002

[27] M Miladinovic and P Stanimirovic ldquoSingular case of gener-alized Fibonacci and Lucas matricesrdquo Journal of the KoreanMathematical Society vol 48 no 1 pp 33ndash48 2011

[28] P Stanimirovic J Nikolov and I Stanimirovic ldquoA generaliza-tion of Fibonacci and Lucas matricesrdquo Discrete Applied Math-ematics The Journal of Combinatorial Algorithms Informaticsand Computational Sciences vol 156 no 14 pp 2606ndash26192008

[29] Z Zhang and Y Zhang ldquoThe Lucas matrix and some combina-torial identitiesrdquo Indian Journal of Pure and Applied Mathemat-ics vol 38 no 5 pp 457ndash465 2007

[30] F Yilmaz and D Bozkurt ldquoHessenberg matrices and the Pelland Perrin numbersrdquo Journal of Number Theory vol 131 no 8pp 1390ndash1396 2011

[31] J Blumlein D J Broadhurst and J A M Vermaseren ldquoThemultiple zeta value data minerdquo Computer Physics Communica-tions vol 181 no 3 pp 582ndash625 2010

[32] M Janjic ldquoDeterminants and recurrence sequencesrdquo Journal ofInteger Sequences vol 15 no 3 pp 1ndash2 2012

[33] M Elia ldquoDerived sequences the Tribonacci recurrence andcubic formsrdquoTheFibonacci QuarterlyTheOfficial Journal of theFibonacci Association vol 39 no 2 pp 107ndash115 2001

[34] R Melham ldquoSums involving Fibonacci and Pell numbersrdquoPortugaliae Mathematica vol 56 no 3 pp 309ndash317 1999

[35] Y Yazlik and N Taskara ldquoA note on generalized 119896-Horadamsequencerdquo Computers ampMathematics with Applications vol 63no 1 pp 36ndash41 2012

[36] E Kılıc ldquoThe generalized Pell (119901 119894)-numbers and their Binetformulas combinatorial representations sumsrdquo Chaos Solitonsamp Fractals vol 40 no 4 pp 2047ndash2063 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

2 Abstract and Applied Analysis

Fibonacci and Lucas numbers Akbulak and Bozkurt [25]gave the norms of Toeplitz involving Fibonacci and Lucasnumbers The authors [26 27] discussed some propertiesof Fibonacci and Lucas matrices Stanimirovic et al gavegeneralized Fibonacci and Lucas matrix in [28] Z Zhangand Y Zhang [29] investigated the Lucas matrix and somecombinatorial identities

Firstly we introduce the definitions of theRFP119903L119903Rcircu-lant matrices and RLP119903F119903L circulant matrices and propertiesof the related famous numbers Then we present the mainresults and the detailed process

2 Definition and Lemma

Definition 1 A row first-plus-119903last 119903-right (RFP119903L119903R) circu-lant matrix with the first row (119886

0 1198861 119886

119899minus1) denoted by

RFP119903LRcirc119903fr(1198860 1198861 119886

119899minus1) means a square matrix of the

form

119860 =(

1198860

1198861

sdot sdot sdot 119886119899minus1

119903119886119899minus1

1198860+ 119903119886119899minus1

sdot sdot sdot 119886119899minus2

119903119886119899minus2

119903119886119899minus1

+ 119903119886119899minus2

sdot sdot sdot 119886119899minus3

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

1199031198861

1199031198862+ 1199031198861

sdot sdot sdot 1198860+ 119903119886119899minus1

) (1)

Note that the RFP119903L119903R circulant matrix is a 119909119899 minus 119903119909 minus 119903circulant matrix which is neither an extension nor specialcase of the circulant matrix [8] They are two completelydifferent kinds of special matrices

We define Θ(119903119903)

as the basic RFP119903L119903R circulant matrixthat is

Θ(119903119903)

=(

0 1 0 sdot sdot sdot 0 0

0 0 1 sdot sdot sdot 0 0

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

0 0 0 sdot sdot sdot 0 1

119903 119903 0 sdot sdot sdot 0 0

)

119899times119899

= RFP119903LRcirc119903fr (0 1 0 0)

(2)

Both the minimal polynomial and the characteristic poly-nomial of Θ

(119903119903)are 119892(119909) = 119909

119899

minus 119903119909 minus 119903 which has onlysimple roots denoted by 120576

119896(119896 = 1 2 119899) In addition

Θ(119903119903)

satisfiesΘ119895(119903119903)

= RFP119903LRcirc119903fr(0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119895

1 0 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

119899minus119895minus1

) and

Θ119899

(119903119903)= 119903119868119899+ 119903Θ(119903119903)

Then a matrix 119860 can be written in theform

119860 = 119891 (Θ(119903119903)

) =

119899minus1

sum

119894=0

119886119894Θ119894

(119903119903) (3)

if and only if 119860 is a RFP119903L119903R circulant matrix where thepolynomial 119891(119909) = sum

119899minus1

119894=0119886119894119909119894 is called the representer of the

RFP119903L119903R circulant matrix 119860Since Θ

(119903119903)is nonderogatory then 119860 is a RFM119903L119903R

circulant matrix if and only if119860 commutes withΘ(119903119903)

that is119860Θ(119903119903)

= Θ(119903119903)

119860 Because of the representation RFM119903L119903Rcirculant matrices have very nice structure and the algebraicproperties also can be easily attained Moreover the productof two RFM119903L119903R circulant matrices and the inverse 119860minus1 areagain RFM119903L119903R circulant matrices

Definition 2 A row last-plus-119903first 119903-left (RLP119903F119903L) circu-lant matrix with the first row (119886

0 1198861 119886

119899minus1) denoted by

RLP119903FLcirc119903fr(1198860 1198861 119886

119899minus1) means a square matrix of the

form

119861 =(

1198860

sdot sdot sdot 119886119899minus2

119886119899minus1

1198861

sdot sdot sdot 119886119899minus1

+ 1199031198860

1199031198860

1198862

sdot sdot sdot 1199031198860+ 1199031198861

1199031198861

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

119886119899minus1

+ 1199031198860sdot sdot sdot 119903119886

119899minus3+ 119903119886119899minus2

119903119886119899minus2

) (4)

Let 119860 = RLP119903FLcirc119903fr(1198860 1198861 119886

119899minus1) and 119861 =

RFP119903LRcirc119903fr(119886119899minus1

119886119899minus2

1198860) By explicit computation

we find

119860 = 119861119868119899 (5)

where 119868119899is the backward identity matrix of the form

119868119899=(

1

1

c1

1

) (6)

The Fibonacci Lucas Pell and the Pell-Lucas sequences[30ndash36] are defined by the following recurrence relationsrespectively

119865119899+1

= 119865119899+ 119865119899minus1

where 1198650= 0 119865

1= 1

119871119899+1

= 119871119899+ 119871119899minus1

where 1198710= 2 119871

1= 1

119875119899+1

= 2119875119899+ 119875119899minus1

where 1198750= 0 119875

1= 1

119876119899+1

= 2119876119899+ 119876119899minus1

where 1198760= 2 119876

1= 2

(7)

The first few values of these sequences are given by thefollowing table (119899 ge 0)

119899 0 1 2 3 4 5 6 7

1198651198990 1 1 2 3 5 8 13

1198711198992 1 3 4 7 11 18 29

1198751198990 1 2 5 12 29 70 169

1198761198992 2 6 14 34 82 198 478

(8)

The sequences 119865119899 119871119899 119875119899 and 119876

119899 are given by the

Binet formulae

119865119899=

120572119899

minus 120573119899

120572 minus 120573

119871119899= 120572119899

+ 120573119899

119875119899=

120572119899

1minus 120573119899

1

1205721minus 1205731

119876119899= 120572119899

1+ 120573119899

1

(9)

where 120572 120573 are the roots of the characteristic equation 1199092minus119909minus1 = 0 and 120572

1 1205731are the roots of the characteristic equation

1199092

minus 2119909 minus 1 = 0By Proposition 51 in [14] we deduce the following

lemma

Abstract and Applied Analysis 3

Lemma 3 Let 119860 = RFP119903LRcirc119903fr(1198860 119886

119899minus1) then the

eigenvalues of 119860 are

119891 (120576119896) =

119899minus1

sum

119894=0

(119886119894120576119894

119896) (10)

and in addition

det119860 =

119899

prod

119896=1

119899minus1

sum

119894=0

(119886119894120576119894

119896) (11)

where 120576119896(119896 = 1 2 119899) are the roots of the equation

119909119899

minus 119903119909 minus 119903 = 0 (12)

Lemma 4 Consider

119899

prod

119896=1

(119888 + 120576119896119887 + 1205762

119896119886)

= 119888119899

minus 119903119888 [(119886119904)119899minus1

+ (119886119905)119899minus1

]

minus 119903 [(119886119904)119899

+ (119886119905)119899

] + 1199032

119886119899minus1

(119888 minus 119887 + 119886)

(13)

where

119904 =

minus119887 + radic1198872minus 4119886119888

2119886

119905 =

minus119887 minus radic1198872minus 4119886119888

2119886

(14)

and 120576119896(119896 = 1 2 119899) satisfy (12) 119886 119887 119888 isin R 119886 = 0

Proof Consider

119899

prod

119896=1

(119888 + 120576119896119887 + 1205762

119896119886) = 119886

119899

119899

prod

119896=1

(1205762

119896+

119887

119886

120576119896+

119888

119886

)

= 119886119899

119899

prod

119896=1

(120576119896minus 119904) (120576

119896minus 119905)

= 119886119899

119899

prod

119896=1

(119904 minus 120576119896) (119905 minus 120576

119896)

(15)

while

119904 + 119905 = minus

119887

119886

119904119905 =

119888

119886

119904 =

minus119887 + radic1198872minus 4119886119888

2119886

119905 =

minus119887 minus radic1198872minus 4119886119888

2119886

(16)

Since 120576119896(119896 = 1 2 119899) satisfy (12) we must have

119909119899

minus 119903119909 minus 119903 =

119899

prod

119896=1

(119909 minus 120576119896) (17)

So119899

prod

119896=1

(119888 + 120576119896119887 + 1205762

119896119886)

= 119886119899

(119904119899

minus 119904119903 minus 119903) (119905119899

minus 119905119903 minus 119903)

= 119886119899

[(119904119905)119899

minus 119903119904119905 (119904119899minus1

+ 119905119899minus1

) minus 119903 (119904119899

+ 119905119899

)]

+ 119886119899

[1199032

(119904 + 119905 + 119904119905 + 1)]

= 119886119899

[(

119888

119886

)

119899

minus 119903

119888

119886

(119904119899minus1

+ 119905119899minus1

) minus 119903 (119904119899

+ 119905119899

)]

+ 119886119899

[1199032

(

119888

119886

minus

119887

119886

+ 1)]

= 119888119899

minus 119903119888 [(119886119904)119899minus1

+ (119886119905)119899minus1

] minus 119903 [(119886119904)119899

+ (119886119905)119899

]

+ 1199032

119886119899minus1

(119888 minus 119887 + 119886)

(18)

3 Determinant of the RFP119903L119903R and RLP119903F119903LCirculant Matrices with the FibonacciNumbers

Theorem 5 Let A = RFP119903LRcirc119903fr(1198650 1198651 119865

119899minus1) Then

detA =

(minus119903119865119899)119899

minus (minus119903)119899+1

119865119899minus1

119899minus1

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899minus1

119899minus1119865119899(119892119899minus1

1+ ℎ119899minus1

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899

119899minus1(119892119899

1+ ℎ119899

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(19)

where

1198921=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

+

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

ℎ1=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

minus

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

(20)

Proof Thematrix A can be written as

A =(

1198650

1198651

sdot sdot sdot 119865119899minus1

119903119865119899minus1

1198650+ 119903119865119899minus1

sdot sdot sdot 119865119899minus2

d

1199031198652

1199031198653+ 1199031198652

sdot sdot sdot 1198651

1199031198651

1199031198652+ 1199031198651

sdot sdot sdot 1198650+ 119903119865119899minus1

)

119899times119899

(21)

4 Abstract and Applied Analysis

Using Lemma 3 the determinant of A is

detA =

119899

prod

119896=1

(1198650+ 1198651120576119896+ sdot sdot sdot + 119865

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

120572 minus 120573

120572 minus 120573

120576119896+ sdot sdot sdot +

120572119899minus1

minus 120573119899minus1

120572 minus 120573

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119865119899minus1

1205762

119896+ (1 minus 119903119865

119899minus1minus 119903119865119899) 120576119896minus 119903119865119899

1 minus 120576119896minus 1205762

119896

(22)

Using Lemma 4 we obtain

detA =

(minus119903119865119899)119899

minus (minus119903)119899+1

119865119899minus1

119899minus1

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899minus1

119899minus1119865119899(119892119899minus1

1+ ℎ119899minus1

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899

119899minus1(119892119899

1+ ℎ119899

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(23)

where

1198921=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

+

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

ℎ1=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

minus

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

(24)

Using the method in Theorem 5 similarly we also havethe following

Theorem 6 Let A1015840 = RFP119903LRcirc119903fr(119865119899minus1

1198650) Then

detA1015840 =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(25)

Theorem 7 Let F = RLP119903FLcirc119903fr(1198650 119865

119899minus1) Then

det F =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

(26)

Proof Thematrix F can be written as

F = (

1198650

sdot sdot sdot 119865119899minus2

119865119899minus1

1198651

sdot sdot sdot 119865119899minus1

+ 1199031198650

1199031198650

1198652

sdot sdot sdot 1199031198650+ 1199031198651

1199031198651

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

119865119899minus1

+ 1199031198650sdot sdot sdot 119903119865

119899minus3+ 119903119865119899minus2

119903119865119899minus2

)

= (

119865119899minus1

119865119899minus2

sdot sdot sdot 1198650

1199031198650

119865119899minus1

+ 1199031198650

sdot sdot sdot 1198651

d

119903119865119899minus3

119903119865119899minus4

+ 119903119865119899minus3

sdot sdot sdot 119865119899minus2

119903119865119899minus2

119903119865119899minus3

+ 119903119865119899minus2

sdot sdot sdot 119865119899minus1

+ 1199031198650

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = A1015840

Γ

(27)

Hence we have

det F = detA1015840 det Γ (28)

where A1015840 = RFP119903LRcirc119903fr(119865119899minus1

119865119899minus2

1198650) and its deter-

minant is obtained fromTheorem 6

detA1015840 =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(29)

In addition

det Γ = (minus1)119899(119899minus1)2 (30)

so

det F =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

(31)

4 Determinant of the RFM119903L119903R and RLM119903F119903LCirculant Matrices with the Lucas Numbers

Theorem 8 Let B = RFP119903LRcirc119903fr(1198710 1198711 119871

119899minus1) Then

detB =

(2 minus 119903119871119899)119899

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

minus

(minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(32)

Abstract and Applied Analysis 5

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(33)

Proof Thematrix B can be written as

B =(

1198710

1198711

sdot sdot sdot 119871119899minus1

119903119871119899minus1

1198711+ 119903119871119899minus1

sdot sdot sdot 119871119899minus2

d

1199031198712

1199031198713+ 1199031198712

sdot sdot sdot 1198711

1199031198711

1199031198712+ 1199031198711

sdot sdot sdot 1198710+ 119903119871119899minus1

) (34)

Using Lemma 3 we have

detB =

119899

prod

119896=1

(1198710+ 1198711120576119896+ sdot sdot sdot + 119871

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

[2 + (120572 + 120573) 120576119896+ sdot sdot sdot + (120572

119899minus1

+ 120573119899minus1

) 120576119899minus1

119896]

=

119899

prod

119896=1

minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896minus 2 + 119903119871

119899

1 minus 120576119896minus 1205762

119896

(35)

According to Lemma 4 we obtain

119899

prod

119896=1

[minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896+ 2 minus 119903119871

119899]

= (2 minus 119903119871119899)119899

+ (minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

minus (minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

(36)

Then we get

detB =

(2 minus 119903119871119899)119899

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

minus

(minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(37)

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(38)

Using the method in Theorem 8 similarly we also havethe following

Theorem 9 Let B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) Then

detB1015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(39)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(40)

Theorem 10 Let L = RLP119903FLcirc119903fr(1198710 1198711 119871

119899minus1) Then

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(41)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(42)

6 Abstract and Applied Analysis

Proof Thematrix L can be written as

L = (

1198710

sdot sdot sdot 119871119899minus2

119871119899minus1

1198711

sdot sdot sdot 119871119899minus1

+ 1199031198710

1199031198710

d

119871119899minus2

sdot sdot sdot 119903119871119899minus4

+ 119903119871119899minus3

119903119871119899minus3

119871119899minus1

minus 1199031198710sdot sdot sdot 119903119871

119899minus3+ 119903119871119899minus2

119903119871119899minus2

)

= (

119871119899minus1

119871119899minus2

sdot sdot sdot 1198710

1199031198710

119871119899minus1

+ 1199031198710

sdot sdot sdot 1198711

d

119903119871119899minus3

119903119871119899minus4

+ 119903119871119899minus3

sdot sdot sdot 119871119899minus2

119903119871119899minus2

119903119871119899minus3

+ 119903119871119899minus2

sdot sdot sdot 119871119899minus1

+ 1199031198710

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = B1015840

Γ

(43)

Thus we have

detL = detB1015840 det Γ (44)

where matrix B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) and its

determinant can be obtained fromTheorem 9

det1198611015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(45)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(46)

In addition

det Γ = (minus1)119899(119899minus1)2 (47)

so the determinant of matrix L is

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(48)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(49)

5 Determinants of the RFP119903L119903R and RLP119903F119903LCirculant Matrix with the Pell Numbers

Theorem 11 If C = RFP119903LRcirc119903fr(1198750 1198751 119875

119899minus1) then

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(50)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(51)

Proof Thematrix C can be written as

C =(

(

1198750

1198751

sdot sdot sdot 119875119899minus1

119903119875119899minus1

1198750+ 119903119875119899minus1

1198751

119875119899minus2

119903119875119899minus1

+ 119903119875119899minus2

d

1199031198752

sdot sdot sdot 1198751

1199031198751

1199031198752+ 1199031198751

sdot sdot sdot 1198750+ 119903119875119899minus1

)

)119899times119899

(52)

Using Lemma 3 the determinant of C is

detC =

119899

prod

119896=1

(1198750+ 1198751120576119896+ sdot sdot sdot + 119875

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

1205721minus 1205731

1205721minus 1205731

120576119896+ sdot sdot sdot +

120572119899minus1

1minus 120573119899minus1

1

1205721minus 1205731

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119875119899minus1

1205762

119896+ (1 minus 119903119875

119899minus1minus 119903119875119899) 120576119896minus 119903119875119899

1 minus 2120576119896minus 1205762

119896

(53)

Abstract and Applied Analysis 7

According to Lemma 4 we can get

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(54)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(55)

Using the method in Theorem 11 similarly we also havethe following

Theorem 12 If C1015840 = RFP119903LRcirc119903fr(119875119899minus1

119875119899minus2

1198750) then

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(56)

Theorem 13 If P = RLP119903FLcirc119903fr(1198750 1198751 119875

119899minus1) then one

has

detP =

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(57)

Proof Thematrix P can be written as

P =(

(

1198750

sdot sdot sdot 119875119899minus2

119875119899minus1

1198751

c 119875119899minus1

+ 1199031198750

1199031198750

c 1199031198750+ 1199031198751

119875119899minus2

c 119903119875

119899minus3

119875119899minus1

+ 1199031198750sdot sdot sdot 119903119875

119899minus3+ 119903119875119899minus2

119903119875119899minus2

)

)

= (

119875119899minus1

119875119899minus2

sdot sdot sdot 1198750

1199031198750

119875119899minus1

+ 1199031198750

sdot sdot sdot 1198751

d

119903119875119899minus2

119903119875119899minus3

+ 119903119875119899minus2

sdot sdot sdot 119875119899minus1

+ 1199031198750

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

)

(58)

Then we can get

detP = detC1015840 det Γ (59)

where C1015840 = RFPLRcircfr(119875119899minus1

119875119899minus2

1198750) and its determi-

nant could be obtained throughTheorem 12 namely

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(60)

det Γ = (minus1)119899(119899minus1)2 (61)

So

detP = detC1015840 det Γ

=

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(62)

6 Determinants of the RFP119903L119903R andRLP119903F119903L Circulant Matrix with thePell-Lucas Numbers

Theorem 14 If D = RFP119903LRcirc119903fr(1198760 1198761 119876

119899minus1) then

one has

detD =

(2 minus 119903119876119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

(2 minus 119903119876119899) (119892119899minus1

5+ ℎ119899minus1

5) minus 119903119876

119899minus1(119892119899

5+ ℎ119899

5) minus 4119903

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899

119876119899minus1

119899minus1

(63)

where

1198925=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

+

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

ℎ5=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

minus

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

(64)

Proof Themethod is similar to Theorem 11

Certainly we can get the following theorem

8 Abstract and Applied Analysis

Theorem 15 If D1015840 = RFP119903LRcirc119903fr(119876119899minus1

1198761 1198760) then

one gets

detD1015840 =(minus2119903 minus 119903119876

119899minus1)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032 (65)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(66)

Theorem 16 IfQ = RLP119903LFcirc119903fr(1198760 1198761 119876

119899minus1) then

detQ =

(minus2119903 minus 119903119876119899minus1

)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032(minus1)119899(119899minus1)2

(67)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(68)

7 Conclusion

Thedeterminant problems of the RFP119903L119903R circulantmatricesand RLP119903F119903L circulant matrices involving the FibonacciLucas Pell and Pell-Lucas number are considered in thispaperThe explicit determinants are presented by using someterms of these numbers

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by the Development Project ofScience amp Technology of Shandong Province (Grant no2012GGX10115) and NSFC (Grant no 11301252) and theAMEP of Linyi University China

References

[1] F-R Lin and H-X Yang ldquoA fast stationary iterative methodfor a partial integro-differential equation in pricing optionsrdquoCalcolo vol 50 no 4 pp 313ndash327 2013

[2] S-L Lei and H-W Sun ldquoA circulant preconditioner for frac-tional diffusion equationsrdquo Journal of Computational Physicsvol 242 pp 715ndash725 2013

[3] P E Kloeden A Neuenkirch and R Pavani ldquoMultilevelMonte Carlo for stochastic differential equations with additivefractional noiserdquo Annals of Operations Research vol 189 pp255ndash276 2011

[4] C Zhang H Chen and L Wang ldquoStrang-type preconditionersapplied to ordinary and neutral differential-algebraic equa-tionsrdquo Numerical Linear Algebra with Applications vol 18 no5 pp 843ndash855 2011

[5] E W Sachs and A K Strauss ldquoEfficient solution of a partialintegro-differential equation in financerdquo Applied NumericalMathematics An IMACS Journal vol 58 no 11 pp 1687ndash17032008

[6] E Ahmed and A S Elgazzar ldquoOn fractional order differentialequations model for nonlocal epidemicsrdquo Physica A StatisticalMechanics and its Applications vol 379 no 2 pp 607ndash614 2007

[7] J Wu and X Zou ldquoAsymptotic and periodic boundary valueproblems of mixed FDEs and wave solutions of lattice differ-ential equationsrdquo Journal of Differential Equations vol 135 no2 pp 315ndash357 1997

[8] P J Davis Circulant Matrices John Wiley amp Sons New YorkNY USA 1979

[9] Z L Jiang and Z X Zhou Circulant Matrices ChengduTechnology University Chengdu China 1999

[10] Z L Jiang ldquoOn the minimal polynomials and the inversesof multilevel scaled factor circulant matricesrdquo Abstract andApplied Analysis vol 2014 Article ID 521643 10 pages 2014

[11] Z Jiang T Xu and F Lu ldquoIsomorphic operators and functionalequations for the skew-circulant algebrardquo Abstract and AppliedAnalysis vol 2014 Article ID 418194 8 pages 2014

[12] Z Jiang Y Gong and Y Gao ldquoInvertibility and explicitinverses of circulant-type matrices with 119896-Fibonacci and 119896-Lucas numbersrdquoAbstract andAppliedAnalysis vol 2014 ArticleID 238953 9 pages 2014

[13] J Li Z Jiang and F Lu ldquoDeterminants norms and the spreadof circulant matrices with tribonacci and generalized Lucasnumbersrdquo Abstract and Applied Analysis vol 2014 Article ID381829 9 pages 2014

[14] D Chillag ldquoRegular representations of semisimple algebrasseparable field extensions group characters generalized cir-culants and generalized cyclic codesrdquo Linear Algebra and itsApplications vol 218 pp 147ndash183 1995

[15] Z-L Jiang and Z-B Xu ldquoEfficient algorithm for finding theinverse and the group inverse of FLS 119903-circulantmatrixrdquo Journalof Applied Mathematics amp Computing vol 18 no 1-2 pp 45ndash572005

[16] Z L Jiang and D H Sun ldquoFast algorithms for solving theinverse problem of Ax = brdquo in Proceedings of the 8th Inter-national Conference on Matrix Theory and Its Applications inChina pp 121Cndash124C 2008

[17] J Li Z Jiang and N Shen ldquoExplicit determinants of theFibonacci RFPLR circulant and Lucas RFPLR circulant matrixrdquoJP Journal of Algebra Number Theory and Applications vol 28no 2 pp 167ndash179 2013

[18] Z P Tian ldquoFast algorithm for solving the first-plus last-circulantlinear systemrdquo Journal of Shandong University Natural Sciencevol 46 no 12 pp 96ndash103 2011

[19] N Shen Z L Jiang and J Li ldquoOn explicit determinants ofthe RFMLR and RLMFL circulant matrices involving certain

Abstract and Applied Analysis 9

famous numbersrdquoWSEAS Transactions onMathematics vol 12no 1 pp 42ndash53 2013

[20] Z Tian ldquoFast algorithms for solving the inverse problem of119860119883 = 119887 in four different families of patterned matricesrdquo FarEast Journal of AppliedMathematics vol 52 no 1 pp 1ndash12 2011

[21] D V Jaiswal ldquoOn determinants involving generalized Fibonaccinumbersrdquo The Fibonacci Quarterly Official Organ of theFibonacci Association vol 7 pp 319ndash330 1969

[22] L Dazheng ldquoFibonacci-Lucas quasi-cyclic matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 280ndash286 2002

[23] D A Lind ldquoA Fibonacci circulantrdquo The Fibonacci QuarterlyOfficial Organ of the Fibonacci Association vol 8 no 5 pp 449ndash455 1970

[24] S-Q Shen J-M Cen and Y Hao ldquoOn the determinantsand inverses of circulant matrices with Fibonacci and Lucasnumbersrdquo Applied Mathematics and Computation vol 217 no23 pp 9790ndash9797 2011

[25] MAkbulak andD Bozkurt ldquoOn the norms of Toeplitzmatricesinvolving Fibonacci and Lucas numbersrdquo Hacettepe Journal ofMathematics and Statistics vol 37 no 2 pp 89ndash95 2008

[26] G-Y Lee J-S Kim and S-G Lee ldquoFactorizations and eigen-values of Fibonacci and symmetric Fibonacci matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 203ndash211 2002

[27] M Miladinovic and P Stanimirovic ldquoSingular case of gener-alized Fibonacci and Lucas matricesrdquo Journal of the KoreanMathematical Society vol 48 no 1 pp 33ndash48 2011

[28] P Stanimirovic J Nikolov and I Stanimirovic ldquoA generaliza-tion of Fibonacci and Lucas matricesrdquo Discrete Applied Math-ematics The Journal of Combinatorial Algorithms Informaticsand Computational Sciences vol 156 no 14 pp 2606ndash26192008

[29] Z Zhang and Y Zhang ldquoThe Lucas matrix and some combina-torial identitiesrdquo Indian Journal of Pure and Applied Mathemat-ics vol 38 no 5 pp 457ndash465 2007

[30] F Yilmaz and D Bozkurt ldquoHessenberg matrices and the Pelland Perrin numbersrdquo Journal of Number Theory vol 131 no 8pp 1390ndash1396 2011

[31] J Blumlein D J Broadhurst and J A M Vermaseren ldquoThemultiple zeta value data minerdquo Computer Physics Communica-tions vol 181 no 3 pp 582ndash625 2010

[32] M Janjic ldquoDeterminants and recurrence sequencesrdquo Journal ofInteger Sequences vol 15 no 3 pp 1ndash2 2012

[33] M Elia ldquoDerived sequences the Tribonacci recurrence andcubic formsrdquoTheFibonacci QuarterlyTheOfficial Journal of theFibonacci Association vol 39 no 2 pp 107ndash115 2001

[34] R Melham ldquoSums involving Fibonacci and Pell numbersrdquoPortugaliae Mathematica vol 56 no 3 pp 309ndash317 1999

[35] Y Yazlik and N Taskara ldquoA note on generalized 119896-Horadamsequencerdquo Computers ampMathematics with Applications vol 63no 1 pp 36ndash41 2012

[36] E Kılıc ldquoThe generalized Pell (119901 119894)-numbers and their Binetformulas combinatorial representations sumsrdquo Chaos Solitonsamp Fractals vol 40 no 4 pp 2047ndash2063 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

Abstract and Applied Analysis 3

Lemma 3 Let 119860 = RFP119903LRcirc119903fr(1198860 119886

119899minus1) then the

eigenvalues of 119860 are

119891 (120576119896) =

119899minus1

sum

119894=0

(119886119894120576119894

119896) (10)

and in addition

det119860 =

119899

prod

119896=1

119899minus1

sum

119894=0

(119886119894120576119894

119896) (11)

where 120576119896(119896 = 1 2 119899) are the roots of the equation

119909119899

minus 119903119909 minus 119903 = 0 (12)

Lemma 4 Consider

119899

prod

119896=1

(119888 + 120576119896119887 + 1205762

119896119886)

= 119888119899

minus 119903119888 [(119886119904)119899minus1

+ (119886119905)119899minus1

]

minus 119903 [(119886119904)119899

+ (119886119905)119899

] + 1199032

119886119899minus1

(119888 minus 119887 + 119886)

(13)

where

119904 =

minus119887 + radic1198872minus 4119886119888

2119886

119905 =

minus119887 minus radic1198872minus 4119886119888

2119886

(14)

and 120576119896(119896 = 1 2 119899) satisfy (12) 119886 119887 119888 isin R 119886 = 0

Proof Consider

119899

prod

119896=1

(119888 + 120576119896119887 + 1205762

119896119886) = 119886

119899

119899

prod

119896=1

(1205762

119896+

119887

119886

120576119896+

119888

119886

)

= 119886119899

119899

prod

119896=1

(120576119896minus 119904) (120576

119896minus 119905)

= 119886119899

119899

prod

119896=1

(119904 minus 120576119896) (119905 minus 120576

119896)

(15)

while

119904 + 119905 = minus

119887

119886

119904119905 =

119888

119886

119904 =

minus119887 + radic1198872minus 4119886119888

2119886

119905 =

minus119887 minus radic1198872minus 4119886119888

2119886

(16)

Since 120576119896(119896 = 1 2 119899) satisfy (12) we must have

119909119899

minus 119903119909 minus 119903 =

119899

prod

119896=1

(119909 minus 120576119896) (17)

So119899

prod

119896=1

(119888 + 120576119896119887 + 1205762

119896119886)

= 119886119899

(119904119899

minus 119904119903 minus 119903) (119905119899

minus 119905119903 minus 119903)

= 119886119899

[(119904119905)119899

minus 119903119904119905 (119904119899minus1

+ 119905119899minus1

) minus 119903 (119904119899

+ 119905119899

)]

+ 119886119899

[1199032

(119904 + 119905 + 119904119905 + 1)]

= 119886119899

[(

119888

119886

)

119899

minus 119903

119888

119886

(119904119899minus1

+ 119905119899minus1

) minus 119903 (119904119899

+ 119905119899

)]

+ 119886119899

[1199032

(

119888

119886

minus

119887

119886

+ 1)]

= 119888119899

minus 119903119888 [(119886119904)119899minus1

+ (119886119905)119899minus1

] minus 119903 [(119886119904)119899

+ (119886119905)119899

]

+ 1199032

119886119899minus1

(119888 minus 119887 + 119886)

(18)

3 Determinant of the RFP119903L119903R and RLP119903F119903LCirculant Matrices with the FibonacciNumbers

Theorem 5 Let A = RFP119903LRcirc119903fr(1198650 1198651 119865

119899minus1) Then

detA =

(minus119903119865119899)119899

minus (minus119903)119899+1

119865119899minus1

119899minus1

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899minus1

119899minus1119865119899(119892119899minus1

1+ ℎ119899minus1

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899

119899minus1(119892119899

1+ ℎ119899

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(19)

where

1198921=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

+

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

ℎ1=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

minus

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

(20)

Proof Thematrix A can be written as

A =(

1198650

1198651

sdot sdot sdot 119865119899minus1

119903119865119899minus1

1198650+ 119903119865119899minus1

sdot sdot sdot 119865119899minus2

d

1199031198652

1199031198653+ 1199031198652

sdot sdot sdot 1198651

1199031198651

1199031198652+ 1199031198651

sdot sdot sdot 1198650+ 119903119865119899minus1

)

119899times119899

(21)

4 Abstract and Applied Analysis

Using Lemma 3 the determinant of A is

detA =

119899

prod

119896=1

(1198650+ 1198651120576119896+ sdot sdot sdot + 119865

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

120572 minus 120573

120572 minus 120573

120576119896+ sdot sdot sdot +

120572119899minus1

minus 120573119899minus1

120572 minus 120573

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119865119899minus1

1205762

119896+ (1 minus 119903119865

119899minus1minus 119903119865119899) 120576119896minus 119903119865119899

1 minus 120576119896minus 1205762

119896

(22)

Using Lemma 4 we obtain

detA =

(minus119903119865119899)119899

minus (minus119903)119899+1

119865119899minus1

119899minus1

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899minus1

119899minus1119865119899(119892119899minus1

1+ ℎ119899minus1

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899

119899minus1(119892119899

1+ ℎ119899

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(23)

where

1198921=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

+

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

ℎ1=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

minus

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

(24)

Using the method in Theorem 5 similarly we also havethe following

Theorem 6 Let A1015840 = RFP119903LRcirc119903fr(119865119899minus1

1198650) Then

detA1015840 =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(25)

Theorem 7 Let F = RLP119903FLcirc119903fr(1198650 119865

119899minus1) Then

det F =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

(26)

Proof Thematrix F can be written as

F = (

1198650

sdot sdot sdot 119865119899minus2

119865119899minus1

1198651

sdot sdot sdot 119865119899minus1

+ 1199031198650

1199031198650

1198652

sdot sdot sdot 1199031198650+ 1199031198651

1199031198651

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

119865119899minus1

+ 1199031198650sdot sdot sdot 119903119865

119899minus3+ 119903119865119899minus2

119903119865119899minus2

)

= (

119865119899minus1

119865119899minus2

sdot sdot sdot 1198650

1199031198650

119865119899minus1

+ 1199031198650

sdot sdot sdot 1198651

d

119903119865119899minus3

119903119865119899minus4

+ 119903119865119899minus3

sdot sdot sdot 119865119899minus2

119903119865119899minus2

119903119865119899minus3

+ 119903119865119899minus2

sdot sdot sdot 119865119899minus1

+ 1199031198650

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = A1015840

Γ

(27)

Hence we have

det F = detA1015840 det Γ (28)

where A1015840 = RFP119903LRcirc119903fr(119865119899minus1

119865119899minus2

1198650) and its deter-

minant is obtained fromTheorem 6

detA1015840 =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(29)

In addition

det Γ = (minus1)119899(119899minus1)2 (30)

so

det F =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

(31)

4 Determinant of the RFM119903L119903R and RLM119903F119903LCirculant Matrices with the Lucas Numbers

Theorem 8 Let B = RFP119903LRcirc119903fr(1198710 1198711 119871

119899minus1) Then

detB =

(2 minus 119903119871119899)119899

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

minus

(minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(32)

Abstract and Applied Analysis 5

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(33)

Proof Thematrix B can be written as

B =(

1198710

1198711

sdot sdot sdot 119871119899minus1

119903119871119899minus1

1198711+ 119903119871119899minus1

sdot sdot sdot 119871119899minus2

d

1199031198712

1199031198713+ 1199031198712

sdot sdot sdot 1198711

1199031198711

1199031198712+ 1199031198711

sdot sdot sdot 1198710+ 119903119871119899minus1

) (34)

Using Lemma 3 we have

detB =

119899

prod

119896=1

(1198710+ 1198711120576119896+ sdot sdot sdot + 119871

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

[2 + (120572 + 120573) 120576119896+ sdot sdot sdot + (120572

119899minus1

+ 120573119899minus1

) 120576119899minus1

119896]

=

119899

prod

119896=1

minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896minus 2 + 119903119871

119899

1 minus 120576119896minus 1205762

119896

(35)

According to Lemma 4 we obtain

119899

prod

119896=1

[minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896+ 2 minus 119903119871

119899]

= (2 minus 119903119871119899)119899

+ (minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

minus (minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

(36)

Then we get

detB =

(2 minus 119903119871119899)119899

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

minus

(minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(37)

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(38)

Using the method in Theorem 8 similarly we also havethe following

Theorem 9 Let B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) Then

detB1015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(39)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(40)

Theorem 10 Let L = RLP119903FLcirc119903fr(1198710 1198711 119871

119899minus1) Then

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(41)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(42)

6 Abstract and Applied Analysis

Proof Thematrix L can be written as

L = (

1198710

sdot sdot sdot 119871119899minus2

119871119899minus1

1198711

sdot sdot sdot 119871119899minus1

+ 1199031198710

1199031198710

d

119871119899minus2

sdot sdot sdot 119903119871119899minus4

+ 119903119871119899minus3

119903119871119899minus3

119871119899minus1

minus 1199031198710sdot sdot sdot 119903119871

119899minus3+ 119903119871119899minus2

119903119871119899minus2

)

= (

119871119899minus1

119871119899minus2

sdot sdot sdot 1198710

1199031198710

119871119899minus1

+ 1199031198710

sdot sdot sdot 1198711

d

119903119871119899minus3

119903119871119899minus4

+ 119903119871119899minus3

sdot sdot sdot 119871119899minus2

119903119871119899minus2

119903119871119899minus3

+ 119903119871119899minus2

sdot sdot sdot 119871119899minus1

+ 1199031198710

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = B1015840

Γ

(43)

Thus we have

detL = detB1015840 det Γ (44)

where matrix B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) and its

determinant can be obtained fromTheorem 9

det1198611015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(45)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(46)

In addition

det Γ = (minus1)119899(119899minus1)2 (47)

so the determinant of matrix L is

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(48)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(49)

5 Determinants of the RFP119903L119903R and RLP119903F119903LCirculant Matrix with the Pell Numbers

Theorem 11 If C = RFP119903LRcirc119903fr(1198750 1198751 119875

119899minus1) then

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(50)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(51)

Proof Thematrix C can be written as

C =(

(

1198750

1198751

sdot sdot sdot 119875119899minus1

119903119875119899minus1

1198750+ 119903119875119899minus1

1198751

119875119899minus2

119903119875119899minus1

+ 119903119875119899minus2

d

1199031198752

sdot sdot sdot 1198751

1199031198751

1199031198752+ 1199031198751

sdot sdot sdot 1198750+ 119903119875119899minus1

)

)119899times119899

(52)

Using Lemma 3 the determinant of C is

detC =

119899

prod

119896=1

(1198750+ 1198751120576119896+ sdot sdot sdot + 119875

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

1205721minus 1205731

1205721minus 1205731

120576119896+ sdot sdot sdot +

120572119899minus1

1minus 120573119899minus1

1

1205721minus 1205731

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119875119899minus1

1205762

119896+ (1 minus 119903119875

119899minus1minus 119903119875119899) 120576119896minus 119903119875119899

1 minus 2120576119896minus 1205762

119896

(53)

Abstract and Applied Analysis 7

According to Lemma 4 we can get

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(54)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(55)

Using the method in Theorem 11 similarly we also havethe following

Theorem 12 If C1015840 = RFP119903LRcirc119903fr(119875119899minus1

119875119899minus2

1198750) then

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(56)

Theorem 13 If P = RLP119903FLcirc119903fr(1198750 1198751 119875

119899minus1) then one

has

detP =

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(57)

Proof Thematrix P can be written as

P =(

(

1198750

sdot sdot sdot 119875119899minus2

119875119899minus1

1198751

c 119875119899minus1

+ 1199031198750

1199031198750

c 1199031198750+ 1199031198751

119875119899minus2

c 119903119875

119899minus3

119875119899minus1

+ 1199031198750sdot sdot sdot 119903119875

119899minus3+ 119903119875119899minus2

119903119875119899minus2

)

)

= (

119875119899minus1

119875119899minus2

sdot sdot sdot 1198750

1199031198750

119875119899minus1

+ 1199031198750

sdot sdot sdot 1198751

d

119903119875119899minus2

119903119875119899minus3

+ 119903119875119899minus2

sdot sdot sdot 119875119899minus1

+ 1199031198750

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

)

(58)

Then we can get

detP = detC1015840 det Γ (59)

where C1015840 = RFPLRcircfr(119875119899minus1

119875119899minus2

1198750) and its determi-

nant could be obtained throughTheorem 12 namely

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(60)

det Γ = (minus1)119899(119899minus1)2 (61)

So

detP = detC1015840 det Γ

=

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(62)

6 Determinants of the RFP119903L119903R andRLP119903F119903L Circulant Matrix with thePell-Lucas Numbers

Theorem 14 If D = RFP119903LRcirc119903fr(1198760 1198761 119876

119899minus1) then

one has

detD =

(2 minus 119903119876119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

(2 minus 119903119876119899) (119892119899minus1

5+ ℎ119899minus1

5) minus 119903119876

119899minus1(119892119899

5+ ℎ119899

5) minus 4119903

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899

119876119899minus1

119899minus1

(63)

where

1198925=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

+

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

ℎ5=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

minus

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

(64)

Proof Themethod is similar to Theorem 11

Certainly we can get the following theorem

8 Abstract and Applied Analysis

Theorem 15 If D1015840 = RFP119903LRcirc119903fr(119876119899minus1

1198761 1198760) then

one gets

detD1015840 =(minus2119903 minus 119903119876

119899minus1)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032 (65)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(66)

Theorem 16 IfQ = RLP119903LFcirc119903fr(1198760 1198761 119876

119899minus1) then

detQ =

(minus2119903 minus 119903119876119899minus1

)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032(minus1)119899(119899minus1)2

(67)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(68)

7 Conclusion

Thedeterminant problems of the RFP119903L119903R circulantmatricesand RLP119903F119903L circulant matrices involving the FibonacciLucas Pell and Pell-Lucas number are considered in thispaperThe explicit determinants are presented by using someterms of these numbers

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by the Development Project ofScience amp Technology of Shandong Province (Grant no2012GGX10115) and NSFC (Grant no 11301252) and theAMEP of Linyi University China

References

[1] F-R Lin and H-X Yang ldquoA fast stationary iterative methodfor a partial integro-differential equation in pricing optionsrdquoCalcolo vol 50 no 4 pp 313ndash327 2013

[2] S-L Lei and H-W Sun ldquoA circulant preconditioner for frac-tional diffusion equationsrdquo Journal of Computational Physicsvol 242 pp 715ndash725 2013

[3] P E Kloeden A Neuenkirch and R Pavani ldquoMultilevelMonte Carlo for stochastic differential equations with additivefractional noiserdquo Annals of Operations Research vol 189 pp255ndash276 2011

[4] C Zhang H Chen and L Wang ldquoStrang-type preconditionersapplied to ordinary and neutral differential-algebraic equa-tionsrdquo Numerical Linear Algebra with Applications vol 18 no5 pp 843ndash855 2011

[5] E W Sachs and A K Strauss ldquoEfficient solution of a partialintegro-differential equation in financerdquo Applied NumericalMathematics An IMACS Journal vol 58 no 11 pp 1687ndash17032008

[6] E Ahmed and A S Elgazzar ldquoOn fractional order differentialequations model for nonlocal epidemicsrdquo Physica A StatisticalMechanics and its Applications vol 379 no 2 pp 607ndash614 2007

[7] J Wu and X Zou ldquoAsymptotic and periodic boundary valueproblems of mixed FDEs and wave solutions of lattice differ-ential equationsrdquo Journal of Differential Equations vol 135 no2 pp 315ndash357 1997

[8] P J Davis Circulant Matrices John Wiley amp Sons New YorkNY USA 1979

[9] Z L Jiang and Z X Zhou Circulant Matrices ChengduTechnology University Chengdu China 1999

[10] Z L Jiang ldquoOn the minimal polynomials and the inversesof multilevel scaled factor circulant matricesrdquo Abstract andApplied Analysis vol 2014 Article ID 521643 10 pages 2014

[11] Z Jiang T Xu and F Lu ldquoIsomorphic operators and functionalequations for the skew-circulant algebrardquo Abstract and AppliedAnalysis vol 2014 Article ID 418194 8 pages 2014

[12] Z Jiang Y Gong and Y Gao ldquoInvertibility and explicitinverses of circulant-type matrices with 119896-Fibonacci and 119896-Lucas numbersrdquoAbstract andAppliedAnalysis vol 2014 ArticleID 238953 9 pages 2014

[13] J Li Z Jiang and F Lu ldquoDeterminants norms and the spreadof circulant matrices with tribonacci and generalized Lucasnumbersrdquo Abstract and Applied Analysis vol 2014 Article ID381829 9 pages 2014

[14] D Chillag ldquoRegular representations of semisimple algebrasseparable field extensions group characters generalized cir-culants and generalized cyclic codesrdquo Linear Algebra and itsApplications vol 218 pp 147ndash183 1995

[15] Z-L Jiang and Z-B Xu ldquoEfficient algorithm for finding theinverse and the group inverse of FLS 119903-circulantmatrixrdquo Journalof Applied Mathematics amp Computing vol 18 no 1-2 pp 45ndash572005

[16] Z L Jiang and D H Sun ldquoFast algorithms for solving theinverse problem of Ax = brdquo in Proceedings of the 8th Inter-national Conference on Matrix Theory and Its Applications inChina pp 121Cndash124C 2008

[17] J Li Z Jiang and N Shen ldquoExplicit determinants of theFibonacci RFPLR circulant and Lucas RFPLR circulant matrixrdquoJP Journal of Algebra Number Theory and Applications vol 28no 2 pp 167ndash179 2013

[18] Z P Tian ldquoFast algorithm for solving the first-plus last-circulantlinear systemrdquo Journal of Shandong University Natural Sciencevol 46 no 12 pp 96ndash103 2011

[19] N Shen Z L Jiang and J Li ldquoOn explicit determinants ofthe RFMLR and RLMFL circulant matrices involving certain

Abstract and Applied Analysis 9

famous numbersrdquoWSEAS Transactions onMathematics vol 12no 1 pp 42ndash53 2013

[20] Z Tian ldquoFast algorithms for solving the inverse problem of119860119883 = 119887 in four different families of patterned matricesrdquo FarEast Journal of AppliedMathematics vol 52 no 1 pp 1ndash12 2011

[21] D V Jaiswal ldquoOn determinants involving generalized Fibonaccinumbersrdquo The Fibonacci Quarterly Official Organ of theFibonacci Association vol 7 pp 319ndash330 1969

[22] L Dazheng ldquoFibonacci-Lucas quasi-cyclic matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 280ndash286 2002

[23] D A Lind ldquoA Fibonacci circulantrdquo The Fibonacci QuarterlyOfficial Organ of the Fibonacci Association vol 8 no 5 pp 449ndash455 1970

[24] S-Q Shen J-M Cen and Y Hao ldquoOn the determinantsand inverses of circulant matrices with Fibonacci and Lucasnumbersrdquo Applied Mathematics and Computation vol 217 no23 pp 9790ndash9797 2011

[25] MAkbulak andD Bozkurt ldquoOn the norms of Toeplitzmatricesinvolving Fibonacci and Lucas numbersrdquo Hacettepe Journal ofMathematics and Statistics vol 37 no 2 pp 89ndash95 2008

[26] G-Y Lee J-S Kim and S-G Lee ldquoFactorizations and eigen-values of Fibonacci and symmetric Fibonacci matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 203ndash211 2002

[27] M Miladinovic and P Stanimirovic ldquoSingular case of gener-alized Fibonacci and Lucas matricesrdquo Journal of the KoreanMathematical Society vol 48 no 1 pp 33ndash48 2011

[28] P Stanimirovic J Nikolov and I Stanimirovic ldquoA generaliza-tion of Fibonacci and Lucas matricesrdquo Discrete Applied Math-ematics The Journal of Combinatorial Algorithms Informaticsand Computational Sciences vol 156 no 14 pp 2606ndash26192008

[29] Z Zhang and Y Zhang ldquoThe Lucas matrix and some combina-torial identitiesrdquo Indian Journal of Pure and Applied Mathemat-ics vol 38 no 5 pp 457ndash465 2007

[30] F Yilmaz and D Bozkurt ldquoHessenberg matrices and the Pelland Perrin numbersrdquo Journal of Number Theory vol 131 no 8pp 1390ndash1396 2011

[31] J Blumlein D J Broadhurst and J A M Vermaseren ldquoThemultiple zeta value data minerdquo Computer Physics Communica-tions vol 181 no 3 pp 582ndash625 2010

[32] M Janjic ldquoDeterminants and recurrence sequencesrdquo Journal ofInteger Sequences vol 15 no 3 pp 1ndash2 2012

[33] M Elia ldquoDerived sequences the Tribonacci recurrence andcubic formsrdquoTheFibonacci QuarterlyTheOfficial Journal of theFibonacci Association vol 39 no 2 pp 107ndash115 2001

[34] R Melham ldquoSums involving Fibonacci and Pell numbersrdquoPortugaliae Mathematica vol 56 no 3 pp 309ndash317 1999

[35] Y Yazlik and N Taskara ldquoA note on generalized 119896-Horadamsequencerdquo Computers ampMathematics with Applications vol 63no 1 pp 36ndash41 2012

[36] E Kılıc ldquoThe generalized Pell (119901 119894)-numbers and their Binetformulas combinatorial representations sumsrdquo Chaos Solitonsamp Fractals vol 40 no 4 pp 2047ndash2063 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

4 Abstract and Applied Analysis

Using Lemma 3 the determinant of A is

detA =

119899

prod

119896=1

(1198650+ 1198651120576119896+ sdot sdot sdot + 119865

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

120572 minus 120573

120572 minus 120573

120576119896+ sdot sdot sdot +

120572119899minus1

minus 120573119899minus1

120572 minus 120573

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119865119899minus1

1205762

119896+ (1 minus 119903119865

119899minus1minus 119903119865119899) 120576119896minus 119903119865119899

1 minus 120576119896minus 1205762

119896

(22)

Using Lemma 4 we obtain

detA =

(minus119903119865119899)119899

minus (minus119903)119899+1

119865119899minus1

119899minus1

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899minus1

119899minus1119865119899(119892119899minus1

1+ ℎ119899minus1

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899+1

119865119899

119899minus1(119892119899

1+ ℎ119899

1)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(23)

where

1198921=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

+

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

ℎ1=

(119903119865119899+ 119903119865119899minus1

minus 1)

minus2119903119865119899minus1

minus

radic1199032(119865119899minus 119865119899minus1

)2

minus 2119903 (119865119899+ 119865119899+1

)

minus2119903119865119899minus1

(24)

Using the method in Theorem 5 similarly we also havethe following

Theorem 6 Let A1015840 = RFP119903LRcirc119903fr(119865119899minus1

1198650) Then

detA1015840 =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(25)

Theorem 7 Let F = RLP119903FLcirc119903fr(1198650 119865

119899minus1) Then

det F =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

(26)

Proof Thematrix F can be written as

F = (

1198650

sdot sdot sdot 119865119899minus2

119865119899minus1

1198651

sdot sdot sdot 119865119899minus1

+ 1199031198650

1199031198650

1198652

sdot sdot sdot 1199031198650+ 1199031198651

1199031198651

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

119865119899minus1

+ 1199031198650sdot sdot sdot 119903119865

119899minus3+ 119903119865119899minus2

119903119865119899minus2

)

= (

119865119899minus1

119865119899minus2

sdot sdot sdot 1198650

1199031198650

119865119899minus1

+ 1199031198650

sdot sdot sdot 1198651

d

119903119865119899minus3

119903119865119899minus4

+ 119903119865119899minus3

sdot sdot sdot 119865119899minus2

119903119865119899minus2

119903119865119899minus3

+ 119903119865119899minus2

sdot sdot sdot 119865119899minus1

+ 1199031198650

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = A1015840

Γ

(27)

Hence we have

det F = detA1015840 det Γ (28)

where A1015840 = RFP119903LRcirc119903fr(119865119899minus1

119865119899minus2

1198650) and its deter-

minant is obtained fromTheorem 6

detA1015840 =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(29)

In addition

det Γ = (minus1)119899(119899minus1)2 (30)

so

det F =(119903 minus 119865

119899minus1)119899

minus 119903 (119903 minus 119865119899minus1

) (119865119899minus 119903)119899minus1

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

minus

119903(119865119899minus 119903)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

(31)

4 Determinant of the RFM119903L119903R and RLM119903F119903LCirculant Matrices with the Lucas Numbers

Theorem 8 Let B = RFP119903LRcirc119903fr(1198710 1198711 119871

119899minus1) Then

detB =

(2 minus 119903119871119899)119899

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

minus

(minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(32)

Abstract and Applied Analysis 5

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(33)

Proof Thematrix B can be written as

B =(

1198710

1198711

sdot sdot sdot 119871119899minus1

119903119871119899minus1

1198711+ 119903119871119899minus1

sdot sdot sdot 119871119899minus2

d

1199031198712

1199031198713+ 1199031198712

sdot sdot sdot 1198711

1199031198711

1199031198712+ 1199031198711

sdot sdot sdot 1198710+ 119903119871119899minus1

) (34)

Using Lemma 3 we have

detB =

119899

prod

119896=1

(1198710+ 1198711120576119896+ sdot sdot sdot + 119871

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

[2 + (120572 + 120573) 120576119896+ sdot sdot sdot + (120572

119899minus1

+ 120573119899minus1

) 120576119899minus1

119896]

=

119899

prod

119896=1

minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896minus 2 + 119903119871

119899

1 minus 120576119896minus 1205762

119896

(35)

According to Lemma 4 we obtain

119899

prod

119896=1

[minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896+ 2 minus 119903119871

119899]

= (2 minus 119903119871119899)119899

+ (minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

minus (minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

(36)

Then we get

detB =

(2 minus 119903119871119899)119899

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

minus

(minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(37)

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(38)

Using the method in Theorem 8 similarly we also havethe following

Theorem 9 Let B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) Then

detB1015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(39)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(40)

Theorem 10 Let L = RLP119903FLcirc119903fr(1198710 1198711 119871

119899minus1) Then

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(41)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(42)

6 Abstract and Applied Analysis

Proof Thematrix L can be written as

L = (

1198710

sdot sdot sdot 119871119899minus2

119871119899minus1

1198711

sdot sdot sdot 119871119899minus1

+ 1199031198710

1199031198710

d

119871119899minus2

sdot sdot sdot 119903119871119899minus4

+ 119903119871119899minus3

119903119871119899minus3

119871119899minus1

minus 1199031198710sdot sdot sdot 119903119871

119899minus3+ 119903119871119899minus2

119903119871119899minus2

)

= (

119871119899minus1

119871119899minus2

sdot sdot sdot 1198710

1199031198710

119871119899minus1

+ 1199031198710

sdot sdot sdot 1198711

d

119903119871119899minus3

119903119871119899minus4

+ 119903119871119899minus3

sdot sdot sdot 119871119899minus2

119903119871119899minus2

119903119871119899minus3

+ 119903119871119899minus2

sdot sdot sdot 119871119899minus1

+ 1199031198710

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = B1015840

Γ

(43)

Thus we have

detL = detB1015840 det Γ (44)

where matrix B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) and its

determinant can be obtained fromTheorem 9

det1198611015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(45)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(46)

In addition

det Γ = (minus1)119899(119899minus1)2 (47)

so the determinant of matrix L is

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(48)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(49)

5 Determinants of the RFP119903L119903R and RLP119903F119903LCirculant Matrix with the Pell Numbers

Theorem 11 If C = RFP119903LRcirc119903fr(1198750 1198751 119875

119899minus1) then

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(50)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(51)

Proof Thematrix C can be written as

C =(

(

1198750

1198751

sdot sdot sdot 119875119899minus1

119903119875119899minus1

1198750+ 119903119875119899minus1

1198751

119875119899minus2

119903119875119899minus1

+ 119903119875119899minus2

d

1199031198752

sdot sdot sdot 1198751

1199031198751

1199031198752+ 1199031198751

sdot sdot sdot 1198750+ 119903119875119899minus1

)

)119899times119899

(52)

Using Lemma 3 the determinant of C is

detC =

119899

prod

119896=1

(1198750+ 1198751120576119896+ sdot sdot sdot + 119875

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

1205721minus 1205731

1205721minus 1205731

120576119896+ sdot sdot sdot +

120572119899minus1

1minus 120573119899minus1

1

1205721minus 1205731

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119875119899minus1

1205762

119896+ (1 minus 119903119875

119899minus1minus 119903119875119899) 120576119896minus 119903119875119899

1 minus 2120576119896minus 1205762

119896

(53)

Abstract and Applied Analysis 7

According to Lemma 4 we can get

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(54)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(55)

Using the method in Theorem 11 similarly we also havethe following

Theorem 12 If C1015840 = RFP119903LRcirc119903fr(119875119899minus1

119875119899minus2

1198750) then

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(56)

Theorem 13 If P = RLP119903FLcirc119903fr(1198750 1198751 119875

119899minus1) then one

has

detP =

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(57)

Proof Thematrix P can be written as

P =(

(

1198750

sdot sdot sdot 119875119899minus2

119875119899minus1

1198751

c 119875119899minus1

+ 1199031198750

1199031198750

c 1199031198750+ 1199031198751

119875119899minus2

c 119903119875

119899minus3

119875119899minus1

+ 1199031198750sdot sdot sdot 119903119875

119899minus3+ 119903119875119899minus2

119903119875119899minus2

)

)

= (

119875119899minus1

119875119899minus2

sdot sdot sdot 1198750

1199031198750

119875119899minus1

+ 1199031198750

sdot sdot sdot 1198751

d

119903119875119899minus2

119903119875119899minus3

+ 119903119875119899minus2

sdot sdot sdot 119875119899minus1

+ 1199031198750

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

)

(58)

Then we can get

detP = detC1015840 det Γ (59)

where C1015840 = RFPLRcircfr(119875119899minus1

119875119899minus2

1198750) and its determi-

nant could be obtained throughTheorem 12 namely

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(60)

det Γ = (minus1)119899(119899minus1)2 (61)

So

detP = detC1015840 det Γ

=

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(62)

6 Determinants of the RFP119903L119903R andRLP119903F119903L Circulant Matrix with thePell-Lucas Numbers

Theorem 14 If D = RFP119903LRcirc119903fr(1198760 1198761 119876

119899minus1) then

one has

detD =

(2 minus 119903119876119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

(2 minus 119903119876119899) (119892119899minus1

5+ ℎ119899minus1

5) minus 119903119876

119899minus1(119892119899

5+ ℎ119899

5) minus 4119903

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899

119876119899minus1

119899minus1

(63)

where

1198925=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

+

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

ℎ5=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

minus

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

(64)

Proof Themethod is similar to Theorem 11

Certainly we can get the following theorem

8 Abstract and Applied Analysis

Theorem 15 If D1015840 = RFP119903LRcirc119903fr(119876119899minus1

1198761 1198760) then

one gets

detD1015840 =(minus2119903 minus 119903119876

119899minus1)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032 (65)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(66)

Theorem 16 IfQ = RLP119903LFcirc119903fr(1198760 1198761 119876

119899minus1) then

detQ =

(minus2119903 minus 119903119876119899minus1

)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032(minus1)119899(119899minus1)2

(67)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(68)

7 Conclusion

Thedeterminant problems of the RFP119903L119903R circulantmatricesand RLP119903F119903L circulant matrices involving the FibonacciLucas Pell and Pell-Lucas number are considered in thispaperThe explicit determinants are presented by using someterms of these numbers

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by the Development Project ofScience amp Technology of Shandong Province (Grant no2012GGX10115) and NSFC (Grant no 11301252) and theAMEP of Linyi University China

References

[1] F-R Lin and H-X Yang ldquoA fast stationary iterative methodfor a partial integro-differential equation in pricing optionsrdquoCalcolo vol 50 no 4 pp 313ndash327 2013

[2] S-L Lei and H-W Sun ldquoA circulant preconditioner for frac-tional diffusion equationsrdquo Journal of Computational Physicsvol 242 pp 715ndash725 2013

[3] P E Kloeden A Neuenkirch and R Pavani ldquoMultilevelMonte Carlo for stochastic differential equations with additivefractional noiserdquo Annals of Operations Research vol 189 pp255ndash276 2011

[4] C Zhang H Chen and L Wang ldquoStrang-type preconditionersapplied to ordinary and neutral differential-algebraic equa-tionsrdquo Numerical Linear Algebra with Applications vol 18 no5 pp 843ndash855 2011

[5] E W Sachs and A K Strauss ldquoEfficient solution of a partialintegro-differential equation in financerdquo Applied NumericalMathematics An IMACS Journal vol 58 no 11 pp 1687ndash17032008

[6] E Ahmed and A S Elgazzar ldquoOn fractional order differentialequations model for nonlocal epidemicsrdquo Physica A StatisticalMechanics and its Applications vol 379 no 2 pp 607ndash614 2007

[7] J Wu and X Zou ldquoAsymptotic and periodic boundary valueproblems of mixed FDEs and wave solutions of lattice differ-ential equationsrdquo Journal of Differential Equations vol 135 no2 pp 315ndash357 1997

[8] P J Davis Circulant Matrices John Wiley amp Sons New YorkNY USA 1979

[9] Z L Jiang and Z X Zhou Circulant Matrices ChengduTechnology University Chengdu China 1999

[10] Z L Jiang ldquoOn the minimal polynomials and the inversesof multilevel scaled factor circulant matricesrdquo Abstract andApplied Analysis vol 2014 Article ID 521643 10 pages 2014

[11] Z Jiang T Xu and F Lu ldquoIsomorphic operators and functionalequations for the skew-circulant algebrardquo Abstract and AppliedAnalysis vol 2014 Article ID 418194 8 pages 2014

[12] Z Jiang Y Gong and Y Gao ldquoInvertibility and explicitinverses of circulant-type matrices with 119896-Fibonacci and 119896-Lucas numbersrdquoAbstract andAppliedAnalysis vol 2014 ArticleID 238953 9 pages 2014

[13] J Li Z Jiang and F Lu ldquoDeterminants norms and the spreadof circulant matrices with tribonacci and generalized Lucasnumbersrdquo Abstract and Applied Analysis vol 2014 Article ID381829 9 pages 2014

[14] D Chillag ldquoRegular representations of semisimple algebrasseparable field extensions group characters generalized cir-culants and generalized cyclic codesrdquo Linear Algebra and itsApplications vol 218 pp 147ndash183 1995

[15] Z-L Jiang and Z-B Xu ldquoEfficient algorithm for finding theinverse and the group inverse of FLS 119903-circulantmatrixrdquo Journalof Applied Mathematics amp Computing vol 18 no 1-2 pp 45ndash572005

[16] Z L Jiang and D H Sun ldquoFast algorithms for solving theinverse problem of Ax = brdquo in Proceedings of the 8th Inter-national Conference on Matrix Theory and Its Applications inChina pp 121Cndash124C 2008

[17] J Li Z Jiang and N Shen ldquoExplicit determinants of theFibonacci RFPLR circulant and Lucas RFPLR circulant matrixrdquoJP Journal of Algebra Number Theory and Applications vol 28no 2 pp 167ndash179 2013

[18] Z P Tian ldquoFast algorithm for solving the first-plus last-circulantlinear systemrdquo Journal of Shandong University Natural Sciencevol 46 no 12 pp 96ndash103 2011

[19] N Shen Z L Jiang and J Li ldquoOn explicit determinants ofthe RFMLR and RLMFL circulant matrices involving certain

Abstract and Applied Analysis 9

famous numbersrdquoWSEAS Transactions onMathematics vol 12no 1 pp 42ndash53 2013

[20] Z Tian ldquoFast algorithms for solving the inverse problem of119860119883 = 119887 in four different families of patterned matricesrdquo FarEast Journal of AppliedMathematics vol 52 no 1 pp 1ndash12 2011

[21] D V Jaiswal ldquoOn determinants involving generalized Fibonaccinumbersrdquo The Fibonacci Quarterly Official Organ of theFibonacci Association vol 7 pp 319ndash330 1969

[22] L Dazheng ldquoFibonacci-Lucas quasi-cyclic matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 280ndash286 2002

[23] D A Lind ldquoA Fibonacci circulantrdquo The Fibonacci QuarterlyOfficial Organ of the Fibonacci Association vol 8 no 5 pp 449ndash455 1970

[24] S-Q Shen J-M Cen and Y Hao ldquoOn the determinantsand inverses of circulant matrices with Fibonacci and Lucasnumbersrdquo Applied Mathematics and Computation vol 217 no23 pp 9790ndash9797 2011

[25] MAkbulak andD Bozkurt ldquoOn the norms of Toeplitzmatricesinvolving Fibonacci and Lucas numbersrdquo Hacettepe Journal ofMathematics and Statistics vol 37 no 2 pp 89ndash95 2008

[26] G-Y Lee J-S Kim and S-G Lee ldquoFactorizations and eigen-values of Fibonacci and symmetric Fibonacci matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 203ndash211 2002

[27] M Miladinovic and P Stanimirovic ldquoSingular case of gener-alized Fibonacci and Lucas matricesrdquo Journal of the KoreanMathematical Society vol 48 no 1 pp 33ndash48 2011

[28] P Stanimirovic J Nikolov and I Stanimirovic ldquoA generaliza-tion of Fibonacci and Lucas matricesrdquo Discrete Applied Math-ematics The Journal of Combinatorial Algorithms Informaticsand Computational Sciences vol 156 no 14 pp 2606ndash26192008

[29] Z Zhang and Y Zhang ldquoThe Lucas matrix and some combina-torial identitiesrdquo Indian Journal of Pure and Applied Mathemat-ics vol 38 no 5 pp 457ndash465 2007

[30] F Yilmaz and D Bozkurt ldquoHessenberg matrices and the Pelland Perrin numbersrdquo Journal of Number Theory vol 131 no 8pp 1390ndash1396 2011

[31] J Blumlein D J Broadhurst and J A M Vermaseren ldquoThemultiple zeta value data minerdquo Computer Physics Communica-tions vol 181 no 3 pp 582ndash625 2010

[32] M Janjic ldquoDeterminants and recurrence sequencesrdquo Journal ofInteger Sequences vol 15 no 3 pp 1ndash2 2012

[33] M Elia ldquoDerived sequences the Tribonacci recurrence andcubic formsrdquoTheFibonacci QuarterlyTheOfficial Journal of theFibonacci Association vol 39 no 2 pp 107ndash115 2001

[34] R Melham ldquoSums involving Fibonacci and Pell numbersrdquoPortugaliae Mathematica vol 56 no 3 pp 309ndash317 1999

[35] Y Yazlik and N Taskara ldquoA note on generalized 119896-Horadamsequencerdquo Computers ampMathematics with Applications vol 63no 1 pp 36ndash41 2012

[36] E Kılıc ldquoThe generalized Pell (119901 119894)-numbers and their Binetformulas combinatorial representations sumsrdquo Chaos Solitonsamp Fractals vol 40 no 4 pp 2047ndash2063 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

Abstract and Applied Analysis 5

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(33)

Proof Thematrix B can be written as

B =(

1198710

1198711

sdot sdot sdot 119871119899minus1

119903119871119899minus1

1198711+ 119903119871119899minus1

sdot sdot sdot 119871119899minus2

d

1199031198712

1199031198713+ 1199031198712

sdot sdot sdot 1198711

1199031198711

1199031198712+ 1199031198711

sdot sdot sdot 1198710+ 119903119871119899minus1

) (34)

Using Lemma 3 we have

detB =

119899

prod

119896=1

(1198710+ 1198711120576119896+ sdot sdot sdot + 119871

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

[2 + (120572 + 120573) 120576119896+ sdot sdot sdot + (120572

119899minus1

+ 120573119899minus1

) 120576119899minus1

119896]

=

119899

prod

119896=1

minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896minus 2 + 119903119871

119899

1 minus 120576119896minus 1205762

119896

(35)

According to Lemma 4 we obtain

119899

prod

119896=1

[minus119903119871119899minus1

1205762

119896minus (1 + 119903119871

119899+ 119903119871119899minus1

) 120576119896+ 2 minus 119903119871

119899]

= (2 minus 119903119871119899)119899

+ (minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

minus (minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

(36)

Then we get

detB =

(2 minus 119903119871119899)119899

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

+

(minus119903)119899

119871119899minus1

119899minus1(2 minus 119903119871

119899) (119892119899minus1

2+ ℎ119899minus1

2)

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

minus

(minus119903)119899

119871119899minus1

119899minus1[119903119871119899minus1

(119892119899

2+ ℎ119899

2) minus 3119903]

1 minus 119903119871119899minus1

minus 119903119871119899+ (minus1)

119899minus1

1199032

(37)

where

1198922=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

+

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

ℎ2=

1 + 119903119871119899minus1

+ 119903119871119899

minus2119903119871119899minus1

minus

radic1199032(119871119899minus 119871119899minus1

)2

+ 10119903119871119899minus1

+ 2119903119871119899+ 1

minus2119903119871119899minus1

(38)

Using the method in Theorem 8 similarly we also havethe following

Theorem 9 Let B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) Then

detB1015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(39)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(40)

Theorem 10 Let L = RLP119903FLcirc119903fr(1198710 1198711 119871

119899minus1) Then

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(41)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(42)

6 Abstract and Applied Analysis

Proof Thematrix L can be written as

L = (

1198710

sdot sdot sdot 119871119899minus2

119871119899minus1

1198711

sdot sdot sdot 119871119899minus1

+ 1199031198710

1199031198710

d

119871119899minus2

sdot sdot sdot 119903119871119899minus4

+ 119903119871119899minus3

119903119871119899minus3

119871119899minus1

minus 1199031198710sdot sdot sdot 119903119871

119899minus3+ 119903119871119899minus2

119903119871119899minus2

)

= (

119871119899minus1

119871119899minus2

sdot sdot sdot 1198710

1199031198710

119871119899minus1

+ 1199031198710

sdot sdot sdot 1198711

d

119903119871119899minus3

119903119871119899minus4

+ 119903119871119899minus3

sdot sdot sdot 119871119899minus2

119903119871119899minus2

119903119871119899minus3

+ 119903119871119899minus2

sdot sdot sdot 119871119899minus1

+ 1199031198710

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = B1015840

Γ

(43)

Thus we have

detL = detB1015840 det Γ (44)

where matrix B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) and its

determinant can be obtained fromTheorem 9

det1198611015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(45)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(46)

In addition

det Γ = (minus1)119899(119899minus1)2 (47)

so the determinant of matrix L is

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(48)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(49)

5 Determinants of the RFP119903L119903R and RLP119903F119903LCirculant Matrix with the Pell Numbers

Theorem 11 If C = RFP119903LRcirc119903fr(1198750 1198751 119875

119899minus1) then

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(50)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(51)

Proof Thematrix C can be written as

C =(

(

1198750

1198751

sdot sdot sdot 119875119899minus1

119903119875119899minus1

1198750+ 119903119875119899minus1

1198751

119875119899minus2

119903119875119899minus1

+ 119903119875119899minus2

d

1199031198752

sdot sdot sdot 1198751

1199031198751

1199031198752+ 1199031198751

sdot sdot sdot 1198750+ 119903119875119899minus1

)

)119899times119899

(52)

Using Lemma 3 the determinant of C is

detC =

119899

prod

119896=1

(1198750+ 1198751120576119896+ sdot sdot sdot + 119875

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

1205721minus 1205731

1205721minus 1205731

120576119896+ sdot sdot sdot +

120572119899minus1

1minus 120573119899minus1

1

1205721minus 1205731

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119875119899minus1

1205762

119896+ (1 minus 119903119875

119899minus1minus 119903119875119899) 120576119896minus 119903119875119899

1 minus 2120576119896minus 1205762

119896

(53)

Abstract and Applied Analysis 7

According to Lemma 4 we can get

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(54)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(55)

Using the method in Theorem 11 similarly we also havethe following

Theorem 12 If C1015840 = RFP119903LRcirc119903fr(119875119899minus1

119875119899minus2

1198750) then

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(56)

Theorem 13 If P = RLP119903FLcirc119903fr(1198750 1198751 119875

119899minus1) then one

has

detP =

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(57)

Proof Thematrix P can be written as

P =(

(

1198750

sdot sdot sdot 119875119899minus2

119875119899minus1

1198751

c 119875119899minus1

+ 1199031198750

1199031198750

c 1199031198750+ 1199031198751

119875119899minus2

c 119903119875

119899minus3

119875119899minus1

+ 1199031198750sdot sdot sdot 119903119875

119899minus3+ 119903119875119899minus2

119903119875119899minus2

)

)

= (

119875119899minus1

119875119899minus2

sdot sdot sdot 1198750

1199031198750

119875119899minus1

+ 1199031198750

sdot sdot sdot 1198751

d

119903119875119899minus2

119903119875119899minus3

+ 119903119875119899minus2

sdot sdot sdot 119875119899minus1

+ 1199031198750

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

)

(58)

Then we can get

detP = detC1015840 det Γ (59)

where C1015840 = RFPLRcircfr(119875119899minus1

119875119899minus2

1198750) and its determi-

nant could be obtained throughTheorem 12 namely

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(60)

det Γ = (minus1)119899(119899minus1)2 (61)

So

detP = detC1015840 det Γ

=

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(62)

6 Determinants of the RFP119903L119903R andRLP119903F119903L Circulant Matrix with thePell-Lucas Numbers

Theorem 14 If D = RFP119903LRcirc119903fr(1198760 1198761 119876

119899minus1) then

one has

detD =

(2 minus 119903119876119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

(2 minus 119903119876119899) (119892119899minus1

5+ ℎ119899minus1

5) minus 119903119876

119899minus1(119892119899

5+ ℎ119899

5) minus 4119903

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899

119876119899minus1

119899minus1

(63)

where

1198925=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

+

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

ℎ5=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

minus

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

(64)

Proof Themethod is similar to Theorem 11

Certainly we can get the following theorem

8 Abstract and Applied Analysis

Theorem 15 If D1015840 = RFP119903LRcirc119903fr(119876119899minus1

1198761 1198760) then

one gets

detD1015840 =(minus2119903 minus 119903119876

119899minus1)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032 (65)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(66)

Theorem 16 IfQ = RLP119903LFcirc119903fr(1198760 1198761 119876

119899minus1) then

detQ =

(minus2119903 minus 119903119876119899minus1

)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032(minus1)119899(119899minus1)2

(67)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(68)

7 Conclusion

Thedeterminant problems of the RFP119903L119903R circulantmatricesand RLP119903F119903L circulant matrices involving the FibonacciLucas Pell and Pell-Lucas number are considered in thispaperThe explicit determinants are presented by using someterms of these numbers

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by the Development Project ofScience amp Technology of Shandong Province (Grant no2012GGX10115) and NSFC (Grant no 11301252) and theAMEP of Linyi University China

References

[1] F-R Lin and H-X Yang ldquoA fast stationary iterative methodfor a partial integro-differential equation in pricing optionsrdquoCalcolo vol 50 no 4 pp 313ndash327 2013

[2] S-L Lei and H-W Sun ldquoA circulant preconditioner for frac-tional diffusion equationsrdquo Journal of Computational Physicsvol 242 pp 715ndash725 2013

[3] P E Kloeden A Neuenkirch and R Pavani ldquoMultilevelMonte Carlo for stochastic differential equations with additivefractional noiserdquo Annals of Operations Research vol 189 pp255ndash276 2011

[4] C Zhang H Chen and L Wang ldquoStrang-type preconditionersapplied to ordinary and neutral differential-algebraic equa-tionsrdquo Numerical Linear Algebra with Applications vol 18 no5 pp 843ndash855 2011

[5] E W Sachs and A K Strauss ldquoEfficient solution of a partialintegro-differential equation in financerdquo Applied NumericalMathematics An IMACS Journal vol 58 no 11 pp 1687ndash17032008

[6] E Ahmed and A S Elgazzar ldquoOn fractional order differentialequations model for nonlocal epidemicsrdquo Physica A StatisticalMechanics and its Applications vol 379 no 2 pp 607ndash614 2007

[7] J Wu and X Zou ldquoAsymptotic and periodic boundary valueproblems of mixed FDEs and wave solutions of lattice differ-ential equationsrdquo Journal of Differential Equations vol 135 no2 pp 315ndash357 1997

[8] P J Davis Circulant Matrices John Wiley amp Sons New YorkNY USA 1979

[9] Z L Jiang and Z X Zhou Circulant Matrices ChengduTechnology University Chengdu China 1999

[10] Z L Jiang ldquoOn the minimal polynomials and the inversesof multilevel scaled factor circulant matricesrdquo Abstract andApplied Analysis vol 2014 Article ID 521643 10 pages 2014

[11] Z Jiang T Xu and F Lu ldquoIsomorphic operators and functionalequations for the skew-circulant algebrardquo Abstract and AppliedAnalysis vol 2014 Article ID 418194 8 pages 2014

[12] Z Jiang Y Gong and Y Gao ldquoInvertibility and explicitinverses of circulant-type matrices with 119896-Fibonacci and 119896-Lucas numbersrdquoAbstract andAppliedAnalysis vol 2014 ArticleID 238953 9 pages 2014

[13] J Li Z Jiang and F Lu ldquoDeterminants norms and the spreadof circulant matrices with tribonacci and generalized Lucasnumbersrdquo Abstract and Applied Analysis vol 2014 Article ID381829 9 pages 2014

[14] D Chillag ldquoRegular representations of semisimple algebrasseparable field extensions group characters generalized cir-culants and generalized cyclic codesrdquo Linear Algebra and itsApplications vol 218 pp 147ndash183 1995

[15] Z-L Jiang and Z-B Xu ldquoEfficient algorithm for finding theinverse and the group inverse of FLS 119903-circulantmatrixrdquo Journalof Applied Mathematics amp Computing vol 18 no 1-2 pp 45ndash572005

[16] Z L Jiang and D H Sun ldquoFast algorithms for solving theinverse problem of Ax = brdquo in Proceedings of the 8th Inter-national Conference on Matrix Theory and Its Applications inChina pp 121Cndash124C 2008

[17] J Li Z Jiang and N Shen ldquoExplicit determinants of theFibonacci RFPLR circulant and Lucas RFPLR circulant matrixrdquoJP Journal of Algebra Number Theory and Applications vol 28no 2 pp 167ndash179 2013

[18] Z P Tian ldquoFast algorithm for solving the first-plus last-circulantlinear systemrdquo Journal of Shandong University Natural Sciencevol 46 no 12 pp 96ndash103 2011

[19] N Shen Z L Jiang and J Li ldquoOn explicit determinants ofthe RFMLR and RLMFL circulant matrices involving certain

Abstract and Applied Analysis 9

famous numbersrdquoWSEAS Transactions onMathematics vol 12no 1 pp 42ndash53 2013

[20] Z Tian ldquoFast algorithms for solving the inverse problem of119860119883 = 119887 in four different families of patterned matricesrdquo FarEast Journal of AppliedMathematics vol 52 no 1 pp 1ndash12 2011

[21] D V Jaiswal ldquoOn determinants involving generalized Fibonaccinumbersrdquo The Fibonacci Quarterly Official Organ of theFibonacci Association vol 7 pp 319ndash330 1969

[22] L Dazheng ldquoFibonacci-Lucas quasi-cyclic matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 280ndash286 2002

[23] D A Lind ldquoA Fibonacci circulantrdquo The Fibonacci QuarterlyOfficial Organ of the Fibonacci Association vol 8 no 5 pp 449ndash455 1970

[24] S-Q Shen J-M Cen and Y Hao ldquoOn the determinantsand inverses of circulant matrices with Fibonacci and Lucasnumbersrdquo Applied Mathematics and Computation vol 217 no23 pp 9790ndash9797 2011

[25] MAkbulak andD Bozkurt ldquoOn the norms of Toeplitzmatricesinvolving Fibonacci and Lucas numbersrdquo Hacettepe Journal ofMathematics and Statistics vol 37 no 2 pp 89ndash95 2008

[26] G-Y Lee J-S Kim and S-G Lee ldquoFactorizations and eigen-values of Fibonacci and symmetric Fibonacci matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 203ndash211 2002

[27] M Miladinovic and P Stanimirovic ldquoSingular case of gener-alized Fibonacci and Lucas matricesrdquo Journal of the KoreanMathematical Society vol 48 no 1 pp 33ndash48 2011

[28] P Stanimirovic J Nikolov and I Stanimirovic ldquoA generaliza-tion of Fibonacci and Lucas matricesrdquo Discrete Applied Math-ematics The Journal of Combinatorial Algorithms Informaticsand Computational Sciences vol 156 no 14 pp 2606ndash26192008

[29] Z Zhang and Y Zhang ldquoThe Lucas matrix and some combina-torial identitiesrdquo Indian Journal of Pure and Applied Mathemat-ics vol 38 no 5 pp 457ndash465 2007

[30] F Yilmaz and D Bozkurt ldquoHessenberg matrices and the Pelland Perrin numbersrdquo Journal of Number Theory vol 131 no 8pp 1390ndash1396 2011

[31] J Blumlein D J Broadhurst and J A M Vermaseren ldquoThemultiple zeta value data minerdquo Computer Physics Communica-tions vol 181 no 3 pp 582ndash625 2010

[32] M Janjic ldquoDeterminants and recurrence sequencesrdquo Journal ofInteger Sequences vol 15 no 3 pp 1ndash2 2012

[33] M Elia ldquoDerived sequences the Tribonacci recurrence andcubic formsrdquoTheFibonacci QuarterlyTheOfficial Journal of theFibonacci Association vol 39 no 2 pp 107ndash115 2001

[34] R Melham ldquoSums involving Fibonacci and Pell numbersrdquoPortugaliae Mathematica vol 56 no 3 pp 309ndash317 1999

[35] Y Yazlik and N Taskara ldquoA note on generalized 119896-Horadamsequencerdquo Computers ampMathematics with Applications vol 63no 1 pp 36ndash41 2012

[36] E Kılıc ldquoThe generalized Pell (119901 119894)-numbers and their Binetformulas combinatorial representations sumsrdquo Chaos Solitonsamp Fractals vol 40 no 4 pp 2047ndash2063 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

6 Abstract and Applied Analysis

Proof Thematrix L can be written as

L = (

1198710

sdot sdot sdot 119871119899minus2

119871119899minus1

1198711

sdot sdot sdot 119871119899minus1

+ 1199031198710

1199031198710

d

119871119899minus2

sdot sdot sdot 119903119871119899minus4

+ 119903119871119899minus3

119903119871119899minus3

119871119899minus1

minus 1199031198710sdot sdot sdot 119903119871

119899minus3+ 119903119871119899minus2

119903119871119899minus2

)

= (

119871119899minus1

119871119899minus2

sdot sdot sdot 1198710

1199031198710

119871119899minus1

+ 1199031198710

sdot sdot sdot 1198711

d

119903119871119899minus3

119903119871119899minus4

+ 119903119871119899minus3

sdot sdot sdot 119871119899minus2

119903119871119899minus2

119903119871119899minus3

+ 119903119871119899minus2

sdot sdot sdot 119871119899minus1

+ 1199031198710

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

) = B1015840

Γ

(43)

Thus we have

detL = detB1015840 det Γ (44)

where matrix B1015840 = RFP119903LRcirc119903fr(119871119899minus1

1198710) and its

determinant can be obtained fromTheorem 9

det1198611015840 =(minus119903 minus 119871

119899minus1)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(45)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(46)

In addition

det Γ = (minus1)119899(119899minus1)2 (47)

so the determinant of matrix L is

detL =

(minus119903 minus 119871119899minus1

)119899

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

(119903 + 119871119899minus1

) (119892119899minus1

3+ ℎ119899minus1

3)

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

(minus1)119899(119899minus1)2

+

2119899minus1

119903119899

[minus2119903 (119892119899

3+ ℎ119899

3) + 119903 (119871

119899minus 119871119899minus1

)]

(minus1)119899

+ 119903119871119899minus1

minus 119903119871119899+ 1199032

times (minus1)119899(119899minus1)2

(48)

where

1198923=

119871119899minus 119903 + radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

ℎ3=

119871119899minus 119903 minus radic(119903 minus 119871

119899)2

+ 8119903 (119903 + 119871119899minus1

)

4119903

(49)

5 Determinants of the RFP119903L119903R and RLP119903F119903LCirculant Matrix with the Pell Numbers

Theorem 11 If C = RFP119903LRcirc119903fr(1198750 1198751 119875

119899minus1) then

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(50)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(51)

Proof Thematrix C can be written as

C =(

(

1198750

1198751

sdot sdot sdot 119875119899minus1

119903119875119899minus1

1198750+ 119903119875119899minus1

1198751

119875119899minus2

119903119875119899minus1

+ 119903119875119899minus2

d

1199031198752

sdot sdot sdot 1198751

1199031198751

1199031198752+ 1199031198751

sdot sdot sdot 1198750+ 119903119875119899minus1

)

)119899times119899

(52)

Using Lemma 3 the determinant of C is

detC =

119899

prod

119896=1

(1198750+ 1198751120576119896+ sdot sdot sdot + 119875

119899minus1120576119899minus1

119896)

=

119899

prod

119896=1

(

1205721minus 1205731

1205721minus 1205731

120576119896+ sdot sdot sdot +

120572119899minus1

1minus 120573119899minus1

1

1205721minus 1205731

120576119899minus1

119896)

=

119899

prod

119896=1

minus119903119875119899minus1

1205762

119896+ (1 minus 119903119875

119899minus1minus 119903119875119899) 120576119896minus 119903119875119899

1 minus 2120576119896minus 1205762

119896

(53)

Abstract and Applied Analysis 7

According to Lemma 4 we can get

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(54)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(55)

Using the method in Theorem 11 similarly we also havethe following

Theorem 12 If C1015840 = RFP119903LRcirc119903fr(119875119899minus1

119875119899minus2

1198750) then

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(56)

Theorem 13 If P = RLP119903FLcirc119903fr(1198750 1198751 119875

119899minus1) then one

has

detP =

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(57)

Proof Thematrix P can be written as

P =(

(

1198750

sdot sdot sdot 119875119899minus2

119875119899minus1

1198751

c 119875119899minus1

+ 1199031198750

1199031198750

c 1199031198750+ 1199031198751

119875119899minus2

c 119903119875

119899minus3

119875119899minus1

+ 1199031198750sdot sdot sdot 119903119875

119899minus3+ 119903119875119899minus2

119903119875119899minus2

)

)

= (

119875119899minus1

119875119899minus2

sdot sdot sdot 1198750

1199031198750

119875119899minus1

+ 1199031198750

sdot sdot sdot 1198751

d

119903119875119899minus2

119903119875119899minus3

+ 119903119875119899minus2

sdot sdot sdot 119875119899minus1

+ 1199031198750

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

)

(58)

Then we can get

detP = detC1015840 det Γ (59)

where C1015840 = RFPLRcircfr(119875119899minus1

119875119899minus2

1198750) and its determi-

nant could be obtained throughTheorem 12 namely

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(60)

det Γ = (minus1)119899(119899minus1)2 (61)

So

detP = detC1015840 det Γ

=

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(62)

6 Determinants of the RFP119903L119903R andRLP119903F119903L Circulant Matrix with thePell-Lucas Numbers

Theorem 14 If D = RFP119903LRcirc119903fr(1198760 1198761 119876

119899minus1) then

one has

detD =

(2 minus 119903119876119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

(2 minus 119903119876119899) (119892119899minus1

5+ ℎ119899minus1

5) minus 119903119876

119899minus1(119892119899

5+ ℎ119899

5) minus 4119903

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899

119876119899minus1

119899minus1

(63)

where

1198925=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

+

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

ℎ5=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

minus

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

(64)

Proof Themethod is similar to Theorem 11

Certainly we can get the following theorem

8 Abstract and Applied Analysis

Theorem 15 If D1015840 = RFP119903LRcirc119903fr(119876119899minus1

1198761 1198760) then

one gets

detD1015840 =(minus2119903 minus 119903119876

119899minus1)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032 (65)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(66)

Theorem 16 IfQ = RLP119903LFcirc119903fr(1198760 1198761 119876

119899minus1) then

detQ =

(minus2119903 minus 119903119876119899minus1

)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032(minus1)119899(119899minus1)2

(67)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(68)

7 Conclusion

Thedeterminant problems of the RFP119903L119903R circulantmatricesand RLP119903F119903L circulant matrices involving the FibonacciLucas Pell and Pell-Lucas number are considered in thispaperThe explicit determinants are presented by using someterms of these numbers

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by the Development Project ofScience amp Technology of Shandong Province (Grant no2012GGX10115) and NSFC (Grant no 11301252) and theAMEP of Linyi University China

References

[1] F-R Lin and H-X Yang ldquoA fast stationary iterative methodfor a partial integro-differential equation in pricing optionsrdquoCalcolo vol 50 no 4 pp 313ndash327 2013

[2] S-L Lei and H-W Sun ldquoA circulant preconditioner for frac-tional diffusion equationsrdquo Journal of Computational Physicsvol 242 pp 715ndash725 2013

[3] P E Kloeden A Neuenkirch and R Pavani ldquoMultilevelMonte Carlo for stochastic differential equations with additivefractional noiserdquo Annals of Operations Research vol 189 pp255ndash276 2011

[4] C Zhang H Chen and L Wang ldquoStrang-type preconditionersapplied to ordinary and neutral differential-algebraic equa-tionsrdquo Numerical Linear Algebra with Applications vol 18 no5 pp 843ndash855 2011

[5] E W Sachs and A K Strauss ldquoEfficient solution of a partialintegro-differential equation in financerdquo Applied NumericalMathematics An IMACS Journal vol 58 no 11 pp 1687ndash17032008

[6] E Ahmed and A S Elgazzar ldquoOn fractional order differentialequations model for nonlocal epidemicsrdquo Physica A StatisticalMechanics and its Applications vol 379 no 2 pp 607ndash614 2007

[7] J Wu and X Zou ldquoAsymptotic and periodic boundary valueproblems of mixed FDEs and wave solutions of lattice differ-ential equationsrdquo Journal of Differential Equations vol 135 no2 pp 315ndash357 1997

[8] P J Davis Circulant Matrices John Wiley amp Sons New YorkNY USA 1979

[9] Z L Jiang and Z X Zhou Circulant Matrices ChengduTechnology University Chengdu China 1999

[10] Z L Jiang ldquoOn the minimal polynomials and the inversesof multilevel scaled factor circulant matricesrdquo Abstract andApplied Analysis vol 2014 Article ID 521643 10 pages 2014

[11] Z Jiang T Xu and F Lu ldquoIsomorphic operators and functionalequations for the skew-circulant algebrardquo Abstract and AppliedAnalysis vol 2014 Article ID 418194 8 pages 2014

[12] Z Jiang Y Gong and Y Gao ldquoInvertibility and explicitinverses of circulant-type matrices with 119896-Fibonacci and 119896-Lucas numbersrdquoAbstract andAppliedAnalysis vol 2014 ArticleID 238953 9 pages 2014

[13] J Li Z Jiang and F Lu ldquoDeterminants norms and the spreadof circulant matrices with tribonacci and generalized Lucasnumbersrdquo Abstract and Applied Analysis vol 2014 Article ID381829 9 pages 2014

[14] D Chillag ldquoRegular representations of semisimple algebrasseparable field extensions group characters generalized cir-culants and generalized cyclic codesrdquo Linear Algebra and itsApplications vol 218 pp 147ndash183 1995

[15] Z-L Jiang and Z-B Xu ldquoEfficient algorithm for finding theinverse and the group inverse of FLS 119903-circulantmatrixrdquo Journalof Applied Mathematics amp Computing vol 18 no 1-2 pp 45ndash572005

[16] Z L Jiang and D H Sun ldquoFast algorithms for solving theinverse problem of Ax = brdquo in Proceedings of the 8th Inter-national Conference on Matrix Theory and Its Applications inChina pp 121Cndash124C 2008

[17] J Li Z Jiang and N Shen ldquoExplicit determinants of theFibonacci RFPLR circulant and Lucas RFPLR circulant matrixrdquoJP Journal of Algebra Number Theory and Applications vol 28no 2 pp 167ndash179 2013

[18] Z P Tian ldquoFast algorithm for solving the first-plus last-circulantlinear systemrdquo Journal of Shandong University Natural Sciencevol 46 no 12 pp 96ndash103 2011

[19] N Shen Z L Jiang and J Li ldquoOn explicit determinants ofthe RFMLR and RLMFL circulant matrices involving certain

Abstract and Applied Analysis 9

famous numbersrdquoWSEAS Transactions onMathematics vol 12no 1 pp 42ndash53 2013

[20] Z Tian ldquoFast algorithms for solving the inverse problem of119860119883 = 119887 in four different families of patterned matricesrdquo FarEast Journal of AppliedMathematics vol 52 no 1 pp 1ndash12 2011

[21] D V Jaiswal ldquoOn determinants involving generalized Fibonaccinumbersrdquo The Fibonacci Quarterly Official Organ of theFibonacci Association vol 7 pp 319ndash330 1969

[22] L Dazheng ldquoFibonacci-Lucas quasi-cyclic matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 280ndash286 2002

[23] D A Lind ldquoA Fibonacci circulantrdquo The Fibonacci QuarterlyOfficial Organ of the Fibonacci Association vol 8 no 5 pp 449ndash455 1970

[24] S-Q Shen J-M Cen and Y Hao ldquoOn the determinantsand inverses of circulant matrices with Fibonacci and Lucasnumbersrdquo Applied Mathematics and Computation vol 217 no23 pp 9790ndash9797 2011

[25] MAkbulak andD Bozkurt ldquoOn the norms of Toeplitzmatricesinvolving Fibonacci and Lucas numbersrdquo Hacettepe Journal ofMathematics and Statistics vol 37 no 2 pp 89ndash95 2008

[26] G-Y Lee J-S Kim and S-G Lee ldquoFactorizations and eigen-values of Fibonacci and symmetric Fibonacci matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 203ndash211 2002

[27] M Miladinovic and P Stanimirovic ldquoSingular case of gener-alized Fibonacci and Lucas matricesrdquo Journal of the KoreanMathematical Society vol 48 no 1 pp 33ndash48 2011

[28] P Stanimirovic J Nikolov and I Stanimirovic ldquoA generaliza-tion of Fibonacci and Lucas matricesrdquo Discrete Applied Math-ematics The Journal of Combinatorial Algorithms Informaticsand Computational Sciences vol 156 no 14 pp 2606ndash26192008

[29] Z Zhang and Y Zhang ldquoThe Lucas matrix and some combina-torial identitiesrdquo Indian Journal of Pure and Applied Mathemat-ics vol 38 no 5 pp 457ndash465 2007

[30] F Yilmaz and D Bozkurt ldquoHessenberg matrices and the Pelland Perrin numbersrdquo Journal of Number Theory vol 131 no 8pp 1390ndash1396 2011

[31] J Blumlein D J Broadhurst and J A M Vermaseren ldquoThemultiple zeta value data minerdquo Computer Physics Communica-tions vol 181 no 3 pp 582ndash625 2010

[32] M Janjic ldquoDeterminants and recurrence sequencesrdquo Journal ofInteger Sequences vol 15 no 3 pp 1ndash2 2012

[33] M Elia ldquoDerived sequences the Tribonacci recurrence andcubic formsrdquoTheFibonacci QuarterlyTheOfficial Journal of theFibonacci Association vol 39 no 2 pp 107ndash115 2001

[34] R Melham ldquoSums involving Fibonacci and Pell numbersrdquoPortugaliae Mathematica vol 56 no 3 pp 309ndash317 1999

[35] Y Yazlik and N Taskara ldquoA note on generalized 119896-Horadamsequencerdquo Computers ampMathematics with Applications vol 63no 1 pp 36ndash41 2012

[36] E Kılıc ldquoThe generalized Pell (119901 119894)-numbers and their Binetformulas combinatorial representations sumsrdquo Chaos Solitonsamp Fractals vol 40 no 4 pp 2047ndash2063 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

Abstract and Applied Analysis 7

According to Lemma 4 we can get

detC =

(minus119903119875119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

[119875119899(119892119899minus1

4+ ℎ119899minus1

4) + 119875119899minus1

(119892119899

4+ ℎ119899

4) minus 1]

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899+1

119875119899minus1

119899minus1

(54)

where

1198924=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

+

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

ℎ4=

119903119875119899minus1

+ 119903119875119899minus 1

minus2119903119875119899minus1

minus

radic1199032(119875119899minus 119875119899minus1

)2

minus 2119903 (119875119899+ 119875119899minus1

) + 1

minus2119903119875119899minus1

(55)

Using the method in Theorem 11 similarly we also havethe following

Theorem 12 If C1015840 = RFP119903LRcirc119903fr(119875119899minus1

119875119899minus2

1198750) then

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(56)

Theorem 13 If P = RLP119903FLcirc119903fr(1198750 1198751 119875

119899minus1) then one

has

detP =

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(57)

Proof Thematrix P can be written as

P =(

(

1198750

sdot sdot sdot 119875119899minus2

119875119899minus1

1198751

c 119875119899minus1

+ 1199031198750

1199031198750

c 1199031198750+ 1199031198751

119875119899minus2

c 119903119875

119899minus3

119875119899minus1

+ 1199031198750sdot sdot sdot 119903119875

119899minus3+ 119903119875119899minus2

119903119875119899minus2

)

)

= (

119875119899minus1

119875119899minus2

sdot sdot sdot 1198750

1199031198750

119875119899minus1

+ 1199031198750

sdot sdot sdot 1198751

d

119903119875119899minus2

119903119875119899minus3

+ 119903119875119899minus2

sdot sdot sdot 119875119899minus1

+ 1199031198750

)

times(

0 0 sdot sdot sdot 0 1

0 sdot sdot sdot 0 1 0

c c c

0 1 0 sdot sdot sdot 0

1 0 0 sdot sdot sdot 0

)

(58)

Then we can get

detP = detC1015840 det Γ (59)

where C1015840 = RFPLRcircfr(119875119899minus1

119875119899minus2

1198750) and its determi-

nant could be obtained throughTheorem 12 namely

detC1015840 =(119903 minus 119875

119899minus1)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

(60)

det Γ = (minus1)119899(119899minus1)2 (61)

So

detP = detC1015840 det Γ

=

(119903 minus 119875119899minus1

)119899

minus (119875119899minus 119903)119899minus1

(119903119875119899minus 119903119875119899minus1

)

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032

times (minus1)119899(119899minus1)2

(62)

6 Determinants of the RFP119903L119903R andRLP119903F119903L Circulant Matrix with thePell-Lucas Numbers

Theorem 14 If D = RFP119903LRcirc119903fr(1198760 1198761 119876

119899minus1) then

one has

detD =

(2 minus 119903119876119899)119899

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

+

(2 minus 119903119876119899) (119892119899minus1

5+ ℎ119899minus1

5) minus 119903119876

119899minus1(119892119899

5+ ℎ119899

5) minus 4119903

1 minus 119903119876119899minus1

minus 119903119876119899+ 2(minus1)

119899minus1

1199032

times (minus119903)119899

119876119899minus1

119899minus1

(63)

where

1198925=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

+

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

ℎ5=

2 + 119903119876119899minus1

+ 119903119876119899

minus2119903119876119899minus1

minus

radic1199032(119876119899minus 119876119899minus1

)2

+ 12119903119876119899minus1

+ 4119903119876119899+ 4

minus2119903119876119899minus1

(64)

Proof Themethod is similar to Theorem 11

Certainly we can get the following theorem

8 Abstract and Applied Analysis

Theorem 15 If D1015840 = RFP119903LRcirc119903fr(119876119899minus1

1198761 1198760) then

one gets

detD1015840 =(minus2119903 minus 119903119876

119899minus1)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032 (65)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(66)

Theorem 16 IfQ = RLP119903LFcirc119903fr(1198760 1198761 119876

119899minus1) then

detQ =

(minus2119903 minus 119903119876119899minus1

)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032(minus1)119899(119899minus1)2

(67)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(68)

7 Conclusion

Thedeterminant problems of the RFP119903L119903R circulantmatricesand RLP119903F119903L circulant matrices involving the FibonacciLucas Pell and Pell-Lucas number are considered in thispaperThe explicit determinants are presented by using someterms of these numbers

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by the Development Project ofScience amp Technology of Shandong Province (Grant no2012GGX10115) and NSFC (Grant no 11301252) and theAMEP of Linyi University China

References

[1] F-R Lin and H-X Yang ldquoA fast stationary iterative methodfor a partial integro-differential equation in pricing optionsrdquoCalcolo vol 50 no 4 pp 313ndash327 2013

[2] S-L Lei and H-W Sun ldquoA circulant preconditioner for frac-tional diffusion equationsrdquo Journal of Computational Physicsvol 242 pp 715ndash725 2013

[3] P E Kloeden A Neuenkirch and R Pavani ldquoMultilevelMonte Carlo for stochastic differential equations with additivefractional noiserdquo Annals of Operations Research vol 189 pp255ndash276 2011

[4] C Zhang H Chen and L Wang ldquoStrang-type preconditionersapplied to ordinary and neutral differential-algebraic equa-tionsrdquo Numerical Linear Algebra with Applications vol 18 no5 pp 843ndash855 2011

[5] E W Sachs and A K Strauss ldquoEfficient solution of a partialintegro-differential equation in financerdquo Applied NumericalMathematics An IMACS Journal vol 58 no 11 pp 1687ndash17032008

[6] E Ahmed and A S Elgazzar ldquoOn fractional order differentialequations model for nonlocal epidemicsrdquo Physica A StatisticalMechanics and its Applications vol 379 no 2 pp 607ndash614 2007

[7] J Wu and X Zou ldquoAsymptotic and periodic boundary valueproblems of mixed FDEs and wave solutions of lattice differ-ential equationsrdquo Journal of Differential Equations vol 135 no2 pp 315ndash357 1997

[8] P J Davis Circulant Matrices John Wiley amp Sons New YorkNY USA 1979

[9] Z L Jiang and Z X Zhou Circulant Matrices ChengduTechnology University Chengdu China 1999

[10] Z L Jiang ldquoOn the minimal polynomials and the inversesof multilevel scaled factor circulant matricesrdquo Abstract andApplied Analysis vol 2014 Article ID 521643 10 pages 2014

[11] Z Jiang T Xu and F Lu ldquoIsomorphic operators and functionalequations for the skew-circulant algebrardquo Abstract and AppliedAnalysis vol 2014 Article ID 418194 8 pages 2014

[12] Z Jiang Y Gong and Y Gao ldquoInvertibility and explicitinverses of circulant-type matrices with 119896-Fibonacci and 119896-Lucas numbersrdquoAbstract andAppliedAnalysis vol 2014 ArticleID 238953 9 pages 2014

[13] J Li Z Jiang and F Lu ldquoDeterminants norms and the spreadof circulant matrices with tribonacci and generalized Lucasnumbersrdquo Abstract and Applied Analysis vol 2014 Article ID381829 9 pages 2014

[14] D Chillag ldquoRegular representations of semisimple algebrasseparable field extensions group characters generalized cir-culants and generalized cyclic codesrdquo Linear Algebra and itsApplications vol 218 pp 147ndash183 1995

[15] Z-L Jiang and Z-B Xu ldquoEfficient algorithm for finding theinverse and the group inverse of FLS 119903-circulantmatrixrdquo Journalof Applied Mathematics amp Computing vol 18 no 1-2 pp 45ndash572005

[16] Z L Jiang and D H Sun ldquoFast algorithms for solving theinverse problem of Ax = brdquo in Proceedings of the 8th Inter-national Conference on Matrix Theory and Its Applications inChina pp 121Cndash124C 2008

[17] J Li Z Jiang and N Shen ldquoExplicit determinants of theFibonacci RFPLR circulant and Lucas RFPLR circulant matrixrdquoJP Journal of Algebra Number Theory and Applications vol 28no 2 pp 167ndash179 2013

[18] Z P Tian ldquoFast algorithm for solving the first-plus last-circulantlinear systemrdquo Journal of Shandong University Natural Sciencevol 46 no 12 pp 96ndash103 2011

[19] N Shen Z L Jiang and J Li ldquoOn explicit determinants ofthe RFMLR and RLMFL circulant matrices involving certain

Abstract and Applied Analysis 9

famous numbersrdquoWSEAS Transactions onMathematics vol 12no 1 pp 42ndash53 2013

[20] Z Tian ldquoFast algorithms for solving the inverse problem of119860119883 = 119887 in four different families of patterned matricesrdquo FarEast Journal of AppliedMathematics vol 52 no 1 pp 1ndash12 2011

[21] D V Jaiswal ldquoOn determinants involving generalized Fibonaccinumbersrdquo The Fibonacci Quarterly Official Organ of theFibonacci Association vol 7 pp 319ndash330 1969

[22] L Dazheng ldquoFibonacci-Lucas quasi-cyclic matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 280ndash286 2002

[23] D A Lind ldquoA Fibonacci circulantrdquo The Fibonacci QuarterlyOfficial Organ of the Fibonacci Association vol 8 no 5 pp 449ndash455 1970

[24] S-Q Shen J-M Cen and Y Hao ldquoOn the determinantsand inverses of circulant matrices with Fibonacci and Lucasnumbersrdquo Applied Mathematics and Computation vol 217 no23 pp 9790ndash9797 2011

[25] MAkbulak andD Bozkurt ldquoOn the norms of Toeplitzmatricesinvolving Fibonacci and Lucas numbersrdquo Hacettepe Journal ofMathematics and Statistics vol 37 no 2 pp 89ndash95 2008

[26] G-Y Lee J-S Kim and S-G Lee ldquoFactorizations and eigen-values of Fibonacci and symmetric Fibonacci matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 203ndash211 2002

[27] M Miladinovic and P Stanimirovic ldquoSingular case of gener-alized Fibonacci and Lucas matricesrdquo Journal of the KoreanMathematical Society vol 48 no 1 pp 33ndash48 2011

[28] P Stanimirovic J Nikolov and I Stanimirovic ldquoA generaliza-tion of Fibonacci and Lucas matricesrdquo Discrete Applied Math-ematics The Journal of Combinatorial Algorithms Informaticsand Computational Sciences vol 156 no 14 pp 2606ndash26192008

[29] Z Zhang and Y Zhang ldquoThe Lucas matrix and some combina-torial identitiesrdquo Indian Journal of Pure and Applied Mathemat-ics vol 38 no 5 pp 457ndash465 2007

[30] F Yilmaz and D Bozkurt ldquoHessenberg matrices and the Pelland Perrin numbersrdquo Journal of Number Theory vol 131 no 8pp 1390ndash1396 2011

[31] J Blumlein D J Broadhurst and J A M Vermaseren ldquoThemultiple zeta value data minerdquo Computer Physics Communica-tions vol 181 no 3 pp 582ndash625 2010

[32] M Janjic ldquoDeterminants and recurrence sequencesrdquo Journal ofInteger Sequences vol 15 no 3 pp 1ndash2 2012

[33] M Elia ldquoDerived sequences the Tribonacci recurrence andcubic formsrdquoTheFibonacci QuarterlyTheOfficial Journal of theFibonacci Association vol 39 no 2 pp 107ndash115 2001

[34] R Melham ldquoSums involving Fibonacci and Pell numbersrdquoPortugaliae Mathematica vol 56 no 3 pp 309ndash317 1999

[35] Y Yazlik and N Taskara ldquoA note on generalized 119896-Horadamsequencerdquo Computers ampMathematics with Applications vol 63no 1 pp 36ndash41 2012

[36] E Kılıc ldquoThe generalized Pell (119901 119894)-numbers and their Binetformulas combinatorial representations sumsrdquo Chaos Solitonsamp Fractals vol 40 no 4 pp 2047ndash2063 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

8 Abstract and Applied Analysis

Theorem 15 If D1015840 = RFP119903LRcirc119903fr(119876119899minus1

1198761 1198760) then

one gets

detD1015840 =(minus2119903 minus 119903119876

119899minus1)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032 (65)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(66)

Theorem 16 IfQ = RLP119903LFcirc119903fr(1198760 1198761 119876

119899minus1) then

detQ =

(minus2119903 minus 119903119876119899minus1

)119899

minus 2119899minus1

119903119899

119870

(minus1)119899

+ 119903119876119899minus1

minus 119903119876119899+ 21199032(minus1)119899(119899minus1)2

(67)

where

119870 = (minus2119903 minus 119876119899minus1

) (119892119899minus1

6+ ℎ119899minus1

6) + 2119903 (119892

119899

6+ ℎ119899

6)

minus 119903 (119876119899minus 119876119899minus1

)

1198926=

119876119899+ radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

ℎ6=

119876119899minus radic119876

2

119899+ 8119903119876

119899minus1+ 161199032

4119903

(68)

7 Conclusion

Thedeterminant problems of the RFP119903L119903R circulantmatricesand RLP119903F119903L circulant matrices involving the FibonacciLucas Pell and Pell-Lucas number are considered in thispaperThe explicit determinants are presented by using someterms of these numbers

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

This research is supported by the Development Project ofScience amp Technology of Shandong Province (Grant no2012GGX10115) and NSFC (Grant no 11301252) and theAMEP of Linyi University China

References

[1] F-R Lin and H-X Yang ldquoA fast stationary iterative methodfor a partial integro-differential equation in pricing optionsrdquoCalcolo vol 50 no 4 pp 313ndash327 2013

[2] S-L Lei and H-W Sun ldquoA circulant preconditioner for frac-tional diffusion equationsrdquo Journal of Computational Physicsvol 242 pp 715ndash725 2013

[3] P E Kloeden A Neuenkirch and R Pavani ldquoMultilevelMonte Carlo for stochastic differential equations with additivefractional noiserdquo Annals of Operations Research vol 189 pp255ndash276 2011

[4] C Zhang H Chen and L Wang ldquoStrang-type preconditionersapplied to ordinary and neutral differential-algebraic equa-tionsrdquo Numerical Linear Algebra with Applications vol 18 no5 pp 843ndash855 2011

[5] E W Sachs and A K Strauss ldquoEfficient solution of a partialintegro-differential equation in financerdquo Applied NumericalMathematics An IMACS Journal vol 58 no 11 pp 1687ndash17032008

[6] E Ahmed and A S Elgazzar ldquoOn fractional order differentialequations model for nonlocal epidemicsrdquo Physica A StatisticalMechanics and its Applications vol 379 no 2 pp 607ndash614 2007

[7] J Wu and X Zou ldquoAsymptotic and periodic boundary valueproblems of mixed FDEs and wave solutions of lattice differ-ential equationsrdquo Journal of Differential Equations vol 135 no2 pp 315ndash357 1997

[8] P J Davis Circulant Matrices John Wiley amp Sons New YorkNY USA 1979

[9] Z L Jiang and Z X Zhou Circulant Matrices ChengduTechnology University Chengdu China 1999

[10] Z L Jiang ldquoOn the minimal polynomials and the inversesof multilevel scaled factor circulant matricesrdquo Abstract andApplied Analysis vol 2014 Article ID 521643 10 pages 2014

[11] Z Jiang T Xu and F Lu ldquoIsomorphic operators and functionalequations for the skew-circulant algebrardquo Abstract and AppliedAnalysis vol 2014 Article ID 418194 8 pages 2014

[12] Z Jiang Y Gong and Y Gao ldquoInvertibility and explicitinverses of circulant-type matrices with 119896-Fibonacci and 119896-Lucas numbersrdquoAbstract andAppliedAnalysis vol 2014 ArticleID 238953 9 pages 2014

[13] J Li Z Jiang and F Lu ldquoDeterminants norms and the spreadof circulant matrices with tribonacci and generalized Lucasnumbersrdquo Abstract and Applied Analysis vol 2014 Article ID381829 9 pages 2014

[14] D Chillag ldquoRegular representations of semisimple algebrasseparable field extensions group characters generalized cir-culants and generalized cyclic codesrdquo Linear Algebra and itsApplications vol 218 pp 147ndash183 1995

[15] Z-L Jiang and Z-B Xu ldquoEfficient algorithm for finding theinverse and the group inverse of FLS 119903-circulantmatrixrdquo Journalof Applied Mathematics amp Computing vol 18 no 1-2 pp 45ndash572005

[16] Z L Jiang and D H Sun ldquoFast algorithms for solving theinverse problem of Ax = brdquo in Proceedings of the 8th Inter-national Conference on Matrix Theory and Its Applications inChina pp 121Cndash124C 2008

[17] J Li Z Jiang and N Shen ldquoExplicit determinants of theFibonacci RFPLR circulant and Lucas RFPLR circulant matrixrdquoJP Journal of Algebra Number Theory and Applications vol 28no 2 pp 167ndash179 2013

[18] Z P Tian ldquoFast algorithm for solving the first-plus last-circulantlinear systemrdquo Journal of Shandong University Natural Sciencevol 46 no 12 pp 96ndash103 2011

[19] N Shen Z L Jiang and J Li ldquoOn explicit determinants ofthe RFMLR and RLMFL circulant matrices involving certain

Abstract and Applied Analysis 9

famous numbersrdquoWSEAS Transactions onMathematics vol 12no 1 pp 42ndash53 2013

[20] Z Tian ldquoFast algorithms for solving the inverse problem of119860119883 = 119887 in four different families of patterned matricesrdquo FarEast Journal of AppliedMathematics vol 52 no 1 pp 1ndash12 2011

[21] D V Jaiswal ldquoOn determinants involving generalized Fibonaccinumbersrdquo The Fibonacci Quarterly Official Organ of theFibonacci Association vol 7 pp 319ndash330 1969

[22] L Dazheng ldquoFibonacci-Lucas quasi-cyclic matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 280ndash286 2002

[23] D A Lind ldquoA Fibonacci circulantrdquo The Fibonacci QuarterlyOfficial Organ of the Fibonacci Association vol 8 no 5 pp 449ndash455 1970

[24] S-Q Shen J-M Cen and Y Hao ldquoOn the determinantsand inverses of circulant matrices with Fibonacci and Lucasnumbersrdquo Applied Mathematics and Computation vol 217 no23 pp 9790ndash9797 2011

[25] MAkbulak andD Bozkurt ldquoOn the norms of Toeplitzmatricesinvolving Fibonacci and Lucas numbersrdquo Hacettepe Journal ofMathematics and Statistics vol 37 no 2 pp 89ndash95 2008

[26] G-Y Lee J-S Kim and S-G Lee ldquoFactorizations and eigen-values of Fibonacci and symmetric Fibonacci matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 203ndash211 2002

[27] M Miladinovic and P Stanimirovic ldquoSingular case of gener-alized Fibonacci and Lucas matricesrdquo Journal of the KoreanMathematical Society vol 48 no 1 pp 33ndash48 2011

[28] P Stanimirovic J Nikolov and I Stanimirovic ldquoA generaliza-tion of Fibonacci and Lucas matricesrdquo Discrete Applied Math-ematics The Journal of Combinatorial Algorithms Informaticsand Computational Sciences vol 156 no 14 pp 2606ndash26192008

[29] Z Zhang and Y Zhang ldquoThe Lucas matrix and some combina-torial identitiesrdquo Indian Journal of Pure and Applied Mathemat-ics vol 38 no 5 pp 457ndash465 2007

[30] F Yilmaz and D Bozkurt ldquoHessenberg matrices and the Pelland Perrin numbersrdquo Journal of Number Theory vol 131 no 8pp 1390ndash1396 2011

[31] J Blumlein D J Broadhurst and J A M Vermaseren ldquoThemultiple zeta value data minerdquo Computer Physics Communica-tions vol 181 no 3 pp 582ndash625 2010

[32] M Janjic ldquoDeterminants and recurrence sequencesrdquo Journal ofInteger Sequences vol 15 no 3 pp 1ndash2 2012

[33] M Elia ldquoDerived sequences the Tribonacci recurrence andcubic formsrdquoTheFibonacci QuarterlyTheOfficial Journal of theFibonacci Association vol 39 no 2 pp 107ndash115 2001

[34] R Melham ldquoSums involving Fibonacci and Pell numbersrdquoPortugaliae Mathematica vol 56 no 3 pp 309ndash317 1999

[35] Y Yazlik and N Taskara ldquoA note on generalized 119896-Horadamsequencerdquo Computers ampMathematics with Applications vol 63no 1 pp 36ndash41 2012

[36] E Kılıc ldquoThe generalized Pell (119901 119894)-numbers and their Binetformulas combinatorial representations sumsrdquo Chaos Solitonsamp Fractals vol 40 no 4 pp 2047ndash2063 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 9: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

Abstract and Applied Analysis 9

famous numbersrdquoWSEAS Transactions onMathematics vol 12no 1 pp 42ndash53 2013

[20] Z Tian ldquoFast algorithms for solving the inverse problem of119860119883 = 119887 in four different families of patterned matricesrdquo FarEast Journal of AppliedMathematics vol 52 no 1 pp 1ndash12 2011

[21] D V Jaiswal ldquoOn determinants involving generalized Fibonaccinumbersrdquo The Fibonacci Quarterly Official Organ of theFibonacci Association vol 7 pp 319ndash330 1969

[22] L Dazheng ldquoFibonacci-Lucas quasi-cyclic matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 280ndash286 2002

[23] D A Lind ldquoA Fibonacci circulantrdquo The Fibonacci QuarterlyOfficial Organ of the Fibonacci Association vol 8 no 5 pp 449ndash455 1970

[24] S-Q Shen J-M Cen and Y Hao ldquoOn the determinantsand inverses of circulant matrices with Fibonacci and Lucasnumbersrdquo Applied Mathematics and Computation vol 217 no23 pp 9790ndash9797 2011

[25] MAkbulak andD Bozkurt ldquoOn the norms of Toeplitzmatricesinvolving Fibonacci and Lucas numbersrdquo Hacettepe Journal ofMathematics and Statistics vol 37 no 2 pp 89ndash95 2008

[26] G-Y Lee J-S Kim and S-G Lee ldquoFactorizations and eigen-values of Fibonacci and symmetric Fibonacci matricesrdquo TheFibonacci Quarterly The Official Journal of the Fibonacci Asso-ciation vol 40 no 3 pp 203ndash211 2002

[27] M Miladinovic and P Stanimirovic ldquoSingular case of gener-alized Fibonacci and Lucas matricesrdquo Journal of the KoreanMathematical Society vol 48 no 1 pp 33ndash48 2011

[28] P Stanimirovic J Nikolov and I Stanimirovic ldquoA generaliza-tion of Fibonacci and Lucas matricesrdquo Discrete Applied Math-ematics The Journal of Combinatorial Algorithms Informaticsand Computational Sciences vol 156 no 14 pp 2606ndash26192008

[29] Z Zhang and Y Zhang ldquoThe Lucas matrix and some combina-torial identitiesrdquo Indian Journal of Pure and Applied Mathemat-ics vol 38 no 5 pp 457ndash465 2007

[30] F Yilmaz and D Bozkurt ldquoHessenberg matrices and the Pelland Perrin numbersrdquo Journal of Number Theory vol 131 no 8pp 1390ndash1396 2011

[31] J Blumlein D J Broadhurst and J A M Vermaseren ldquoThemultiple zeta value data minerdquo Computer Physics Communica-tions vol 181 no 3 pp 582ndash625 2010

[32] M Janjic ldquoDeterminants and recurrence sequencesrdquo Journal ofInteger Sequences vol 15 no 3 pp 1ndash2 2012

[33] M Elia ldquoDerived sequences the Tribonacci recurrence andcubic formsrdquoTheFibonacci QuarterlyTheOfficial Journal of theFibonacci Association vol 39 no 2 pp 107ndash115 2001

[34] R Melham ldquoSums involving Fibonacci and Pell numbersrdquoPortugaliae Mathematica vol 56 no 3 pp 309ndash317 1999

[35] Y Yazlik and N Taskara ldquoA note on generalized 119896-Horadamsequencerdquo Computers ampMathematics with Applications vol 63no 1 pp 36ndash41 2012

[36] E Kılıc ldquoThe generalized Pell (119901 119894)-numbers and their Binetformulas combinatorial representations sumsrdquo Chaos Solitonsamp Fractals vol 40 no 4 pp 2047ndash2063 2009

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 10: Research Article Explicit Determinants of the RFP R Circulant and RLP Circulant Matrices …downloads.hindawi.com/journals/aaa/2014/647030.pdf · circulant matrices have very nice

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of


Recommended