+ All Categories
Home > Documents > Research Article Hopf-Pitchfork Bifurcation in a ...the system ( ) undergoes a Pitchfork bifurcation...

Research Article Hopf-Pitchfork Bifurcation in a ...the system ( ) undergoes a Pitchfork bifurcation...

Date post: 31-Jan-2021
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
6
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 340174, 5 pages http://dx.doi.org/10.1155/2013/340174 Research Article Hopf-Pitchfork Bifurcation in a Phytoplankton-Zooplankton Model with Delays Jia-Fang Zhang and Dan Zhang School of Mathematics and Information Sciences, Henan University, Kaifeng 475001, China Correspondence should be addressed to Jia-Fang Zhang; [email protected] Received 21 October 2013; Accepted 12 November 2013 Academic Editor: Allan Peterson Copyright ยฉ 2013 J.-F. Zhang and D. Zhang. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. e purpose of this paper is to study the dynamics of a phytoplankton-zooplankton model with toxin delay. By studying the distribution of the eigenvalues of the associated characteristic equation, the pitchfork bifurcation curve of the system is obtained. Furthermore, on the pitchfork bifurcation curve, we ๏ฌnd that the system can undergo a Hopf bifurcation at the positive equilibrium, and we derive the critical values where Hopf-Pitchfork bifurcation occurs. 1. Introduction e study of the dynamical interaction of zooplankton and phytoplankton is an important area of research in marine ecology. Phytoplanktons are tiny ๏ฌ‚oating plants that live near the surface of lakes and ocean. ey provide food for marine life, oxygen for human being, and also absorb half of the carbon dioxide which may be contributing to the global warming [1]. Zooplanktons are microscopic animals that eat other phytoplankton. Toxins are produced by phytoplankton to avoid predation by zooplankton. e toxin producing phytoplankton not only reduces the grazing pressure on them but also can control the occurrence of bloom; see Chattopadhyay et al. [2] and Sarkar and Chattopadhyay [3]. Phytoplankton-zooplankton models have been studied by many authors [4โ€“9]. In [6], models of nutrient-plankton interaction with a toxic substance that inhibit either the growth rate of phytoplankton, zooplankton, or both trophic levels are proposed and studied. In [7], authors have dealt with a nutrient-plankton model in an aquatic environment in the context of phytoplankton bloom. Roy [8] has con- structed a mathematical model for describing the interaction between a nontoxic and a toxic phytoplankton under a single nutrient. Saha and Bandyopadhyay [9] considered a toxin producing phytoplankton-zooplankton model in which the toxin liberation by phytoplankton species follows a discrete time variation. Biological delay systems of one type or another have been considered by a number of authors [10, 11]. ese systems governed by integrodi๏ฌ€erential equations exhibit much more rich dynamics than ordinary di๏ฌ€erential systems. For example, Das and Ray [5] investigated the e๏ฌ€ect of delay on nutrient cycling in phytoplankton-zooplankton interactions in the estuarine system. In this paper we present a phytoplankton-zooplankton model to investigate its dynamic behaviors. e model we considered is based on the fol- lowing plausible toxic-phytoplankton-zooplankton systems introduced by Chattopadhayay et al. [2] = 1 (1 โˆ’ ) โˆ’ , = โˆซ โˆ’โˆž ( โˆ’ ) () โˆ’ โˆ’ ( โˆ’ ) + ( โˆ’ ) , (1) where () and () are the densities of phytoplankton and zooplankton, respectively. 1 , , , , , , and are positive constants. is toxin delay, () is the delay kernel and a non- negative bounded function de๏ฌned on [0, โˆž] as follows: โˆซ โˆž 0 () = 1, () = โˆ’ , > 0. (2) For a set of di๏ฌ€erent species interacting with each other in ecological community, perhaps the simplest and probably the most important question from a practical point of view is
Transcript
  • Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2013, Article ID 340174, 5 pageshttp://dx.doi.org/10.1155/2013/340174

    Research ArticleHopf-Pitchfork Bifurcation in a Phytoplankton-ZooplanktonModel with Delays

    Jia-Fang Zhang and Dan Zhang

    School of Mathematics and Information Sciences, Henan University, Kaifeng 475001, China

    Correspondence should be addressed to Jia-Fang Zhang; [email protected]

    Received 21 October 2013; Accepted 12 November 2013

    Academic Editor: Allan Peterson

    Copyright ยฉ 2013 J.-F. Zhang and D. Zhang. This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properlycited.

    The purpose of this paper is to study the dynamics of a phytoplankton-zooplankton model with toxin delay. By studying thedistribution of the eigenvalues of the associated characteristic equation, the pitchfork bifurcation curve of the system is obtained.Furthermore, on the pitchfork bifurcation curve, we find that the system can undergo aHopf bifurcation at the positive equilibrium,and we derive the critical values where Hopf-Pitchfork bifurcation occurs.

    1. Introduction

    The study of the dynamical interaction of zooplankton andphytoplankton is an important area of research in marineecology. Phytoplanktons are tiny floating plants that live nearthe surface of lakes and ocean. They provide food for marinelife, oxygen for human being, and also absorb half of thecarbon dioxide which may be contributing to the globalwarming [1]. Zooplanktons are microscopic animals that eatother phytoplankton. Toxins are produced by phytoplanktonto avoid predation by zooplankton. The toxin producingphytoplankton not only reduces the grazing pressure onthem but also can control the occurrence of bloom; seeChattopadhyay et al. [2] and Sarkar and Chattopadhyay [3].Phytoplankton-zooplankton models have been studied bymany authors [4โ€“9]. In [6], models of nutrient-planktoninteraction with a toxic substance that inhibit either thegrowth rate of phytoplankton, zooplankton, or both trophiclevels are proposed and studied. In [7], authors have dealtwith a nutrient-plankton model in an aquatic environmentin the context of phytoplankton bloom. Roy [8] has con-structed a mathematical model for describing the interactionbetween a nontoxic and a toxic phytoplankton under a singlenutrient. Saha and Bandyopadhyay [9] considered a toxinproducing phytoplankton-zooplankton model in which thetoxin liberation by phytoplankton species follows a discretetime variation. Biological delay systems of one type or

    another have been considered by a number of authors [10,11]. These systems governed by integrodifferential equationsexhibit much more rich dynamics than ordinary differentialsystems. For example, Das and Ray [5] investigated the effectof delay on nutrient cycling in phytoplankton-zooplanktoninteractions in the estuarine system. In this paperwe present aphytoplankton-zooplanktonmodel to investigate its dynamicbehaviors. The model we considered is based on the fol-lowing plausible toxic-phytoplankton-zooplankton systemsintroduced by Chattopadhayay et al. [2]

    ๐‘‘๐‘ƒ

    ๐‘‘๐‘ก= ๐‘Ÿ1๐‘ƒ(1 โˆ’

    ๐‘ƒ

    ๐พ) โˆ’ ๐‘Ž๐‘ƒ๐‘,

    ๐‘‘๐‘

    ๐‘‘๐‘ก= ๐‘๐‘โˆซ

    ๐‘ก

    โˆ’โˆž

    ๐บ (๐‘ก โˆ’ ๐‘ ) ๐‘ƒ (๐‘ ) ๐‘‘๐‘  โˆ’ ๐‘๐‘ โˆ’ ๐‘‘๐‘ƒ (๐‘ก โˆ’ ๐œ)

    ๐‘’ + ๐‘ƒ (๐‘ก โˆ’ ๐œ)๐‘,

    (1)

    where ๐‘ƒ(๐‘ก) and ๐‘(๐‘ก) are the densities of phytoplankton andzooplankton, respectively. ๐‘Ÿ

    1, ๐พ, ๐‘Ž, ๐‘, ๐‘, ๐‘‘, and ๐‘’ are positive

    constants. ๐œ is toxin delay, ๐บ(๐‘ ) is the delay kernel and a non-negative bounded function defined on [0,โˆž] as follows:

    โˆซ

    โˆž

    0

    ๐บ (๐‘ ) ๐‘‘๐‘  = 1, ๐บ (๐‘ ) = ๐œŽ๐‘’โˆ’๐œŽ๐‘ 

    , ๐œŽ > 0. (2)

    For a set of different species interacting with each otherin ecological community, perhaps the simplest and probablythe most important question from a practical point of view is

  • 2 Abstract and Applied Analysis

    whether all the species in the system survive in the long term.Therefore, the periodic phenomena of biological system areoften discussed [12โ€“16].

    The primary purpose of this paper is to study the effectsof toxin delay on the dynamics of (1). That is to say, we willtake the delay ๐œ passes through a critical value, the positiveequilibrium loses its stability and bifurcation occurs. Bystudying the distribution of the eigenvalues of the associatedcharacteristic equation, the pitchfork bifurcation curve of thesystem is obtained. Furthermore, we derive the critical valueswhere Hopf-Pitchfork bifurcation occurs.

    Thepaper is structured as follows. In Section 2, we discussthe local stability of the positive solutions and the existenceof Pitchfork bifurcation. In Section 3, the conditions for theoccurrence of Hopf-Pitchfork bifurcation are determined.

    2. Stability and Pitchfork Bifurcation

    In this section, we focus on investigating the local stabilityand the existence of Pitchfork bifurcation of the positiveequilibrium of system (1). It is easy to see that system (1) hasa unique positive equilibrium ๐ธโˆ—(๐‘ƒโˆ—, ๐‘โˆ—), where

    ๐‘ƒโˆ—=

    ๐‘ + ๐‘‘ โˆ’ ๐‘๐‘’ + โˆš(๐‘ + ๐‘‘ โˆ’ ๐‘๐‘’)2+ 4๐‘๐‘๐‘’

    2๐‘,

    ๐‘โˆ—=

    ๐‘Ÿ

    ๐‘Ž(1 โˆ’

    ๐‘ƒโˆ—

    ๐พ) > 0,

    (3)

    where (๐ป1) : ๐พ > ๐‘ƒ

    โˆ—.Let

    ๐‘Š(๐‘ก) = โˆซ

    ๐‘ก

    โˆ’โˆž

    ๐œŽ๐‘’โˆ’๐œŽ(๐‘กโˆ’๐‘ )

    ๐‘ƒ (๐‘ ) ๐‘‘๐‘ . (4)

    By the linear chain trick technique, then system (1) can betransformed into the following system:

    ๐‘‘๐‘ƒ

    ๐‘‘๐‘ก= ๐‘Ÿ1๐‘ƒ(1 โˆ’

    ๐‘ƒ

    ๐พ) โˆ’ ๐‘Ž๐‘ƒ๐‘,

    ๐‘‘๐‘

    ๐‘‘๐‘ก= ๐‘๐‘๐‘Š โˆ’ ๐‘๐‘ โˆ’ ๐‘‘

    ๐‘ƒ (๐‘ก โˆ’ ๐œ)

    ๐‘’ + ๐‘ƒ (๐‘ก โˆ’ ๐œ)๐‘,

    ๐‘‘๐‘Š

    ๐‘‘๐‘ก= ๐œŽ๐‘ƒ (๐‘ก) โˆ’ ๐œŽ๐‘Š (๐‘ก) .

    (5)

    It is easy to check that system (5) has an unique positiveequilibrium ๐ธ(๐‘ƒโˆ—, ๐‘โˆ—,๐‘Šโˆ—) with ๐‘ƒโˆ— = ๐‘Šโˆ— provided that thecondition (๐ป

    1) holds.

    Let ๐‘ƒ = ๐‘ข+๐‘ขโˆ—,๐‘ = V+ Vโˆ—, and๐‘Š = ๐‘ค+๐‘Šโˆ—; then system(5) can be transformed into the following system:

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = โˆ’๐‘Ÿ

    ๐พ๐‘ƒโˆ—๐‘ข (๐‘ก) โˆ’ ๐‘Ž๐‘ƒ

    โˆ—V (๐‘ก) โˆ’ ๐‘Ž๐‘ข (๐‘ก) V (๐‘ก) โˆ’๐‘Ÿ

    ๐พ๐‘ข2(๐‘ก) ,

    Vฬ‡ (๐‘ก) = โˆ’๐‘‘๐‘’

    (๐‘’ + ๐‘ƒโˆ—)๐‘โˆ—๐‘ข (๐‘ก โˆ’ ๐œ) + ๐‘๐‘

    โˆ—๐‘ค (๐‘ก)

    + โˆ‘

    ๐‘–+๐‘—+๐‘˜โ‰ฅ2

    ๐‘“(๐‘–๐‘—๐‘˜)

    2๐‘ข๐‘–(๐‘ก โˆ’ ๐œ) V๐‘—๐‘ค๐‘˜,

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐œŽ๐‘ข (๐‘ก) โˆ’ ๐œŽ๐‘ค (๐‘ก) ,

    (6)

    where

    ๐‘“(๐‘–๐‘—๐‘˜)

    2=

    1

    ๐‘–!๐‘—!๐‘˜!

    ๐œ•๐‘–+๐‘—+๐‘˜

    ๐‘“2

    ๐œ•๐‘ข๐‘– (๐‘ก โˆ’ ๐œ) ๐œ•V๐‘—๐œ•๐‘ค๐‘˜,

    ๐‘“2= ๐‘V๐‘ค โˆ’ ๐‘V โˆ’ ๐‘‘

    ๐‘ข (๐‘ก โˆ’ ๐œ)

    ๐‘’ + ๐‘ข (๐‘ก โˆ’ ๐œ)V.

    (7)

    Then linearizing system (6) at ๐ธโˆ—(๐‘ƒโˆ—, ๐‘โˆ—,๐‘Šโˆ—) is

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = โˆ’๐‘Ÿ

    ๐พ๐‘ƒโˆ—๐‘ข (๐‘ก) โˆ’ ๐‘Ž๐‘ƒ

    โˆ—V (๐‘ก) ,

    Vฬ‡ (๐‘ก) = โˆ’๐‘‘๐‘’

    (๐‘’ + ๐‘ƒโˆ—)๐‘โˆ—๐‘ข (๐‘ก โˆ’ ๐œ) + ๐‘๐‘

    โˆ—๐‘ค (๐‘ก) ,

    ๏ฟฝฬ‡๏ฟฝ (๐‘ก) = ๐œŽ๐‘ข (๐‘ก) โˆ’ ๐œŽ๐‘ค (๐‘ก) .

    (8)

    It is easy to see that the associated characteristic equation ofsystem (11) at the positive equilibrium has the following formand thus the characteristic equation of system (5) is given by

    ๐น (๐œ†) = ๐œ†3+ ๐‘2๐œ†2+ ๐‘1๐œ† + ๐‘0โˆ’ [๐‘ž1๐œ† + ๐‘ž0] ๐‘’โˆ’๐œ†๐œ

    = 0, (9)

    where

    ๐‘2= ๐œŽ +

    ๐‘Ÿ๐‘ƒโˆ—

    ๐พ, ๐‘

    1=

    ๐‘Ÿ๐‘ƒโˆ—๐œŽ

    ๐พ, ๐‘

    0= ๐‘Ž๐‘๐‘ƒ

    โˆ—๐‘โˆ—๐œŽ,

    ๐‘ž1=

    ๐‘Ž๐‘‘๐‘’๐‘ƒโˆ—๐‘โˆ—

    (๐‘’ + ๐‘ƒโˆ—)2, ๐‘ž

    0=

    ๐‘Ž๐‘‘๐‘’๐‘ƒโˆ—๐‘โˆ—๐œŽ

    (๐‘’ + ๐‘ƒโˆ—)2

    .

    (10)

    Obviously, ๐‘2> 0, ๐‘

    1> 0, ๐‘

    0> 0, ๐‘ž

    1> 0, and ๐‘ž

    0> 0.

    From (9), the following lemma is obvious.

    Lemma 1. If the condition ๐ป2: ๐‘0= ๐‘ž0holds, then ๐œ† = 0 is

    always a root of (9) for all ๐œ โ‰ฅ 0.

    Let ๐‘‘0= (๐‘/๐‘’)(๐‘’+๐‘ƒ

    โˆ—)2, ๐‘‘1= ๐‘1(๐‘’+๐‘ƒโˆ—)2/(1โˆ’๐œ๐œŽ)๐‘Ž๐‘’๐‘ƒ

    โˆ—๐‘โˆ—,

    and ๐‘‘2= (๐‘’+๐‘ƒ

    โˆ—)2[๐œ2๐‘Ž๐‘๐‘ƒโˆ—๐‘โˆ—๐œŽโˆ’2(๐œŽ+(๐‘Ÿ๐‘ƒ

    โˆ—/๐พ))]/2๐œ๐‘Ž๐‘’๐‘ƒ

    โˆ—๐‘โˆ—;

    we have the following results.

    Lemma 2. Suppose that the condition (๐ป2) is satisfied.

    (i) If ๐‘‘ = ๐‘‘0

    ฬธ= ๐‘‘1, then (9) has a single zero root.

    (ii) If ๐‘‘ = ๐‘‘1

    ฬธ= ๐‘‘2, then (9) has a double zero root.

    Proof. Clearly, ๐œ† = 0 is a root to (9) if and only if ๐‘0= ๐‘ž0,

    whichmeans๐‘‘ = ๐‘‘0. Substituting๐‘‘ = ๐‘‘

    0into๐น(๐œ†) and taking

    the derivative with respect to ๐œ†, we obtain

    ๐น(๐œ†)

    ๐‘‘=๐‘‘0= 3๐œ†2+ 2๐‘2๐œ† + ๐‘1โˆ’ [๐‘ž1(1 โˆ’ ๐œ๐œ†) โˆ’ ๐œ๐‘ž

    0] ๐‘’โˆ’๐œ†๐œ

    .

    (11)

    Then we can get

    ๐น(0)

    ๐‘‘=๐‘‘0= ๐‘1โˆ’ [๐‘ž1โˆ’ ๐œ๐‘ž0] . (12)

    For any ๐œ > 0, by solving (12), we can obtain ๐‘‘ = ๐‘‘1. If ๐‘‘ =

    ๐‘‘0

    ฬธ= ๐‘‘1, ๐น(0) ฬธ= 0which means that ๐œ† = 0 is a single zero root

    to (9), and hence the conclusion of (i) follows.

  • Abstract and Applied Analysis 3

    From (11), it follows that

    ๐น(๐œ†)

    ๐‘‘=๐‘‘1= 6๐œ† + 2๐‘

    2โˆ’ [๐‘ž1(โˆ’2๐œ + ๐œ

    2๐œ†) + ๐œ

    2๐‘ž0] ๐‘’โˆ’๐œ†๐œ

    .

    (13)

    Then we get

    ๐น(0)

    ๐‘‘=๐‘‘1= 2๐‘2โˆ’ [๐œ2๐‘ž0โˆ’ 2๐‘ž1๐œ] . (14)

    For any ๐œ > 0, by solving (14), we can obtain ๐‘‘ = ๐‘‘2. If

    ๐‘‘ = ๐‘‘1

    ฬธ= ๐‘‘2, ๐น(0) ฬธ= 0 which means that ๐œ† = 0 is a double

    zero root to (9), and hence the conclusion of (ii) follows.Thiscompletes the proof.

    From Lemma 2, we have the following result.

    Theorem 3. Suppose that (๐ป2) holds if ๐‘‘ = ๐‘‘

    0ฬธ= ๐‘‘1, then,

    the system (5) undergoes a Pitchfork bifurcation at the positiveequilibrium.

    3. Hopf-Pitchfork Bifurcation

    In the following, we consider the case that (9) not only has azero root, but also has a pair of purely imaginary roots ยฑ๐‘–๐œ”(๐œ” > 0), when ๐‘‘ = ๐‘‘

    0ฬธ= ๐‘‘1holds.

    Substituting ๐œ† = ๐‘–๐œ” (๐œ” > 0) and ๐‘‘ = ๐‘‘0into (9) and

    separating the real and imaginary parts, one can get

    โˆ’๐œ”3+ ๐‘1๐œ” โˆ’ ๐‘ž1๐œ” cos (๐œ”๐œ) + ๐‘ž

    0sin (๐œ”๐œ) = 0,

    โˆ’๐‘2๐œ”2+ ๐‘0โˆ’ ๐‘ž1๐œ” sin (๐œ”๐œ) โˆ’ ๐‘ž

    0cos (๐œ”๐œ) = 0.

    (15)

    It is easy to see from (15) that

    ๐œ”6+ ๐ท2๐œ”4+ ๐ท1๐œ”2+ ๐ท0= 0, (16)

    where

    ๐ท2= ๐‘2

    2โˆ’ 2๐‘1, ๐ท

    1= ๐‘2

    1โˆ’ 2๐‘0๐‘2โˆ’ ๐‘ž2

    1,

    ๐ท0= ๐‘2

    0โˆ’ ๐‘ž2

    0.

    (17)

    Let ๐‘ง = ๐œ”2. Then (16) can be written as

    โ„Ž (๐‘ง) = ๐‘ง3+ ๐ท2๐‘ง2+ ๐ท1๐‘ง + ๐ท

    0. (18)

    In terms of the coefficient in โ„Ž(๐‘ง) define ฮ” by ฮ” = ๐ท22โˆ’ 3๐ท1.

    It is easy to know from the characters of cubic algebraicequation that โ„Ž(๐‘ง) is a strictly monotonically increasingfunction ifฮ” โ‰ค 0. Ifฮ” > 0 and ๐‘งโˆ— = (โˆšฮ”โˆ’๐ท

    2)/3 < 0 orฮ” > 0,

    ๐‘งโˆ—

    = (โˆšฮ” โˆ’ ๐ท2)/3 > 0 but โ„Ž(๐‘งโˆ—) > 0, then โ„Ž(๐‘ง) has always

    no positive root. Therefore, under these conditions, (9) hasno purely imaginary roots for any ๐œ > 0 and this also impliesthat the positive equilibrium ๐ธ(๐‘ƒโˆ—, ๐‘โˆ—,๐‘Šโˆ—) of system (1) isabsolutely stable. Thus, we can obtain easily the followingresult on the stability of positive equilibrium ๐ธ(๐‘ƒโˆ—, ๐‘โˆ—,๐‘Šโˆ—)of system (1).

    Theorem 4. Assume that (๐ป1) holds and ฮ” โ‰ค 0 or ฮ” > 0

    and ๐‘งโˆ— = (โˆšฮ” โˆ’ ๐ท2)/3 < 0 or ฮ” > 0, ๐‘งโˆ— > 0 and โ„Ž(๐‘งโˆ—) >

    0. Then the positive equilibrium ๐ธ(๐‘ƒโˆ—, ๐‘โˆ—,๐‘Šโˆ—) of system (5)is absolutely stable; namely; ๐ธ(๐‘ƒโˆ—, ๐‘โˆ—,๐‘Šโˆ—) is asymptoticallystable for any delay ๐œ โ‰ฅ 0.

    In what follows, we assume that the coefficients in โ„Ž(๐‘ง)satisfy the condition

    (๐ป3) ฮ” = ๐ท

    2

    2โˆ’ 3๐ท1> 0, ๐‘งโˆ— = (โˆšฮ” โˆ’ ๐ท

    2)/3 > 0, โ„Ž(๐‘งโˆ—) < 0.

    Then, according to Lemma 2.2 in [17], we know that (16) hasat least a positive root ๐œ”

    0; that is, the characteristic equation

    (9) has a pair of purely imaginary roots ยฑ๐‘–๐œ”0. Eliminating

    sin(๐œ”๐œ) in (15), we can get that the corresponding ๐œ๐‘˜> 0 such

    that (9) has a pair of purely imaginary roots ยฑ๐‘–๐œ”0, ๐œ๐‘˜> 0 are

    given by

    ๐œ๐‘˜=

    1

    ๐œ”0

    arccos[โˆ’๐‘ž1๐œ”4

    0+ (๐‘1๐‘ž1โˆ’ ๐‘2๐‘ž0) ๐œ”2

    0+ ๐‘0๐‘ž0

    ๐‘ž21๐œ”20+ ๐‘ž20

    ]

    +2๐‘˜๐œ‹

    ๐œ”0

    , (๐‘˜ = 0, 1, 2, . . .) .

    (19)

    Let ๐œ†(๐œ) = V(๐œ) + ๐‘–๐œ”(๐œ) be the roots of (9) such that when๐œ = ๐œ๐‘˜satisfying V(๐œ

    ๐‘˜) = 0 and ๐œ”(๐œ

    ๐‘˜) = ๐œ”0. We can claim that

    sgn [๐‘‘ (Re ๐œ†)๐‘‘๐œ

    ]

    ๐œ=๐œ๐‘˜

    = sgn {โ„Ž (๐œ”20)} . (20)

    In fact, differentiating two sides of (9) with respect to ๐œ, weget

    (๐‘‘๐œ†

    ๐‘‘๐œ)

    โˆ’1

    = โˆ’(3๐œ†2+ 2๐‘2๐œ† + ๐‘1) โˆ’ ๐‘ž1๐‘’โˆ’๐œ†๐œ

    + (๐‘ž1๐œ† + ๐‘ž0) ๐œ๐‘’โˆ’๐œ†๐œ

    (๐‘ž1๐œ† + ๐‘ž0) ๐œ†๐‘’โˆ’๐œ†๐œ

    = โˆ’(3๐œ†2+ 2๐‘2๐œ† + ๐‘1) ๐‘’๐œ†๐œ

    (๐‘ž1๐œ† + ๐‘ž0) ๐œ†

    +๐‘ž1

    (๐‘ž1๐œ† + ๐‘ž0) ๐œ†

    โˆ’๐œ

    ๐œ†.

    (21)

    Then

    sgn [๐‘‘ (Re ๐œ†)๐‘‘๐œ

    ]

    ๐œ=๐œ๐‘˜

    = sgn[Re(๐‘‘๐œ†๐‘‘๐œ

    )

    โˆ’1

    ]

    ๐œ†=๐‘–๐œ”0

    = sgn[Re(โˆ’(3๐œ†2+ 2๐‘2๐œ† + ๐‘1) ๐‘’๐œ†๐œ

    (๐‘ž1๐œ† + ๐‘ž0) ๐œ†

    +๐‘ž1

    (๐‘ž1๐œ† + ๐‘ž0) ๐œ†

    โˆ’๐œ

    ๐œ†)]

    ๐œ†=๐‘–๐œ”0

    = sgn Re[โˆ’(๐‘1โˆ’ 3๐œ”2

    0+ 2๐‘2๐œ”0๐‘–) [cos (๐œ”

    0๐œ๐‘˜) + ๐‘– sin (๐œ”

    0๐œ๐‘˜)]

    (๐‘ž1๐œ”0๐‘– + ๐‘ž0) ๐œ”0๐‘–

    +๐‘ž1

    (๐‘ž1๐œ”0๐‘– + ๐‘ž0) ๐œ”0๐‘–]

  • 4 Abstract and Applied Analysis

    = sgn 1ฮ›

    {[(๐‘1โˆ’ 3๐œ”2

    0) cos (๐œ”

    0๐œ๐‘˜) โˆ’ 2๐‘

    2๐œ”0sin (๐œ”

    0๐œ๐‘˜)]

    ร— (๐‘ž1๐œ”2

    0)

    โˆ’ [(๐‘1โˆ’ 3๐œ”2

    0) sin (๐œ”

    0๐œ๐‘˜) + 2๐‘

    2๐œ”0cos (๐œ”

    0๐œ๐‘˜)]

    ร— ๐‘ž0๐œ”0โˆ’ ๐‘ž2

    1๐œ”2

    0}

    = sgn 1ฮ›

    {(3๐œ”2

    0โˆ’ ๐‘1) ๐œ”0[๐‘ž1๐œ”0cos (๐œ”

    0๐œ๐‘˜) โˆ’ ๐‘ž0sin (๐œ”

    0๐œ๐‘˜)]

    โˆ’ 2๐‘2๐œ”2

    0[๐‘ž1๐œ”0sin (๐œ”

    0๐œ๐‘˜) + ๐‘ž0cos (๐œ”

    0๐œ๐‘˜)] โˆ’ ๐‘ž

    2

    1๐œ”2

    0}

    = sgn 1ฮ›

    [3๐œ”6

    0+ 2 (๐‘

    2

    2โˆ’ ๐‘1) ๐œ”4

    0+ (๐‘2

    1โˆ’ 2๐‘0๐‘2โˆ’ ๐‘ž2

    1) ๐œ”2

    0]

    = sgn๐œ”2

    0

    ฮ›[3๐œ”4

    0+ 2๐ท2๐œ”2

    0+ ๐ท1]

    = sgn๐œ”2

    0

    ฮ›{โ„Ž(๐œ”2

    0)} = sgn {โ„Ž (๐œ”2

    0)} ,

    (22)

    where ฮ› = ๐‘ž21๐œ”4

    0+ ๐‘ž2

    0๐œ”2

    0. It follows from the hypothesis

    (๐ป3) that โ„Ž(๐œ”2

    0) ฬธ= 0 and therefore the transversality condition

    holds.

    Lemma5. All the roots of (9), except a zero root, have negativereal parts when ๐‘

    1> ๐‘ž1; (i) of Lemma 2 and ๐œ โˆˆ [0, ๐œ

    0) hold.

    Proof. Consider

    ๐œ†3+ ๐‘2๐œ†2+ (๐‘1โˆ’ ๐‘ž1) ๐œ† + ๐‘

    0โˆ’ ๐‘ž0= ๐œ† (๐œ†

    2+ ๐‘2๐œ† + ๐‘1โˆ’ ๐‘ž1) .

    (23)

    It is easy to get that the roots of (23) are ๐œ†1= 0 and ๐œ†

    2,3=

    (โˆ’๐‘2ยฑโˆš๐‘22โˆ’ 4(๐‘1โˆ’ ๐‘ž1))/2. If๐‘

    1โˆ’๐‘ž1> 0, all the roots of (23),

    except a zero root, have negative real parts. We complete theproof.

    Summarizing the previous discussions, we have the fol-lowing result.

    Theorem 6. Suppose that the conditions (๐ป1), (๐ป2), and (๐ป

    3)

    are satisfied.

    (i) If ๐‘‘ = ๐‘‘0

    ฬธ= ๐‘‘1and ๐œ โˆˆ [0, ๐œ

    0), then the system (1)

    undergoes a Pitchfork bifurcation at positive equilib-rium ๐ธโˆ—.

    (ii) If ๐‘‘ = ๐‘‘0

    ฬธ= ๐‘‘1and ๐œ = ๐œ

    0, then system (1) can undergo

    aHopf-Pitchfork bifurcation at the positive equilibrium๐ธโˆ—.

    4. Conclusions

    In this section, we present some particular cases of system (1)as follows:

    ๐‘‘๐‘ƒ

    ๐‘‘๐‘ก= ๐‘Ÿ1๐‘ƒ(1 โˆ’

    ๐‘ƒ

    ๐พ) โˆ’ ๐‘Ž๐‘ƒ๐‘,

    ๐‘‘๐‘

    ๐‘‘๐‘ก= ๐‘๐‘๐‘ƒ โˆ’ ๐‘๐‘ โˆ’ ๐‘‘

    ๐‘ƒ (๐‘ก โˆ’ ๐œ)

    ๐‘’ + ๐‘ƒ (๐‘ก โˆ’ ๐œ)๐‘.

    (24)

    From [2], we know that the system (24) undergoes a Hopfbifurcation at the positive equilibrium. In this paper, weget the condition that (9) has a zero root and also get theconditions that (9) has double zero roots. Furthermore, weobtain the conditions that (9) has a single zero root and apair of purely imaginary roots. Under this condition, system(1) undergoes a Hopf-Pitchfork bifurcation at the positiveequilibrium. Especially, when ๐œ = 0, system (24) reduces to

    ๐‘‘๐‘ƒ

    ๐‘‘๐‘ก= ๐‘Ÿ1๐‘ƒ(1 โˆ’

    ๐‘ƒ

    ๐พ) โˆ’ ๐‘Ž๐‘ƒ๐‘,

    ๐‘‘๐‘

    ๐‘‘๐‘ก= ๐‘๐‘๐‘ƒ โˆ’ ๐‘๐‘ โˆ’ ๐‘‘

    ๐‘ƒ (๐‘ก)

    ๐‘’ + ๐‘ƒ (๐‘ก)๐‘.

    (25)

    We can conclude that the positive equilibrium๐ธ(๐‘ƒโˆ—, ๐‘โˆ—,๐‘Šโˆ—)is locally asymptotically stable in the absence of toxin delay.

    Acknowledgments

    The authors are grateful to the referees for their valuablecomments and suggestions on the paper. The research of theauthors was supported by the Fundamental Research Fund ofHenan University (2012YBZR032).

    References

    [1] S. Khare, O. P. Misra, C. Singh, and J. Dhar, โ€œRole of delayon planktonic ecosystem in the presence of a toxic producingphytoplankton,โ€ International Journal of Differential Equations,vol. 2011, Article ID 603183, 16 pages, 2011.

    [2] J. Chattopadhyay, R. R. Sarkar, and A. El Abdllaoui, โ€œA delaydifferential equation model on harmful algal blooms in thepresence of toxic substances,โ€ IMA Journal of MathematicsApplied in Medicine and Biology, vol. 19, no. 2, pp. 137โ€“161, 2002.

    [3] R. R. Sarkar and J. Chattopadhayay, โ€œOccurrence of planktonicblooms under environmental fluctuations and its possiblecontrol mechanismโ€”mathematical models and experimentalobservations,โ€ Journal of Theoretical Biology, vol. 224, no. 4, pp.501โ€“516, 2003.

    [4] S. Chakraborty, S. Roy, and J. Chattopadhyay, โ€œNutrient-limitedtoxin production and the dynamics of two phytoplankton inculturemedia: amathematicalmodel,โ€EcologicalModelling, vol.213, no. 2, pp. 191โ€“201, 2008.

    [5] K. Das and S. Ray, โ€œEffect of delay on nutrient cycling inphytoplankton-zooplankton interactions in estuarine system,โ€Ecological Modelling, vol. 215, no. 1โ€“3, pp. 69โ€“76, 2008.

    [6] S. R.-J. Jang, J. Baglama, and J. Rick, โ€œNutrient-phytoplankton-zooplankton models with a toxin,โ€Mathematical and ComputerModelling, vol. 43, no. 1-2, pp. 105โ€“118, 2006.

    [7] B. Mukhopadhyay and R. Bhattacharyya, โ€œModelling phyto-plankton allelopathy in a nutrient-plankton model with spatialheterogeneity,โ€ Ecological Modelling, vol. 198, no. 1-2, pp. 163โ€“173, 2006.

  • Abstract and Applied Analysis 5

    [8] S. Roy, โ€œThe coevolution of two phytoplankton species on a sin-gle resource: allelopathy as a pseudo-mixotrophy,โ€ TheoreticalPopulation Biology, vol. 75, no. 1, pp. 68โ€“75, 2009.

    [9] T. Saha and M. Bandyopadhyay, โ€œDynamical analysis of toxinproducing phytoplankton-zooplankton interactions,โ€NonlinearAnalysis: Real World Applications, vol. 10, no. 1, pp. 314โ€“332,2009.

    [10] J. M. Cushing, Integrodifferential Equations and DelayModels inPopulation Dynamics, Springer, Berlin, Germany, 1977.

    [11] Y. Kuang, Delay Differential Equations with Applications inPopulation Dynamics, vol. 191, Academic Press, New York, NY,USA, 1993.

    [12] Y.-H. Fan and L.-L. Wang, โ€œPeriodic solutions in a delayedpredator-prey model with nonmonotonic functional response,โ€Nonlinear Analysis: Real World Applications, vol. 10, no. 5, pp.3275โ€“3284, 2009.

    [13] G.-P. Hu and W.-T. Li, โ€œHopf bifurcation analysis for a delayedpredator-prey systemwith diffusion effects,โ€Nonlinear Analysis:Real World Applications, vol. 11, no. 2, pp. 819โ€“826, 2010.

    [14] Z.-P. Ma, H.-F. Huo, and C.-Y. Liu, โ€œStability and Hopf bifur-cation analysis on a predator-prey model with discrete anddistributed delays,โ€Nonlinear Analysis: RealWorld Applications,vol. 10, no. 2, pp. 1160โ€“1172, 2009.

    [15] X.-P. Yan and W.-T. Li, โ€œBifurcation and global periodic solu-tions in a delayed facultative mutualism system,โ€ Physica D, vol.227, no. 1, pp. 51โ€“69, 2007.

    [16] Z. Zhang and Z. Wang, โ€œPeriodic solution for a two-speciesnonautonomous competition Lotka-Volterra patch system withtime delay,โ€ Journal of Mathematical Analysis and Applications,vol. 265, no. 1, pp. 38โ€“48, 2002.

    [17] Y. Song, M. Han, and J. Wei, โ€œStability and Hopf bifurcationanalysis on a simplified BAM neural network with delays,โ€Physica D, vol. 200, no. 3-4, pp. 185โ€“204, 2005.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of


Recommended