+ All Categories
Home > Documents > Research Article Fuzzy System of Irrigation Applied to the Growth...

Research Article Fuzzy System of Irrigation Applied to the Growth...

Date post: 03-Sep-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
14
Research Article Fuzzy System of Irrigation Applied to the Growth of Habanero Pepper (Capsicum chinense Jacq.) under Protected Conditions in Yucatan, Mexico Martha Rocio Ceballos, 1,2 Juan Luis Gorricho, 2 Oscar Palma Gamboa, 1 Mónica Karel Huerta, 3,4,5 David Rivas, 6 and Mayra Erazo Rodas 6 1 Information and Communication Technologies, Technological Institute of Conkal, 97345 Conkal, YUC, Mexico 2 Department of Telematics Engineering, Polytechnic University of Catalonia, 08034 Barcelona, Spain 3 Department of Electronic Engineering, Salesian Polytechnic University, EC010105 Cuenca, Ecuador 4 Networks and Applied Telematics Group (GRETA), Sim´ on Bol´ ıvar University, Caracas 89000, Venezuela 5 Prometeo Project Researcher (SENESCYT), Ecuador 6 Department of Electrical and Electronics, Armed Forces University ESPE, EC170501 Sangolqu´ ı, Ecuador Correspondence should be addressed to Martha Rocio Ceballos; [email protected] Received 15 November 2014; Revised 8 March 2015; Accepted 20 April 2015 Academic Editor: Shaojie Tang Copyright © 2015 Martha Rocio Ceballos et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Agriculture is the largest user of water worldwide by using about 70 percent of total consumption. e world food production depends on the availability of water, considering factors such as demographic and climate change, so the use of efficient irrigation is necessary to apply the correct amount of water to crops. e traditional irrigation systems generally program their scheme based on measurements made at Class A evaporimeter pan. In this paper an irrigation scheme defined by an algorithm that automates the amount of water supplied is presented, it considers the consumption of habanero pepper crop, and a fuzzy system evaluates the necessary duration of irrigation. e climatic variables considered are temperature, relative humidity, and soil moisture. e algorithm was programmed in a microcontroller Atmel 328p included in Arduino platform, with the addition of a ZigBee wireless system that allows for monitoring through a PC. e climatic variables were inserted into the fuzzy system by sets of trapezoidal and triangular form and a Mamdani type inference mechanism in which the knowledge of an expert is registered through the fuzzy rules. e system was applied to a habanero pepper crop at Conkal Institute of Technology in Yucatan, Mexico. 1. Introduction Mexico ranks second in volume production of chili peppers and third in area harvested with 2379736 tons and 136132 ha, respectively, engaged with the 7.1% area and 7.6% ton of world production [1]. e fruits of this plant are of great economic importance because there is a wide variety of applications; there is an excellent source of natural dyes, minerals, and vitamins A, C, and E; the mainly substance that is extracted from this crop is capsaicin whose concentration is very high in the variety known as habanero. ere are several regions in Mexico who grow habanero pepper [2]; however, more than 50% of production for domestic and export markets comes from the Yucatan Peninsula, which has provided support for obtaining distinctive “appellation of origin” published in the Official Gazette of the Mexican Federation on June 4, 2010. For production even outside station protected cultivation techniques are used, and the most commonly used structures in protected agriculture are greenhouses, shade mesh, high, and low tunnels. e shadow mesh structure mentioned above is a simple and inexpensive alternative, although very low technology [3]. Environmental variables have, by nature, a complex and nonlinear dynamic. erefore the information processing Hindawi Publishing Corporation International Journal of Distributed Sensor Networks Volume 2015, Article ID 123543, 13 pages http://dx.doi.org/10.1155/2015/123543
Transcript
Page 1: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

Research ArticleFuzzy System of Irrigation Applied to the Growth ofHabanero Pepper (Capsicum chinense Jacq) under ProtectedConditions in Yucatan Mexico

Martha Rocio Ceballos12 Juan Luis Gorricho2 Oscar Palma Gamboa1

Moacutenica Karel Huerta345 David Rivas6 and Mayra Erazo Rodas6

1 Information and Communication Technologies Technological Institute of Conkal 97345 Conkal YUC Mexico2Department of Telematics Engineering Polytechnic University of Catalonia 08034 Barcelona Spain3Department of Electronic Engineering Salesian Polytechnic University EC010105 Cuenca Ecuador4Networks and Applied Telematics Group (GRETA) Simon Bolıvar University Caracas 89000 Venezuela5Prometeo Project Researcher (SENESCYT) Ecuador6Department of Electrical and Electronics Armed Forces University ESPE EC170501 Sangolquı Ecuador

Correspondence should be addressed to Martha Rocio Ceballos marthaceballositconkaledumx

Received 15 November 2014 Revised 8 March 2015 Accepted 20 April 2015

Academic Editor Shaojie Tang

Copyright copy 2015 Martha Rocio Ceballos et al This is an open access article distributed under the Creative Commons AttributionLicense which permits unrestricted use distribution and reproduction in any medium provided the original work is properlycited

Agriculture is the largest user of water worldwide by using about 70 percent of total consumption The world food productiondepends on the availability of water considering factors such as demographic and climate change so the use of efficient irrigationis necessary to apply the correct amount of water to cropsThe traditional irrigation systems generally program their scheme basedon measurements made at Class A evaporimeter pan In this paper an irrigation scheme defined by an algorithm that automatesthe amount of water supplied is presented it considers the consumption of habanero pepper crop and a fuzzy system evaluatesthe necessary duration of irrigation The climatic variables considered are temperature relative humidity and soil moisture Thealgorithm was programmed in a microcontroller Atmel 328p included in Arduino platform with the addition of a ZigBee wirelesssystem that allows for monitoring through a PC The climatic variables were inserted into the fuzzy system by sets of trapezoidaland triangular form and aMamdani type inference mechanism in which the knowledge of an expert is registered through the fuzzyrules The system was applied to a habanero pepper crop at Conkal Institute of Technology in Yucatan Mexico

1 Introduction

Mexico ranks second in volume production of chili peppersand third in area harvested with 2379736 tons and 136132 harespectively engaged with the 71 area and 76 ton of worldproduction [1] The fruits of this plant are of great economicimportance because there is a wide variety of applicationsthere is an excellent source of natural dyes minerals andvitamins A C and E the mainly substance that is extractedfrom this crop is capsaicin whose concentration is very highin the variety known as habaneroThere are several regions inMexico who grow habanero pepper [2] however more than

50 of production for domestic and export markets comesfrom the Yucatan Peninsula which has provided support forobtaining distinctive ldquoappellation of originrdquo published in theOfficial Gazette of the Mexican Federation on June 4 2010For production even outside station protected cultivationtechniques are used and the most commonly used structuresin protected agriculture are greenhouses shade mesh highand low tunnels The shadow mesh structure mentionedabove is a simple and inexpensive alternative although verylow technology [3]

Environmental variables have by nature a complex andnonlinear dynamic Therefore the information processing

Hindawi Publishing CorporationInternational Journal of Distributed Sensor NetworksVolume 2015 Article ID 123543 13 pageshttpdxdoiorg1011552015123543

2 International Journal of Distributed Sensor Networks

solutions are required based on advanced techniques andtechnologies to provide a better result in the productionof food [4] In this context the use of soft computingtechniques (such as neural networks genetic algorithmsand fuzzy logic) has been considered as real solutions toproblems related to the effective management of agriculturalresources [5] One such resource is hydric characterizedby irrigation systems and affecting plant growth and henceproduction Due to the above there are proposals that enableautomation and control to carry out this process in thebest way [6 7] These methods adjust the amount of watersupplied according to crop water requirements the amountof water available in the channel and system componentsIn systems that use drip irrigation such information has notbeen considered because the amount of water is controlledin a certain manner [8] However the frequency of irrigationdrip systems still depends on climatic factors soil type andcrop type so that the control and close monitoring remainsnecessary in these systems [9ndash11] The application of softcomputing techniques has been observed in work processesinvolving environmental control [4 5] weed control pestand biological processes [12] and greenhouse climate control[9 13]

The work presented in [14] is a simulator that aimsto provide a model of irrigation scheduling consideringdifferent times and different distributions of water in sensitiveplant species lack thereof Project development provides thebiophysical modeling technical and decision subsystemsTime schedule irrigation is carried out considering the watershortage the amount of available soil water for lawn andplant composition The limitation of this study is that it is asimulated process and not done in a real environment

The work in [15] shows an irrigation system used forornamental plants of different types calculating irrigationfrom soil type This work uses crop coefficient informationthe type of soil cultivation wind speed solar radiation tem-perature relative humidity and rainfall level obtained froma weather station and other measuring devices purchased forthat purpose An important limitation is the use of expensivemeasuring instruments applied to field crops to which mostfarmers do not have an access

The work in [16] integrates fuzzy logic and neural net-works in a network of sensors in precision irrigation schemeThis is a work in software which simulates the behavior ofirrigation scheduling and is expected to have favorable resultsin manual application One drawback is that it proposes theuse of precision irrigation equipment (little affordable inmostof the time for a producer) to obtain information in a realenvironment Blurring the crop is also observed althoughsome environmental variables needed for irrigation controlsuch as humidity and temperature which are integratedvariables and factors inherent at the crop are ignored

In this study the development of a smart irrigation systembased on microclimate variables such as temperature andrelative humidity in a shadow mesh structure is proposedThis system is designed to improve irrigation scheme forhabanero pepper (Capsicum chinense Jacq) using the fewestnumber of variables and taking advantage of expert knowl-edge A relevant aspect of this proposal is the possibility

Traditional irrigation scheme

Fuzzy irrigation scheme

Figure 1 Irrigation schemes

of implementation in crops where farmers do not havesufficient financial resources and therefore less access to thetechnification

2 Materials and Methods

This work was carried out in a metal covered roof infras-tructure with milky white plastic with 50 and side wallsfront and back with mesh antiaphids in an area of 4824m2(134mtimes 36m) inTechnological Institute of Conkal Yucatanlocated at Km 163 of the Merida-Motul road Geographicalcoordinates are 21∘ 361015840 north latitude 19∘ 321015840 south 87∘321015840 east 90∘ 251015840 west longitude at an altitude of 9 metersaccording to INEGI Geostatistical Framework (2010) Theclimate at the experimental site according to the classificationof Koppenmodified byGarcia [17] is the Awo (1199091015840) (1198941015840) 119892 typeIn the shade house when the seedlings had about 10 cm tallthey were transplanted in containers with compost

For the growing crop two irrigation schemes were em-ployed a traditional scheme and a fuzzy scheme (Figure 1)

Traditional irrigation scheme was performed using thefollowing criteria

(1) obtaining data through an Class A evaporation pan(2) applying data crop coefficient (119870

119888) for habanero

pepper (Tables 1(a) and 1(b))(3) calculating crop evapotranspiration (ET)(4) calculating irrigation depth(5) calculating the volume of water to be applied to

replace the water lost by evapotranspiration(6) calculating irrigation time

ETo calculation (reference evapotranspiration) can be esti-mated from the Class A evaporation pan The crop coeffi-cient (119870

119888) was determined by relating the measured crop

evapotranspiration (ETc) with ETo calculated ET is evapo-transpiration (combined loss of water to plant transpirationand soil evaporation) The irrigation depth is calculated todetermine the amount ofwater thatmust be applied to the soilto satisfy the needs of the cropThe calculation of the volumeof water is obtained for estimating evapotranspiration lossesand irrigation time is determined by considering the methodof irrigation and type of crop

International Journal of Distributed Sensor Networks 3

Initial Value for soilMoistureREPEAT

WHILE soilMoisture gt 70READ Analog Port Soil Moisture Sensor ValueCALCULATE soilMoisture based on VH400 eqWAIT 10 minutes

endWHILECALL Fuzzy Irrigation Time for Habanero pepper (INPUT RelativeHumidity Temperature OUTPUT IrrigationTime)WHILE IrrigationTime gt 0

WRITE Digital Value for pump activationCALCULATE IrrigationTime countdown

endWHILEWRITE Digital Value for pump deactivate

UNTIL (true)

Algorithm 1 Fuzzy irrigation process pseudocode

Table 1 (a) Crop coefficient for habanero pepper (60) (b) Cropcoefficient for habanero pepper (100)

(a)

Crop growth () Days after transplanting 119870119888

25 30ndash36 08030 37ndash42 09035 43ndash48 09340 49ndash54 09545 55ndash60 10350 61ndash66 10555 67ndash72 10560 73ndash78 105

(b)

Crop growth () Days after transplanting 119870119888

65 79ndash84 10370 85ndash90 10075 91ndash96 09780 97ndash102 09085 103ndash108 08590 109ndash114 08095 115ndash120 070100 121 060

On the other hand fuzzy irrigation schema is proposedThe proposed system consists of four sections first measur-ing and estimating the volume of water lost subsequentlymeasuring level categorization through measuring the rela-tive humidity and temperature further the integration of thecommunication system and finally a fuzzy mechanism forthe estimation of irrigation

21 Measuring and Estimating the Volume of Water The soilused was characterized to obtain the parameters of Table 2 toidentify themoisture levels percentageWith these propertiesfield capacity is obtained which is the volume of water that

Table 2 Soil properties

Physical properties UnitApparent density 093 gsdotcmminus3

Wilting point 173Field capacity 558Chemical properties UnitPh 588CE 385 dSmminus1

is capable of retaining the soil of 14 MLCMminus2 Once knownfield capacity using traditional irrigation scheme a volumebetween 70 and 80 range is chosen to make growingHabanero pepper develop properly

The proposed system can be integrated into an algorithm(Figure 2 and Algorithm 1)

To measure the volume the VH400-2M sensor is usedThis element provides a signal from 0 to 3V in accordancewith soil moisture It can be seen that the useful limits of thesensor are 50 (Figure 3)

The interpolation of the measured data results in

119881 = 42times 10minus51198671198783 minus 000381198671198782 + 01265119867119878

+ 00888(1)

Equation (1) can be simplified for the range of interest inorder to reduce processing time as indicated in the sensordata sheet resulting in the linear relation (2)This equation isused to convert the voltage in a soil moisture value

119867119878 = 2632119881minus 789 (2)

In this way with this sensor the estimated lost soil moistureis obtained

22 Measurement of Relative Humidity and TemperatureThe measurement of relative humidity and temperature isperformed by a sensor DHT11This sensor is characterized bythe calibrated digital signal It consists of two resistive sensors

4 International Journal of Distributed Sensor Networks

Table 3 Rules of the fuzzy system in the growth stage of the crop

TemperatureVery few Few Medium High Very high

HumidityVery few Medium Medium Long Long Very longFew Medium Medium Medium Medium LongMedium Short Short Short Short MediumHigh Very short Very short Very short Very short Very shortVery high Very short Very short Very short Very short Very short

Start

Measurement and estimation ofthe volume of water lost

Yes Is it in theoptimal range

No

NoThe volume isbelow 70

Yes

Valuation of thevolume trend

Irrigation isscheduled

No

Yes

Fuzzy mechanism forestimating irrigation time

Irrigationrun

Yes Irrigationended No

Figure 2 Algorithm that incorporated the fuzzy irrigation process

(NTC and humidity) and a small 8-bit microcontroller It canmeasure the humidity in the range 20 approximately 95and the temperature range between 0∘C and 50∘C Protocoluses 1-wire communication and the size is small and has lowpower consumption and the ability to transmit the signal upto 20 meters away

23 Fuzzy System

231 Fuzzy Rules A model for the climate behavior is toocomplex and the uncertainty is always present so the use ofthe fuzzy system in order to program an irrigation schemeis proposed The fuzzy system uses the expert knowledge inform of rules to control the aperture time of the valve andtherefor the water supplied The knowledge base from the

expert provides the information necessary to perform thedesign of the irrigation program sequence as well as thegeneration of the rules that are part of the fuzzy inferencemechanism (see Table 3)

The proposed model employs Mamdani fuzzy mecha-nism described with MISO type fuzzy rules shown on thesystem equation

1198771 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 1199101 is 1198611199031

119877119895 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 119910

119895is 119861119903119895

119877119898 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 119910

119898is 119861119905119898

(3)

International Journal of Distributed Sensor Networks 5

35

30

25

20

15

10

05

0100 20 30

Out

put v

olta

ge (V

)

40 50 60

Soil moisture ()

y = 42E minus 5x3 minus 00038x2 + 01265x + 00888R2 = 09974

Figure 3 Humidity sensor characterization

where 119860119895119894 119860119896

2 119860

119897

119899and 119861119904

119895for 119877119895 represent the corre-

sponding linguistic values [18]The processing block consistsof a hardware Arduino microcontroller which is the Atmel328p where the irrigation program established by the fuzzyrules is stored

232 Fuzzy Sets The linguistic variables to form the fuzzysets are as follows

(i) Temperature Due to the warm air in the shadow houseinfrastructure is retained and an important consideration inthe cultivation under protected conditions is the temperaturefactor because it favors the evaporation of water and has animportant impact in the crop The low technification of thisstructure only can provide air movement through the roofdoors or the antiaphid mesh around of him

(ii) RelativeHumidityThe humidity factor has great influenceon the crop Excess moisture in habanero pepper plantsaffects its development so it should not be given water to thecrop when the humidity is high however when the humiditydecreases it is necessary to supply water to the plant

(iii) Stages of the Crop Growth stages (119870119888) influence the devel-

opment of the plant especially considering that the habaneropepper is a plant that requires large amounts of water whichultimately affects the quality of the fruit This is an importantfactor for the habanero pepper because to obtain designationof origin you must have certain characteristics of the fruit atharvest

(iv) Irrigation Time The output of the fuzzy system is theirrigation time and represents the run time in minutes Thefrequency of watering time keeps the amount of water neededto avoid crop water stress

In order to convert the linguistic variables on fuzzynumbers this paper proposes the calculation of intermediatevalues of the linguistic range through the triangular function(4) while outliers are modeled by the Gamma function left

10

30 53 75 98 120

05

Growth

MaturityDevelopment

MaxMin

Figure 4 Input sets for the variable stage of development

part of the linguistic rang (5) and 119871 function right part of thelinguistic range (6)

120583 (119909 119886119898 119887)

= max min (119909 minus 119886) (119898 minus 119886) minus 1 (119887 minus 119909) (119887 minus 119898) minus 1 0 (4)

120583 (119909) =

0 119909 le 119886

(119909 minus 119886) (119898 minus 119886)minus1119909 isin (119886119898)

1 119909 ge 119898

(5)

The membership function is created with expert knowledgeand adopts a graphic form determined according to the typeof value associated with the fuzzy set The 119871 and Gammafunctions correspond to the membership functions whichare used to calculate extreme fuzzy values Therefore the 119871function is defined by

119871 = 1minusGamma (6)

The graphic form of the linguistic variables defined by thelast equations is shown in Figures 4 5 6 and 7

233 Inference Mechanism The inference mechanism hastwo basic tasks determines the relevance and extent of eachrule in relation to the current entries (119906

119894) and generates the

corresponding conclusions The combination of the sets ofrules with inputs can be calculated as follows

120583119860119895

1(1199061) = 1205831198601198951

(1199061) lowast 120583119860fuz1(1199061)

1205831198601198962(1199062) = 1205831198601198962 (1199062) lowast 120583119860fuz2

(1199062)

120583119860119897119899(119906119899) = 120583119860119897119899(119906119899) lowast 120583119860fuz119899(119906119899)

(7)

6 International Journal of Distributed Sensor Networks

10

05

130 175 220 265 310 355 400

MaxMin

Medium

Very fewFew Very high

High

Figure 5 Input sets for the variable relative humidity

10

05

300 4166 7666 8833 10005333 650

MaxMin

Medium

Very fewFew Very high

High

Figure 6 Input sets for the variable temperature

The result is a set with the ldquofiredrdquo rules To obtain a crispvalue that can be applied to the valve it will be necessary tocalculate the center of the graph and this can be done by

119910 =

int119910120583 (119910) 119910 119889119910

int119910120583 (119910) 119910 119889119910

(8)

24 Data Acquisition System The proposed communicationsystem includes a basic structure that can be used in agricul-tural environments and this proposal aims to organize thesections of a sensor network and facilitates the selection oftechnologies required to implement the ZigBee networkThecommunication system uses IEEE802154 protocol (ZigBee)which was implemented on an Arduino board with XBee Promodule of Maxtream configured with a PAN ID 3332 a rateof 9600 baud 8 data bits and no parity (see Figure 8)

The structure presented is divided into two sections aninternal for data collection (sensor network) and an exter-nal that can send information to central computers to storeandor process informationThe internal section is composedof elements that collect information from the agriculturalparameters of interest such as temperature relative humidityand soil moisture (sensors) the data collected will be sent todevices for processing through the ZigBee protocol which

10

05

0 333 667 100 1333 1667 200

Medium

Very shortShort Very long

Long

MaxMin

Figure 7 Output sets for the variable irrigation time

Network PAN id = 3332

CoordinatorDH 0DL FFFFMY 1

Fuzzy segmentDH 0DL 1MY A

Traditional segmentDH 0DL 1MY B

Figure 8 Sensor network

is used for transmission (end devices) The internal sectioncan be implemented through Arduino boards with Xbeemodules In the transmission of information the router nodewill receive the information of the end devices and will betransmitted to the coordinator for central processing in orderto be able to connect to a larger networkThe external sectionis composed of central processing devices sending data toremote nodes via Ethernet WiFi mobile devices or othermeans that can send information to other locations as shownin Figure 9

The data acquisition is made with a DuemilanovaArduino and this platform is programed for a sampling rateof 5 minutes Each value from the corresponding sensor hasan header for identification as shown in Algorithm 2 Thesedata are linked with the Xbee devices for the transmission tothe other Xbee configured like a coordinator

To get data from the serial port that the Xbee Shield(Coordinator) is sending we programmethods as can be seenin Algorithm 3 and the header of each data frame is definedso that it recognizes and takes the indicated action for storageat the database every time that receives data (Algorithm 4)

3 Results and Discussion

The behavior of the proposed system was supervised fromMarch to May 2013 this corresponds to all cycle of cropTables 4(a) 4(b) and 4(c) show the average values acquiredfrom the system The results obtained are compared with

International Journal of Distributed Sensor Networks 7

Shaded houseinfrastructure

Sensors

Sensors

SensorsSensors

SensorsSensors

External section

ZigBee

ZigBeeZigBee

coordinator

end device

ZigBeeend device

Internal section

router

GPRS Ethernet WiFi

Centralprocessing

Arduino + Xbee

Arduino + Xbee

50m

Figure 9 Internal and external sections

65432100 10 20 30 40 50 60 70

Days after transplant

Etc (

mm

)

Figure 10 Evapotranspiration values for the crop cycle

the results of calculations performed for the water loss byevapotranspiration reference (Eto) as shown in the work ofPerez-Gutierrez et al [19] The comparison between fuzzysystems of irrigation and traditional irrigationwas performedto validate the data obtained

The Etc shows values that are in an interval of 3mmsdotdayminus1(Figure 10) This range is stable for all the harvest period ifvariations of the Etc were more spacious and then shouldtake into account a greater number of variables thereforeby maintaining a controlled environment with the use of theshadow house we can use a small number of sensors and inthis proposal the use of three of them is enough to estimatethe irrigation

The system showed a deviation of +011 in Marchminus039 in April and +051 in May (Figures 11 12 and13) The supplied volume by the fuzzy system is comparedwith the calculated volume resulting in a small deviationtherefore we can establish the reliability of the system

0500

10001500200025003000350040004500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Volu

me (

L)

Days (March)

Calculated volume (L)Supplied volume (L)

Figure 11 Comparison between traditional irrigation and the fuzzysystem (March 2013)

With the fuzzy system validated the analysis of the datafor eachmonth can be made As part of the validation sampleMarch 20 is shown In Figure 14 the frequency of irrigationduring the day is graphed

According to the data obtained with respect to thefrequency of irrigation Figure 14 shows that the frequencyof irrigation is higher in the time period between 1030and 1300 in this period we can observe an increase trendin the temperature (Figure 15) and a low relative humidity(Figure 16) indicating a water accumulation in the soiltherefore a balance between evapotranspiration and thewater applied to the crop is generated

8 International Journal of Distributed Sensor Networks

Table4(a)D

atafrom

them

onth

ofMarch

forthe

cycle

ofcrop(b)

Datafrom

them

onth

ofAp

rilforthe

cycle

ofcrop(c)Datafrom

them

onth

ofMay

forthe

cycle

ofcrop

(a)

March

Day

Etc(mmsdotdıaminus1 )

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

2258425473

1341340

92235568182

2029668918

17357783512

168119

182801986364

2810

025131

3257725364

10913627

1818

937879

2024170272

18307273124

14404782

240079697

2413

317471

437044

9566

15902236

2650372727

2909504

086

19373218858

17796109

2966018182

2931254056

5384566297

182036

3033933333

3020376637

2039600

9363

18436127

3072

687879

3110

250267

6333154632

149705

2495

083333

2616

59036

2134154618

15833791

2638965152

2682497426

7307303393

14569518

2472

201515

2413

555204

22444

59937

22096245

3682707576

3491

875286

837064

8946

17890227

2981704545

2911070015

23450743937

2116

9736

3528289394

3540134599

93627264

2817962364

2993

727273

2848846

704

24467591342

21811636

3635272727

3672

453809

10383003911

1852

4945

3174

921212

3008105683

2513

804632

566

89909

9448318182

1084213265

112655606

8411413364

1902227273

2085708733

26096752606

45595818

759930303

7598931903

1224746

8837

11749273

1999

775758

1943615697

27366104898

17867809

2977

968182

287538114

113

231084615

1112

2518

185375303

1814

934321

28346

753609

1576

0455

2626742424

2723396

476

14242255034

10806

673

1801112121

1902666591

29460879854

22293755

3715

625758

3619

741905

15349001336

1674

8164

2791

3606

062741050084

30462318448

21561836

3593

639394

3631040

596

16369959684

17351655

2891

942424

2905656565

31488327963

22941936

3823656061

3835318856

(b)

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

13961718653

18771482

3128580303

3111526554

16399938767

17371336

2895

222727

31411117

32

4169559209

25227564

4204593939

3274

764145

17409686903

192428

3207133333

3217

673412

3404

8530602

18909436

3151572727

3179

708499

18471907325

21807836

3634639394

370635146

44

3418113126

15290055

2548342424

2684579772

195057651274

22931773

3821962121

3972

270022

54344343997

20729182

3454863636

3412

039796

203687610895

14040

036

23400

06061

2896

242824

652164

59781

24479782

4079

963636

4096

997931

214583233577

21846

064

364101060

63599

663234

75021289634

23754855

3959142424

3943711656

223708343758

17238536

2873

089394

2912

526377

84818401971

25410745

4235124242

3784364

058

235197175777

24660

44110

0666

6740

8185231

94929600332

2337

8527

3896

421212

3871699047

245013674745

23637727

3939621212

3937730937

104425304

818

2076

9664

346161060

63475

626276

25460

4622494

2139

2809

3565468182

3616

46205

1143046

8744

720112073

3352012121

3380893615

264715697984

22946236

3824372727

3703700535

12303026964

214473727

2412

287879

2379

968211

274767017231

2235

9845

37266

40909

37440

06578

International Journal of Distributed Sensor Networks 9

(b)Con

tinued

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134228506725

1981396

43302327273

3321061416

2849999503

2313

4864

385581060

63926951783

14419946964

121049973

3508328788

3298

255743

294685183652

2216

5509

3694

251515

3679

734635

1541340

0889

18688127

3114

687879

3246842989

303708190798

17870818

2978

469697

2912

406242

(c)

May

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134840

0241

16046282

2674

3803

273632909

14281323798

12056146

200935758

22095119

42

428945109

19954027

332567121

336892701

15345795001

15992027

266533788

2715

86759

3364

868417

17514855

2919

14242

286566985

16376349121

17962409

2993

73485

295583908

4400339841

190312

317186667

314426176

17341760316

1610

1982

268366364

268417925

527064

0388

1241364

62068940

912125604

6418

343767282

15971582

26619303

2699

94192

6351451778

16295346

2715

89091

276029581

19313612887

15119536

2519

92273

243822456

7329792176

1609100

9268183485

2590

1817

20293326251

14367546

2394

59091

246310986

8335111737

15496273

258271212

263196142

21305215788

13911227

2318

53788

230377899

9358129742

16387591

273126515

2812

7444

222

304

887854

14010273

233504545

2397

15919

10365825019

1766

4609

294410152

287318298

23252884747

1503564

62505940

912394

58361

11377619727

17437236

2906206

0629658184

24252884747

113733

1895

55198615216

12373897867

17908982

29848303

293658698

25320855932

1554804

62591

34091

2519

99659

13283378267

1312

6791

218779848

222564771

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 2: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

2 International Journal of Distributed Sensor Networks

solutions are required based on advanced techniques andtechnologies to provide a better result in the productionof food [4] In this context the use of soft computingtechniques (such as neural networks genetic algorithmsand fuzzy logic) has been considered as real solutions toproblems related to the effective management of agriculturalresources [5] One such resource is hydric characterizedby irrigation systems and affecting plant growth and henceproduction Due to the above there are proposals that enableautomation and control to carry out this process in thebest way [6 7] These methods adjust the amount of watersupplied according to crop water requirements the amountof water available in the channel and system componentsIn systems that use drip irrigation such information has notbeen considered because the amount of water is controlledin a certain manner [8] However the frequency of irrigationdrip systems still depends on climatic factors soil type andcrop type so that the control and close monitoring remainsnecessary in these systems [9ndash11] The application of softcomputing techniques has been observed in work processesinvolving environmental control [4 5] weed control pestand biological processes [12] and greenhouse climate control[9 13]

The work presented in [14] is a simulator that aimsto provide a model of irrigation scheduling consideringdifferent times and different distributions of water in sensitiveplant species lack thereof Project development provides thebiophysical modeling technical and decision subsystemsTime schedule irrigation is carried out considering the watershortage the amount of available soil water for lawn andplant composition The limitation of this study is that it is asimulated process and not done in a real environment

The work in [15] shows an irrigation system used forornamental plants of different types calculating irrigationfrom soil type This work uses crop coefficient informationthe type of soil cultivation wind speed solar radiation tem-perature relative humidity and rainfall level obtained froma weather station and other measuring devices purchased forthat purpose An important limitation is the use of expensivemeasuring instruments applied to field crops to which mostfarmers do not have an access

The work in [16] integrates fuzzy logic and neural net-works in a network of sensors in precision irrigation schemeThis is a work in software which simulates the behavior ofirrigation scheduling and is expected to have favorable resultsin manual application One drawback is that it proposes theuse of precision irrigation equipment (little affordable inmostof the time for a producer) to obtain information in a realenvironment Blurring the crop is also observed althoughsome environmental variables needed for irrigation controlsuch as humidity and temperature which are integratedvariables and factors inherent at the crop are ignored

In this study the development of a smart irrigation systembased on microclimate variables such as temperature andrelative humidity in a shadow mesh structure is proposedThis system is designed to improve irrigation scheme forhabanero pepper (Capsicum chinense Jacq) using the fewestnumber of variables and taking advantage of expert knowl-edge A relevant aspect of this proposal is the possibility

Traditional irrigation scheme

Fuzzy irrigation scheme

Figure 1 Irrigation schemes

of implementation in crops where farmers do not havesufficient financial resources and therefore less access to thetechnification

2 Materials and Methods

This work was carried out in a metal covered roof infras-tructure with milky white plastic with 50 and side wallsfront and back with mesh antiaphids in an area of 4824m2(134mtimes 36m) inTechnological Institute of Conkal Yucatanlocated at Km 163 of the Merida-Motul road Geographicalcoordinates are 21∘ 361015840 north latitude 19∘ 321015840 south 87∘321015840 east 90∘ 251015840 west longitude at an altitude of 9 metersaccording to INEGI Geostatistical Framework (2010) Theclimate at the experimental site according to the classificationof Koppenmodified byGarcia [17] is the Awo (1199091015840) (1198941015840) 119892 typeIn the shade house when the seedlings had about 10 cm tallthey were transplanted in containers with compost

For the growing crop two irrigation schemes were em-ployed a traditional scheme and a fuzzy scheme (Figure 1)

Traditional irrigation scheme was performed using thefollowing criteria

(1) obtaining data through an Class A evaporation pan(2) applying data crop coefficient (119870

119888) for habanero

pepper (Tables 1(a) and 1(b))(3) calculating crop evapotranspiration (ET)(4) calculating irrigation depth(5) calculating the volume of water to be applied to

replace the water lost by evapotranspiration(6) calculating irrigation time

ETo calculation (reference evapotranspiration) can be esti-mated from the Class A evaporation pan The crop coeffi-cient (119870

119888) was determined by relating the measured crop

evapotranspiration (ETc) with ETo calculated ET is evapo-transpiration (combined loss of water to plant transpirationand soil evaporation) The irrigation depth is calculated todetermine the amount ofwater thatmust be applied to the soilto satisfy the needs of the cropThe calculation of the volumeof water is obtained for estimating evapotranspiration lossesand irrigation time is determined by considering the methodof irrigation and type of crop

International Journal of Distributed Sensor Networks 3

Initial Value for soilMoistureREPEAT

WHILE soilMoisture gt 70READ Analog Port Soil Moisture Sensor ValueCALCULATE soilMoisture based on VH400 eqWAIT 10 minutes

endWHILECALL Fuzzy Irrigation Time for Habanero pepper (INPUT RelativeHumidity Temperature OUTPUT IrrigationTime)WHILE IrrigationTime gt 0

WRITE Digital Value for pump activationCALCULATE IrrigationTime countdown

endWHILEWRITE Digital Value for pump deactivate

UNTIL (true)

Algorithm 1 Fuzzy irrigation process pseudocode

Table 1 (a) Crop coefficient for habanero pepper (60) (b) Cropcoefficient for habanero pepper (100)

(a)

Crop growth () Days after transplanting 119870119888

25 30ndash36 08030 37ndash42 09035 43ndash48 09340 49ndash54 09545 55ndash60 10350 61ndash66 10555 67ndash72 10560 73ndash78 105

(b)

Crop growth () Days after transplanting 119870119888

65 79ndash84 10370 85ndash90 10075 91ndash96 09780 97ndash102 09085 103ndash108 08590 109ndash114 08095 115ndash120 070100 121 060

On the other hand fuzzy irrigation schema is proposedThe proposed system consists of four sections first measur-ing and estimating the volume of water lost subsequentlymeasuring level categorization through measuring the rela-tive humidity and temperature further the integration of thecommunication system and finally a fuzzy mechanism forthe estimation of irrigation

21 Measuring and Estimating the Volume of Water The soilused was characterized to obtain the parameters of Table 2 toidentify themoisture levels percentageWith these propertiesfield capacity is obtained which is the volume of water that

Table 2 Soil properties

Physical properties UnitApparent density 093 gsdotcmminus3

Wilting point 173Field capacity 558Chemical properties UnitPh 588CE 385 dSmminus1

is capable of retaining the soil of 14 MLCMminus2 Once knownfield capacity using traditional irrigation scheme a volumebetween 70 and 80 range is chosen to make growingHabanero pepper develop properly

The proposed system can be integrated into an algorithm(Figure 2 and Algorithm 1)

To measure the volume the VH400-2M sensor is usedThis element provides a signal from 0 to 3V in accordancewith soil moisture It can be seen that the useful limits of thesensor are 50 (Figure 3)

The interpolation of the measured data results in

119881 = 42times 10minus51198671198783 minus 000381198671198782 + 01265119867119878

+ 00888(1)

Equation (1) can be simplified for the range of interest inorder to reduce processing time as indicated in the sensordata sheet resulting in the linear relation (2)This equation isused to convert the voltage in a soil moisture value

119867119878 = 2632119881minus 789 (2)

In this way with this sensor the estimated lost soil moistureis obtained

22 Measurement of Relative Humidity and TemperatureThe measurement of relative humidity and temperature isperformed by a sensor DHT11This sensor is characterized bythe calibrated digital signal It consists of two resistive sensors

4 International Journal of Distributed Sensor Networks

Table 3 Rules of the fuzzy system in the growth stage of the crop

TemperatureVery few Few Medium High Very high

HumidityVery few Medium Medium Long Long Very longFew Medium Medium Medium Medium LongMedium Short Short Short Short MediumHigh Very short Very short Very short Very short Very shortVery high Very short Very short Very short Very short Very short

Start

Measurement and estimation ofthe volume of water lost

Yes Is it in theoptimal range

No

NoThe volume isbelow 70

Yes

Valuation of thevolume trend

Irrigation isscheduled

No

Yes

Fuzzy mechanism forestimating irrigation time

Irrigationrun

Yes Irrigationended No

Figure 2 Algorithm that incorporated the fuzzy irrigation process

(NTC and humidity) and a small 8-bit microcontroller It canmeasure the humidity in the range 20 approximately 95and the temperature range between 0∘C and 50∘C Protocoluses 1-wire communication and the size is small and has lowpower consumption and the ability to transmit the signal upto 20 meters away

23 Fuzzy System

231 Fuzzy Rules A model for the climate behavior is toocomplex and the uncertainty is always present so the use ofthe fuzzy system in order to program an irrigation schemeis proposed The fuzzy system uses the expert knowledge inform of rules to control the aperture time of the valve andtherefor the water supplied The knowledge base from the

expert provides the information necessary to perform thedesign of the irrigation program sequence as well as thegeneration of the rules that are part of the fuzzy inferencemechanism (see Table 3)

The proposed model employs Mamdani fuzzy mecha-nism described with MISO type fuzzy rules shown on thesystem equation

1198771 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 1199101 is 1198611199031

119877119895 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 119910

119895is 119861119903119895

119877119898 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 119910

119898is 119861119905119898

(3)

International Journal of Distributed Sensor Networks 5

35

30

25

20

15

10

05

0100 20 30

Out

put v

olta

ge (V

)

40 50 60

Soil moisture ()

y = 42E minus 5x3 minus 00038x2 + 01265x + 00888R2 = 09974

Figure 3 Humidity sensor characterization

where 119860119895119894 119860119896

2 119860

119897

119899and 119861119904

119895for 119877119895 represent the corre-

sponding linguistic values [18]The processing block consistsof a hardware Arduino microcontroller which is the Atmel328p where the irrigation program established by the fuzzyrules is stored

232 Fuzzy Sets The linguistic variables to form the fuzzysets are as follows

(i) Temperature Due to the warm air in the shadow houseinfrastructure is retained and an important consideration inthe cultivation under protected conditions is the temperaturefactor because it favors the evaporation of water and has animportant impact in the crop The low technification of thisstructure only can provide air movement through the roofdoors or the antiaphid mesh around of him

(ii) RelativeHumidityThe humidity factor has great influenceon the crop Excess moisture in habanero pepper plantsaffects its development so it should not be given water to thecrop when the humidity is high however when the humiditydecreases it is necessary to supply water to the plant

(iii) Stages of the Crop Growth stages (119870119888) influence the devel-

opment of the plant especially considering that the habaneropepper is a plant that requires large amounts of water whichultimately affects the quality of the fruit This is an importantfactor for the habanero pepper because to obtain designationof origin you must have certain characteristics of the fruit atharvest

(iv) Irrigation Time The output of the fuzzy system is theirrigation time and represents the run time in minutes Thefrequency of watering time keeps the amount of water neededto avoid crop water stress

In order to convert the linguistic variables on fuzzynumbers this paper proposes the calculation of intermediatevalues of the linguistic range through the triangular function(4) while outliers are modeled by the Gamma function left

10

30 53 75 98 120

05

Growth

MaturityDevelopment

MaxMin

Figure 4 Input sets for the variable stage of development

part of the linguistic rang (5) and 119871 function right part of thelinguistic range (6)

120583 (119909 119886119898 119887)

= max min (119909 minus 119886) (119898 minus 119886) minus 1 (119887 minus 119909) (119887 minus 119898) minus 1 0 (4)

120583 (119909) =

0 119909 le 119886

(119909 minus 119886) (119898 minus 119886)minus1119909 isin (119886119898)

1 119909 ge 119898

(5)

The membership function is created with expert knowledgeand adopts a graphic form determined according to the typeof value associated with the fuzzy set The 119871 and Gammafunctions correspond to the membership functions whichare used to calculate extreme fuzzy values Therefore the 119871function is defined by

119871 = 1minusGamma (6)

The graphic form of the linguistic variables defined by thelast equations is shown in Figures 4 5 6 and 7

233 Inference Mechanism The inference mechanism hastwo basic tasks determines the relevance and extent of eachrule in relation to the current entries (119906

119894) and generates the

corresponding conclusions The combination of the sets ofrules with inputs can be calculated as follows

120583119860119895

1(1199061) = 1205831198601198951

(1199061) lowast 120583119860fuz1(1199061)

1205831198601198962(1199062) = 1205831198601198962 (1199062) lowast 120583119860fuz2

(1199062)

120583119860119897119899(119906119899) = 120583119860119897119899(119906119899) lowast 120583119860fuz119899(119906119899)

(7)

6 International Journal of Distributed Sensor Networks

10

05

130 175 220 265 310 355 400

MaxMin

Medium

Very fewFew Very high

High

Figure 5 Input sets for the variable relative humidity

10

05

300 4166 7666 8833 10005333 650

MaxMin

Medium

Very fewFew Very high

High

Figure 6 Input sets for the variable temperature

The result is a set with the ldquofiredrdquo rules To obtain a crispvalue that can be applied to the valve it will be necessary tocalculate the center of the graph and this can be done by

119910 =

int119910120583 (119910) 119910 119889119910

int119910120583 (119910) 119910 119889119910

(8)

24 Data Acquisition System The proposed communicationsystem includes a basic structure that can be used in agricul-tural environments and this proposal aims to organize thesections of a sensor network and facilitates the selection oftechnologies required to implement the ZigBee networkThecommunication system uses IEEE802154 protocol (ZigBee)which was implemented on an Arduino board with XBee Promodule of Maxtream configured with a PAN ID 3332 a rateof 9600 baud 8 data bits and no parity (see Figure 8)

The structure presented is divided into two sections aninternal for data collection (sensor network) and an exter-nal that can send information to central computers to storeandor process informationThe internal section is composedof elements that collect information from the agriculturalparameters of interest such as temperature relative humidityand soil moisture (sensors) the data collected will be sent todevices for processing through the ZigBee protocol which

10

05

0 333 667 100 1333 1667 200

Medium

Very shortShort Very long

Long

MaxMin

Figure 7 Output sets for the variable irrigation time

Network PAN id = 3332

CoordinatorDH 0DL FFFFMY 1

Fuzzy segmentDH 0DL 1MY A

Traditional segmentDH 0DL 1MY B

Figure 8 Sensor network

is used for transmission (end devices) The internal sectioncan be implemented through Arduino boards with Xbeemodules In the transmission of information the router nodewill receive the information of the end devices and will betransmitted to the coordinator for central processing in orderto be able to connect to a larger networkThe external sectionis composed of central processing devices sending data toremote nodes via Ethernet WiFi mobile devices or othermeans that can send information to other locations as shownin Figure 9

The data acquisition is made with a DuemilanovaArduino and this platform is programed for a sampling rateof 5 minutes Each value from the corresponding sensor hasan header for identification as shown in Algorithm 2 Thesedata are linked with the Xbee devices for the transmission tothe other Xbee configured like a coordinator

To get data from the serial port that the Xbee Shield(Coordinator) is sending we programmethods as can be seenin Algorithm 3 and the header of each data frame is definedso that it recognizes and takes the indicated action for storageat the database every time that receives data (Algorithm 4)

3 Results and Discussion

The behavior of the proposed system was supervised fromMarch to May 2013 this corresponds to all cycle of cropTables 4(a) 4(b) and 4(c) show the average values acquiredfrom the system The results obtained are compared with

International Journal of Distributed Sensor Networks 7

Shaded houseinfrastructure

Sensors

Sensors

SensorsSensors

SensorsSensors

External section

ZigBee

ZigBeeZigBee

coordinator

end device

ZigBeeend device

Internal section

router

GPRS Ethernet WiFi

Centralprocessing

Arduino + Xbee

Arduino + Xbee

50m

Figure 9 Internal and external sections

65432100 10 20 30 40 50 60 70

Days after transplant

Etc (

mm

)

Figure 10 Evapotranspiration values for the crop cycle

the results of calculations performed for the water loss byevapotranspiration reference (Eto) as shown in the work ofPerez-Gutierrez et al [19] The comparison between fuzzysystems of irrigation and traditional irrigationwas performedto validate the data obtained

The Etc shows values that are in an interval of 3mmsdotdayminus1(Figure 10) This range is stable for all the harvest period ifvariations of the Etc were more spacious and then shouldtake into account a greater number of variables thereforeby maintaining a controlled environment with the use of theshadow house we can use a small number of sensors and inthis proposal the use of three of them is enough to estimatethe irrigation

The system showed a deviation of +011 in Marchminus039 in April and +051 in May (Figures 11 12 and13) The supplied volume by the fuzzy system is comparedwith the calculated volume resulting in a small deviationtherefore we can establish the reliability of the system

0500

10001500200025003000350040004500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Volu

me (

L)

Days (March)

Calculated volume (L)Supplied volume (L)

Figure 11 Comparison between traditional irrigation and the fuzzysystem (March 2013)

With the fuzzy system validated the analysis of the datafor eachmonth can be made As part of the validation sampleMarch 20 is shown In Figure 14 the frequency of irrigationduring the day is graphed

According to the data obtained with respect to thefrequency of irrigation Figure 14 shows that the frequencyof irrigation is higher in the time period between 1030and 1300 in this period we can observe an increase trendin the temperature (Figure 15) and a low relative humidity(Figure 16) indicating a water accumulation in the soiltherefore a balance between evapotranspiration and thewater applied to the crop is generated

8 International Journal of Distributed Sensor Networks

Table4(a)D

atafrom

them

onth

ofMarch

forthe

cycle

ofcrop(b)

Datafrom

them

onth

ofAp

rilforthe

cycle

ofcrop(c)Datafrom

them

onth

ofMay

forthe

cycle

ofcrop

(a)

March

Day

Etc(mmsdotdıaminus1 )

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

2258425473

1341340

92235568182

2029668918

17357783512

168119

182801986364

2810

025131

3257725364

10913627

1818

937879

2024170272

18307273124

14404782

240079697

2413

317471

437044

9566

15902236

2650372727

2909504

086

19373218858

17796109

2966018182

2931254056

5384566297

182036

3033933333

3020376637

2039600

9363

18436127

3072

687879

3110

250267

6333154632

149705

2495

083333

2616

59036

2134154618

15833791

2638965152

2682497426

7307303393

14569518

2472

201515

2413

555204

22444

59937

22096245

3682707576

3491

875286

837064

8946

17890227

2981704545

2911070015

23450743937

2116

9736

3528289394

3540134599

93627264

2817962364

2993

727273

2848846

704

24467591342

21811636

3635272727

3672

453809

10383003911

1852

4945

3174

921212

3008105683

2513

804632

566

89909

9448318182

1084213265

112655606

8411413364

1902227273

2085708733

26096752606

45595818

759930303

7598931903

1224746

8837

11749273

1999

775758

1943615697

27366104898

17867809

2977

968182

287538114

113

231084615

1112

2518

185375303

1814

934321

28346

753609

1576

0455

2626742424

2723396

476

14242255034

10806

673

1801112121

1902666591

29460879854

22293755

3715

625758

3619

741905

15349001336

1674

8164

2791

3606

062741050084

30462318448

21561836

3593

639394

3631040

596

16369959684

17351655

2891

942424

2905656565

31488327963

22941936

3823656061

3835318856

(b)

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

13961718653

18771482

3128580303

3111526554

16399938767

17371336

2895

222727

31411117

32

4169559209

25227564

4204593939

3274

764145

17409686903

192428

3207133333

3217

673412

3404

8530602

18909436

3151572727

3179

708499

18471907325

21807836

3634639394

370635146

44

3418113126

15290055

2548342424

2684579772

195057651274

22931773

3821962121

3972

270022

54344343997

20729182

3454863636

3412

039796

203687610895

14040

036

23400

06061

2896

242824

652164

59781

24479782

4079

963636

4096

997931

214583233577

21846

064

364101060

63599

663234

75021289634

23754855

3959142424

3943711656

223708343758

17238536

2873

089394

2912

526377

84818401971

25410745

4235124242

3784364

058

235197175777

24660

44110

0666

6740

8185231

94929600332

2337

8527

3896

421212

3871699047

245013674745

23637727

3939621212

3937730937

104425304

818

2076

9664

346161060

63475

626276

25460

4622494

2139

2809

3565468182

3616

46205

1143046

8744

720112073

3352012121

3380893615

264715697984

22946236

3824372727

3703700535

12303026964

214473727

2412

287879

2379

968211

274767017231

2235

9845

37266

40909

37440

06578

International Journal of Distributed Sensor Networks 9

(b)Con

tinued

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134228506725

1981396

43302327273

3321061416

2849999503

2313

4864

385581060

63926951783

14419946964

121049973

3508328788

3298

255743

294685183652

2216

5509

3694

251515

3679

734635

1541340

0889

18688127

3114

687879

3246842989

303708190798

17870818

2978

469697

2912

406242

(c)

May

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134840

0241

16046282

2674

3803

273632909

14281323798

12056146

200935758

22095119

42

428945109

19954027

332567121

336892701

15345795001

15992027

266533788

2715

86759

3364

868417

17514855

2919

14242

286566985

16376349121

17962409

2993

73485

295583908

4400339841

190312

317186667

314426176

17341760316

1610

1982

268366364

268417925

527064

0388

1241364

62068940

912125604

6418

343767282

15971582

26619303

2699

94192

6351451778

16295346

2715

89091

276029581

19313612887

15119536

2519

92273

243822456

7329792176

1609100

9268183485

2590

1817

20293326251

14367546

2394

59091

246310986

8335111737

15496273

258271212

263196142

21305215788

13911227

2318

53788

230377899

9358129742

16387591

273126515

2812

7444

222

304

887854

14010273

233504545

2397

15919

10365825019

1766

4609

294410152

287318298

23252884747

1503564

62505940

912394

58361

11377619727

17437236

2906206

0629658184

24252884747

113733

1895

55198615216

12373897867

17908982

29848303

293658698

25320855932

1554804

62591

34091

2519

99659

13283378267

1312

6791

218779848

222564771

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 3: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

International Journal of Distributed Sensor Networks 3

Initial Value for soilMoistureREPEAT

WHILE soilMoisture gt 70READ Analog Port Soil Moisture Sensor ValueCALCULATE soilMoisture based on VH400 eqWAIT 10 minutes

endWHILECALL Fuzzy Irrigation Time for Habanero pepper (INPUT RelativeHumidity Temperature OUTPUT IrrigationTime)WHILE IrrigationTime gt 0

WRITE Digital Value for pump activationCALCULATE IrrigationTime countdown

endWHILEWRITE Digital Value for pump deactivate

UNTIL (true)

Algorithm 1 Fuzzy irrigation process pseudocode

Table 1 (a) Crop coefficient for habanero pepper (60) (b) Cropcoefficient for habanero pepper (100)

(a)

Crop growth () Days after transplanting 119870119888

25 30ndash36 08030 37ndash42 09035 43ndash48 09340 49ndash54 09545 55ndash60 10350 61ndash66 10555 67ndash72 10560 73ndash78 105

(b)

Crop growth () Days after transplanting 119870119888

65 79ndash84 10370 85ndash90 10075 91ndash96 09780 97ndash102 09085 103ndash108 08590 109ndash114 08095 115ndash120 070100 121 060

On the other hand fuzzy irrigation schema is proposedThe proposed system consists of four sections first measur-ing and estimating the volume of water lost subsequentlymeasuring level categorization through measuring the rela-tive humidity and temperature further the integration of thecommunication system and finally a fuzzy mechanism forthe estimation of irrigation

21 Measuring and Estimating the Volume of Water The soilused was characterized to obtain the parameters of Table 2 toidentify themoisture levels percentageWith these propertiesfield capacity is obtained which is the volume of water that

Table 2 Soil properties

Physical properties UnitApparent density 093 gsdotcmminus3

Wilting point 173Field capacity 558Chemical properties UnitPh 588CE 385 dSmminus1

is capable of retaining the soil of 14 MLCMminus2 Once knownfield capacity using traditional irrigation scheme a volumebetween 70 and 80 range is chosen to make growingHabanero pepper develop properly

The proposed system can be integrated into an algorithm(Figure 2 and Algorithm 1)

To measure the volume the VH400-2M sensor is usedThis element provides a signal from 0 to 3V in accordancewith soil moisture It can be seen that the useful limits of thesensor are 50 (Figure 3)

The interpolation of the measured data results in

119881 = 42times 10minus51198671198783 minus 000381198671198782 + 01265119867119878

+ 00888(1)

Equation (1) can be simplified for the range of interest inorder to reduce processing time as indicated in the sensordata sheet resulting in the linear relation (2)This equation isused to convert the voltage in a soil moisture value

119867119878 = 2632119881minus 789 (2)

In this way with this sensor the estimated lost soil moistureis obtained

22 Measurement of Relative Humidity and TemperatureThe measurement of relative humidity and temperature isperformed by a sensor DHT11This sensor is characterized bythe calibrated digital signal It consists of two resistive sensors

4 International Journal of Distributed Sensor Networks

Table 3 Rules of the fuzzy system in the growth stage of the crop

TemperatureVery few Few Medium High Very high

HumidityVery few Medium Medium Long Long Very longFew Medium Medium Medium Medium LongMedium Short Short Short Short MediumHigh Very short Very short Very short Very short Very shortVery high Very short Very short Very short Very short Very short

Start

Measurement and estimation ofthe volume of water lost

Yes Is it in theoptimal range

No

NoThe volume isbelow 70

Yes

Valuation of thevolume trend

Irrigation isscheduled

No

Yes

Fuzzy mechanism forestimating irrigation time

Irrigationrun

Yes Irrigationended No

Figure 2 Algorithm that incorporated the fuzzy irrigation process

(NTC and humidity) and a small 8-bit microcontroller It canmeasure the humidity in the range 20 approximately 95and the temperature range between 0∘C and 50∘C Protocoluses 1-wire communication and the size is small and has lowpower consumption and the ability to transmit the signal upto 20 meters away

23 Fuzzy System

231 Fuzzy Rules A model for the climate behavior is toocomplex and the uncertainty is always present so the use ofthe fuzzy system in order to program an irrigation schemeis proposed The fuzzy system uses the expert knowledge inform of rules to control the aperture time of the valve andtherefor the water supplied The knowledge base from the

expert provides the information necessary to perform thedesign of the irrigation program sequence as well as thegeneration of the rules that are part of the fuzzy inferencemechanism (see Table 3)

The proposed model employs Mamdani fuzzy mecha-nism described with MISO type fuzzy rules shown on thesystem equation

1198771 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 1199101 is 1198611199031

119877119895 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 119910

119895is 119861119903119895

119877119898 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 119910

119898is 119861119905119898

(3)

International Journal of Distributed Sensor Networks 5

35

30

25

20

15

10

05

0100 20 30

Out

put v

olta

ge (V

)

40 50 60

Soil moisture ()

y = 42E minus 5x3 minus 00038x2 + 01265x + 00888R2 = 09974

Figure 3 Humidity sensor characterization

where 119860119895119894 119860119896

2 119860

119897

119899and 119861119904

119895for 119877119895 represent the corre-

sponding linguistic values [18]The processing block consistsof a hardware Arduino microcontroller which is the Atmel328p where the irrigation program established by the fuzzyrules is stored

232 Fuzzy Sets The linguistic variables to form the fuzzysets are as follows

(i) Temperature Due to the warm air in the shadow houseinfrastructure is retained and an important consideration inthe cultivation under protected conditions is the temperaturefactor because it favors the evaporation of water and has animportant impact in the crop The low technification of thisstructure only can provide air movement through the roofdoors or the antiaphid mesh around of him

(ii) RelativeHumidityThe humidity factor has great influenceon the crop Excess moisture in habanero pepper plantsaffects its development so it should not be given water to thecrop when the humidity is high however when the humiditydecreases it is necessary to supply water to the plant

(iii) Stages of the Crop Growth stages (119870119888) influence the devel-

opment of the plant especially considering that the habaneropepper is a plant that requires large amounts of water whichultimately affects the quality of the fruit This is an importantfactor for the habanero pepper because to obtain designationof origin you must have certain characteristics of the fruit atharvest

(iv) Irrigation Time The output of the fuzzy system is theirrigation time and represents the run time in minutes Thefrequency of watering time keeps the amount of water neededto avoid crop water stress

In order to convert the linguistic variables on fuzzynumbers this paper proposes the calculation of intermediatevalues of the linguistic range through the triangular function(4) while outliers are modeled by the Gamma function left

10

30 53 75 98 120

05

Growth

MaturityDevelopment

MaxMin

Figure 4 Input sets for the variable stage of development

part of the linguistic rang (5) and 119871 function right part of thelinguistic range (6)

120583 (119909 119886119898 119887)

= max min (119909 minus 119886) (119898 minus 119886) minus 1 (119887 minus 119909) (119887 minus 119898) minus 1 0 (4)

120583 (119909) =

0 119909 le 119886

(119909 minus 119886) (119898 minus 119886)minus1119909 isin (119886119898)

1 119909 ge 119898

(5)

The membership function is created with expert knowledgeand adopts a graphic form determined according to the typeof value associated with the fuzzy set The 119871 and Gammafunctions correspond to the membership functions whichare used to calculate extreme fuzzy values Therefore the 119871function is defined by

119871 = 1minusGamma (6)

The graphic form of the linguistic variables defined by thelast equations is shown in Figures 4 5 6 and 7

233 Inference Mechanism The inference mechanism hastwo basic tasks determines the relevance and extent of eachrule in relation to the current entries (119906

119894) and generates the

corresponding conclusions The combination of the sets ofrules with inputs can be calculated as follows

120583119860119895

1(1199061) = 1205831198601198951

(1199061) lowast 120583119860fuz1(1199061)

1205831198601198962(1199062) = 1205831198601198962 (1199062) lowast 120583119860fuz2

(1199062)

120583119860119897119899(119906119899) = 120583119860119897119899(119906119899) lowast 120583119860fuz119899(119906119899)

(7)

6 International Journal of Distributed Sensor Networks

10

05

130 175 220 265 310 355 400

MaxMin

Medium

Very fewFew Very high

High

Figure 5 Input sets for the variable relative humidity

10

05

300 4166 7666 8833 10005333 650

MaxMin

Medium

Very fewFew Very high

High

Figure 6 Input sets for the variable temperature

The result is a set with the ldquofiredrdquo rules To obtain a crispvalue that can be applied to the valve it will be necessary tocalculate the center of the graph and this can be done by

119910 =

int119910120583 (119910) 119910 119889119910

int119910120583 (119910) 119910 119889119910

(8)

24 Data Acquisition System The proposed communicationsystem includes a basic structure that can be used in agricul-tural environments and this proposal aims to organize thesections of a sensor network and facilitates the selection oftechnologies required to implement the ZigBee networkThecommunication system uses IEEE802154 protocol (ZigBee)which was implemented on an Arduino board with XBee Promodule of Maxtream configured with a PAN ID 3332 a rateof 9600 baud 8 data bits and no parity (see Figure 8)

The structure presented is divided into two sections aninternal for data collection (sensor network) and an exter-nal that can send information to central computers to storeandor process informationThe internal section is composedof elements that collect information from the agriculturalparameters of interest such as temperature relative humidityand soil moisture (sensors) the data collected will be sent todevices for processing through the ZigBee protocol which

10

05

0 333 667 100 1333 1667 200

Medium

Very shortShort Very long

Long

MaxMin

Figure 7 Output sets for the variable irrigation time

Network PAN id = 3332

CoordinatorDH 0DL FFFFMY 1

Fuzzy segmentDH 0DL 1MY A

Traditional segmentDH 0DL 1MY B

Figure 8 Sensor network

is used for transmission (end devices) The internal sectioncan be implemented through Arduino boards with Xbeemodules In the transmission of information the router nodewill receive the information of the end devices and will betransmitted to the coordinator for central processing in orderto be able to connect to a larger networkThe external sectionis composed of central processing devices sending data toremote nodes via Ethernet WiFi mobile devices or othermeans that can send information to other locations as shownin Figure 9

The data acquisition is made with a DuemilanovaArduino and this platform is programed for a sampling rateof 5 minutes Each value from the corresponding sensor hasan header for identification as shown in Algorithm 2 Thesedata are linked with the Xbee devices for the transmission tothe other Xbee configured like a coordinator

To get data from the serial port that the Xbee Shield(Coordinator) is sending we programmethods as can be seenin Algorithm 3 and the header of each data frame is definedso that it recognizes and takes the indicated action for storageat the database every time that receives data (Algorithm 4)

3 Results and Discussion

The behavior of the proposed system was supervised fromMarch to May 2013 this corresponds to all cycle of cropTables 4(a) 4(b) and 4(c) show the average values acquiredfrom the system The results obtained are compared with

International Journal of Distributed Sensor Networks 7

Shaded houseinfrastructure

Sensors

Sensors

SensorsSensors

SensorsSensors

External section

ZigBee

ZigBeeZigBee

coordinator

end device

ZigBeeend device

Internal section

router

GPRS Ethernet WiFi

Centralprocessing

Arduino + Xbee

Arduino + Xbee

50m

Figure 9 Internal and external sections

65432100 10 20 30 40 50 60 70

Days after transplant

Etc (

mm

)

Figure 10 Evapotranspiration values for the crop cycle

the results of calculations performed for the water loss byevapotranspiration reference (Eto) as shown in the work ofPerez-Gutierrez et al [19] The comparison between fuzzysystems of irrigation and traditional irrigationwas performedto validate the data obtained

The Etc shows values that are in an interval of 3mmsdotdayminus1(Figure 10) This range is stable for all the harvest period ifvariations of the Etc were more spacious and then shouldtake into account a greater number of variables thereforeby maintaining a controlled environment with the use of theshadow house we can use a small number of sensors and inthis proposal the use of three of them is enough to estimatethe irrigation

The system showed a deviation of +011 in Marchminus039 in April and +051 in May (Figures 11 12 and13) The supplied volume by the fuzzy system is comparedwith the calculated volume resulting in a small deviationtherefore we can establish the reliability of the system

0500

10001500200025003000350040004500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Volu

me (

L)

Days (March)

Calculated volume (L)Supplied volume (L)

Figure 11 Comparison between traditional irrigation and the fuzzysystem (March 2013)

With the fuzzy system validated the analysis of the datafor eachmonth can be made As part of the validation sampleMarch 20 is shown In Figure 14 the frequency of irrigationduring the day is graphed

According to the data obtained with respect to thefrequency of irrigation Figure 14 shows that the frequencyof irrigation is higher in the time period between 1030and 1300 in this period we can observe an increase trendin the temperature (Figure 15) and a low relative humidity(Figure 16) indicating a water accumulation in the soiltherefore a balance between evapotranspiration and thewater applied to the crop is generated

8 International Journal of Distributed Sensor Networks

Table4(a)D

atafrom

them

onth

ofMarch

forthe

cycle

ofcrop(b)

Datafrom

them

onth

ofAp

rilforthe

cycle

ofcrop(c)Datafrom

them

onth

ofMay

forthe

cycle

ofcrop

(a)

March

Day

Etc(mmsdotdıaminus1 )

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

2258425473

1341340

92235568182

2029668918

17357783512

168119

182801986364

2810

025131

3257725364

10913627

1818

937879

2024170272

18307273124

14404782

240079697

2413

317471

437044

9566

15902236

2650372727

2909504

086

19373218858

17796109

2966018182

2931254056

5384566297

182036

3033933333

3020376637

2039600

9363

18436127

3072

687879

3110

250267

6333154632

149705

2495

083333

2616

59036

2134154618

15833791

2638965152

2682497426

7307303393

14569518

2472

201515

2413

555204

22444

59937

22096245

3682707576

3491

875286

837064

8946

17890227

2981704545

2911070015

23450743937

2116

9736

3528289394

3540134599

93627264

2817962364

2993

727273

2848846

704

24467591342

21811636

3635272727

3672

453809

10383003911

1852

4945

3174

921212

3008105683

2513

804632

566

89909

9448318182

1084213265

112655606

8411413364

1902227273

2085708733

26096752606

45595818

759930303

7598931903

1224746

8837

11749273

1999

775758

1943615697

27366104898

17867809

2977

968182

287538114

113

231084615

1112

2518

185375303

1814

934321

28346

753609

1576

0455

2626742424

2723396

476

14242255034

10806

673

1801112121

1902666591

29460879854

22293755

3715

625758

3619

741905

15349001336

1674

8164

2791

3606

062741050084

30462318448

21561836

3593

639394

3631040

596

16369959684

17351655

2891

942424

2905656565

31488327963

22941936

3823656061

3835318856

(b)

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

13961718653

18771482

3128580303

3111526554

16399938767

17371336

2895

222727

31411117

32

4169559209

25227564

4204593939

3274

764145

17409686903

192428

3207133333

3217

673412

3404

8530602

18909436

3151572727

3179

708499

18471907325

21807836

3634639394

370635146

44

3418113126

15290055

2548342424

2684579772

195057651274

22931773

3821962121

3972

270022

54344343997

20729182

3454863636

3412

039796

203687610895

14040

036

23400

06061

2896

242824

652164

59781

24479782

4079

963636

4096

997931

214583233577

21846

064

364101060

63599

663234

75021289634

23754855

3959142424

3943711656

223708343758

17238536

2873

089394

2912

526377

84818401971

25410745

4235124242

3784364

058

235197175777

24660

44110

0666

6740

8185231

94929600332

2337

8527

3896

421212

3871699047

245013674745

23637727

3939621212

3937730937

104425304

818

2076

9664

346161060

63475

626276

25460

4622494

2139

2809

3565468182

3616

46205

1143046

8744

720112073

3352012121

3380893615

264715697984

22946236

3824372727

3703700535

12303026964

214473727

2412

287879

2379

968211

274767017231

2235

9845

37266

40909

37440

06578

International Journal of Distributed Sensor Networks 9

(b)Con

tinued

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134228506725

1981396

43302327273

3321061416

2849999503

2313

4864

385581060

63926951783

14419946964

121049973

3508328788

3298

255743

294685183652

2216

5509

3694

251515

3679

734635

1541340

0889

18688127

3114

687879

3246842989

303708190798

17870818

2978

469697

2912

406242

(c)

May

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134840

0241

16046282

2674

3803

273632909

14281323798

12056146

200935758

22095119

42

428945109

19954027

332567121

336892701

15345795001

15992027

266533788

2715

86759

3364

868417

17514855

2919

14242

286566985

16376349121

17962409

2993

73485

295583908

4400339841

190312

317186667

314426176

17341760316

1610

1982

268366364

268417925

527064

0388

1241364

62068940

912125604

6418

343767282

15971582

26619303

2699

94192

6351451778

16295346

2715

89091

276029581

19313612887

15119536

2519

92273

243822456

7329792176

1609100

9268183485

2590

1817

20293326251

14367546

2394

59091

246310986

8335111737

15496273

258271212

263196142

21305215788

13911227

2318

53788

230377899

9358129742

16387591

273126515

2812

7444

222

304

887854

14010273

233504545

2397

15919

10365825019

1766

4609

294410152

287318298

23252884747

1503564

62505940

912394

58361

11377619727

17437236

2906206

0629658184

24252884747

113733

1895

55198615216

12373897867

17908982

29848303

293658698

25320855932

1554804

62591

34091

2519

99659

13283378267

1312

6791

218779848

222564771

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 4: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

4 International Journal of Distributed Sensor Networks

Table 3 Rules of the fuzzy system in the growth stage of the crop

TemperatureVery few Few Medium High Very high

HumidityVery few Medium Medium Long Long Very longFew Medium Medium Medium Medium LongMedium Short Short Short Short MediumHigh Very short Very short Very short Very short Very shortVery high Very short Very short Very short Very short Very short

Start

Measurement and estimation ofthe volume of water lost

Yes Is it in theoptimal range

No

NoThe volume isbelow 70

Yes

Valuation of thevolume trend

Irrigation isscheduled

No

Yes

Fuzzy mechanism forestimating irrigation time

Irrigationrun

Yes Irrigationended No

Figure 2 Algorithm that incorporated the fuzzy irrigation process

(NTC and humidity) and a small 8-bit microcontroller It canmeasure the humidity in the range 20 approximately 95and the temperature range between 0∘C and 50∘C Protocoluses 1-wire communication and the size is small and has lowpower consumption and the ability to transmit the signal upto 20 meters away

23 Fuzzy System

231 Fuzzy Rules A model for the climate behavior is toocomplex and the uncertainty is always present so the use ofthe fuzzy system in order to program an irrigation schemeis proposed The fuzzy system uses the expert knowledge inform of rules to control the aperture time of the valve andtherefor the water supplied The knowledge base from the

expert provides the information necessary to perform thedesign of the irrigation program sequence as well as thegeneration of the rules that are part of the fuzzy inferencemechanism (see Table 3)

The proposed model employs Mamdani fuzzy mecha-nism described with MISO type fuzzy rules shown on thesystem equation

1198771 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 1199101 is 1198611199031

119877119895 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 119910

119895is 119861119903119895

119877119898 If 1199061 is 1198601198951 1199062 is 1198601198962 119906119899 is 119860

119897

119899then 119910

119898is 119861119905119898

(3)

International Journal of Distributed Sensor Networks 5

35

30

25

20

15

10

05

0100 20 30

Out

put v

olta

ge (V

)

40 50 60

Soil moisture ()

y = 42E minus 5x3 minus 00038x2 + 01265x + 00888R2 = 09974

Figure 3 Humidity sensor characterization

where 119860119895119894 119860119896

2 119860

119897

119899and 119861119904

119895for 119877119895 represent the corre-

sponding linguistic values [18]The processing block consistsof a hardware Arduino microcontroller which is the Atmel328p where the irrigation program established by the fuzzyrules is stored

232 Fuzzy Sets The linguistic variables to form the fuzzysets are as follows

(i) Temperature Due to the warm air in the shadow houseinfrastructure is retained and an important consideration inthe cultivation under protected conditions is the temperaturefactor because it favors the evaporation of water and has animportant impact in the crop The low technification of thisstructure only can provide air movement through the roofdoors or the antiaphid mesh around of him

(ii) RelativeHumidityThe humidity factor has great influenceon the crop Excess moisture in habanero pepper plantsaffects its development so it should not be given water to thecrop when the humidity is high however when the humiditydecreases it is necessary to supply water to the plant

(iii) Stages of the Crop Growth stages (119870119888) influence the devel-

opment of the plant especially considering that the habaneropepper is a plant that requires large amounts of water whichultimately affects the quality of the fruit This is an importantfactor for the habanero pepper because to obtain designationof origin you must have certain characteristics of the fruit atharvest

(iv) Irrigation Time The output of the fuzzy system is theirrigation time and represents the run time in minutes Thefrequency of watering time keeps the amount of water neededto avoid crop water stress

In order to convert the linguistic variables on fuzzynumbers this paper proposes the calculation of intermediatevalues of the linguistic range through the triangular function(4) while outliers are modeled by the Gamma function left

10

30 53 75 98 120

05

Growth

MaturityDevelopment

MaxMin

Figure 4 Input sets for the variable stage of development

part of the linguistic rang (5) and 119871 function right part of thelinguistic range (6)

120583 (119909 119886119898 119887)

= max min (119909 minus 119886) (119898 minus 119886) minus 1 (119887 minus 119909) (119887 minus 119898) minus 1 0 (4)

120583 (119909) =

0 119909 le 119886

(119909 minus 119886) (119898 minus 119886)minus1119909 isin (119886119898)

1 119909 ge 119898

(5)

The membership function is created with expert knowledgeand adopts a graphic form determined according to the typeof value associated with the fuzzy set The 119871 and Gammafunctions correspond to the membership functions whichare used to calculate extreme fuzzy values Therefore the 119871function is defined by

119871 = 1minusGamma (6)

The graphic form of the linguistic variables defined by thelast equations is shown in Figures 4 5 6 and 7

233 Inference Mechanism The inference mechanism hastwo basic tasks determines the relevance and extent of eachrule in relation to the current entries (119906

119894) and generates the

corresponding conclusions The combination of the sets ofrules with inputs can be calculated as follows

120583119860119895

1(1199061) = 1205831198601198951

(1199061) lowast 120583119860fuz1(1199061)

1205831198601198962(1199062) = 1205831198601198962 (1199062) lowast 120583119860fuz2

(1199062)

120583119860119897119899(119906119899) = 120583119860119897119899(119906119899) lowast 120583119860fuz119899(119906119899)

(7)

6 International Journal of Distributed Sensor Networks

10

05

130 175 220 265 310 355 400

MaxMin

Medium

Very fewFew Very high

High

Figure 5 Input sets for the variable relative humidity

10

05

300 4166 7666 8833 10005333 650

MaxMin

Medium

Very fewFew Very high

High

Figure 6 Input sets for the variable temperature

The result is a set with the ldquofiredrdquo rules To obtain a crispvalue that can be applied to the valve it will be necessary tocalculate the center of the graph and this can be done by

119910 =

int119910120583 (119910) 119910 119889119910

int119910120583 (119910) 119910 119889119910

(8)

24 Data Acquisition System The proposed communicationsystem includes a basic structure that can be used in agricul-tural environments and this proposal aims to organize thesections of a sensor network and facilitates the selection oftechnologies required to implement the ZigBee networkThecommunication system uses IEEE802154 protocol (ZigBee)which was implemented on an Arduino board with XBee Promodule of Maxtream configured with a PAN ID 3332 a rateof 9600 baud 8 data bits and no parity (see Figure 8)

The structure presented is divided into two sections aninternal for data collection (sensor network) and an exter-nal that can send information to central computers to storeandor process informationThe internal section is composedof elements that collect information from the agriculturalparameters of interest such as temperature relative humidityand soil moisture (sensors) the data collected will be sent todevices for processing through the ZigBee protocol which

10

05

0 333 667 100 1333 1667 200

Medium

Very shortShort Very long

Long

MaxMin

Figure 7 Output sets for the variable irrigation time

Network PAN id = 3332

CoordinatorDH 0DL FFFFMY 1

Fuzzy segmentDH 0DL 1MY A

Traditional segmentDH 0DL 1MY B

Figure 8 Sensor network

is used for transmission (end devices) The internal sectioncan be implemented through Arduino boards with Xbeemodules In the transmission of information the router nodewill receive the information of the end devices and will betransmitted to the coordinator for central processing in orderto be able to connect to a larger networkThe external sectionis composed of central processing devices sending data toremote nodes via Ethernet WiFi mobile devices or othermeans that can send information to other locations as shownin Figure 9

The data acquisition is made with a DuemilanovaArduino and this platform is programed for a sampling rateof 5 minutes Each value from the corresponding sensor hasan header for identification as shown in Algorithm 2 Thesedata are linked with the Xbee devices for the transmission tothe other Xbee configured like a coordinator

To get data from the serial port that the Xbee Shield(Coordinator) is sending we programmethods as can be seenin Algorithm 3 and the header of each data frame is definedso that it recognizes and takes the indicated action for storageat the database every time that receives data (Algorithm 4)

3 Results and Discussion

The behavior of the proposed system was supervised fromMarch to May 2013 this corresponds to all cycle of cropTables 4(a) 4(b) and 4(c) show the average values acquiredfrom the system The results obtained are compared with

International Journal of Distributed Sensor Networks 7

Shaded houseinfrastructure

Sensors

Sensors

SensorsSensors

SensorsSensors

External section

ZigBee

ZigBeeZigBee

coordinator

end device

ZigBeeend device

Internal section

router

GPRS Ethernet WiFi

Centralprocessing

Arduino + Xbee

Arduino + Xbee

50m

Figure 9 Internal and external sections

65432100 10 20 30 40 50 60 70

Days after transplant

Etc (

mm

)

Figure 10 Evapotranspiration values for the crop cycle

the results of calculations performed for the water loss byevapotranspiration reference (Eto) as shown in the work ofPerez-Gutierrez et al [19] The comparison between fuzzysystems of irrigation and traditional irrigationwas performedto validate the data obtained

The Etc shows values that are in an interval of 3mmsdotdayminus1(Figure 10) This range is stable for all the harvest period ifvariations of the Etc were more spacious and then shouldtake into account a greater number of variables thereforeby maintaining a controlled environment with the use of theshadow house we can use a small number of sensors and inthis proposal the use of three of them is enough to estimatethe irrigation

The system showed a deviation of +011 in Marchminus039 in April and +051 in May (Figures 11 12 and13) The supplied volume by the fuzzy system is comparedwith the calculated volume resulting in a small deviationtherefore we can establish the reliability of the system

0500

10001500200025003000350040004500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Volu

me (

L)

Days (March)

Calculated volume (L)Supplied volume (L)

Figure 11 Comparison between traditional irrigation and the fuzzysystem (March 2013)

With the fuzzy system validated the analysis of the datafor eachmonth can be made As part of the validation sampleMarch 20 is shown In Figure 14 the frequency of irrigationduring the day is graphed

According to the data obtained with respect to thefrequency of irrigation Figure 14 shows that the frequencyof irrigation is higher in the time period between 1030and 1300 in this period we can observe an increase trendin the temperature (Figure 15) and a low relative humidity(Figure 16) indicating a water accumulation in the soiltherefore a balance between evapotranspiration and thewater applied to the crop is generated

8 International Journal of Distributed Sensor Networks

Table4(a)D

atafrom

them

onth

ofMarch

forthe

cycle

ofcrop(b)

Datafrom

them

onth

ofAp

rilforthe

cycle

ofcrop(c)Datafrom

them

onth

ofMay

forthe

cycle

ofcrop

(a)

March

Day

Etc(mmsdotdıaminus1 )

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

2258425473

1341340

92235568182

2029668918

17357783512

168119

182801986364

2810

025131

3257725364

10913627

1818

937879

2024170272

18307273124

14404782

240079697

2413

317471

437044

9566

15902236

2650372727

2909504

086

19373218858

17796109

2966018182

2931254056

5384566297

182036

3033933333

3020376637

2039600

9363

18436127

3072

687879

3110

250267

6333154632

149705

2495

083333

2616

59036

2134154618

15833791

2638965152

2682497426

7307303393

14569518

2472

201515

2413

555204

22444

59937

22096245

3682707576

3491

875286

837064

8946

17890227

2981704545

2911070015

23450743937

2116

9736

3528289394

3540134599

93627264

2817962364

2993

727273

2848846

704

24467591342

21811636

3635272727

3672

453809

10383003911

1852

4945

3174

921212

3008105683

2513

804632

566

89909

9448318182

1084213265

112655606

8411413364

1902227273

2085708733

26096752606

45595818

759930303

7598931903

1224746

8837

11749273

1999

775758

1943615697

27366104898

17867809

2977

968182

287538114

113

231084615

1112

2518

185375303

1814

934321

28346

753609

1576

0455

2626742424

2723396

476

14242255034

10806

673

1801112121

1902666591

29460879854

22293755

3715

625758

3619

741905

15349001336

1674

8164

2791

3606

062741050084

30462318448

21561836

3593

639394

3631040

596

16369959684

17351655

2891

942424

2905656565

31488327963

22941936

3823656061

3835318856

(b)

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

13961718653

18771482

3128580303

3111526554

16399938767

17371336

2895

222727

31411117

32

4169559209

25227564

4204593939

3274

764145

17409686903

192428

3207133333

3217

673412

3404

8530602

18909436

3151572727

3179

708499

18471907325

21807836

3634639394

370635146

44

3418113126

15290055

2548342424

2684579772

195057651274

22931773

3821962121

3972

270022

54344343997

20729182

3454863636

3412

039796

203687610895

14040

036

23400

06061

2896

242824

652164

59781

24479782

4079

963636

4096

997931

214583233577

21846

064

364101060

63599

663234

75021289634

23754855

3959142424

3943711656

223708343758

17238536

2873

089394

2912

526377

84818401971

25410745

4235124242

3784364

058

235197175777

24660

44110

0666

6740

8185231

94929600332

2337

8527

3896

421212

3871699047

245013674745

23637727

3939621212

3937730937

104425304

818

2076

9664

346161060

63475

626276

25460

4622494

2139

2809

3565468182

3616

46205

1143046

8744

720112073

3352012121

3380893615

264715697984

22946236

3824372727

3703700535

12303026964

214473727

2412

287879

2379

968211

274767017231

2235

9845

37266

40909

37440

06578

International Journal of Distributed Sensor Networks 9

(b)Con

tinued

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134228506725

1981396

43302327273

3321061416

2849999503

2313

4864

385581060

63926951783

14419946964

121049973

3508328788

3298

255743

294685183652

2216

5509

3694

251515

3679

734635

1541340

0889

18688127

3114

687879

3246842989

303708190798

17870818

2978

469697

2912

406242

(c)

May

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134840

0241

16046282

2674

3803

273632909

14281323798

12056146

200935758

22095119

42

428945109

19954027

332567121

336892701

15345795001

15992027

266533788

2715

86759

3364

868417

17514855

2919

14242

286566985

16376349121

17962409

2993

73485

295583908

4400339841

190312

317186667

314426176

17341760316

1610

1982

268366364

268417925

527064

0388

1241364

62068940

912125604

6418

343767282

15971582

26619303

2699

94192

6351451778

16295346

2715

89091

276029581

19313612887

15119536

2519

92273

243822456

7329792176

1609100

9268183485

2590

1817

20293326251

14367546

2394

59091

246310986

8335111737

15496273

258271212

263196142

21305215788

13911227

2318

53788

230377899

9358129742

16387591

273126515

2812

7444

222

304

887854

14010273

233504545

2397

15919

10365825019

1766

4609

294410152

287318298

23252884747

1503564

62505940

912394

58361

11377619727

17437236

2906206

0629658184

24252884747

113733

1895

55198615216

12373897867

17908982

29848303

293658698

25320855932

1554804

62591

34091

2519

99659

13283378267

1312

6791

218779848

222564771

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 5: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

International Journal of Distributed Sensor Networks 5

35

30

25

20

15

10

05

0100 20 30

Out

put v

olta

ge (V

)

40 50 60

Soil moisture ()

y = 42E minus 5x3 minus 00038x2 + 01265x + 00888R2 = 09974

Figure 3 Humidity sensor characterization

where 119860119895119894 119860119896

2 119860

119897

119899and 119861119904

119895for 119877119895 represent the corre-

sponding linguistic values [18]The processing block consistsof a hardware Arduino microcontroller which is the Atmel328p where the irrigation program established by the fuzzyrules is stored

232 Fuzzy Sets The linguistic variables to form the fuzzysets are as follows

(i) Temperature Due to the warm air in the shadow houseinfrastructure is retained and an important consideration inthe cultivation under protected conditions is the temperaturefactor because it favors the evaporation of water and has animportant impact in the crop The low technification of thisstructure only can provide air movement through the roofdoors or the antiaphid mesh around of him

(ii) RelativeHumidityThe humidity factor has great influenceon the crop Excess moisture in habanero pepper plantsaffects its development so it should not be given water to thecrop when the humidity is high however when the humiditydecreases it is necessary to supply water to the plant

(iii) Stages of the Crop Growth stages (119870119888) influence the devel-

opment of the plant especially considering that the habaneropepper is a plant that requires large amounts of water whichultimately affects the quality of the fruit This is an importantfactor for the habanero pepper because to obtain designationof origin you must have certain characteristics of the fruit atharvest

(iv) Irrigation Time The output of the fuzzy system is theirrigation time and represents the run time in minutes Thefrequency of watering time keeps the amount of water neededto avoid crop water stress

In order to convert the linguistic variables on fuzzynumbers this paper proposes the calculation of intermediatevalues of the linguistic range through the triangular function(4) while outliers are modeled by the Gamma function left

10

30 53 75 98 120

05

Growth

MaturityDevelopment

MaxMin

Figure 4 Input sets for the variable stage of development

part of the linguistic rang (5) and 119871 function right part of thelinguistic range (6)

120583 (119909 119886119898 119887)

= max min (119909 minus 119886) (119898 minus 119886) minus 1 (119887 minus 119909) (119887 minus 119898) minus 1 0 (4)

120583 (119909) =

0 119909 le 119886

(119909 minus 119886) (119898 minus 119886)minus1119909 isin (119886119898)

1 119909 ge 119898

(5)

The membership function is created with expert knowledgeand adopts a graphic form determined according to the typeof value associated with the fuzzy set The 119871 and Gammafunctions correspond to the membership functions whichare used to calculate extreme fuzzy values Therefore the 119871function is defined by

119871 = 1minusGamma (6)

The graphic form of the linguistic variables defined by thelast equations is shown in Figures 4 5 6 and 7

233 Inference Mechanism The inference mechanism hastwo basic tasks determines the relevance and extent of eachrule in relation to the current entries (119906

119894) and generates the

corresponding conclusions The combination of the sets ofrules with inputs can be calculated as follows

120583119860119895

1(1199061) = 1205831198601198951

(1199061) lowast 120583119860fuz1(1199061)

1205831198601198962(1199062) = 1205831198601198962 (1199062) lowast 120583119860fuz2

(1199062)

120583119860119897119899(119906119899) = 120583119860119897119899(119906119899) lowast 120583119860fuz119899(119906119899)

(7)

6 International Journal of Distributed Sensor Networks

10

05

130 175 220 265 310 355 400

MaxMin

Medium

Very fewFew Very high

High

Figure 5 Input sets for the variable relative humidity

10

05

300 4166 7666 8833 10005333 650

MaxMin

Medium

Very fewFew Very high

High

Figure 6 Input sets for the variable temperature

The result is a set with the ldquofiredrdquo rules To obtain a crispvalue that can be applied to the valve it will be necessary tocalculate the center of the graph and this can be done by

119910 =

int119910120583 (119910) 119910 119889119910

int119910120583 (119910) 119910 119889119910

(8)

24 Data Acquisition System The proposed communicationsystem includes a basic structure that can be used in agricul-tural environments and this proposal aims to organize thesections of a sensor network and facilitates the selection oftechnologies required to implement the ZigBee networkThecommunication system uses IEEE802154 protocol (ZigBee)which was implemented on an Arduino board with XBee Promodule of Maxtream configured with a PAN ID 3332 a rateof 9600 baud 8 data bits and no parity (see Figure 8)

The structure presented is divided into two sections aninternal for data collection (sensor network) and an exter-nal that can send information to central computers to storeandor process informationThe internal section is composedof elements that collect information from the agriculturalparameters of interest such as temperature relative humidityand soil moisture (sensors) the data collected will be sent todevices for processing through the ZigBee protocol which

10

05

0 333 667 100 1333 1667 200

Medium

Very shortShort Very long

Long

MaxMin

Figure 7 Output sets for the variable irrigation time

Network PAN id = 3332

CoordinatorDH 0DL FFFFMY 1

Fuzzy segmentDH 0DL 1MY A

Traditional segmentDH 0DL 1MY B

Figure 8 Sensor network

is used for transmission (end devices) The internal sectioncan be implemented through Arduino boards with Xbeemodules In the transmission of information the router nodewill receive the information of the end devices and will betransmitted to the coordinator for central processing in orderto be able to connect to a larger networkThe external sectionis composed of central processing devices sending data toremote nodes via Ethernet WiFi mobile devices or othermeans that can send information to other locations as shownin Figure 9

The data acquisition is made with a DuemilanovaArduino and this platform is programed for a sampling rateof 5 minutes Each value from the corresponding sensor hasan header for identification as shown in Algorithm 2 Thesedata are linked with the Xbee devices for the transmission tothe other Xbee configured like a coordinator

To get data from the serial port that the Xbee Shield(Coordinator) is sending we programmethods as can be seenin Algorithm 3 and the header of each data frame is definedso that it recognizes and takes the indicated action for storageat the database every time that receives data (Algorithm 4)

3 Results and Discussion

The behavior of the proposed system was supervised fromMarch to May 2013 this corresponds to all cycle of cropTables 4(a) 4(b) and 4(c) show the average values acquiredfrom the system The results obtained are compared with

International Journal of Distributed Sensor Networks 7

Shaded houseinfrastructure

Sensors

Sensors

SensorsSensors

SensorsSensors

External section

ZigBee

ZigBeeZigBee

coordinator

end device

ZigBeeend device

Internal section

router

GPRS Ethernet WiFi

Centralprocessing

Arduino + Xbee

Arduino + Xbee

50m

Figure 9 Internal and external sections

65432100 10 20 30 40 50 60 70

Days after transplant

Etc (

mm

)

Figure 10 Evapotranspiration values for the crop cycle

the results of calculations performed for the water loss byevapotranspiration reference (Eto) as shown in the work ofPerez-Gutierrez et al [19] The comparison between fuzzysystems of irrigation and traditional irrigationwas performedto validate the data obtained

The Etc shows values that are in an interval of 3mmsdotdayminus1(Figure 10) This range is stable for all the harvest period ifvariations of the Etc were more spacious and then shouldtake into account a greater number of variables thereforeby maintaining a controlled environment with the use of theshadow house we can use a small number of sensors and inthis proposal the use of three of them is enough to estimatethe irrigation

The system showed a deviation of +011 in Marchminus039 in April and +051 in May (Figures 11 12 and13) The supplied volume by the fuzzy system is comparedwith the calculated volume resulting in a small deviationtherefore we can establish the reliability of the system

0500

10001500200025003000350040004500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Volu

me (

L)

Days (March)

Calculated volume (L)Supplied volume (L)

Figure 11 Comparison between traditional irrigation and the fuzzysystem (March 2013)

With the fuzzy system validated the analysis of the datafor eachmonth can be made As part of the validation sampleMarch 20 is shown In Figure 14 the frequency of irrigationduring the day is graphed

According to the data obtained with respect to thefrequency of irrigation Figure 14 shows that the frequencyof irrigation is higher in the time period between 1030and 1300 in this period we can observe an increase trendin the temperature (Figure 15) and a low relative humidity(Figure 16) indicating a water accumulation in the soiltherefore a balance between evapotranspiration and thewater applied to the crop is generated

8 International Journal of Distributed Sensor Networks

Table4(a)D

atafrom

them

onth

ofMarch

forthe

cycle

ofcrop(b)

Datafrom

them

onth

ofAp

rilforthe

cycle

ofcrop(c)Datafrom

them

onth

ofMay

forthe

cycle

ofcrop

(a)

March

Day

Etc(mmsdotdıaminus1 )

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

2258425473

1341340

92235568182

2029668918

17357783512

168119

182801986364

2810

025131

3257725364

10913627

1818

937879

2024170272

18307273124

14404782

240079697

2413

317471

437044

9566

15902236

2650372727

2909504

086

19373218858

17796109

2966018182

2931254056

5384566297

182036

3033933333

3020376637

2039600

9363

18436127

3072

687879

3110

250267

6333154632

149705

2495

083333

2616

59036

2134154618

15833791

2638965152

2682497426

7307303393

14569518

2472

201515

2413

555204

22444

59937

22096245

3682707576

3491

875286

837064

8946

17890227

2981704545

2911070015

23450743937

2116

9736

3528289394

3540134599

93627264

2817962364

2993

727273

2848846

704

24467591342

21811636

3635272727

3672

453809

10383003911

1852

4945

3174

921212

3008105683

2513

804632

566

89909

9448318182

1084213265

112655606

8411413364

1902227273

2085708733

26096752606

45595818

759930303

7598931903

1224746

8837

11749273

1999

775758

1943615697

27366104898

17867809

2977

968182

287538114

113

231084615

1112

2518

185375303

1814

934321

28346

753609

1576

0455

2626742424

2723396

476

14242255034

10806

673

1801112121

1902666591

29460879854

22293755

3715

625758

3619

741905

15349001336

1674

8164

2791

3606

062741050084

30462318448

21561836

3593

639394

3631040

596

16369959684

17351655

2891

942424

2905656565

31488327963

22941936

3823656061

3835318856

(b)

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

13961718653

18771482

3128580303

3111526554

16399938767

17371336

2895

222727

31411117

32

4169559209

25227564

4204593939

3274

764145

17409686903

192428

3207133333

3217

673412

3404

8530602

18909436

3151572727

3179

708499

18471907325

21807836

3634639394

370635146

44

3418113126

15290055

2548342424

2684579772

195057651274

22931773

3821962121

3972

270022

54344343997

20729182

3454863636

3412

039796

203687610895

14040

036

23400

06061

2896

242824

652164

59781

24479782

4079

963636

4096

997931

214583233577

21846

064

364101060

63599

663234

75021289634

23754855

3959142424

3943711656

223708343758

17238536

2873

089394

2912

526377

84818401971

25410745

4235124242

3784364

058

235197175777

24660

44110

0666

6740

8185231

94929600332

2337

8527

3896

421212

3871699047

245013674745

23637727

3939621212

3937730937

104425304

818

2076

9664

346161060

63475

626276

25460

4622494

2139

2809

3565468182

3616

46205

1143046

8744

720112073

3352012121

3380893615

264715697984

22946236

3824372727

3703700535

12303026964

214473727

2412

287879

2379

968211

274767017231

2235

9845

37266

40909

37440

06578

International Journal of Distributed Sensor Networks 9

(b)Con

tinued

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134228506725

1981396

43302327273

3321061416

2849999503

2313

4864

385581060

63926951783

14419946964

121049973

3508328788

3298

255743

294685183652

2216

5509

3694

251515

3679

734635

1541340

0889

18688127

3114

687879

3246842989

303708190798

17870818

2978

469697

2912

406242

(c)

May

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134840

0241

16046282

2674

3803

273632909

14281323798

12056146

200935758

22095119

42

428945109

19954027

332567121

336892701

15345795001

15992027

266533788

2715

86759

3364

868417

17514855

2919

14242

286566985

16376349121

17962409

2993

73485

295583908

4400339841

190312

317186667

314426176

17341760316

1610

1982

268366364

268417925

527064

0388

1241364

62068940

912125604

6418

343767282

15971582

26619303

2699

94192

6351451778

16295346

2715

89091

276029581

19313612887

15119536

2519

92273

243822456

7329792176

1609100

9268183485

2590

1817

20293326251

14367546

2394

59091

246310986

8335111737

15496273

258271212

263196142

21305215788

13911227

2318

53788

230377899

9358129742

16387591

273126515

2812

7444

222

304

887854

14010273

233504545

2397

15919

10365825019

1766

4609

294410152

287318298

23252884747

1503564

62505940

912394

58361

11377619727

17437236

2906206

0629658184

24252884747

113733

1895

55198615216

12373897867

17908982

29848303

293658698

25320855932

1554804

62591

34091

2519

99659

13283378267

1312

6791

218779848

222564771

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 6: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

6 International Journal of Distributed Sensor Networks

10

05

130 175 220 265 310 355 400

MaxMin

Medium

Very fewFew Very high

High

Figure 5 Input sets for the variable relative humidity

10

05

300 4166 7666 8833 10005333 650

MaxMin

Medium

Very fewFew Very high

High

Figure 6 Input sets for the variable temperature

The result is a set with the ldquofiredrdquo rules To obtain a crispvalue that can be applied to the valve it will be necessary tocalculate the center of the graph and this can be done by

119910 =

int119910120583 (119910) 119910 119889119910

int119910120583 (119910) 119910 119889119910

(8)

24 Data Acquisition System The proposed communicationsystem includes a basic structure that can be used in agricul-tural environments and this proposal aims to organize thesections of a sensor network and facilitates the selection oftechnologies required to implement the ZigBee networkThecommunication system uses IEEE802154 protocol (ZigBee)which was implemented on an Arduino board with XBee Promodule of Maxtream configured with a PAN ID 3332 a rateof 9600 baud 8 data bits and no parity (see Figure 8)

The structure presented is divided into two sections aninternal for data collection (sensor network) and an exter-nal that can send information to central computers to storeandor process informationThe internal section is composedof elements that collect information from the agriculturalparameters of interest such as temperature relative humidityand soil moisture (sensors) the data collected will be sent todevices for processing through the ZigBee protocol which

10

05

0 333 667 100 1333 1667 200

Medium

Very shortShort Very long

Long

MaxMin

Figure 7 Output sets for the variable irrigation time

Network PAN id = 3332

CoordinatorDH 0DL FFFFMY 1

Fuzzy segmentDH 0DL 1MY A

Traditional segmentDH 0DL 1MY B

Figure 8 Sensor network

is used for transmission (end devices) The internal sectioncan be implemented through Arduino boards with Xbeemodules In the transmission of information the router nodewill receive the information of the end devices and will betransmitted to the coordinator for central processing in orderto be able to connect to a larger networkThe external sectionis composed of central processing devices sending data toremote nodes via Ethernet WiFi mobile devices or othermeans that can send information to other locations as shownin Figure 9

The data acquisition is made with a DuemilanovaArduino and this platform is programed for a sampling rateof 5 minutes Each value from the corresponding sensor hasan header for identification as shown in Algorithm 2 Thesedata are linked with the Xbee devices for the transmission tothe other Xbee configured like a coordinator

To get data from the serial port that the Xbee Shield(Coordinator) is sending we programmethods as can be seenin Algorithm 3 and the header of each data frame is definedso that it recognizes and takes the indicated action for storageat the database every time that receives data (Algorithm 4)

3 Results and Discussion

The behavior of the proposed system was supervised fromMarch to May 2013 this corresponds to all cycle of cropTables 4(a) 4(b) and 4(c) show the average values acquiredfrom the system The results obtained are compared with

International Journal of Distributed Sensor Networks 7

Shaded houseinfrastructure

Sensors

Sensors

SensorsSensors

SensorsSensors

External section

ZigBee

ZigBeeZigBee

coordinator

end device

ZigBeeend device

Internal section

router

GPRS Ethernet WiFi

Centralprocessing

Arduino + Xbee

Arduino + Xbee

50m

Figure 9 Internal and external sections

65432100 10 20 30 40 50 60 70

Days after transplant

Etc (

mm

)

Figure 10 Evapotranspiration values for the crop cycle

the results of calculations performed for the water loss byevapotranspiration reference (Eto) as shown in the work ofPerez-Gutierrez et al [19] The comparison between fuzzysystems of irrigation and traditional irrigationwas performedto validate the data obtained

The Etc shows values that are in an interval of 3mmsdotdayminus1(Figure 10) This range is stable for all the harvest period ifvariations of the Etc were more spacious and then shouldtake into account a greater number of variables thereforeby maintaining a controlled environment with the use of theshadow house we can use a small number of sensors and inthis proposal the use of three of them is enough to estimatethe irrigation

The system showed a deviation of +011 in Marchminus039 in April and +051 in May (Figures 11 12 and13) The supplied volume by the fuzzy system is comparedwith the calculated volume resulting in a small deviationtherefore we can establish the reliability of the system

0500

10001500200025003000350040004500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Volu

me (

L)

Days (March)

Calculated volume (L)Supplied volume (L)

Figure 11 Comparison between traditional irrigation and the fuzzysystem (March 2013)

With the fuzzy system validated the analysis of the datafor eachmonth can be made As part of the validation sampleMarch 20 is shown In Figure 14 the frequency of irrigationduring the day is graphed

According to the data obtained with respect to thefrequency of irrigation Figure 14 shows that the frequencyof irrigation is higher in the time period between 1030and 1300 in this period we can observe an increase trendin the temperature (Figure 15) and a low relative humidity(Figure 16) indicating a water accumulation in the soiltherefore a balance between evapotranspiration and thewater applied to the crop is generated

8 International Journal of Distributed Sensor Networks

Table4(a)D

atafrom

them

onth

ofMarch

forthe

cycle

ofcrop(b)

Datafrom

them

onth

ofAp

rilforthe

cycle

ofcrop(c)Datafrom

them

onth

ofMay

forthe

cycle

ofcrop

(a)

March

Day

Etc(mmsdotdıaminus1 )

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

2258425473

1341340

92235568182

2029668918

17357783512

168119

182801986364

2810

025131

3257725364

10913627

1818

937879

2024170272

18307273124

14404782

240079697

2413

317471

437044

9566

15902236

2650372727

2909504

086

19373218858

17796109

2966018182

2931254056

5384566297

182036

3033933333

3020376637

2039600

9363

18436127

3072

687879

3110

250267

6333154632

149705

2495

083333

2616

59036

2134154618

15833791

2638965152

2682497426

7307303393

14569518

2472

201515

2413

555204

22444

59937

22096245

3682707576

3491

875286

837064

8946

17890227

2981704545

2911070015

23450743937

2116

9736

3528289394

3540134599

93627264

2817962364

2993

727273

2848846

704

24467591342

21811636

3635272727

3672

453809

10383003911

1852

4945

3174

921212

3008105683

2513

804632

566

89909

9448318182

1084213265

112655606

8411413364

1902227273

2085708733

26096752606

45595818

759930303

7598931903

1224746

8837

11749273

1999

775758

1943615697

27366104898

17867809

2977

968182

287538114

113

231084615

1112

2518

185375303

1814

934321

28346

753609

1576

0455

2626742424

2723396

476

14242255034

10806

673

1801112121

1902666591

29460879854

22293755

3715

625758

3619

741905

15349001336

1674

8164

2791

3606

062741050084

30462318448

21561836

3593

639394

3631040

596

16369959684

17351655

2891

942424

2905656565

31488327963

22941936

3823656061

3835318856

(b)

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

13961718653

18771482

3128580303

3111526554

16399938767

17371336

2895

222727

31411117

32

4169559209

25227564

4204593939

3274

764145

17409686903

192428

3207133333

3217

673412

3404

8530602

18909436

3151572727

3179

708499

18471907325

21807836

3634639394

370635146

44

3418113126

15290055

2548342424

2684579772

195057651274

22931773

3821962121

3972

270022

54344343997

20729182

3454863636

3412

039796

203687610895

14040

036

23400

06061

2896

242824

652164

59781

24479782

4079

963636

4096

997931

214583233577

21846

064

364101060

63599

663234

75021289634

23754855

3959142424

3943711656

223708343758

17238536

2873

089394

2912

526377

84818401971

25410745

4235124242

3784364

058

235197175777

24660

44110

0666

6740

8185231

94929600332

2337

8527

3896

421212

3871699047

245013674745

23637727

3939621212

3937730937

104425304

818

2076

9664

346161060

63475

626276

25460

4622494

2139

2809

3565468182

3616

46205

1143046

8744

720112073

3352012121

3380893615

264715697984

22946236

3824372727

3703700535

12303026964

214473727

2412

287879

2379

968211

274767017231

2235

9845

37266

40909

37440

06578

International Journal of Distributed Sensor Networks 9

(b)Con

tinued

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134228506725

1981396

43302327273

3321061416

2849999503

2313

4864

385581060

63926951783

14419946964

121049973

3508328788

3298

255743

294685183652

2216

5509

3694

251515

3679

734635

1541340

0889

18688127

3114

687879

3246842989

303708190798

17870818

2978

469697

2912

406242

(c)

May

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134840

0241

16046282

2674

3803

273632909

14281323798

12056146

200935758

22095119

42

428945109

19954027

332567121

336892701

15345795001

15992027

266533788

2715

86759

3364

868417

17514855

2919

14242

286566985

16376349121

17962409

2993

73485

295583908

4400339841

190312

317186667

314426176

17341760316

1610

1982

268366364

268417925

527064

0388

1241364

62068940

912125604

6418

343767282

15971582

26619303

2699

94192

6351451778

16295346

2715

89091

276029581

19313612887

15119536

2519

92273

243822456

7329792176

1609100

9268183485

2590

1817

20293326251

14367546

2394

59091

246310986

8335111737

15496273

258271212

263196142

21305215788

13911227

2318

53788

230377899

9358129742

16387591

273126515

2812

7444

222

304

887854

14010273

233504545

2397

15919

10365825019

1766

4609

294410152

287318298

23252884747

1503564

62505940

912394

58361

11377619727

17437236

2906206

0629658184

24252884747

113733

1895

55198615216

12373897867

17908982

29848303

293658698

25320855932

1554804

62591

34091

2519

99659

13283378267

1312

6791

218779848

222564771

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 7: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

International Journal of Distributed Sensor Networks 7

Shaded houseinfrastructure

Sensors

Sensors

SensorsSensors

SensorsSensors

External section

ZigBee

ZigBeeZigBee

coordinator

end device

ZigBeeend device

Internal section

router

GPRS Ethernet WiFi

Centralprocessing

Arduino + Xbee

Arduino + Xbee

50m

Figure 9 Internal and external sections

65432100 10 20 30 40 50 60 70

Days after transplant

Etc (

mm

)

Figure 10 Evapotranspiration values for the crop cycle

the results of calculations performed for the water loss byevapotranspiration reference (Eto) as shown in the work ofPerez-Gutierrez et al [19] The comparison between fuzzysystems of irrigation and traditional irrigationwas performedto validate the data obtained

The Etc shows values that are in an interval of 3mmsdotdayminus1(Figure 10) This range is stable for all the harvest period ifvariations of the Etc were more spacious and then shouldtake into account a greater number of variables thereforeby maintaining a controlled environment with the use of theshadow house we can use a small number of sensors and inthis proposal the use of three of them is enough to estimatethe irrigation

The system showed a deviation of +011 in Marchminus039 in April and +051 in May (Figures 11 12 and13) The supplied volume by the fuzzy system is comparedwith the calculated volume resulting in a small deviationtherefore we can establish the reliability of the system

0500

10001500200025003000350040004500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Volu

me (

L)

Days (March)

Calculated volume (L)Supplied volume (L)

Figure 11 Comparison between traditional irrigation and the fuzzysystem (March 2013)

With the fuzzy system validated the analysis of the datafor eachmonth can be made As part of the validation sampleMarch 20 is shown In Figure 14 the frequency of irrigationduring the day is graphed

According to the data obtained with respect to thefrequency of irrigation Figure 14 shows that the frequencyof irrigation is higher in the time period between 1030and 1300 in this period we can observe an increase trendin the temperature (Figure 15) and a low relative humidity(Figure 16) indicating a water accumulation in the soiltherefore a balance between evapotranspiration and thewater applied to the crop is generated

8 International Journal of Distributed Sensor Networks

Table4(a)D

atafrom

them

onth

ofMarch

forthe

cycle

ofcrop(b)

Datafrom

them

onth

ofAp

rilforthe

cycle

ofcrop(c)Datafrom

them

onth

ofMay

forthe

cycle

ofcrop

(a)

March

Day

Etc(mmsdotdıaminus1 )

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

2258425473

1341340

92235568182

2029668918

17357783512

168119

182801986364

2810

025131

3257725364

10913627

1818

937879

2024170272

18307273124

14404782

240079697

2413

317471

437044

9566

15902236

2650372727

2909504

086

19373218858

17796109

2966018182

2931254056

5384566297

182036

3033933333

3020376637

2039600

9363

18436127

3072

687879

3110

250267

6333154632

149705

2495

083333

2616

59036

2134154618

15833791

2638965152

2682497426

7307303393

14569518

2472

201515

2413

555204

22444

59937

22096245

3682707576

3491

875286

837064

8946

17890227

2981704545

2911070015

23450743937

2116

9736

3528289394

3540134599

93627264

2817962364

2993

727273

2848846

704

24467591342

21811636

3635272727

3672

453809

10383003911

1852

4945

3174

921212

3008105683

2513

804632

566

89909

9448318182

1084213265

112655606

8411413364

1902227273

2085708733

26096752606

45595818

759930303

7598931903

1224746

8837

11749273

1999

775758

1943615697

27366104898

17867809

2977

968182

287538114

113

231084615

1112

2518

185375303

1814

934321

28346

753609

1576

0455

2626742424

2723396

476

14242255034

10806

673

1801112121

1902666591

29460879854

22293755

3715

625758

3619

741905

15349001336

1674

8164

2791

3606

062741050084

30462318448

21561836

3593

639394

3631040

596

16369959684

17351655

2891

942424

2905656565

31488327963

22941936

3823656061

3835318856

(b)

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

13961718653

18771482

3128580303

3111526554

16399938767

17371336

2895

222727

31411117

32

4169559209

25227564

4204593939

3274

764145

17409686903

192428

3207133333

3217

673412

3404

8530602

18909436

3151572727

3179

708499

18471907325

21807836

3634639394

370635146

44

3418113126

15290055

2548342424

2684579772

195057651274

22931773

3821962121

3972

270022

54344343997

20729182

3454863636

3412

039796

203687610895

14040

036

23400

06061

2896

242824

652164

59781

24479782

4079

963636

4096

997931

214583233577

21846

064

364101060

63599

663234

75021289634

23754855

3959142424

3943711656

223708343758

17238536

2873

089394

2912

526377

84818401971

25410745

4235124242

3784364

058

235197175777

24660

44110

0666

6740

8185231

94929600332

2337

8527

3896

421212

3871699047

245013674745

23637727

3939621212

3937730937

104425304

818

2076

9664

346161060

63475

626276

25460

4622494

2139

2809

3565468182

3616

46205

1143046

8744

720112073

3352012121

3380893615

264715697984

22946236

3824372727

3703700535

12303026964

214473727

2412

287879

2379

968211

274767017231

2235

9845

37266

40909

37440

06578

International Journal of Distributed Sensor Networks 9

(b)Con

tinued

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134228506725

1981396

43302327273

3321061416

2849999503

2313

4864

385581060

63926951783

14419946964

121049973

3508328788

3298

255743

294685183652

2216

5509

3694

251515

3679

734635

1541340

0889

18688127

3114

687879

3246842989

303708190798

17870818

2978

469697

2912

406242

(c)

May

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134840

0241

16046282

2674

3803

273632909

14281323798

12056146

200935758

22095119

42

428945109

19954027

332567121

336892701

15345795001

15992027

266533788

2715

86759

3364

868417

17514855

2919

14242

286566985

16376349121

17962409

2993

73485

295583908

4400339841

190312

317186667

314426176

17341760316

1610

1982

268366364

268417925

527064

0388

1241364

62068940

912125604

6418

343767282

15971582

26619303

2699

94192

6351451778

16295346

2715

89091

276029581

19313612887

15119536

2519

92273

243822456

7329792176

1609100

9268183485

2590

1817

20293326251

14367546

2394

59091

246310986

8335111737

15496273

258271212

263196142

21305215788

13911227

2318

53788

230377899

9358129742

16387591

273126515

2812

7444

222

304

887854

14010273

233504545

2397

15919

10365825019

1766

4609

294410152

287318298

23252884747

1503564

62505940

912394

58361

11377619727

17437236

2906206

0629658184

24252884747

113733

1895

55198615216

12373897867

17908982

29848303

293658698

25320855932

1554804

62591

34091

2519

99659

13283378267

1312

6791

218779848

222564771

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 8: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

8 International Journal of Distributed Sensor Networks

Table4(a)D

atafrom

them

onth

ofMarch

forthe

cycle

ofcrop(b)

Datafrom

them

onth

ofAp

rilforthe

cycle

ofcrop(c)Datafrom

them

onth

ofMay

forthe

cycle

ofcrop

(a)

March

Day

Etc(mmsdotdıaminus1 )

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

2258425473

1341340

92235568182

2029668918

17357783512

168119

182801986364

2810

025131

3257725364

10913627

1818

937879

2024170272

18307273124

14404782

240079697

2413

317471

437044

9566

15902236

2650372727

2909504

086

19373218858

17796109

2966018182

2931254056

5384566297

182036

3033933333

3020376637

2039600

9363

18436127

3072

687879

3110

250267

6333154632

149705

2495

083333

2616

59036

2134154618

15833791

2638965152

2682497426

7307303393

14569518

2472

201515

2413

555204

22444

59937

22096245

3682707576

3491

875286

837064

8946

17890227

2981704545

2911070015

23450743937

2116

9736

3528289394

3540134599

93627264

2817962364

2993

727273

2848846

704

24467591342

21811636

3635272727

3672

453809

10383003911

1852

4945

3174

921212

3008105683

2513

804632

566

89909

9448318182

1084213265

112655606

8411413364

1902227273

2085708733

26096752606

45595818

759930303

7598931903

1224746

8837

11749273

1999

775758

1943615697

27366104898

17867809

2977

968182

287538114

113

231084615

1112

2518

185375303

1814

934321

28346

753609

1576

0455

2626742424

2723396

476

14242255034

10806

673

1801112121

1902666591

29460879854

22293755

3715

625758

3619

741905

15349001336

1674

8164

2791

3606

062741050084

30462318448

21561836

3593

639394

3631040

596

16369959684

17351655

2891

942424

2905656565

31488327963

22941936

3823656061

3835318856

(b)

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

13961718653

18771482

3128580303

3111526554

16399938767

17371336

2895

222727

31411117

32

4169559209

25227564

4204593939

3274

764145

17409686903

192428

3207133333

3217

673412

3404

8530602

18909436

3151572727

3179

708499

18471907325

21807836

3634639394

370635146

44

3418113126

15290055

2548342424

2684579772

195057651274

22931773

3821962121

3972

270022

54344343997

20729182

3454863636

3412

039796

203687610895

14040

036

23400

06061

2896

242824

652164

59781

24479782

4079

963636

4096

997931

214583233577

21846

064

364101060

63599

663234

75021289634

23754855

3959142424

3943711656

223708343758

17238536

2873

089394

2912

526377

84818401971

25410745

4235124242

3784364

058

235197175777

24660

44110

0666

6740

8185231

94929600332

2337

8527

3896

421212

3871699047

245013674745

23637727

3939621212

3937730937

104425304

818

2076

9664

346161060

63475

626276

25460

4622494

2139

2809

3565468182

3616

46205

1143046

8744

720112073

3352012121

3380893615

264715697984

22946236

3824372727

3703700535

12303026964

214473727

2412

287879

2379

968211

274767017231

2235

9845

37266

40909

37440

06578

International Journal of Distributed Sensor Networks 9

(b)Con

tinued

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134228506725

1981396

43302327273

3321061416

2849999503

2313

4864

385581060

63926951783

14419946964

121049973

3508328788

3298

255743

294685183652

2216

5509

3694

251515

3679

734635

1541340

0889

18688127

3114

687879

3246842989

303708190798

17870818

2978

469697

2912

406242

(c)

May

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134840

0241

16046282

2674

3803

273632909

14281323798

12056146

200935758

22095119

42

428945109

19954027

332567121

336892701

15345795001

15992027

266533788

2715

86759

3364

868417

17514855

2919

14242

286566985

16376349121

17962409

2993

73485

295583908

4400339841

190312

317186667

314426176

17341760316

1610

1982

268366364

268417925

527064

0388

1241364

62068940

912125604

6418

343767282

15971582

26619303

2699

94192

6351451778

16295346

2715

89091

276029581

19313612887

15119536

2519

92273

243822456

7329792176

1609100

9268183485

2590

1817

20293326251

14367546

2394

59091

246310986

8335111737

15496273

258271212

263196142

21305215788

13911227

2318

53788

230377899

9358129742

16387591

273126515

2812

7444

222

304

887854

14010273

233504545

2397

15919

10365825019

1766

4609

294410152

287318298

23252884747

1503564

62505940

912394

58361

11377619727

17437236

2906206

0629658184

24252884747

113733

1895

55198615216

12373897867

17908982

29848303

293658698

25320855932

1554804

62591

34091

2519

99659

13283378267

1312

6791

218779848

222564771

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 9: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

International Journal of Distributed Sensor Networks 9

(b)Con

tinued

April

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134228506725

1981396

43302327273

3321061416

2849999503

2313

4864

385581060

63926951783

14419946964

121049973

3508328788

3298

255743

294685183652

2216

5509

3694

251515

3679

734635

1541340

0889

18688127

3114

687879

3246842989

303708190798

17870818

2978

469697

2912

406242

(c)

May

Day

Etc(mmsdotdıaminus1)

FuzzyIrrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

Day

Etc

(mmsdotdıaminus1)

Fuzzy

Irrig

Time

(minsdotdıaminus1)

Supp

liedV

olFu

zzy

(lsdotdıaminus1)

Supp

liedV

olTrad

(lsdotdıaminus1)

134840

0241

16046282

2674

3803

273632909

14281323798

12056146

200935758

22095119

42

428945109

19954027

332567121

336892701

15345795001

15992027

266533788

2715

86759

3364

868417

17514855

2919

14242

286566985

16376349121

17962409

2993

73485

295583908

4400339841

190312

317186667

314426176

17341760316

1610

1982

268366364

268417925

527064

0388

1241364

62068940

912125604

6418

343767282

15971582

26619303

2699

94192

6351451778

16295346

2715

89091

276029581

19313612887

15119536

2519

92273

243822456

7329792176

1609100

9268183485

2590

1817

20293326251

14367546

2394

59091

246310986

8335111737

15496273

258271212

263196142

21305215788

13911227

2318

53788

230377899

9358129742

16387591

273126515

2812

7444

222

304

887854

14010273

233504545

2397

15919

10365825019

1766

4609

294410152

287318298

23252884747

1503564

62505940

912394

58361

11377619727

17437236

2906206

0629658184

24252884747

113733

1895

55198615216

12373897867

17908982

29848303

293658698

25320855932

1554804

62591

34091

2519

99659

13283378267

1312

6791

218779848

222564771

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 10: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

10 International Journal of Distributed Sensor Networks

Calculated volume (L)Supplied volume (L)

0500

100015002000250030003500400045005000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Volu

me (

L)

Days (April)

Figure 12 Comparison between traditional irrigation and the fuzzysystem (April 2013)

Calculated volume (L)Supplied volume (L)

0500

1000150020002500300035004000

1 3 5 7 9 11 13 15 17 19 21 23 25

Volu

me (

L)

Days (May)

Figure 13 Comparison between traditional irrigation and the fuzzysystem (May 2013)

These results establish the reliability of the proposedsystem to provide adequate water and maintain optimummoisture level with low relative humidity to obtain thedesirable quality of hbanero pepper production

In thework ofOrtiz et al [20] the percentage of optimumsoil moisture for growing good quality fruits is 60 the fuzzysystem employs the percentage of 70 indicated by the expertso that it is possible to also set the reliability in the finalquality of the fruit The work presented by Perez-Gutierrezet al [19] mentioned that the volume of water applied to80 of potential evapotranspiration generates the amount ofwater in the soil to favor a constant process of transpirationfruit yield and improvement of water use this requires awater volume 2223m3 haminus1 however the fuzzy system onlyrequires 44995m3 haminus1 which represents a saving of 798water

The proposed system is a better form to schedule irriga-tion unlike Yao et al [16] the objective is to give to the poorcommunities a form to harvest a high demand product likehabanero pepper (with designation of origin) with enoughtechnologic structure The work of Yao et al [16] is using aneural network to refine the sprinkle time based on a patternthat is not described in the paper in a real environmentespecially in Yucatan Mexico the humidity and temperaturevariables have to be considered to obtain a quality product

02468

101214161820

000 224 448 712 936 1200 1424 1648 1912

Dur

atio

n of

irrig

atio

n (m

in)

Hours of day

Figure 14 Irrigation frequency using the fuzzy system (sample of20 March 2013)

40

35

30

25

20

15

10

5

0600 824 1048 1312 1536 1800

Hours of day

Tem

pera

ture

(∘C)

Figure 15 Temperature measurement (sample of 20 March 2013)

1009080706050403020100600 824 1048

Hours of day1312 1536 1800

Tem

pera

ture

(∘C)

Figure 16 Measurement of relative humidity (sample of 20 March2013)

and unlike the work of Yao et al [16] in this work are takeninto account in the fuzzy model and in the expert knowledgeThe use of a neural network is not a significant contributionfor managing the time of irrigation on a shadow housebecause there are no other important variables included andin the Yao et al [16] proposal only the soil moisture and theerror are considered to set the irrigation time

4 Conclusions

This paper has presented a fuzzy system that manages awireless irrigation scheme through an algorithm that takesinto account the conditions of microclimate of a shadowhouse used for growing habanero pepper with designation oforigin in the state of Yucatan The water volume consumed

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 11: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

International Journal of Distributed Sensor Networks 11

float h = dhtreadHumidity( )

float t = dhtreadTemperature()

revisa si retorna un valor valido de lo contrario hay un error

if (isnan (t) || isnan (h)) (

Serialprintln (Failed to read from DHT)

) else (

String hume = Humedad

Serialprintln (hume + h + de Humedad)

String tempe = Temperatura

Serialprintln (tempe + t + Grados Centrigrados )

)

Algorithm 2 Section of the Arduino code

SerialPort conectar = new SerialPort (COM4 9600)

conectarOpen( )

while ( shouldStop)

if (conectarBytesToRead gt 0)

string t = conectarReadLine( )

string h = conectarReadLine( )

string m = conectarReadLine( )

string texto

t = tReplace(r )

resp textText = t

hume textText = h

mov textText = m

if (tStartWith(Temperatura ))

Texto = t

t = tReplace(Temperatura )

else resp textText =

if (hStartWith(Humedad ))

texto = h

h = hReplace(Humedad )

else hume textText =

Algorithm 3 Application connection

according to the graphic that shows the comparison betweenthe volume of water from the system and the manual ortraditional volume gives us a difference of 798 over the bestresult shown in Perez-Gutierrez et al [19] which shows thatthe system can efficiently manage water and that incorpora-tion of the expert knowledge in fuzzy rules allows irrigationscheme without using the pan evaporation or calculating thevolume associated with irrigation as they can be automat-ically supplied without the crop being adversely affected inits development Saving water is about 1524823m3 for a cropof 1000 plants in an 85-day cycle causing transplantation atthe 30th day The microclimate conditions generated by theinfrastructure of shadow house are not exploited by the lack

of modernization that is a producer who does not have theability to use technology to irrigate their crops generally onlyconsidered during the morning or afternoon which doesnot guarantee the product quality since plants could fall ineither water stress or excess moisture However the proposedsystem allows for irrigation supply data from three commonsensors (temperature relative humidity and soil moisture)allowing similarly for reducing infrastructure costs

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 12: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

12 International Journal of Distributed Sensor Networks

public void bd tempe( )

SqlConnection con = new SqlConnection()

conConnectionString = Data Source=DAVIDSERVERSQLEXPRESS

Initial Catalog=ARDUINOIntegrated Security=True

try

conOpen( )

catch (SqlException ex)

MessageBoxShow(exMessage)

throw

string tiempo = DateTimeNowToString( )

SqlCommand instruccion = conCreateCommand( )

instruccionCommandText = insert into tempe(horatemperatura)

values ( + tiempo + + txt tempeText + )instruccionExecuteNonQuery( )

conClose( )

Algorithm 4 Database connection

Acknowledgments

The authors gratefully acknowledge the support of the Tech-nological Institute of Conkal ofMexico and Prometeo Projectof the Secretariat for Higher Education Science Technologyand Innovation of the Republic of Ecuador and CYTEDnetwork 514RT0486

References

[1] FAOSTAT FAO Statistical Databases amp Data-Sets Food andAgriculture Organization of the United Nations 2012 (Consul-tado Dic 2013) httpfaostatfaoorgsite567DesktopDefaultaspxPageID=567ancor

[2] SIAP Agri-Food and Fishing Information and Statistics ServiceSAGARPA Anuario estadıstico de la Produccion AgrıcolaMexico City Mexico 2011

[3] USDA and FAS ldquoGreenhouse and shade house production tocontinue increasingrdquo GAIN Report MX0024 vol 22 USDAFAS Mexico DF Mexico 2010

[4] H Turral M Svendsen and J M Faures ldquoInvesting in irriga-tion reviewing the past and looking to the futurerdquo AgriculturalWater Management vol 97 no 4 pp 551ndash560 2010

[5] S Tang Q Zhu X Zhou S Liu and M Wu ldquoA conceptionof digital agriculturerdquo in Proceedings of the IEEE InternationalGeoscience and Remote Sensing Symposium (IGARSS rsquo02) vol5 pp 3026ndash3028 June 2002

[6] L Bacci P Battista and B Rapi ldquoAn integrated method forirrigation scheduling of potted plantsrdquo Scientia Horticulturaevol 116 no 1 pp 89ndash97 2008

[7] R Lopez Lopez R Arteaga Ramırez M A Vazquez Pena ILopez Cruz and I Sanchez Cohen ldquoIndice de estres hıdricocomo un indicador del momento de riego en cultivos agrıcolasrdquoAgricultura Tecnica en Mexico vol 35 no 1 pp 97ndash111 2009

[8] N Livellara F Saavedra and E Salgado ldquoPlant based indicatorsfor irrigation scheduling in young cherry treesrdquo AgriculturalWater Management vol 98 no 4 pp 684ndash690 2011

[9] R Qiu S Kang F Li et al ldquoEnergy partitioning and evapotran-spiration of hot pepper grown in greenhouse with furrow anddrip irrigation methodsrdquo Scientia Horticulturae vol 129 no 4pp 790ndash797 2011

[10] J Casadesus M Mata J Marsal and J Girona ldquoA generalalgorithm for automated scheduling of drip irrigation in treecropsrdquo Computers and Electronics in Agriculture vol 83 pp 11ndash20 2012

[11] C O Akinbile and M S Yusoff ldquoGrowth yield and water usepattern of chilli pepper under different irrigation schedulingand managementrdquo Asian Journal of Agricultural Research vol5 no 2 pp 154ndash163 2011

[12] Y Huang Y Lan S J Thomson A Fang W C Hoffmann andR E Lacey ldquoDevelopment of soft computing and applicationsin agricultural and biological engineeringrdquo Computers andElectronics in Agriculture vol 71 no 2 pp 107ndash127 2010

[13] M Omid M Lashgari H Mobli R Alimardani S Mohtasebiand R Hesamifard ldquoDesign of fuzzy logic control systemincorporating human expert knowledge for combine harvesterrdquoExpert Systems with Applications vol 37 no 10 pp 7080ndash70852010

[14] A Merot and J-E Bergez ldquoIRRIGATE a dynamic integratedmodel combining a knowledge-based model and mechanisticbiophysical models for border irrigation managementrdquo Envi-ronmental Modelling and Software vol 25 no 4 pp 421ndash4322010

[15] S L Davis and M D Dukes ldquoIrrigation scheduling perfor-mance by evapotranspiration-based controllersrdquo AgriculturalWater Management vol 98 no 1 pp 19ndash28 2010

[16] Z Yao G Lou Z XiuLi and Q Zhao ldquoResearch and devel-opment precision irrigation control system in agriculturalrdquoin Proceedings of the International Conference on Computerand Communication Technologies in Agriculture Engineering(CCTAE rsquo10) pp 117ndash120 June 2010

[17] E Garcia Modificaciones al Sistema de Clasificacion Climaticode Koppen Serie de Libros no 6 UNAM Instituto deGeografıaMexico City Mexico 5th edition 2004

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 13: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

International Journal of Distributed Sensor Networks 13

[18] K M Passino S Yurkovich and M Reinfrank Fuzzy Controlvol 42 Addison Wesley Longman Menlo Park Calif USA1998

[19] A Perez-Gutierrez A Pineda-Doporto L Latournerie-Moreno and C Godoy-Avila ldquoNiveles de evapotranspiracionpotencial en la produccion de chile habanerordquo Terra Latino-americana vol 26 no 1 pp 53ndash59 2008

[20] W C Q Ortiz A Perez-Gutierrez L L Moreno C May-LaraE R Sanchez and A J M Chacon ldquoUso de agua potencialhıdrico y rendimiento de chile habanero (Capsicum chinenseJacq)rdquo Revista Fitotecnia Mexicana vol 35 no 2 pp 155ndash1602012

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 14: Research Article Fuzzy System of Irrigation Applied to the Growth …downloads.hindawi.com/journals/ijdsn/2015/123543.pdf · 2015. 11. 24. · and fuzzy logic) has been considered

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of


Recommended