+ All Categories
Home > Documents > Research Article Improved Pilot-Aided Channel Estimation...

Research Article Improved Pilot-Aided Channel Estimation...

Date post: 25-Jul-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
11
Hindawi Publishing Corporation International Journal of Antennas and Propagation Volume 2013, Article ID 978420, 10 pages http://dx.doi.org/10.1155/2013/978420 Research Article Improved Pilot-Aided Channel Estimation for MIMO-OFDM Fading Channels J. Mar, 1,2 Chi-Cheng Kuo, 1 and M. B. Basnet 1 1 Department of Communications Engineering, Yuan-Ze University, 135 Yuan-Tung Road, Jungli, Taoyuan 320, Taiwan 2 Communications Research Center, Yuan-Ze University, 135 Yuan-Tung Road, Jungli, Taoyuan 320, Taiwan Correspondence should be addressed to J. Mar; [email protected] Received 2 July 2013; Accepted 11 August 2013 Academic Editor: Ai Bo Copyright © 2013 J. Mar et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. An improved pilot-aided channel estimation scheme is proposed to enhance the channel estimation accuracy of multiple-input multiple-output-orthogonal frequency division multiplexing (MIMO-OFDM) fading channels. Based on the adaptive path number selection mechanism, the number of paths can be scalable and adaptively changed with the characteristics of MIMO-OFDM fading channels. e fine channel estimation formulas for all data subcarriers are derived. e 2×2 space-frequency block code-OFDM (SFBC-OFDM) system and a six-path fading channel model are considered as an example of the high mobility MIMO-OFDM wireless communications system. rough simulations it is shown that 2×2 SFBC-OFDM system using the proposed approach can satisfy the performance requirements over frequency selective and frequency nonselective fast fading channels. 1. Introduction e cellular mobile communications industry has recently been one of the fastest growing industries of all time, with the number of users increasing incredibly rapidly. Orthog- onal frequency division multiplexing access (OFDMA) was chosen as the spectrum access technology of the 4G cellular systems because its orthogonality eliminates intracell inter- ference. e high mobility OFDM wireless communication system will operate in a fast fading channel, where the nonnegligible fluctuations of the channel gains are expected within each OFDM data block. Fast fading involves variations on the scale of a half-wavelength and frequently introduces variations as large as 35–40 dB [1]. e channel estimation in OFDM systems over time-varying fading channels is generally based on the use of pilot subcarriers in given positions of the frequency-time grid [2]. It is advisable to place pilot subcarriers in each OFDM data block in order to ensure adequate estimation accuracy. In [3], the effect of pilot power on the performance of 16-QAM OFDM system operating in two-ray Rayleigh slow fading channel is presented. e optimum pilot-to-data power ratio (PDR) is analytically derived. As an alternative, the channel estimation algorithm based on subspace tracking has been presented in [4] for OFDM systems, which can effectively reduce channel estimation error by tracking the dominant delay-subspace spanned by the frequency responses. Increasing demand for high performance 4G broadband wirelesses is enabled by the use of multiple antennas at both base station and user equipment ends. Multiple-input- multiple-output (MIMO) is one of the best ways to combat channel fading using transmit diversity and receive diver- sity. e use of MIMO technique in OFDM system is an efficient solution to meet the growing demand for high speed, spectral efficiency, and reliable communication [2] in future-generation wireless networks. e MIMO-OFDM wireless communications have the inherent signal variability generated from the multipath fading channel. e aim of this study is to investigate the channel estimation algorithm in the MIMO-OFDM fading channels. In [5], it is shown that the space-frequency block code-(SFBC-) OFDM system exhibits error floors caused by imperfect channel state estimation over frequency selective fading channels. Hence, we need a more robust frequency and phase synchronization technology for fast MIMO-OFDM fading channels. e optimum pilot allocation in terms of overhead and channel estimation error is analyzed in reference [6] that maximizes the channel
Transcript
Page 1: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

Hindawi Publishing CorporationInternational Journal of Antennas and PropagationVolume 2013 Article ID 978420 10 pageshttpdxdoiorg1011552013978420

Research ArticleImproved Pilot-Aided Channel Estimation forMIMO-OFDM Fading Channels

J Mar12 Chi-Cheng Kuo1 and M B Basnet1

1 Department of Communications Engineering Yuan-Ze University 135 Yuan-Tung Road Jungli Taoyuan 320 Taiwan2 Communications Research Center Yuan-Ze University 135 Yuan-Tung Road Jungli Taoyuan 320 Taiwan

Correspondence should be addressed to J Mar eejmarsaturnyzuedutw

Received 2 July 2013 Accepted 11 August 2013

Academic Editor Ai Bo

Copyright copy 2013 J Mar et al This is an open access article distributed under the Creative Commons Attribution License whichpermits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

An improved pilot-aided channel estimation scheme is proposed to enhance the channel estimation accuracy of multiple-inputmultiple-output-orthogonal frequency divisionmultiplexing (MIMO-OFDM) fading channels Based on the adaptive path numberselectionmechanism the number of paths can be scalable and adaptively changed with the characteristics of MIMO-OFDM fadingchannels The fine channel estimation formulas for all data subcarriers are derived The 2 times 2 space-frequency block code-OFDM(SFBC-OFDM) system and a six-path fading channel model are considered as an example of the high mobility MIMO-OFDMwireless communications system Through simulations it is shown that 2 times 2 SFBC-OFDM system using the proposed approachcan satisfy the performance requirements over frequency selective and frequency nonselective fast fading channels

1 Introduction

The cellular mobile communications industry has recentlybeen one of the fastest growing industries of all time withthe number of users increasing incredibly rapidly Orthog-onal frequency division multiplexing access (OFDMA) waschosen as the spectrum access technology of the 4G cellularsystems because its orthogonality eliminates intracell inter-ference The high mobility OFDM wireless communicationsystem will operate in a fast fading channel where thenonnegligible fluctuations of the channel gains are expectedwithin eachOFDMdata block Fast fading involves variationson the scale of a half-wavelength and frequently introducesvariations as large as 35ndash40 dB [1] The channel estimationin OFDM systems over time-varying fading channels isgenerally based on the use of pilot subcarriers in givenpositions of the frequency-time grid [2] It is advisable toplace pilot subcarriers in each OFDM data block in orderto ensure adequate estimation accuracy In [3] the effectof pilot power on the performance of 16-QAM OFDMsystem operating in two-ray Rayleigh slow fading channel ispresented The optimum pilot-to-data power ratio (PDR) isanalytically derived As an alternative the channel estimationalgorithm based on subspace tracking has been presented in

[4] for OFDM systems which can effectively reduce channelestimation error by tracking the dominant delay-subspacespanned by the frequency responses

Increasing demand for high performance 4G broadbandwirelesses is enabled by the use of multiple antennas atboth base station and user equipment ends Multiple-input-multiple-output (MIMO) is one of the best ways to combatchannel fading using transmit diversity and receive diver-sity The use of MIMO technique in OFDM system is anefficient solution to meet the growing demand for highspeed spectral efficiency and reliable communication [2]in future-generation wireless networks The MIMO-OFDMwireless communications have the inherent signal variabilitygenerated from the multipath fading channelThe aim of thisstudy is to investigate the channel estimation algorithm in theMIMO-OFDM fading channels In [5] it is shown that thespace-frequency block code-(SFBC-) OFDM system exhibitserror floors caused by imperfect channel state estimation overfrequency selective fading channels Hence we need a morerobust frequency and phase synchronization technology forfast MIMO-OFDM fading channels The optimum pilotallocation in terms of overhead and channel estimation erroris analyzed in reference [6] that maximizes the channel

2 International Journal of Antennas and Propagation

capacity for MIMO-OFDM system operating in frequencyselective fading channel Both perfect interpolation and non-perfect interpolation for pilot-aided channel estimations areconsidered In [7] the sequential decision feedback sequenceestimation with an adaptive threshold equalizer techniqueand pilot tone plus interpolation channel estimation schemeare used to design the Alamouti coded small constellation(BPSK and QPSK) OFDM receiver in fast fading channels

An adaptive path number selection mechanism is pro-posed for channel estimation over MIMO-OFDM fadingchannels to provide the suboptimum system performancewhenever the high order modulation MIMO-OFDM systemis operated either in frequency nonselective fast fading or infrequency selective fast fading channels The 2 times 2 SFBC-OFDM system and a six-path fading channel model areconsidered as an example of the MIMO-OFDM system inthe simulations to prove that the acceptable bit error rate(BER) can be achieved by employing 16-QAM and 64-QAM modulations in time-varying fast fading channelsWe consider the vehicle speed of 200 kmh resulting inthe Doppler frequency of 1093Hz to satisfy the fast fadingcondition for MIMO-OFDM channel [8 9]

The rest of this paper is organized as follows The pro-posed MIMO-OFDM channel estimation algorithm isdescribed in Section 2 where the fine channel estimationfor all data subcarriers is derived The adaptive path numberselection mechanism for the MIMO-OFDM fading channelis presented in Section 3 The BER performance of theMIMO-OFDM system using the proposed suboptimalchannel estimation approach is simulated and discussed inSection 4 Finally concluding remarks are given in Section 5

2 MIMO-OFDM Channel Estimation

We consider a generic downlink multiuser MIMO-OFDMchannel model Let the number of transmit antennas be 119899

119879

and the number of receive antennas 119899119877 One OFDM symbol

of each user is transmitted across 119873 subcarriers To simplifythe formula derivations the data vector X for each user canbe expressed in polyphase representation as

X = [1198830

1198831

sdot sdot sdot 119883119873minus2

119883119873minus1

]119879 (1)

where 119879 denotes the transpose of the vector Thus the demo-dulated signal vector is given by

Y = HX + V (2)

where H is a diagonal matrix whose diagonal elements arethe 119873-DFT of the channel impulse response h and V isthe 119873-DFT of the channel noise With reference to theconventional channel estimation approach of a given OFDMsystem [9] ten short OFDM training signals are used forpacket detection coarse frequency offset estimation andtiming synchronization Two periods of the long trainingsignals are used for improving channel estimation accuracyof the short training symbols A phase-locked loop is adoptedin the receiver for estimating and compensating the carrierfrequency offset Each OFDM data block contains 119871 pilotsubcarriers which are used to track the carrier phase

A typical 2 times 2 SFBC-OFDM model which consists oftwo transmit antennas and two receive antennas is used todescribe the theoretical analysis and the proposed channelestimation scheme User data vector X is first encodedinto two spatial vectors X

1and X

2by the space-frequency

encoder Denote the transmitted signal vector of each user ina space-frequency block as

X1= [119883

0minus 119883

lowast

1sdot sdot sdot 119883

119873minus2minus 119883

lowast

119873minus1]119879

X2= [119883

1119883lowast

0sdot sdot sdot 119883

119873minus1119883lowast

119873minus2]119879

(3)

where X1is the data transmitted from the first antenna 119879119909

1

and X2is the data transmitted from the second antenna 119879119909

2

simultaneously Let X119890and X

119900be even and odd component

vectors of X that is

X119890= [119883

01198832

sdot sdot sdot 119883119873minus4

119883119873minus2

]119879

X119900= [119883

11198833

sdot sdot sdot 119883119873minus3

119883119873minus1

]119879

(4)

Similarly X1119890 X1119900 X2119890 and X

2119900denote even and odd

component vectors ofX1andX

2 respectively which can then

be expressed in terms of even and odd component vectors as

X1119890

= X119890 X

1119900= minusXlowast

119900

X2119890

= X119900 X

2119900= Xlowast

119890

(5)

Note that since the two corresponding signals transmittedfrom two antennas at the same time slots are orthogonal themaximum likelihood decoding is reduced to simple linearprocessing at the receiver The received signal at the receiveris given by

Y1= H

11X1+H

21X2+ V

1

Y2= H

12X1+H

22X2+ V

2

(6)

where Y1and Y

2are the received signals in the first and

second received antenna H11

and H21

are the channel fre-quency response of the first and second antenna transmittedto the first received antenna and H

12and H

22are the

channel frequency response of the first and second antennatransmitted to the second received antenna The channelfrequency response at all data subcarriers for each transmit-receive antenna pair is defined as

H119901119902

=

[[[

[

1198671199011199020

0 sdot sdot sdot 0

0 1198671199011199021

sdot sdot sdot 0

0 0 119867119901119902119873minus1

]]]

]

for 119901 = 1 119899

119879

119902 = 1 119899119877

(7)

Equivalently (6) can be represented as

Y1119890

= H11119890

X1119890

+H21119890

X2119890

+ V1119890

Y1119900

= H11119900

X1119900

+H21119900

X2119900

+ V1119900

Y2119890

= H12119890

X1119890

+H22119890

X2119890

+ V2119890

Y2119900

= H12119900

X1119900

+H22119900

X2119900

+ V2119900

(8)

International Journal of Antennas and Propagation 3

OFDM

transmitter

OFDM

receiver

Least square estimation

MMSEestimation

Path numberselection mechanism

Zeropadding N-FFT

Correction factordetermination

Linearinterpolation

Fine channel estimation for all pilots tones

Adaptive path number selection mechanism

Channel estimator

H11

HNN

HN1

H1N

X1

XN

Y1

YNV

Figure 1 Block diagram of pilot tone channel estimation aided with adaptive path number selection mechanism for MIMO-OFDM fadingchannel

The received signal at the 119902th receive antenna for the 119896thpilot tone transmitted from 119901th antenna can be written as

119884119902119896

= 119883119901119896

119867119901119902119896

+ 119881119902119896 119896 = 0 1 119873 minus 1

119901 = 1 119899119879

119902 = 1 119899119877

(9)

where 119873 is the frequency tones in each OFDM data block119883119901119896

is the transmitted signal of 119901th transmitted antenna119867119901119902119896

is the channel frequency response form 119901th transmitantenna to 119902th receive antenna and 119881

119902119896is the AWGN noise

Then from (9) the channel estimation at pilot subcarriersbased on the least square (LS) algorithm can be obtained as

119901119902119896

=

119884119902119896

119883119901119896

= 119867119901119902119896

+

119878119902119896

radic120576119909

119896 = 0 1 119873 minus 1

(10)

where 119878119902119896

=119881119902119896119890119895ang119883119898119896 |119883

119901119896|=radic120576

119909 and119883

119901119896=|119883

119901119896|119890119895ang119883119901119896

Let 1198961 1198962 119896

119871 be the set of 119871 pilot tones which is one of

the sets 119894 119894 + 119873119871 119894 + (119871 minus 1)119873119871 119894 = 0 1 119873119871 minus 1used for transmitting the training data Collect these channelresponses in a vector H

119901119902119896119901

= [1199011199021198961

119901119902119896119871

]119879 which

is obtained from the FFT matrixThe intermediate processing steps between the LS esti-

mates of the channel gains over the pilot subcarriers andinterpolation processing are added in order to ensure ade-quate estimation accuracy for fast fading channel The blockdiagram of the proposed pilot tone channel estimation aidedwith adaptive path number selection mechanism is shown inFigure 1 Here ℓ is defined as the number of dominant pathsestimated from the adaptive channel path number selectorwhich chooses ℓ paths with larger power from (h

119901119902119896119901

)119871times1

and let 119887

1 1198872 119887

ℓ be a set of the selected pilot index Since

AWGN assumption for each subcarrier is adopted and sinceeach pilot tone carries data of constant modulus radic120576

119909 the

minimum mean square error (MMSE) estimation of h119901119902

isgiven by [10]

h119901119902119896119901

= Qminus1119901119902119896119901

H119901119902119896119901

= h119901119902119896119901

+Qminus1119901119902119896119901

1

radic120576119909

S119896119901

(11)

where S119902119896119901

= [1198781199021198961

119878119902119896119871

]119879 (h

119901119902119896119901

)ℓtimes1

= [ℎ1199011199021198961

ℎ1199011199021198962

sdot sdot sdot ℎ119901119902119896ℓ

]119879 and Q

119901119902119896119901

is a Vandermonde matrix withdistinct 119871 twiddle factor119882119896119894

119873

((Q119901119902119896119901

)ℓtimes119871

)

minus1

=

[[[[[[[

[

(119876119901119902119896119901

)

minus1

(1198871 1) (119876

119901119902119896119901

)

minus1

(1198871 2) sdot sdot sdot (119876

119901119902119896119901

)

minus1

(1198871 119871)

(119876119901119902119896119901

)

minus1

(1198872 1) (119876

119901119902119896119901

)

minus1

(1198872 2) sdot sdot sdot (119876

119901119902119896119901

)

minus1

(1198872 119871)

(119876119901119902119896119901

)

minus1

(119887ℓ 1) (119876

119901119902119896119901

)

minus1

(119887ℓ 2) sdot sdot sdot (119876

119901119902119896119901

)

minus1

(119887ℓ 119871)

]]]]]]]

]

(12)

Other notations are represented as follows 119864sdot is theexpectation operator trsdot is the trace operator sdot means2-norm I

119871represents the 119871 times 119871 identity matrix Therefore

the mean square error (MSE) in the channel estimate can bederived as

119864 10038171003817100381710038171003817(h119901119902

)ℓtimes1

minus (h119901119902

)ℓtimes1

10038171003817100381710038171003817

2

=1205902

119904

120576119909

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

(13)

4 International Journal of Antennas and Propagation

where 1205902

119904is the variance of AWGN which is assumed to be

known at the receiver and

(Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

=

[[[[[[[

[

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198871 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198871 119887ℓ)

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198872 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198872 119887ℓ)

sdot sdot sdot

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(119887ℓ 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(119887ℓ 119887ℓ)

]]]]]]]

]

(14)

where (sdot)lowast denotes the Hermitian transposition and Q

119901119902119896119901

depends on the choice of the set of pilot tones Let the eigen-values of (Qlowast

119901119902119896119901

Q119901119902119896119901

)minus1

ℓtimesℓbe denoted by 120582

119898 119898 = 0 1

ℓ minus 1 Then the eigenvalues of (Qlowast119901119902119896119901

Q119901119902119896119901

)ℓtimesℓ

are1120582

119898 119898 = 0 1 ℓ minus 1 Since the trace of a matrix is the

sum of its eigenvalues then

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)ℓtimesℓ

=

ℓminus1

sum

119898=0

1

120582119898

=119871

119873ℓ (15)

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

=

ℓminus1

sum

119898=0

120582119898=

119873

119871ℓ (16)

Substituting (16) into (13) yields the MMSE in channelestimate when such a pilot tone set is used

119864 10038171003817100381710038171003817(h119901119902

)ℓtimes1

minus (h119901119902

)ℓtimes1

10038171003817100381710038171003817

2

=1205902

119904119873ℓ

120576119909119871

(17)

If ℓ = 119871 then MMSE is

119864 10038171003817100381710038171003817h119901119902

minus h119901119902

10038171003817100381710038171003817

2

=1205902

119904119873

120576119909

(18)

Equations (17) and (18) show that using less pilot numberin the pilot-aided channel estimation can get smaller MSEin the channel impulse response estimate However in thefrequency selective fast fading channel less pilot numbermaycausemore linear interpolation lossThe case of ℓ = 1will notbe considered for path number selection mechanism becauseit cannot reflect the variation of channel characterizationof the frequency selective fading channel The preliminarychannel frequency response estimate (H

119901119902)119873times1

is obtained bythe 119873-FFT of an 119873 times 1 estimated channel impulse response(hℓ119901119902

)119873times1

= [(h119879119901119902

)ℓtimes1

0119879(119873minusℓ)times1

]119879 It can be written as

119901119902119896=

1

radic119873

ℓminus1

sum

119899=0

ℎℓ

119901119902(119899)119882

119896119899

119873 119896 = 0 1 119873 minus 1 (19)

The preliminary channel frequency response estimates atpilot tones for 119896 = 119896

1 1198962 119896

119871are Hℓ

119901119902119871times1= [

1199011199021198961

119901119902119896119871

]119879 The correction factor for fine channel frequency

response estimate at 119896119901th pilot tone is defined as

119862ℓ

119901119902119896119901

=

119901119902119896119901

119901119902119896119901

=

(1radic119873)sum119871minus1

119899=0ℎ119901119902 (119899)119882

119896119901119899

119873

(1radic119873)sumℓminus1

119899=0ℎℓ

119901119902(119899)119882

119896119901119899

119873

(20)

For example the fine correction factor at 1198961th pilot tone

for 119871 = 4 and ℓ = 2 is determined as

1198622

1199011199021198961

=

1199011199021198961

2

1199011199021198961

= 1 +

ℎ119901119902 (2)119882

21198961

119873+ ℎ119901119902 (3)119882

31198961

119873

ℎ119901119902 (0) + ℎ

119901119902 (1)1198821198961

119873

(21)

From (21) it is observed that the fine correction factorcan compensate the power loss caused by less path employedin the preliminary channel estimates When the number ofpaths chosen is ℓ the fine correction factor in a vector for 119871pilot tones is

(Cℓ119901119902

)119871times1

= [119862ℓ

1199011199021198961

119862ℓ

119901119902119896119871

]119879

(22)

The fine correction factors for all data subcarriers can beobtained through linear interpolation [11] Two consecutivefine correction factors in 119871 pilot tones are used to determinethe fine correction factors for other data subcarriers that arelocated between the 119896

119901th and 119896

(119901+1)th subcarriers

119862ℓ

119901119902119896119901+119906

= 119862ℓ

119901119902119896119901

+ (

119862ℓ

119901119902119896119901+1

minus 119862ℓ

119901119902119896119901

119880) times 119906

119901 = 1 sim 119871 minus 1 119906 = 1 2 119880 minus 1

(23)

The fine channel estimations for all data subcarriers are

119901119902119896119901+119906

= 119862ℓ

119901119902119896119901+119906

times ℓ

119901119902119896119901+119906

= (

119901119902119896119901

119901119902119896119901

+(

(119901119902119896119901+1

119901119902119896119901+1

) minus (119901119902119896119901

119901119902119896119901

)

119880) times 119906)

times ℓ

119901119902119896119901+119906

119901 = 1 sim 119871 minus 1 119906 = 1 2 119880 minus 1

(24)

where 119880 is the number of data subcarriers between twoadjacent pilot subcarriers The fine channel estimations atpilot tones are expressed as

119901119902119896119901

= 119862ℓ

119901119902119896119901

times ℓ

119901119902119896119901

= ℓ

119901119902119896119901

119901 = 1 sim 119871 (25)

International Journal of Antennas and Propagation 5

The fine channel estimations for those data subcarrierslocated in the intervals of (0 119896

1) and (119896

119871 119873 minus 1) are deter-

mined with the fine correction factors 119862ℓ

1199011199021198961

and 119862ℓ

119901119902119896119871

respectively Therefore

1199011199021198961minus119887

= 119862ℓ

1199011199021198961minus119887

times ℓ

1199011199021198961minus119887

=

1199011199021198961

1199011199021198961

times ℓ

1199011199021198961minus119887 119887 = 1 2 119896

1

119901119902119896119871+119888

= 119862ℓ

119901119902119896119871+119888

times ℓ

119901119902119896119871+119888

=

119901119902119896119871

119901119902119896119871

times ℓ

119901119902119896119871+119888 119888 = 1 2 119873 minus 1 minus 119896

119871

(26)

Finally the fine channel estimate vector is given by

(Hℓ119901119902

)119873times1

= diag ℓ1199011199020

1199011199021

119901119902119873minus1 (27)

where ℓ119901119902119896

119896 = 0 1 119873 minus 1 are obtained from (24) (25)and (26)

Assume that the channel frequency responses H119901119902 for

119901 = 1 119899119879and 119902 = 1 119899

119877 are known or can be

estimated accurately at the receiver the space-frequencydecoder block constructs the even and odd parts of thedecision estimate vector X as

X119890= Hlowast

11119890Y1119890

+ H21119900

Ylowast1119900

+ Hlowast12119890

Y2119890

+ H22119900

Ylowast2119900

X119900= Hlowast

21119890Y1119890

minus H11119900

Ylowast1119900

+ Hlowast22119890

Y2119890

minus H12119900

Ylowast2119900

(28)

Substituting (8) into (28) yields

X119890= (

10038161003816100381610038161003816H11119890

10038161003816100381610038161003816+10038161003816100381610038161003816H21119890

10038161003816100381610038161003816+10038161003816100381610038161003816H12119890

10038161003816100381610038161003816+10038161003816100381610038161003816H22119890

10038161003816100381610038161003816)X119890

+ Hlowast11119890

V1119890

+ H21119900

Vlowast1119900

+ Hlowast12119890

V2119890

+ H22119900

Vlowast2119900

X119900= (

10038161003816100381610038161003816H11119900

10038161003816100381610038161003816+10038161003816100381610038161003816H21119900

10038161003816100381610038161003816+10038161003816100381610038161003816H12119900

10038161003816100381610038161003816+10038161003816100381610038161003816H22119900

10038161003816100381610038161003816)X119900

+ Hlowast21119890

V1119890

minus H11119900

Vlowast1119900

+ Hlowast22119890

V2119890

minus H12119900

Vlowast2119900

(29)

3 Adaptive Path NumberSelection Mechanism

Although MSE in channel frequency response estimatedecreases with the path number under the more seriousfrequency selective fading channel condition less selectedpath numbermay cause larger errorwhen the interpolation offine channel frequency response estimation is conducted forall the data subcarriers Therefore an adaptive path numberselection mechanism is proposed to choose appropriate pathnumber according to the characteristics of time-varyingfading channel The selection procedure of the path numberis described as follows In the first step of the proposedmechanism the pilot signals in the first OFDM data block

Calculations of 119888119901119902ℓ

and 119889119901119902ℓ

for ℓ = 2 3 4

if 1198881199011199022

ge 1198881199011199023

amp 1198881199011199022

ge 1198881199011199024

thenif (119889

1199011199022le 119889

1199011199023|| 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseif (1198891199011199023

le 1198891199011199022

amp 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseℓ = 4

endelseif 119888

1199011199023ge 1198881199011199022

amp 1198881199011199023

ge 1198881199011199024

thenif (119889

1199011199023le 119889

1199011199022|| 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseif (1198891199011199024

le 1198891199011199022

amp 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseℓ = 2

endelse

if (1198891199011199024

le 1198891199011199022

|| 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseif (1198891199011199022

le 1198891199011199023

amp 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseℓ = 3

endend

Algorithm 1 Algorithm of adaptive path number selection mech-anism for 119871 = 4

are used to estimate (h119901119902

)119871times1

In the second step thepreliminary estimates of channel frequency response at pilottones (Hℓ

119901119902)119871times1

for ℓ = 2 3 119871 are obtained from (19)and in the third step the fine correction factors at pilottones (Cℓ

119901119902)119871times1

are obtained from (20) and the fine channelfrequency response estimations (Hℓ

119901119902)119873times1

are determinedby (24) (25) and (26) In the fourth step the estimatedchannel frequency transfer function (Hlong

119901119902 )119873times1

=long119901119902119896

119896 =

0 1 119873 minus 1 obtained from two continuous long trainingsymbols which are defined in [9] is compared with the finechannel estimation for path number selectionThe differencevalues between the fine estimations of channel frequencyresponse (Hℓ)

119873times1and (Hlong

119901119902 )119873times1

= long119901119902119896

119896 = 0 1 119873minus

1 are compared with two times of noise variance of theMIMO-OFDM receiver respectively The total number ofcounts 119888

119901119902ℓwhich satisfy the condition of ℓ

119901119902119896minus

long119901119902119896

lt

21205902

119904is calculated

119888119901119902ℓ

= Num (ℓ

119901119902119896minus

long119901119902119896

lt 21205902

119904(threshold)

for 119896 = 0 1 119873 minus 1)

for ℓ = 2 3 119871

(30)

where 21205902

119904is defined as the threshold of ((Hℓ

119901119902)119873times1

minus

(Hlong119901119902 )

119873times1) With reference to the algorithm of adaptive

path number selection mechanism listed in Algorithm 1

6 International Journal of Antennas and Propagation

Table 1 Six-path OFDM channel model

Pathnumber

Tapnumber

Tap power(dBm) 119870

Path power(dBm)

Excessdelay (n s)

Path 119870

factorFreq offset(119891119889) in Hz

Spectrum half-width(119891119891) in Hz

Spectrumshape

1 1 0 102 minus00424 0 0 2646 mdash Freq shift2 1 minus24892 0 0 minus756 4763 Rounded3 1 minus21892 0 0 minus378 10017 Flat4 2 minus65 minus65 50 73 0 10886 Rounded5 3 minus144 minus144 100 47 0 12663 Rounded6 4 minus175 minus175 150 36 0 12663 Rounded

for 119871 = 4 1198891199011199022

1198891199011199023

and 119889119901119902119871

are defined as the MSEbetween (Hℓ

119901119902)119873times1

and (Hlong119901119902 )

119873times1and given by

119889119901119902ℓ

= 119864100381710038171003817100381710038171003817Hℓ119901119902119873times1

minus Hlong119901119902119873times1

100381710038171003817100381710038171003817

2

for ℓ = 2 3 119871

(31)

The number of paths can be adaptively selected for thelargest 119888

119901119902ℓand the smallest 119889

119901119902ℓin the first OFDM data

block or in each of the OFDM data blocks

4 Simulation Results

The function of the proposed adaptive path number selectionmechanism is simulated in MIMO-OFDM fading channelThe features for a mobile OFDM system include a bandwidthof 10MHz and 64 subcarriers the measured signal interval119879119898

= packet time = 840 120583sec Each transmitted packetcontains 100 OFDM data blocks the path number selectionsare conducted at the first data blocks Four equally spacedpilot subcarriers which are inserted in the positions of 8th24th 40th and 56th subcarriers in an OFDM data block areapplied for each of the transmitted OFDM data blocks Thesix-path channel model listed in Table 1 where the first threepaths have no path delay and the interpath delay time afterpath three is 50 nsec is employed to simulate mobile OFDMperformance so that 119871 = 4

Two-ray Rayleigh fading channel and six-path fadingchannel with 13 nsec delay spread are used to test the biterror rate (BER) performance of the OFDM transceiver InFigure 2 two-ray Rayleigh fading channel is used to validatesix-path fading channel with 13 nsec delay spread Figure 2(a)shows the BER performance of OFDM transceiver using 16-QAM Figure 2(b) shows the BER performance of OFDMtransceiver using 64-QAM For demonstration we have cho-sen 120 kmhr and 200 kmhr performance for high speedthat is 200 kmhr seems to degrade than the performance forsystem with less speed that is 120 kmhr because at higherspeed the channel behaves as a fast fading channel and forslower speed channel behaves as a slow fading channel [8]The test results show that the BER performance of the OFDMtransceiver in the high-speed time-varying fading channelwill be reduced to less than 10minus5 at the minimum SNR of12 dB for 16-QAM and 28 dB for 64-QAM at 120Kmhr For200Kmhr user speed the performance of 64-QAM OFDM

transceiver over six-path fading channel with 13 nsec delayspread degrades to unacceptable levels

For the purpose of the diversity gain a simple 2 times 2 SFBCis combined with the OFDM system where the adaptivepath number selection mechanism is employed for eachtransmit-receive antenna pair Let two frequency-domaindata signals at two consecutive subcarriers be encoded usingAlamouti code and transmitted from two antennas Since thechannel response for that subcarrier within one SFBC blockis stationary then the maximum-likelihood symbol detectoris used to detect the transmitted symbols

The BER performance of the 2 times 2 SFBC-OFDM systemin terms of 16-QAM and 64-QAMmodulations over the six-path fading channel with 13 nsec and 26 nsec delay spreadis shown in Figures 3 and 4 respectively where the userspeed is set as 200 kmh The calculations of 13 nsec and26 nsec root mean square (rms) delay spread are shown inthe appendix For OFDM system the channel is frequencynonselective fading if the delay spread is in the range of(0 20 nsec) and the channel is frequency selective fadingif the delay spread exceeds 20 nsec [8] It is observed thatthe acceptable BER (lt10minus5) for QAM modulated MIMO-OFDM systems operated in fast-varying fading channels canalways be achieved by employing the proposed path numberselection mechanism In Figure 4(a) the BER value of the16-QAM modulated MIMO-OFDM systems employing theproposed path number selection mechanism over frequencynonselective fast fading channels with 13 nsec delay spreadis lower than ℓ = 4 and slightly higher than ℓ = 2 and 3in the region of interest (BER lt 10

minus5) The required 119864

1198871198730

for the acceptable BER is low for all cases It indicates thatthe MIMO mode is not necessary to be used for the 16-QAM OFDM systems when the delay spread is small InFigure 4(b) the gain of the 64-QAM modulated MIMO-OFDM system employed the proposed adaptive path numberselection mechanism in frequency nonselective fast fadingchannel with 13 nsec delay spread exceeds 1 dB comparedwith ℓ = 4 and its BER value is slightly higher than ℓ = 2

and 3 in the region of interest In frequency nonselective fastfading channel choosing smaller number of paths can getthe smaller mean square error in channel impulse responseestimate Figure 4 shows that the BER value of the QAMmodulated MIMO-OFDM systems employing the proposedpath number selection mechanism over frequency selectivefast fading channels with 26 nsec delay spread is lower thanℓ = 2 and 3 and slightly higher than ℓ = 4 in the region

International Journal of Antennas and Propagation 7

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(a)

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(b)

Figure 2 BER of the OFDM transceiver over two-ray Rayleigh fading channel and six-path fading channel with 13 nsec delay spread for (a)16-QAM and (b) 64-QAM

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 3 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

of interest The error floors of the BER performance appearat an 119864

1198871198730of about 8 dB for 16-QAM (curve ℓ = 2) and

about 15 dB for 64-QAM (curves ℓ = 2 and 3) respectivelyThe frequency selectivity of the multipath fading channelincreases with its delay spread In a frequency selective fastfading channel the BER of the MIMO-OFDM decreaseswith an increase of the path number due to more linear

interpolation loss are generated by using less path number infrequency selective fast fading channel By examining Figures3 and 4 it is concluded that the pilot-based channel estimateusing the proposed path number selection mechanism at thefirst data block can satisfy the OFDM system performancerequirements under different operating conditions of time-varying fast fading channels

8 International Journal of Antennas and Propagation

EbN0 (dB)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 4 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

5 10 15 20

BER

10minus6

10minus4

10minus2

100

0EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 5 BER performance of OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b)64-QAMmodulation

In Figure 5 the BER value of theQAMmodulatedOFDMsystem employing the proposed path selection mechanismover time-varying fading channels with 13 ns delay spread islower than ℓ = 4 and slightly higher than ℓ = 2 and 3

Figure 6 shows that the BER value of the QAM modu-lated OFDM systems employing the proposed path selectionmechanism over time-varying fading channels with 26 nsdelay spread is lower than ℓ = 2 and 3 and slightly higher

than ℓ = 4 The frequency selectivity of the multipath fadingchannel increases with its delay spread

5 Conclusions

An adaptive path number selection mechanism is proposedto improve the accuracy of the pilot-based channel estima-tion approach for QAM modulated MIMO-OFDM systems

International Journal of Antennas and Propagation 9

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 6 BER performance of OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAM modulation and(b) 64-QAMmodulation

operating in time-varying fast fading channels The finecorrection factors are derived It is demonstrated that thenumber of paths is scalable and adaptively changed withthe characteristics of time-varying MIMO-OFDM fadingchannels to provide a suboptimum BER performance forQAMmodulated 2times 2 SFBC-OFDM systems operated eitherin frequency nonselective fast fading or in frequency selectivefast fading channels

Appendix

Calculations of Delay Spread 26 nsecand 13 nsec [8]

The fading channel generator at the 119894th path consists of twononline-of-sight (NLOS) branches and a LOS branch InNLOS branch two independent and identically distributed(iid) Gaussian signal sources are connected to identicalDoppler filters The channel weighing factor 119908

119894[1198961015840] is deter-

mined by

119908119894 [119896] = 119875

119894(119904119894 NLOS [119896] + 119904

119894 LOS [119896]) 119896 = 1 2 119873

(A1)

where the output of NLOS branch at the 119894th path in the fadingchannel weighing generator is

119904119894 NLOS [119896] = 119910

119894 [119896] times (1

radic1 + 119896119894

) 119896 = 1 2 119873

(A2)

where

119910119894 [119896] = (

infin

sum

119897=minusinfin

1199091 [119897] ℎ119894 [119896 minus 119897]) + 119895(

infin

sum

119897=minusinfin

1199092 [119897] ℎ119894 [119896 minus 119897])

119896 = 1 2 119873

(A3)

1199091and 119909

2are independent Gaussian functions and ℎ

119894is

impulse response of Doppler filterThe output of LOS branchat 119894th path in the fading channel weighing generator is

119904119894LOS

[119896] = radic119896119894

1 + 119896119894

times exp(1198952120587 (119891119889119894

cos 120579119894+ 119891119900119894

)119896

119891119904dop

)

119896 = 1 2 119873

(A4)

Furthermore 119908119894[119896] is interpolated by factor 119868 to get the

sequence V119894[1198961015840] with sampling rate 119891sig = 119868 times 119891

119904dop

V119894[1198961015840] =

119908119894[1198961015840

119868] 119896

1015840= 119868 2119868 119873119868

0 otherwise(A5)

The image signal of V119894[1198961015840] is removed by an interpolation

low pass filter with unit impulse response ℎ119868[1198961015840]The interpo-

lated fading envelop signal 119903119894[1198961015840] is stored in the register bank

as

119903119894[1198961015840] =

infin

sum

119897=minusinfin

V119894 [119897] ℎ119868 [119896 minus 119897] 119896

1015840= 1 2 119873119868 (A6)

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 2: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

2 International Journal of Antennas and Propagation

capacity for MIMO-OFDM system operating in frequencyselective fading channel Both perfect interpolation and non-perfect interpolation for pilot-aided channel estimations areconsidered In [7] the sequential decision feedback sequenceestimation with an adaptive threshold equalizer techniqueand pilot tone plus interpolation channel estimation schemeare used to design the Alamouti coded small constellation(BPSK and QPSK) OFDM receiver in fast fading channels

An adaptive path number selection mechanism is pro-posed for channel estimation over MIMO-OFDM fadingchannels to provide the suboptimum system performancewhenever the high order modulation MIMO-OFDM systemis operated either in frequency nonselective fast fading or infrequency selective fast fading channels The 2 times 2 SFBC-OFDM system and a six-path fading channel model areconsidered as an example of the MIMO-OFDM system inthe simulations to prove that the acceptable bit error rate(BER) can be achieved by employing 16-QAM and 64-QAM modulations in time-varying fast fading channelsWe consider the vehicle speed of 200 kmh resulting inthe Doppler frequency of 1093Hz to satisfy the fast fadingcondition for MIMO-OFDM channel [8 9]

The rest of this paper is organized as follows The pro-posed MIMO-OFDM channel estimation algorithm isdescribed in Section 2 where the fine channel estimationfor all data subcarriers is derived The adaptive path numberselection mechanism for the MIMO-OFDM fading channelis presented in Section 3 The BER performance of theMIMO-OFDM system using the proposed suboptimalchannel estimation approach is simulated and discussed inSection 4 Finally concluding remarks are given in Section 5

2 MIMO-OFDM Channel Estimation

We consider a generic downlink multiuser MIMO-OFDMchannel model Let the number of transmit antennas be 119899

119879

and the number of receive antennas 119899119877 One OFDM symbol

of each user is transmitted across 119873 subcarriers To simplifythe formula derivations the data vector X for each user canbe expressed in polyphase representation as

X = [1198830

1198831

sdot sdot sdot 119883119873minus2

119883119873minus1

]119879 (1)

where 119879 denotes the transpose of the vector Thus the demo-dulated signal vector is given by

Y = HX + V (2)

where H is a diagonal matrix whose diagonal elements arethe 119873-DFT of the channel impulse response h and V isthe 119873-DFT of the channel noise With reference to theconventional channel estimation approach of a given OFDMsystem [9] ten short OFDM training signals are used forpacket detection coarse frequency offset estimation andtiming synchronization Two periods of the long trainingsignals are used for improving channel estimation accuracyof the short training symbols A phase-locked loop is adoptedin the receiver for estimating and compensating the carrierfrequency offset Each OFDM data block contains 119871 pilotsubcarriers which are used to track the carrier phase

A typical 2 times 2 SFBC-OFDM model which consists oftwo transmit antennas and two receive antennas is used todescribe the theoretical analysis and the proposed channelestimation scheme User data vector X is first encodedinto two spatial vectors X

1and X

2by the space-frequency

encoder Denote the transmitted signal vector of each user ina space-frequency block as

X1= [119883

0minus 119883

lowast

1sdot sdot sdot 119883

119873minus2minus 119883

lowast

119873minus1]119879

X2= [119883

1119883lowast

0sdot sdot sdot 119883

119873minus1119883lowast

119873minus2]119879

(3)

where X1is the data transmitted from the first antenna 119879119909

1

and X2is the data transmitted from the second antenna 119879119909

2

simultaneously Let X119890and X

119900be even and odd component

vectors of X that is

X119890= [119883

01198832

sdot sdot sdot 119883119873minus4

119883119873minus2

]119879

X119900= [119883

11198833

sdot sdot sdot 119883119873minus3

119883119873minus1

]119879

(4)

Similarly X1119890 X1119900 X2119890 and X

2119900denote even and odd

component vectors ofX1andX

2 respectively which can then

be expressed in terms of even and odd component vectors as

X1119890

= X119890 X

1119900= minusXlowast

119900

X2119890

= X119900 X

2119900= Xlowast

119890

(5)

Note that since the two corresponding signals transmittedfrom two antennas at the same time slots are orthogonal themaximum likelihood decoding is reduced to simple linearprocessing at the receiver The received signal at the receiveris given by

Y1= H

11X1+H

21X2+ V

1

Y2= H

12X1+H

22X2+ V

2

(6)

where Y1and Y

2are the received signals in the first and

second received antenna H11

and H21

are the channel fre-quency response of the first and second antenna transmittedto the first received antenna and H

12and H

22are the

channel frequency response of the first and second antennatransmitted to the second received antenna The channelfrequency response at all data subcarriers for each transmit-receive antenna pair is defined as

H119901119902

=

[[[

[

1198671199011199020

0 sdot sdot sdot 0

0 1198671199011199021

sdot sdot sdot 0

0 0 119867119901119902119873minus1

]]]

]

for 119901 = 1 119899

119879

119902 = 1 119899119877

(7)

Equivalently (6) can be represented as

Y1119890

= H11119890

X1119890

+H21119890

X2119890

+ V1119890

Y1119900

= H11119900

X1119900

+H21119900

X2119900

+ V1119900

Y2119890

= H12119890

X1119890

+H22119890

X2119890

+ V2119890

Y2119900

= H12119900

X1119900

+H22119900

X2119900

+ V2119900

(8)

International Journal of Antennas and Propagation 3

OFDM

transmitter

OFDM

receiver

Least square estimation

MMSEestimation

Path numberselection mechanism

Zeropadding N-FFT

Correction factordetermination

Linearinterpolation

Fine channel estimation for all pilots tones

Adaptive path number selection mechanism

Channel estimator

H11

HNN

HN1

H1N

X1

XN

Y1

YNV

Figure 1 Block diagram of pilot tone channel estimation aided with adaptive path number selection mechanism for MIMO-OFDM fadingchannel

The received signal at the 119902th receive antenna for the 119896thpilot tone transmitted from 119901th antenna can be written as

119884119902119896

= 119883119901119896

119867119901119902119896

+ 119881119902119896 119896 = 0 1 119873 minus 1

119901 = 1 119899119879

119902 = 1 119899119877

(9)

where 119873 is the frequency tones in each OFDM data block119883119901119896

is the transmitted signal of 119901th transmitted antenna119867119901119902119896

is the channel frequency response form 119901th transmitantenna to 119902th receive antenna and 119881

119902119896is the AWGN noise

Then from (9) the channel estimation at pilot subcarriersbased on the least square (LS) algorithm can be obtained as

119901119902119896

=

119884119902119896

119883119901119896

= 119867119901119902119896

+

119878119902119896

radic120576119909

119896 = 0 1 119873 minus 1

(10)

where 119878119902119896

=119881119902119896119890119895ang119883119898119896 |119883

119901119896|=radic120576

119909 and119883

119901119896=|119883

119901119896|119890119895ang119883119901119896

Let 1198961 1198962 119896

119871 be the set of 119871 pilot tones which is one of

the sets 119894 119894 + 119873119871 119894 + (119871 minus 1)119873119871 119894 = 0 1 119873119871 minus 1used for transmitting the training data Collect these channelresponses in a vector H

119901119902119896119901

= [1199011199021198961

119901119902119896119871

]119879 which

is obtained from the FFT matrixThe intermediate processing steps between the LS esti-

mates of the channel gains over the pilot subcarriers andinterpolation processing are added in order to ensure ade-quate estimation accuracy for fast fading channel The blockdiagram of the proposed pilot tone channel estimation aidedwith adaptive path number selection mechanism is shown inFigure 1 Here ℓ is defined as the number of dominant pathsestimated from the adaptive channel path number selectorwhich chooses ℓ paths with larger power from (h

119901119902119896119901

)119871times1

and let 119887

1 1198872 119887

ℓ be a set of the selected pilot index Since

AWGN assumption for each subcarrier is adopted and sinceeach pilot tone carries data of constant modulus radic120576

119909 the

minimum mean square error (MMSE) estimation of h119901119902

isgiven by [10]

h119901119902119896119901

= Qminus1119901119902119896119901

H119901119902119896119901

= h119901119902119896119901

+Qminus1119901119902119896119901

1

radic120576119909

S119896119901

(11)

where S119902119896119901

= [1198781199021198961

119878119902119896119871

]119879 (h

119901119902119896119901

)ℓtimes1

= [ℎ1199011199021198961

ℎ1199011199021198962

sdot sdot sdot ℎ119901119902119896ℓ

]119879 and Q

119901119902119896119901

is a Vandermonde matrix withdistinct 119871 twiddle factor119882119896119894

119873

((Q119901119902119896119901

)ℓtimes119871

)

minus1

=

[[[[[[[

[

(119876119901119902119896119901

)

minus1

(1198871 1) (119876

119901119902119896119901

)

minus1

(1198871 2) sdot sdot sdot (119876

119901119902119896119901

)

minus1

(1198871 119871)

(119876119901119902119896119901

)

minus1

(1198872 1) (119876

119901119902119896119901

)

minus1

(1198872 2) sdot sdot sdot (119876

119901119902119896119901

)

minus1

(1198872 119871)

(119876119901119902119896119901

)

minus1

(119887ℓ 1) (119876

119901119902119896119901

)

minus1

(119887ℓ 2) sdot sdot sdot (119876

119901119902119896119901

)

minus1

(119887ℓ 119871)

]]]]]]]

]

(12)

Other notations are represented as follows 119864sdot is theexpectation operator trsdot is the trace operator sdot means2-norm I

119871represents the 119871 times 119871 identity matrix Therefore

the mean square error (MSE) in the channel estimate can bederived as

119864 10038171003817100381710038171003817(h119901119902

)ℓtimes1

minus (h119901119902

)ℓtimes1

10038171003817100381710038171003817

2

=1205902

119904

120576119909

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

(13)

4 International Journal of Antennas and Propagation

where 1205902

119904is the variance of AWGN which is assumed to be

known at the receiver and

(Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

=

[[[[[[[

[

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198871 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198871 119887ℓ)

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198872 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198872 119887ℓ)

sdot sdot sdot

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(119887ℓ 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(119887ℓ 119887ℓ)

]]]]]]]

]

(14)

where (sdot)lowast denotes the Hermitian transposition and Q

119901119902119896119901

depends on the choice of the set of pilot tones Let the eigen-values of (Qlowast

119901119902119896119901

Q119901119902119896119901

)minus1

ℓtimesℓbe denoted by 120582

119898 119898 = 0 1

ℓ minus 1 Then the eigenvalues of (Qlowast119901119902119896119901

Q119901119902119896119901

)ℓtimesℓ

are1120582

119898 119898 = 0 1 ℓ minus 1 Since the trace of a matrix is the

sum of its eigenvalues then

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)ℓtimesℓ

=

ℓminus1

sum

119898=0

1

120582119898

=119871

119873ℓ (15)

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

=

ℓminus1

sum

119898=0

120582119898=

119873

119871ℓ (16)

Substituting (16) into (13) yields the MMSE in channelestimate when such a pilot tone set is used

119864 10038171003817100381710038171003817(h119901119902

)ℓtimes1

minus (h119901119902

)ℓtimes1

10038171003817100381710038171003817

2

=1205902

119904119873ℓ

120576119909119871

(17)

If ℓ = 119871 then MMSE is

119864 10038171003817100381710038171003817h119901119902

minus h119901119902

10038171003817100381710038171003817

2

=1205902

119904119873

120576119909

(18)

Equations (17) and (18) show that using less pilot numberin the pilot-aided channel estimation can get smaller MSEin the channel impulse response estimate However in thefrequency selective fast fading channel less pilot numbermaycausemore linear interpolation lossThe case of ℓ = 1will notbe considered for path number selection mechanism becauseit cannot reflect the variation of channel characterizationof the frequency selective fading channel The preliminarychannel frequency response estimate (H

119901119902)119873times1

is obtained bythe 119873-FFT of an 119873 times 1 estimated channel impulse response(hℓ119901119902

)119873times1

= [(h119879119901119902

)ℓtimes1

0119879(119873minusℓ)times1

]119879 It can be written as

119901119902119896=

1

radic119873

ℓminus1

sum

119899=0

ℎℓ

119901119902(119899)119882

119896119899

119873 119896 = 0 1 119873 minus 1 (19)

The preliminary channel frequency response estimates atpilot tones for 119896 = 119896

1 1198962 119896

119871are Hℓ

119901119902119871times1= [

1199011199021198961

119901119902119896119871

]119879 The correction factor for fine channel frequency

response estimate at 119896119901th pilot tone is defined as

119862ℓ

119901119902119896119901

=

119901119902119896119901

119901119902119896119901

=

(1radic119873)sum119871minus1

119899=0ℎ119901119902 (119899)119882

119896119901119899

119873

(1radic119873)sumℓminus1

119899=0ℎℓ

119901119902(119899)119882

119896119901119899

119873

(20)

For example the fine correction factor at 1198961th pilot tone

for 119871 = 4 and ℓ = 2 is determined as

1198622

1199011199021198961

=

1199011199021198961

2

1199011199021198961

= 1 +

ℎ119901119902 (2)119882

21198961

119873+ ℎ119901119902 (3)119882

31198961

119873

ℎ119901119902 (0) + ℎ

119901119902 (1)1198821198961

119873

(21)

From (21) it is observed that the fine correction factorcan compensate the power loss caused by less path employedin the preliminary channel estimates When the number ofpaths chosen is ℓ the fine correction factor in a vector for 119871pilot tones is

(Cℓ119901119902

)119871times1

= [119862ℓ

1199011199021198961

119862ℓ

119901119902119896119871

]119879

(22)

The fine correction factors for all data subcarriers can beobtained through linear interpolation [11] Two consecutivefine correction factors in 119871 pilot tones are used to determinethe fine correction factors for other data subcarriers that arelocated between the 119896

119901th and 119896

(119901+1)th subcarriers

119862ℓ

119901119902119896119901+119906

= 119862ℓ

119901119902119896119901

+ (

119862ℓ

119901119902119896119901+1

minus 119862ℓ

119901119902119896119901

119880) times 119906

119901 = 1 sim 119871 minus 1 119906 = 1 2 119880 minus 1

(23)

The fine channel estimations for all data subcarriers are

119901119902119896119901+119906

= 119862ℓ

119901119902119896119901+119906

times ℓ

119901119902119896119901+119906

= (

119901119902119896119901

119901119902119896119901

+(

(119901119902119896119901+1

119901119902119896119901+1

) minus (119901119902119896119901

119901119902119896119901

)

119880) times 119906)

times ℓ

119901119902119896119901+119906

119901 = 1 sim 119871 minus 1 119906 = 1 2 119880 minus 1

(24)

where 119880 is the number of data subcarriers between twoadjacent pilot subcarriers The fine channel estimations atpilot tones are expressed as

119901119902119896119901

= 119862ℓ

119901119902119896119901

times ℓ

119901119902119896119901

= ℓ

119901119902119896119901

119901 = 1 sim 119871 (25)

International Journal of Antennas and Propagation 5

The fine channel estimations for those data subcarrierslocated in the intervals of (0 119896

1) and (119896

119871 119873 minus 1) are deter-

mined with the fine correction factors 119862ℓ

1199011199021198961

and 119862ℓ

119901119902119896119871

respectively Therefore

1199011199021198961minus119887

= 119862ℓ

1199011199021198961minus119887

times ℓ

1199011199021198961minus119887

=

1199011199021198961

1199011199021198961

times ℓ

1199011199021198961minus119887 119887 = 1 2 119896

1

119901119902119896119871+119888

= 119862ℓ

119901119902119896119871+119888

times ℓ

119901119902119896119871+119888

=

119901119902119896119871

119901119902119896119871

times ℓ

119901119902119896119871+119888 119888 = 1 2 119873 minus 1 minus 119896

119871

(26)

Finally the fine channel estimate vector is given by

(Hℓ119901119902

)119873times1

= diag ℓ1199011199020

1199011199021

119901119902119873minus1 (27)

where ℓ119901119902119896

119896 = 0 1 119873 minus 1 are obtained from (24) (25)and (26)

Assume that the channel frequency responses H119901119902 for

119901 = 1 119899119879and 119902 = 1 119899

119877 are known or can be

estimated accurately at the receiver the space-frequencydecoder block constructs the even and odd parts of thedecision estimate vector X as

X119890= Hlowast

11119890Y1119890

+ H21119900

Ylowast1119900

+ Hlowast12119890

Y2119890

+ H22119900

Ylowast2119900

X119900= Hlowast

21119890Y1119890

minus H11119900

Ylowast1119900

+ Hlowast22119890

Y2119890

minus H12119900

Ylowast2119900

(28)

Substituting (8) into (28) yields

X119890= (

10038161003816100381610038161003816H11119890

10038161003816100381610038161003816+10038161003816100381610038161003816H21119890

10038161003816100381610038161003816+10038161003816100381610038161003816H12119890

10038161003816100381610038161003816+10038161003816100381610038161003816H22119890

10038161003816100381610038161003816)X119890

+ Hlowast11119890

V1119890

+ H21119900

Vlowast1119900

+ Hlowast12119890

V2119890

+ H22119900

Vlowast2119900

X119900= (

10038161003816100381610038161003816H11119900

10038161003816100381610038161003816+10038161003816100381610038161003816H21119900

10038161003816100381610038161003816+10038161003816100381610038161003816H12119900

10038161003816100381610038161003816+10038161003816100381610038161003816H22119900

10038161003816100381610038161003816)X119900

+ Hlowast21119890

V1119890

minus H11119900

Vlowast1119900

+ Hlowast22119890

V2119890

minus H12119900

Vlowast2119900

(29)

3 Adaptive Path NumberSelection Mechanism

Although MSE in channel frequency response estimatedecreases with the path number under the more seriousfrequency selective fading channel condition less selectedpath numbermay cause larger errorwhen the interpolation offine channel frequency response estimation is conducted forall the data subcarriers Therefore an adaptive path numberselection mechanism is proposed to choose appropriate pathnumber according to the characteristics of time-varyingfading channel The selection procedure of the path numberis described as follows In the first step of the proposedmechanism the pilot signals in the first OFDM data block

Calculations of 119888119901119902ℓ

and 119889119901119902ℓ

for ℓ = 2 3 4

if 1198881199011199022

ge 1198881199011199023

amp 1198881199011199022

ge 1198881199011199024

thenif (119889

1199011199022le 119889

1199011199023|| 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseif (1198891199011199023

le 1198891199011199022

amp 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseℓ = 4

endelseif 119888

1199011199023ge 1198881199011199022

amp 1198881199011199023

ge 1198881199011199024

thenif (119889

1199011199023le 119889

1199011199022|| 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseif (1198891199011199024

le 1198891199011199022

amp 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseℓ = 2

endelse

if (1198891199011199024

le 1198891199011199022

|| 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseif (1198891199011199022

le 1198891199011199023

amp 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseℓ = 3

endend

Algorithm 1 Algorithm of adaptive path number selection mech-anism for 119871 = 4

are used to estimate (h119901119902

)119871times1

In the second step thepreliminary estimates of channel frequency response at pilottones (Hℓ

119901119902)119871times1

for ℓ = 2 3 119871 are obtained from (19)and in the third step the fine correction factors at pilottones (Cℓ

119901119902)119871times1

are obtained from (20) and the fine channelfrequency response estimations (Hℓ

119901119902)119873times1

are determinedby (24) (25) and (26) In the fourth step the estimatedchannel frequency transfer function (Hlong

119901119902 )119873times1

=long119901119902119896

119896 =

0 1 119873 minus 1 obtained from two continuous long trainingsymbols which are defined in [9] is compared with the finechannel estimation for path number selectionThe differencevalues between the fine estimations of channel frequencyresponse (Hℓ)

119873times1and (Hlong

119901119902 )119873times1

= long119901119902119896

119896 = 0 1 119873minus

1 are compared with two times of noise variance of theMIMO-OFDM receiver respectively The total number ofcounts 119888

119901119902ℓwhich satisfy the condition of ℓ

119901119902119896minus

long119901119902119896

lt

21205902

119904is calculated

119888119901119902ℓ

= Num (ℓ

119901119902119896minus

long119901119902119896

lt 21205902

119904(threshold)

for 119896 = 0 1 119873 minus 1)

for ℓ = 2 3 119871

(30)

where 21205902

119904is defined as the threshold of ((Hℓ

119901119902)119873times1

minus

(Hlong119901119902 )

119873times1) With reference to the algorithm of adaptive

path number selection mechanism listed in Algorithm 1

6 International Journal of Antennas and Propagation

Table 1 Six-path OFDM channel model

Pathnumber

Tapnumber

Tap power(dBm) 119870

Path power(dBm)

Excessdelay (n s)

Path 119870

factorFreq offset(119891119889) in Hz

Spectrum half-width(119891119891) in Hz

Spectrumshape

1 1 0 102 minus00424 0 0 2646 mdash Freq shift2 1 minus24892 0 0 minus756 4763 Rounded3 1 minus21892 0 0 minus378 10017 Flat4 2 minus65 minus65 50 73 0 10886 Rounded5 3 minus144 minus144 100 47 0 12663 Rounded6 4 minus175 minus175 150 36 0 12663 Rounded

for 119871 = 4 1198891199011199022

1198891199011199023

and 119889119901119902119871

are defined as the MSEbetween (Hℓ

119901119902)119873times1

and (Hlong119901119902 )

119873times1and given by

119889119901119902ℓ

= 119864100381710038171003817100381710038171003817Hℓ119901119902119873times1

minus Hlong119901119902119873times1

100381710038171003817100381710038171003817

2

for ℓ = 2 3 119871

(31)

The number of paths can be adaptively selected for thelargest 119888

119901119902ℓand the smallest 119889

119901119902ℓin the first OFDM data

block or in each of the OFDM data blocks

4 Simulation Results

The function of the proposed adaptive path number selectionmechanism is simulated in MIMO-OFDM fading channelThe features for a mobile OFDM system include a bandwidthof 10MHz and 64 subcarriers the measured signal interval119879119898

= packet time = 840 120583sec Each transmitted packetcontains 100 OFDM data blocks the path number selectionsare conducted at the first data blocks Four equally spacedpilot subcarriers which are inserted in the positions of 8th24th 40th and 56th subcarriers in an OFDM data block areapplied for each of the transmitted OFDM data blocks Thesix-path channel model listed in Table 1 where the first threepaths have no path delay and the interpath delay time afterpath three is 50 nsec is employed to simulate mobile OFDMperformance so that 119871 = 4

Two-ray Rayleigh fading channel and six-path fadingchannel with 13 nsec delay spread are used to test the biterror rate (BER) performance of the OFDM transceiver InFigure 2 two-ray Rayleigh fading channel is used to validatesix-path fading channel with 13 nsec delay spread Figure 2(a)shows the BER performance of OFDM transceiver using 16-QAM Figure 2(b) shows the BER performance of OFDMtransceiver using 64-QAM For demonstration we have cho-sen 120 kmhr and 200 kmhr performance for high speedthat is 200 kmhr seems to degrade than the performance forsystem with less speed that is 120 kmhr because at higherspeed the channel behaves as a fast fading channel and forslower speed channel behaves as a slow fading channel [8]The test results show that the BER performance of the OFDMtransceiver in the high-speed time-varying fading channelwill be reduced to less than 10minus5 at the minimum SNR of12 dB for 16-QAM and 28 dB for 64-QAM at 120Kmhr For200Kmhr user speed the performance of 64-QAM OFDM

transceiver over six-path fading channel with 13 nsec delayspread degrades to unacceptable levels

For the purpose of the diversity gain a simple 2 times 2 SFBCis combined with the OFDM system where the adaptivepath number selection mechanism is employed for eachtransmit-receive antenna pair Let two frequency-domaindata signals at two consecutive subcarriers be encoded usingAlamouti code and transmitted from two antennas Since thechannel response for that subcarrier within one SFBC blockis stationary then the maximum-likelihood symbol detectoris used to detect the transmitted symbols

The BER performance of the 2 times 2 SFBC-OFDM systemin terms of 16-QAM and 64-QAMmodulations over the six-path fading channel with 13 nsec and 26 nsec delay spreadis shown in Figures 3 and 4 respectively where the userspeed is set as 200 kmh The calculations of 13 nsec and26 nsec root mean square (rms) delay spread are shown inthe appendix For OFDM system the channel is frequencynonselective fading if the delay spread is in the range of(0 20 nsec) and the channel is frequency selective fadingif the delay spread exceeds 20 nsec [8] It is observed thatthe acceptable BER (lt10minus5) for QAM modulated MIMO-OFDM systems operated in fast-varying fading channels canalways be achieved by employing the proposed path numberselection mechanism In Figure 4(a) the BER value of the16-QAM modulated MIMO-OFDM systems employing theproposed path number selection mechanism over frequencynonselective fast fading channels with 13 nsec delay spreadis lower than ℓ = 4 and slightly higher than ℓ = 2 and 3in the region of interest (BER lt 10

minus5) The required 119864

1198871198730

for the acceptable BER is low for all cases It indicates thatthe MIMO mode is not necessary to be used for the 16-QAM OFDM systems when the delay spread is small InFigure 4(b) the gain of the 64-QAM modulated MIMO-OFDM system employed the proposed adaptive path numberselection mechanism in frequency nonselective fast fadingchannel with 13 nsec delay spread exceeds 1 dB comparedwith ℓ = 4 and its BER value is slightly higher than ℓ = 2

and 3 in the region of interest In frequency nonselective fastfading channel choosing smaller number of paths can getthe smaller mean square error in channel impulse responseestimate Figure 4 shows that the BER value of the QAMmodulated MIMO-OFDM systems employing the proposedpath number selection mechanism over frequency selectivefast fading channels with 26 nsec delay spread is lower thanℓ = 2 and 3 and slightly higher than ℓ = 4 in the region

International Journal of Antennas and Propagation 7

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(a)

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(b)

Figure 2 BER of the OFDM transceiver over two-ray Rayleigh fading channel and six-path fading channel with 13 nsec delay spread for (a)16-QAM and (b) 64-QAM

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 3 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

of interest The error floors of the BER performance appearat an 119864

1198871198730of about 8 dB for 16-QAM (curve ℓ = 2) and

about 15 dB for 64-QAM (curves ℓ = 2 and 3) respectivelyThe frequency selectivity of the multipath fading channelincreases with its delay spread In a frequency selective fastfading channel the BER of the MIMO-OFDM decreaseswith an increase of the path number due to more linear

interpolation loss are generated by using less path number infrequency selective fast fading channel By examining Figures3 and 4 it is concluded that the pilot-based channel estimateusing the proposed path number selection mechanism at thefirst data block can satisfy the OFDM system performancerequirements under different operating conditions of time-varying fast fading channels

8 International Journal of Antennas and Propagation

EbN0 (dB)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 4 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

5 10 15 20

BER

10minus6

10minus4

10minus2

100

0EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 5 BER performance of OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b)64-QAMmodulation

In Figure 5 the BER value of theQAMmodulatedOFDMsystem employing the proposed path selection mechanismover time-varying fading channels with 13 ns delay spread islower than ℓ = 4 and slightly higher than ℓ = 2 and 3

Figure 6 shows that the BER value of the QAM modu-lated OFDM systems employing the proposed path selectionmechanism over time-varying fading channels with 26 nsdelay spread is lower than ℓ = 2 and 3 and slightly higher

than ℓ = 4 The frequency selectivity of the multipath fadingchannel increases with its delay spread

5 Conclusions

An adaptive path number selection mechanism is proposedto improve the accuracy of the pilot-based channel estima-tion approach for QAM modulated MIMO-OFDM systems

International Journal of Antennas and Propagation 9

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 6 BER performance of OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAM modulation and(b) 64-QAMmodulation

operating in time-varying fast fading channels The finecorrection factors are derived It is demonstrated that thenumber of paths is scalable and adaptively changed withthe characteristics of time-varying MIMO-OFDM fadingchannels to provide a suboptimum BER performance forQAMmodulated 2times 2 SFBC-OFDM systems operated eitherin frequency nonselective fast fading or in frequency selectivefast fading channels

Appendix

Calculations of Delay Spread 26 nsecand 13 nsec [8]

The fading channel generator at the 119894th path consists of twononline-of-sight (NLOS) branches and a LOS branch InNLOS branch two independent and identically distributed(iid) Gaussian signal sources are connected to identicalDoppler filters The channel weighing factor 119908

119894[1198961015840] is deter-

mined by

119908119894 [119896] = 119875

119894(119904119894 NLOS [119896] + 119904

119894 LOS [119896]) 119896 = 1 2 119873

(A1)

where the output of NLOS branch at the 119894th path in the fadingchannel weighing generator is

119904119894 NLOS [119896] = 119910

119894 [119896] times (1

radic1 + 119896119894

) 119896 = 1 2 119873

(A2)

where

119910119894 [119896] = (

infin

sum

119897=minusinfin

1199091 [119897] ℎ119894 [119896 minus 119897]) + 119895(

infin

sum

119897=minusinfin

1199092 [119897] ℎ119894 [119896 minus 119897])

119896 = 1 2 119873

(A3)

1199091and 119909

2are independent Gaussian functions and ℎ

119894is

impulse response of Doppler filterThe output of LOS branchat 119894th path in the fading channel weighing generator is

119904119894LOS

[119896] = radic119896119894

1 + 119896119894

times exp(1198952120587 (119891119889119894

cos 120579119894+ 119891119900119894

)119896

119891119904dop

)

119896 = 1 2 119873

(A4)

Furthermore 119908119894[119896] is interpolated by factor 119868 to get the

sequence V119894[1198961015840] with sampling rate 119891sig = 119868 times 119891

119904dop

V119894[1198961015840] =

119908119894[1198961015840

119868] 119896

1015840= 119868 2119868 119873119868

0 otherwise(A5)

The image signal of V119894[1198961015840] is removed by an interpolation

low pass filter with unit impulse response ℎ119868[1198961015840]The interpo-

lated fading envelop signal 119903119894[1198961015840] is stored in the register bank

as

119903119894[1198961015840] =

infin

sum

119897=minusinfin

V119894 [119897] ℎ119868 [119896 minus 119897] 119896

1015840= 1 2 119873119868 (A6)

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 3: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

International Journal of Antennas and Propagation 3

OFDM

transmitter

OFDM

receiver

Least square estimation

MMSEestimation

Path numberselection mechanism

Zeropadding N-FFT

Correction factordetermination

Linearinterpolation

Fine channel estimation for all pilots tones

Adaptive path number selection mechanism

Channel estimator

H11

HNN

HN1

H1N

X1

XN

Y1

YNV

Figure 1 Block diagram of pilot tone channel estimation aided with adaptive path number selection mechanism for MIMO-OFDM fadingchannel

The received signal at the 119902th receive antenna for the 119896thpilot tone transmitted from 119901th antenna can be written as

119884119902119896

= 119883119901119896

119867119901119902119896

+ 119881119902119896 119896 = 0 1 119873 minus 1

119901 = 1 119899119879

119902 = 1 119899119877

(9)

where 119873 is the frequency tones in each OFDM data block119883119901119896

is the transmitted signal of 119901th transmitted antenna119867119901119902119896

is the channel frequency response form 119901th transmitantenna to 119902th receive antenna and 119881

119902119896is the AWGN noise

Then from (9) the channel estimation at pilot subcarriersbased on the least square (LS) algorithm can be obtained as

119901119902119896

=

119884119902119896

119883119901119896

= 119867119901119902119896

+

119878119902119896

radic120576119909

119896 = 0 1 119873 minus 1

(10)

where 119878119902119896

=119881119902119896119890119895ang119883119898119896 |119883

119901119896|=radic120576

119909 and119883

119901119896=|119883

119901119896|119890119895ang119883119901119896

Let 1198961 1198962 119896

119871 be the set of 119871 pilot tones which is one of

the sets 119894 119894 + 119873119871 119894 + (119871 minus 1)119873119871 119894 = 0 1 119873119871 minus 1used for transmitting the training data Collect these channelresponses in a vector H

119901119902119896119901

= [1199011199021198961

119901119902119896119871

]119879 which

is obtained from the FFT matrixThe intermediate processing steps between the LS esti-

mates of the channel gains over the pilot subcarriers andinterpolation processing are added in order to ensure ade-quate estimation accuracy for fast fading channel The blockdiagram of the proposed pilot tone channel estimation aidedwith adaptive path number selection mechanism is shown inFigure 1 Here ℓ is defined as the number of dominant pathsestimated from the adaptive channel path number selectorwhich chooses ℓ paths with larger power from (h

119901119902119896119901

)119871times1

and let 119887

1 1198872 119887

ℓ be a set of the selected pilot index Since

AWGN assumption for each subcarrier is adopted and sinceeach pilot tone carries data of constant modulus radic120576

119909 the

minimum mean square error (MMSE) estimation of h119901119902

isgiven by [10]

h119901119902119896119901

= Qminus1119901119902119896119901

H119901119902119896119901

= h119901119902119896119901

+Qminus1119901119902119896119901

1

radic120576119909

S119896119901

(11)

where S119902119896119901

= [1198781199021198961

119878119902119896119871

]119879 (h

119901119902119896119901

)ℓtimes1

= [ℎ1199011199021198961

ℎ1199011199021198962

sdot sdot sdot ℎ119901119902119896ℓ

]119879 and Q

119901119902119896119901

is a Vandermonde matrix withdistinct 119871 twiddle factor119882119896119894

119873

((Q119901119902119896119901

)ℓtimes119871

)

minus1

=

[[[[[[[

[

(119876119901119902119896119901

)

minus1

(1198871 1) (119876

119901119902119896119901

)

minus1

(1198871 2) sdot sdot sdot (119876

119901119902119896119901

)

minus1

(1198871 119871)

(119876119901119902119896119901

)

minus1

(1198872 1) (119876

119901119902119896119901

)

minus1

(1198872 2) sdot sdot sdot (119876

119901119902119896119901

)

minus1

(1198872 119871)

(119876119901119902119896119901

)

minus1

(119887ℓ 1) (119876

119901119902119896119901

)

minus1

(119887ℓ 2) sdot sdot sdot (119876

119901119902119896119901

)

minus1

(119887ℓ 119871)

]]]]]]]

]

(12)

Other notations are represented as follows 119864sdot is theexpectation operator trsdot is the trace operator sdot means2-norm I

119871represents the 119871 times 119871 identity matrix Therefore

the mean square error (MSE) in the channel estimate can bederived as

119864 10038171003817100381710038171003817(h119901119902

)ℓtimes1

minus (h119901119902

)ℓtimes1

10038171003817100381710038171003817

2

=1205902

119904

120576119909

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

(13)

4 International Journal of Antennas and Propagation

where 1205902

119904is the variance of AWGN which is assumed to be

known at the receiver and

(Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

=

[[[[[[[

[

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198871 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198871 119887ℓ)

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198872 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198872 119887ℓ)

sdot sdot sdot

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(119887ℓ 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(119887ℓ 119887ℓ)

]]]]]]]

]

(14)

where (sdot)lowast denotes the Hermitian transposition and Q

119901119902119896119901

depends on the choice of the set of pilot tones Let the eigen-values of (Qlowast

119901119902119896119901

Q119901119902119896119901

)minus1

ℓtimesℓbe denoted by 120582

119898 119898 = 0 1

ℓ minus 1 Then the eigenvalues of (Qlowast119901119902119896119901

Q119901119902119896119901

)ℓtimesℓ

are1120582

119898 119898 = 0 1 ℓ minus 1 Since the trace of a matrix is the

sum of its eigenvalues then

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)ℓtimesℓ

=

ℓminus1

sum

119898=0

1

120582119898

=119871

119873ℓ (15)

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

=

ℓminus1

sum

119898=0

120582119898=

119873

119871ℓ (16)

Substituting (16) into (13) yields the MMSE in channelestimate when such a pilot tone set is used

119864 10038171003817100381710038171003817(h119901119902

)ℓtimes1

minus (h119901119902

)ℓtimes1

10038171003817100381710038171003817

2

=1205902

119904119873ℓ

120576119909119871

(17)

If ℓ = 119871 then MMSE is

119864 10038171003817100381710038171003817h119901119902

minus h119901119902

10038171003817100381710038171003817

2

=1205902

119904119873

120576119909

(18)

Equations (17) and (18) show that using less pilot numberin the pilot-aided channel estimation can get smaller MSEin the channel impulse response estimate However in thefrequency selective fast fading channel less pilot numbermaycausemore linear interpolation lossThe case of ℓ = 1will notbe considered for path number selection mechanism becauseit cannot reflect the variation of channel characterizationof the frequency selective fading channel The preliminarychannel frequency response estimate (H

119901119902)119873times1

is obtained bythe 119873-FFT of an 119873 times 1 estimated channel impulse response(hℓ119901119902

)119873times1

= [(h119879119901119902

)ℓtimes1

0119879(119873minusℓ)times1

]119879 It can be written as

119901119902119896=

1

radic119873

ℓminus1

sum

119899=0

ℎℓ

119901119902(119899)119882

119896119899

119873 119896 = 0 1 119873 minus 1 (19)

The preliminary channel frequency response estimates atpilot tones for 119896 = 119896

1 1198962 119896

119871are Hℓ

119901119902119871times1= [

1199011199021198961

119901119902119896119871

]119879 The correction factor for fine channel frequency

response estimate at 119896119901th pilot tone is defined as

119862ℓ

119901119902119896119901

=

119901119902119896119901

119901119902119896119901

=

(1radic119873)sum119871minus1

119899=0ℎ119901119902 (119899)119882

119896119901119899

119873

(1radic119873)sumℓminus1

119899=0ℎℓ

119901119902(119899)119882

119896119901119899

119873

(20)

For example the fine correction factor at 1198961th pilot tone

for 119871 = 4 and ℓ = 2 is determined as

1198622

1199011199021198961

=

1199011199021198961

2

1199011199021198961

= 1 +

ℎ119901119902 (2)119882

21198961

119873+ ℎ119901119902 (3)119882

31198961

119873

ℎ119901119902 (0) + ℎ

119901119902 (1)1198821198961

119873

(21)

From (21) it is observed that the fine correction factorcan compensate the power loss caused by less path employedin the preliminary channel estimates When the number ofpaths chosen is ℓ the fine correction factor in a vector for 119871pilot tones is

(Cℓ119901119902

)119871times1

= [119862ℓ

1199011199021198961

119862ℓ

119901119902119896119871

]119879

(22)

The fine correction factors for all data subcarriers can beobtained through linear interpolation [11] Two consecutivefine correction factors in 119871 pilot tones are used to determinethe fine correction factors for other data subcarriers that arelocated between the 119896

119901th and 119896

(119901+1)th subcarriers

119862ℓ

119901119902119896119901+119906

= 119862ℓ

119901119902119896119901

+ (

119862ℓ

119901119902119896119901+1

minus 119862ℓ

119901119902119896119901

119880) times 119906

119901 = 1 sim 119871 minus 1 119906 = 1 2 119880 minus 1

(23)

The fine channel estimations for all data subcarriers are

119901119902119896119901+119906

= 119862ℓ

119901119902119896119901+119906

times ℓ

119901119902119896119901+119906

= (

119901119902119896119901

119901119902119896119901

+(

(119901119902119896119901+1

119901119902119896119901+1

) minus (119901119902119896119901

119901119902119896119901

)

119880) times 119906)

times ℓ

119901119902119896119901+119906

119901 = 1 sim 119871 minus 1 119906 = 1 2 119880 minus 1

(24)

where 119880 is the number of data subcarriers between twoadjacent pilot subcarriers The fine channel estimations atpilot tones are expressed as

119901119902119896119901

= 119862ℓ

119901119902119896119901

times ℓ

119901119902119896119901

= ℓ

119901119902119896119901

119901 = 1 sim 119871 (25)

International Journal of Antennas and Propagation 5

The fine channel estimations for those data subcarrierslocated in the intervals of (0 119896

1) and (119896

119871 119873 minus 1) are deter-

mined with the fine correction factors 119862ℓ

1199011199021198961

and 119862ℓ

119901119902119896119871

respectively Therefore

1199011199021198961minus119887

= 119862ℓ

1199011199021198961minus119887

times ℓ

1199011199021198961minus119887

=

1199011199021198961

1199011199021198961

times ℓ

1199011199021198961minus119887 119887 = 1 2 119896

1

119901119902119896119871+119888

= 119862ℓ

119901119902119896119871+119888

times ℓ

119901119902119896119871+119888

=

119901119902119896119871

119901119902119896119871

times ℓ

119901119902119896119871+119888 119888 = 1 2 119873 minus 1 minus 119896

119871

(26)

Finally the fine channel estimate vector is given by

(Hℓ119901119902

)119873times1

= diag ℓ1199011199020

1199011199021

119901119902119873minus1 (27)

where ℓ119901119902119896

119896 = 0 1 119873 minus 1 are obtained from (24) (25)and (26)

Assume that the channel frequency responses H119901119902 for

119901 = 1 119899119879and 119902 = 1 119899

119877 are known or can be

estimated accurately at the receiver the space-frequencydecoder block constructs the even and odd parts of thedecision estimate vector X as

X119890= Hlowast

11119890Y1119890

+ H21119900

Ylowast1119900

+ Hlowast12119890

Y2119890

+ H22119900

Ylowast2119900

X119900= Hlowast

21119890Y1119890

minus H11119900

Ylowast1119900

+ Hlowast22119890

Y2119890

minus H12119900

Ylowast2119900

(28)

Substituting (8) into (28) yields

X119890= (

10038161003816100381610038161003816H11119890

10038161003816100381610038161003816+10038161003816100381610038161003816H21119890

10038161003816100381610038161003816+10038161003816100381610038161003816H12119890

10038161003816100381610038161003816+10038161003816100381610038161003816H22119890

10038161003816100381610038161003816)X119890

+ Hlowast11119890

V1119890

+ H21119900

Vlowast1119900

+ Hlowast12119890

V2119890

+ H22119900

Vlowast2119900

X119900= (

10038161003816100381610038161003816H11119900

10038161003816100381610038161003816+10038161003816100381610038161003816H21119900

10038161003816100381610038161003816+10038161003816100381610038161003816H12119900

10038161003816100381610038161003816+10038161003816100381610038161003816H22119900

10038161003816100381610038161003816)X119900

+ Hlowast21119890

V1119890

minus H11119900

Vlowast1119900

+ Hlowast22119890

V2119890

minus H12119900

Vlowast2119900

(29)

3 Adaptive Path NumberSelection Mechanism

Although MSE in channel frequency response estimatedecreases with the path number under the more seriousfrequency selective fading channel condition less selectedpath numbermay cause larger errorwhen the interpolation offine channel frequency response estimation is conducted forall the data subcarriers Therefore an adaptive path numberselection mechanism is proposed to choose appropriate pathnumber according to the characteristics of time-varyingfading channel The selection procedure of the path numberis described as follows In the first step of the proposedmechanism the pilot signals in the first OFDM data block

Calculations of 119888119901119902ℓ

and 119889119901119902ℓ

for ℓ = 2 3 4

if 1198881199011199022

ge 1198881199011199023

amp 1198881199011199022

ge 1198881199011199024

thenif (119889

1199011199022le 119889

1199011199023|| 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseif (1198891199011199023

le 1198891199011199022

amp 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseℓ = 4

endelseif 119888

1199011199023ge 1198881199011199022

amp 1198881199011199023

ge 1198881199011199024

thenif (119889

1199011199023le 119889

1199011199022|| 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseif (1198891199011199024

le 1198891199011199022

amp 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseℓ = 2

endelse

if (1198891199011199024

le 1198891199011199022

|| 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseif (1198891199011199022

le 1198891199011199023

amp 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseℓ = 3

endend

Algorithm 1 Algorithm of adaptive path number selection mech-anism for 119871 = 4

are used to estimate (h119901119902

)119871times1

In the second step thepreliminary estimates of channel frequency response at pilottones (Hℓ

119901119902)119871times1

for ℓ = 2 3 119871 are obtained from (19)and in the third step the fine correction factors at pilottones (Cℓ

119901119902)119871times1

are obtained from (20) and the fine channelfrequency response estimations (Hℓ

119901119902)119873times1

are determinedby (24) (25) and (26) In the fourth step the estimatedchannel frequency transfer function (Hlong

119901119902 )119873times1

=long119901119902119896

119896 =

0 1 119873 minus 1 obtained from two continuous long trainingsymbols which are defined in [9] is compared with the finechannel estimation for path number selectionThe differencevalues between the fine estimations of channel frequencyresponse (Hℓ)

119873times1and (Hlong

119901119902 )119873times1

= long119901119902119896

119896 = 0 1 119873minus

1 are compared with two times of noise variance of theMIMO-OFDM receiver respectively The total number ofcounts 119888

119901119902ℓwhich satisfy the condition of ℓ

119901119902119896minus

long119901119902119896

lt

21205902

119904is calculated

119888119901119902ℓ

= Num (ℓ

119901119902119896minus

long119901119902119896

lt 21205902

119904(threshold)

for 119896 = 0 1 119873 minus 1)

for ℓ = 2 3 119871

(30)

where 21205902

119904is defined as the threshold of ((Hℓ

119901119902)119873times1

minus

(Hlong119901119902 )

119873times1) With reference to the algorithm of adaptive

path number selection mechanism listed in Algorithm 1

6 International Journal of Antennas and Propagation

Table 1 Six-path OFDM channel model

Pathnumber

Tapnumber

Tap power(dBm) 119870

Path power(dBm)

Excessdelay (n s)

Path 119870

factorFreq offset(119891119889) in Hz

Spectrum half-width(119891119891) in Hz

Spectrumshape

1 1 0 102 minus00424 0 0 2646 mdash Freq shift2 1 minus24892 0 0 minus756 4763 Rounded3 1 minus21892 0 0 minus378 10017 Flat4 2 minus65 minus65 50 73 0 10886 Rounded5 3 minus144 minus144 100 47 0 12663 Rounded6 4 minus175 minus175 150 36 0 12663 Rounded

for 119871 = 4 1198891199011199022

1198891199011199023

and 119889119901119902119871

are defined as the MSEbetween (Hℓ

119901119902)119873times1

and (Hlong119901119902 )

119873times1and given by

119889119901119902ℓ

= 119864100381710038171003817100381710038171003817Hℓ119901119902119873times1

minus Hlong119901119902119873times1

100381710038171003817100381710038171003817

2

for ℓ = 2 3 119871

(31)

The number of paths can be adaptively selected for thelargest 119888

119901119902ℓand the smallest 119889

119901119902ℓin the first OFDM data

block or in each of the OFDM data blocks

4 Simulation Results

The function of the proposed adaptive path number selectionmechanism is simulated in MIMO-OFDM fading channelThe features for a mobile OFDM system include a bandwidthof 10MHz and 64 subcarriers the measured signal interval119879119898

= packet time = 840 120583sec Each transmitted packetcontains 100 OFDM data blocks the path number selectionsare conducted at the first data blocks Four equally spacedpilot subcarriers which are inserted in the positions of 8th24th 40th and 56th subcarriers in an OFDM data block areapplied for each of the transmitted OFDM data blocks Thesix-path channel model listed in Table 1 where the first threepaths have no path delay and the interpath delay time afterpath three is 50 nsec is employed to simulate mobile OFDMperformance so that 119871 = 4

Two-ray Rayleigh fading channel and six-path fadingchannel with 13 nsec delay spread are used to test the biterror rate (BER) performance of the OFDM transceiver InFigure 2 two-ray Rayleigh fading channel is used to validatesix-path fading channel with 13 nsec delay spread Figure 2(a)shows the BER performance of OFDM transceiver using 16-QAM Figure 2(b) shows the BER performance of OFDMtransceiver using 64-QAM For demonstration we have cho-sen 120 kmhr and 200 kmhr performance for high speedthat is 200 kmhr seems to degrade than the performance forsystem with less speed that is 120 kmhr because at higherspeed the channel behaves as a fast fading channel and forslower speed channel behaves as a slow fading channel [8]The test results show that the BER performance of the OFDMtransceiver in the high-speed time-varying fading channelwill be reduced to less than 10minus5 at the minimum SNR of12 dB for 16-QAM and 28 dB for 64-QAM at 120Kmhr For200Kmhr user speed the performance of 64-QAM OFDM

transceiver over six-path fading channel with 13 nsec delayspread degrades to unacceptable levels

For the purpose of the diversity gain a simple 2 times 2 SFBCis combined with the OFDM system where the adaptivepath number selection mechanism is employed for eachtransmit-receive antenna pair Let two frequency-domaindata signals at two consecutive subcarriers be encoded usingAlamouti code and transmitted from two antennas Since thechannel response for that subcarrier within one SFBC blockis stationary then the maximum-likelihood symbol detectoris used to detect the transmitted symbols

The BER performance of the 2 times 2 SFBC-OFDM systemin terms of 16-QAM and 64-QAMmodulations over the six-path fading channel with 13 nsec and 26 nsec delay spreadis shown in Figures 3 and 4 respectively where the userspeed is set as 200 kmh The calculations of 13 nsec and26 nsec root mean square (rms) delay spread are shown inthe appendix For OFDM system the channel is frequencynonselective fading if the delay spread is in the range of(0 20 nsec) and the channel is frequency selective fadingif the delay spread exceeds 20 nsec [8] It is observed thatthe acceptable BER (lt10minus5) for QAM modulated MIMO-OFDM systems operated in fast-varying fading channels canalways be achieved by employing the proposed path numberselection mechanism In Figure 4(a) the BER value of the16-QAM modulated MIMO-OFDM systems employing theproposed path number selection mechanism over frequencynonselective fast fading channels with 13 nsec delay spreadis lower than ℓ = 4 and slightly higher than ℓ = 2 and 3in the region of interest (BER lt 10

minus5) The required 119864

1198871198730

for the acceptable BER is low for all cases It indicates thatthe MIMO mode is not necessary to be used for the 16-QAM OFDM systems when the delay spread is small InFigure 4(b) the gain of the 64-QAM modulated MIMO-OFDM system employed the proposed adaptive path numberselection mechanism in frequency nonselective fast fadingchannel with 13 nsec delay spread exceeds 1 dB comparedwith ℓ = 4 and its BER value is slightly higher than ℓ = 2

and 3 in the region of interest In frequency nonselective fastfading channel choosing smaller number of paths can getthe smaller mean square error in channel impulse responseestimate Figure 4 shows that the BER value of the QAMmodulated MIMO-OFDM systems employing the proposedpath number selection mechanism over frequency selectivefast fading channels with 26 nsec delay spread is lower thanℓ = 2 and 3 and slightly higher than ℓ = 4 in the region

International Journal of Antennas and Propagation 7

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(a)

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(b)

Figure 2 BER of the OFDM transceiver over two-ray Rayleigh fading channel and six-path fading channel with 13 nsec delay spread for (a)16-QAM and (b) 64-QAM

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 3 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

of interest The error floors of the BER performance appearat an 119864

1198871198730of about 8 dB for 16-QAM (curve ℓ = 2) and

about 15 dB for 64-QAM (curves ℓ = 2 and 3) respectivelyThe frequency selectivity of the multipath fading channelincreases with its delay spread In a frequency selective fastfading channel the BER of the MIMO-OFDM decreaseswith an increase of the path number due to more linear

interpolation loss are generated by using less path number infrequency selective fast fading channel By examining Figures3 and 4 it is concluded that the pilot-based channel estimateusing the proposed path number selection mechanism at thefirst data block can satisfy the OFDM system performancerequirements under different operating conditions of time-varying fast fading channels

8 International Journal of Antennas and Propagation

EbN0 (dB)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 4 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

5 10 15 20

BER

10minus6

10minus4

10minus2

100

0EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 5 BER performance of OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b)64-QAMmodulation

In Figure 5 the BER value of theQAMmodulatedOFDMsystem employing the proposed path selection mechanismover time-varying fading channels with 13 ns delay spread islower than ℓ = 4 and slightly higher than ℓ = 2 and 3

Figure 6 shows that the BER value of the QAM modu-lated OFDM systems employing the proposed path selectionmechanism over time-varying fading channels with 26 nsdelay spread is lower than ℓ = 2 and 3 and slightly higher

than ℓ = 4 The frequency selectivity of the multipath fadingchannel increases with its delay spread

5 Conclusions

An adaptive path number selection mechanism is proposedto improve the accuracy of the pilot-based channel estima-tion approach for QAM modulated MIMO-OFDM systems

International Journal of Antennas and Propagation 9

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 6 BER performance of OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAM modulation and(b) 64-QAMmodulation

operating in time-varying fast fading channels The finecorrection factors are derived It is demonstrated that thenumber of paths is scalable and adaptively changed withthe characteristics of time-varying MIMO-OFDM fadingchannels to provide a suboptimum BER performance forQAMmodulated 2times 2 SFBC-OFDM systems operated eitherin frequency nonselective fast fading or in frequency selectivefast fading channels

Appendix

Calculations of Delay Spread 26 nsecand 13 nsec [8]

The fading channel generator at the 119894th path consists of twononline-of-sight (NLOS) branches and a LOS branch InNLOS branch two independent and identically distributed(iid) Gaussian signal sources are connected to identicalDoppler filters The channel weighing factor 119908

119894[1198961015840] is deter-

mined by

119908119894 [119896] = 119875

119894(119904119894 NLOS [119896] + 119904

119894 LOS [119896]) 119896 = 1 2 119873

(A1)

where the output of NLOS branch at the 119894th path in the fadingchannel weighing generator is

119904119894 NLOS [119896] = 119910

119894 [119896] times (1

radic1 + 119896119894

) 119896 = 1 2 119873

(A2)

where

119910119894 [119896] = (

infin

sum

119897=minusinfin

1199091 [119897] ℎ119894 [119896 minus 119897]) + 119895(

infin

sum

119897=minusinfin

1199092 [119897] ℎ119894 [119896 minus 119897])

119896 = 1 2 119873

(A3)

1199091and 119909

2are independent Gaussian functions and ℎ

119894is

impulse response of Doppler filterThe output of LOS branchat 119894th path in the fading channel weighing generator is

119904119894LOS

[119896] = radic119896119894

1 + 119896119894

times exp(1198952120587 (119891119889119894

cos 120579119894+ 119891119900119894

)119896

119891119904dop

)

119896 = 1 2 119873

(A4)

Furthermore 119908119894[119896] is interpolated by factor 119868 to get the

sequence V119894[1198961015840] with sampling rate 119891sig = 119868 times 119891

119904dop

V119894[1198961015840] =

119908119894[1198961015840

119868] 119896

1015840= 119868 2119868 119873119868

0 otherwise(A5)

The image signal of V119894[1198961015840] is removed by an interpolation

low pass filter with unit impulse response ℎ119868[1198961015840]The interpo-

lated fading envelop signal 119903119894[1198961015840] is stored in the register bank

as

119903119894[1198961015840] =

infin

sum

119897=minusinfin

V119894 [119897] ℎ119868 [119896 minus 119897] 119896

1015840= 1 2 119873119868 (A6)

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 4: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

4 International Journal of Antennas and Propagation

where 1205902

119904is the variance of AWGN which is assumed to be

known at the receiver and

(Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

=

[[[[[[[

[

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198871 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198871 119887ℓ)

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198872 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(1198872 119887ℓ)

sdot sdot sdot

(Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(119887ℓ 1198871) sdot sdot sdot (Qlowast119901119902119896119901

Q119901119902119896119901

)minus1

(119887ℓ 119887ℓ)

]]]]]]]

]

(14)

where (sdot)lowast denotes the Hermitian transposition and Q

119901119902119896119901

depends on the choice of the set of pilot tones Let the eigen-values of (Qlowast

119901119902119896119901

Q119901119902119896119901

)minus1

ℓtimesℓbe denoted by 120582

119898 119898 = 0 1

ℓ minus 1 Then the eigenvalues of (Qlowast119901119902119896119901

Q119901119902119896119901

)ℓtimesℓ

are1120582

119898 119898 = 0 1 ℓ minus 1 Since the trace of a matrix is the

sum of its eigenvalues then

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)ℓtimesℓ

=

ℓminus1

sum

119898=0

1

120582119898

=119871

119873ℓ (15)

tr (Qlowast119901119902119896119901

Q119901119902119896119901

)

minus1

ℓtimesℓ

=

ℓminus1

sum

119898=0

120582119898=

119873

119871ℓ (16)

Substituting (16) into (13) yields the MMSE in channelestimate when such a pilot tone set is used

119864 10038171003817100381710038171003817(h119901119902

)ℓtimes1

minus (h119901119902

)ℓtimes1

10038171003817100381710038171003817

2

=1205902

119904119873ℓ

120576119909119871

(17)

If ℓ = 119871 then MMSE is

119864 10038171003817100381710038171003817h119901119902

minus h119901119902

10038171003817100381710038171003817

2

=1205902

119904119873

120576119909

(18)

Equations (17) and (18) show that using less pilot numberin the pilot-aided channel estimation can get smaller MSEin the channel impulse response estimate However in thefrequency selective fast fading channel less pilot numbermaycausemore linear interpolation lossThe case of ℓ = 1will notbe considered for path number selection mechanism becauseit cannot reflect the variation of channel characterizationof the frequency selective fading channel The preliminarychannel frequency response estimate (H

119901119902)119873times1

is obtained bythe 119873-FFT of an 119873 times 1 estimated channel impulse response(hℓ119901119902

)119873times1

= [(h119879119901119902

)ℓtimes1

0119879(119873minusℓ)times1

]119879 It can be written as

119901119902119896=

1

radic119873

ℓminus1

sum

119899=0

ℎℓ

119901119902(119899)119882

119896119899

119873 119896 = 0 1 119873 minus 1 (19)

The preliminary channel frequency response estimates atpilot tones for 119896 = 119896

1 1198962 119896

119871are Hℓ

119901119902119871times1= [

1199011199021198961

119901119902119896119871

]119879 The correction factor for fine channel frequency

response estimate at 119896119901th pilot tone is defined as

119862ℓ

119901119902119896119901

=

119901119902119896119901

119901119902119896119901

=

(1radic119873)sum119871minus1

119899=0ℎ119901119902 (119899)119882

119896119901119899

119873

(1radic119873)sumℓminus1

119899=0ℎℓ

119901119902(119899)119882

119896119901119899

119873

(20)

For example the fine correction factor at 1198961th pilot tone

for 119871 = 4 and ℓ = 2 is determined as

1198622

1199011199021198961

=

1199011199021198961

2

1199011199021198961

= 1 +

ℎ119901119902 (2)119882

21198961

119873+ ℎ119901119902 (3)119882

31198961

119873

ℎ119901119902 (0) + ℎ

119901119902 (1)1198821198961

119873

(21)

From (21) it is observed that the fine correction factorcan compensate the power loss caused by less path employedin the preliminary channel estimates When the number ofpaths chosen is ℓ the fine correction factor in a vector for 119871pilot tones is

(Cℓ119901119902

)119871times1

= [119862ℓ

1199011199021198961

119862ℓ

119901119902119896119871

]119879

(22)

The fine correction factors for all data subcarriers can beobtained through linear interpolation [11] Two consecutivefine correction factors in 119871 pilot tones are used to determinethe fine correction factors for other data subcarriers that arelocated between the 119896

119901th and 119896

(119901+1)th subcarriers

119862ℓ

119901119902119896119901+119906

= 119862ℓ

119901119902119896119901

+ (

119862ℓ

119901119902119896119901+1

minus 119862ℓ

119901119902119896119901

119880) times 119906

119901 = 1 sim 119871 minus 1 119906 = 1 2 119880 minus 1

(23)

The fine channel estimations for all data subcarriers are

119901119902119896119901+119906

= 119862ℓ

119901119902119896119901+119906

times ℓ

119901119902119896119901+119906

= (

119901119902119896119901

119901119902119896119901

+(

(119901119902119896119901+1

119901119902119896119901+1

) minus (119901119902119896119901

119901119902119896119901

)

119880) times 119906)

times ℓ

119901119902119896119901+119906

119901 = 1 sim 119871 minus 1 119906 = 1 2 119880 minus 1

(24)

where 119880 is the number of data subcarriers between twoadjacent pilot subcarriers The fine channel estimations atpilot tones are expressed as

119901119902119896119901

= 119862ℓ

119901119902119896119901

times ℓ

119901119902119896119901

= ℓ

119901119902119896119901

119901 = 1 sim 119871 (25)

International Journal of Antennas and Propagation 5

The fine channel estimations for those data subcarrierslocated in the intervals of (0 119896

1) and (119896

119871 119873 minus 1) are deter-

mined with the fine correction factors 119862ℓ

1199011199021198961

and 119862ℓ

119901119902119896119871

respectively Therefore

1199011199021198961minus119887

= 119862ℓ

1199011199021198961minus119887

times ℓ

1199011199021198961minus119887

=

1199011199021198961

1199011199021198961

times ℓ

1199011199021198961minus119887 119887 = 1 2 119896

1

119901119902119896119871+119888

= 119862ℓ

119901119902119896119871+119888

times ℓ

119901119902119896119871+119888

=

119901119902119896119871

119901119902119896119871

times ℓ

119901119902119896119871+119888 119888 = 1 2 119873 minus 1 minus 119896

119871

(26)

Finally the fine channel estimate vector is given by

(Hℓ119901119902

)119873times1

= diag ℓ1199011199020

1199011199021

119901119902119873minus1 (27)

where ℓ119901119902119896

119896 = 0 1 119873 minus 1 are obtained from (24) (25)and (26)

Assume that the channel frequency responses H119901119902 for

119901 = 1 119899119879and 119902 = 1 119899

119877 are known or can be

estimated accurately at the receiver the space-frequencydecoder block constructs the even and odd parts of thedecision estimate vector X as

X119890= Hlowast

11119890Y1119890

+ H21119900

Ylowast1119900

+ Hlowast12119890

Y2119890

+ H22119900

Ylowast2119900

X119900= Hlowast

21119890Y1119890

minus H11119900

Ylowast1119900

+ Hlowast22119890

Y2119890

minus H12119900

Ylowast2119900

(28)

Substituting (8) into (28) yields

X119890= (

10038161003816100381610038161003816H11119890

10038161003816100381610038161003816+10038161003816100381610038161003816H21119890

10038161003816100381610038161003816+10038161003816100381610038161003816H12119890

10038161003816100381610038161003816+10038161003816100381610038161003816H22119890

10038161003816100381610038161003816)X119890

+ Hlowast11119890

V1119890

+ H21119900

Vlowast1119900

+ Hlowast12119890

V2119890

+ H22119900

Vlowast2119900

X119900= (

10038161003816100381610038161003816H11119900

10038161003816100381610038161003816+10038161003816100381610038161003816H21119900

10038161003816100381610038161003816+10038161003816100381610038161003816H12119900

10038161003816100381610038161003816+10038161003816100381610038161003816H22119900

10038161003816100381610038161003816)X119900

+ Hlowast21119890

V1119890

minus H11119900

Vlowast1119900

+ Hlowast22119890

V2119890

minus H12119900

Vlowast2119900

(29)

3 Adaptive Path NumberSelection Mechanism

Although MSE in channel frequency response estimatedecreases with the path number under the more seriousfrequency selective fading channel condition less selectedpath numbermay cause larger errorwhen the interpolation offine channel frequency response estimation is conducted forall the data subcarriers Therefore an adaptive path numberselection mechanism is proposed to choose appropriate pathnumber according to the characteristics of time-varyingfading channel The selection procedure of the path numberis described as follows In the first step of the proposedmechanism the pilot signals in the first OFDM data block

Calculations of 119888119901119902ℓ

and 119889119901119902ℓ

for ℓ = 2 3 4

if 1198881199011199022

ge 1198881199011199023

amp 1198881199011199022

ge 1198881199011199024

thenif (119889

1199011199022le 119889

1199011199023|| 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseif (1198891199011199023

le 1198891199011199022

amp 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseℓ = 4

endelseif 119888

1199011199023ge 1198881199011199022

amp 1198881199011199023

ge 1198881199011199024

thenif (119889

1199011199023le 119889

1199011199022|| 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseif (1198891199011199024

le 1198891199011199022

amp 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseℓ = 2

endelse

if (1198891199011199024

le 1198891199011199022

|| 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseif (1198891199011199022

le 1198891199011199023

amp 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseℓ = 3

endend

Algorithm 1 Algorithm of adaptive path number selection mech-anism for 119871 = 4

are used to estimate (h119901119902

)119871times1

In the second step thepreliminary estimates of channel frequency response at pilottones (Hℓ

119901119902)119871times1

for ℓ = 2 3 119871 are obtained from (19)and in the third step the fine correction factors at pilottones (Cℓ

119901119902)119871times1

are obtained from (20) and the fine channelfrequency response estimations (Hℓ

119901119902)119873times1

are determinedby (24) (25) and (26) In the fourth step the estimatedchannel frequency transfer function (Hlong

119901119902 )119873times1

=long119901119902119896

119896 =

0 1 119873 minus 1 obtained from two continuous long trainingsymbols which are defined in [9] is compared with the finechannel estimation for path number selectionThe differencevalues between the fine estimations of channel frequencyresponse (Hℓ)

119873times1and (Hlong

119901119902 )119873times1

= long119901119902119896

119896 = 0 1 119873minus

1 are compared with two times of noise variance of theMIMO-OFDM receiver respectively The total number ofcounts 119888

119901119902ℓwhich satisfy the condition of ℓ

119901119902119896minus

long119901119902119896

lt

21205902

119904is calculated

119888119901119902ℓ

= Num (ℓ

119901119902119896minus

long119901119902119896

lt 21205902

119904(threshold)

for 119896 = 0 1 119873 minus 1)

for ℓ = 2 3 119871

(30)

where 21205902

119904is defined as the threshold of ((Hℓ

119901119902)119873times1

minus

(Hlong119901119902 )

119873times1) With reference to the algorithm of adaptive

path number selection mechanism listed in Algorithm 1

6 International Journal of Antennas and Propagation

Table 1 Six-path OFDM channel model

Pathnumber

Tapnumber

Tap power(dBm) 119870

Path power(dBm)

Excessdelay (n s)

Path 119870

factorFreq offset(119891119889) in Hz

Spectrum half-width(119891119891) in Hz

Spectrumshape

1 1 0 102 minus00424 0 0 2646 mdash Freq shift2 1 minus24892 0 0 minus756 4763 Rounded3 1 minus21892 0 0 minus378 10017 Flat4 2 minus65 minus65 50 73 0 10886 Rounded5 3 minus144 minus144 100 47 0 12663 Rounded6 4 minus175 minus175 150 36 0 12663 Rounded

for 119871 = 4 1198891199011199022

1198891199011199023

and 119889119901119902119871

are defined as the MSEbetween (Hℓ

119901119902)119873times1

and (Hlong119901119902 )

119873times1and given by

119889119901119902ℓ

= 119864100381710038171003817100381710038171003817Hℓ119901119902119873times1

minus Hlong119901119902119873times1

100381710038171003817100381710038171003817

2

for ℓ = 2 3 119871

(31)

The number of paths can be adaptively selected for thelargest 119888

119901119902ℓand the smallest 119889

119901119902ℓin the first OFDM data

block or in each of the OFDM data blocks

4 Simulation Results

The function of the proposed adaptive path number selectionmechanism is simulated in MIMO-OFDM fading channelThe features for a mobile OFDM system include a bandwidthof 10MHz and 64 subcarriers the measured signal interval119879119898

= packet time = 840 120583sec Each transmitted packetcontains 100 OFDM data blocks the path number selectionsare conducted at the first data blocks Four equally spacedpilot subcarriers which are inserted in the positions of 8th24th 40th and 56th subcarriers in an OFDM data block areapplied for each of the transmitted OFDM data blocks Thesix-path channel model listed in Table 1 where the first threepaths have no path delay and the interpath delay time afterpath three is 50 nsec is employed to simulate mobile OFDMperformance so that 119871 = 4

Two-ray Rayleigh fading channel and six-path fadingchannel with 13 nsec delay spread are used to test the biterror rate (BER) performance of the OFDM transceiver InFigure 2 two-ray Rayleigh fading channel is used to validatesix-path fading channel with 13 nsec delay spread Figure 2(a)shows the BER performance of OFDM transceiver using 16-QAM Figure 2(b) shows the BER performance of OFDMtransceiver using 64-QAM For demonstration we have cho-sen 120 kmhr and 200 kmhr performance for high speedthat is 200 kmhr seems to degrade than the performance forsystem with less speed that is 120 kmhr because at higherspeed the channel behaves as a fast fading channel and forslower speed channel behaves as a slow fading channel [8]The test results show that the BER performance of the OFDMtransceiver in the high-speed time-varying fading channelwill be reduced to less than 10minus5 at the minimum SNR of12 dB for 16-QAM and 28 dB for 64-QAM at 120Kmhr For200Kmhr user speed the performance of 64-QAM OFDM

transceiver over six-path fading channel with 13 nsec delayspread degrades to unacceptable levels

For the purpose of the diversity gain a simple 2 times 2 SFBCis combined with the OFDM system where the adaptivepath number selection mechanism is employed for eachtransmit-receive antenna pair Let two frequency-domaindata signals at two consecutive subcarriers be encoded usingAlamouti code and transmitted from two antennas Since thechannel response for that subcarrier within one SFBC blockis stationary then the maximum-likelihood symbol detectoris used to detect the transmitted symbols

The BER performance of the 2 times 2 SFBC-OFDM systemin terms of 16-QAM and 64-QAMmodulations over the six-path fading channel with 13 nsec and 26 nsec delay spreadis shown in Figures 3 and 4 respectively where the userspeed is set as 200 kmh The calculations of 13 nsec and26 nsec root mean square (rms) delay spread are shown inthe appendix For OFDM system the channel is frequencynonselective fading if the delay spread is in the range of(0 20 nsec) and the channel is frequency selective fadingif the delay spread exceeds 20 nsec [8] It is observed thatthe acceptable BER (lt10minus5) for QAM modulated MIMO-OFDM systems operated in fast-varying fading channels canalways be achieved by employing the proposed path numberselection mechanism In Figure 4(a) the BER value of the16-QAM modulated MIMO-OFDM systems employing theproposed path number selection mechanism over frequencynonselective fast fading channels with 13 nsec delay spreadis lower than ℓ = 4 and slightly higher than ℓ = 2 and 3in the region of interest (BER lt 10

minus5) The required 119864

1198871198730

for the acceptable BER is low for all cases It indicates thatthe MIMO mode is not necessary to be used for the 16-QAM OFDM systems when the delay spread is small InFigure 4(b) the gain of the 64-QAM modulated MIMO-OFDM system employed the proposed adaptive path numberselection mechanism in frequency nonselective fast fadingchannel with 13 nsec delay spread exceeds 1 dB comparedwith ℓ = 4 and its BER value is slightly higher than ℓ = 2

and 3 in the region of interest In frequency nonselective fastfading channel choosing smaller number of paths can getthe smaller mean square error in channel impulse responseestimate Figure 4 shows that the BER value of the QAMmodulated MIMO-OFDM systems employing the proposedpath number selection mechanism over frequency selectivefast fading channels with 26 nsec delay spread is lower thanℓ = 2 and 3 and slightly higher than ℓ = 4 in the region

International Journal of Antennas and Propagation 7

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(a)

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(b)

Figure 2 BER of the OFDM transceiver over two-ray Rayleigh fading channel and six-path fading channel with 13 nsec delay spread for (a)16-QAM and (b) 64-QAM

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 3 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

of interest The error floors of the BER performance appearat an 119864

1198871198730of about 8 dB for 16-QAM (curve ℓ = 2) and

about 15 dB for 64-QAM (curves ℓ = 2 and 3) respectivelyThe frequency selectivity of the multipath fading channelincreases with its delay spread In a frequency selective fastfading channel the BER of the MIMO-OFDM decreaseswith an increase of the path number due to more linear

interpolation loss are generated by using less path number infrequency selective fast fading channel By examining Figures3 and 4 it is concluded that the pilot-based channel estimateusing the proposed path number selection mechanism at thefirst data block can satisfy the OFDM system performancerequirements under different operating conditions of time-varying fast fading channels

8 International Journal of Antennas and Propagation

EbN0 (dB)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 4 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

5 10 15 20

BER

10minus6

10minus4

10minus2

100

0EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 5 BER performance of OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b)64-QAMmodulation

In Figure 5 the BER value of theQAMmodulatedOFDMsystem employing the proposed path selection mechanismover time-varying fading channels with 13 ns delay spread islower than ℓ = 4 and slightly higher than ℓ = 2 and 3

Figure 6 shows that the BER value of the QAM modu-lated OFDM systems employing the proposed path selectionmechanism over time-varying fading channels with 26 nsdelay spread is lower than ℓ = 2 and 3 and slightly higher

than ℓ = 4 The frequency selectivity of the multipath fadingchannel increases with its delay spread

5 Conclusions

An adaptive path number selection mechanism is proposedto improve the accuracy of the pilot-based channel estima-tion approach for QAM modulated MIMO-OFDM systems

International Journal of Antennas and Propagation 9

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 6 BER performance of OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAM modulation and(b) 64-QAMmodulation

operating in time-varying fast fading channels The finecorrection factors are derived It is demonstrated that thenumber of paths is scalable and adaptively changed withthe characteristics of time-varying MIMO-OFDM fadingchannels to provide a suboptimum BER performance forQAMmodulated 2times 2 SFBC-OFDM systems operated eitherin frequency nonselective fast fading or in frequency selectivefast fading channels

Appendix

Calculations of Delay Spread 26 nsecand 13 nsec [8]

The fading channel generator at the 119894th path consists of twononline-of-sight (NLOS) branches and a LOS branch InNLOS branch two independent and identically distributed(iid) Gaussian signal sources are connected to identicalDoppler filters The channel weighing factor 119908

119894[1198961015840] is deter-

mined by

119908119894 [119896] = 119875

119894(119904119894 NLOS [119896] + 119904

119894 LOS [119896]) 119896 = 1 2 119873

(A1)

where the output of NLOS branch at the 119894th path in the fadingchannel weighing generator is

119904119894 NLOS [119896] = 119910

119894 [119896] times (1

radic1 + 119896119894

) 119896 = 1 2 119873

(A2)

where

119910119894 [119896] = (

infin

sum

119897=minusinfin

1199091 [119897] ℎ119894 [119896 minus 119897]) + 119895(

infin

sum

119897=minusinfin

1199092 [119897] ℎ119894 [119896 minus 119897])

119896 = 1 2 119873

(A3)

1199091and 119909

2are independent Gaussian functions and ℎ

119894is

impulse response of Doppler filterThe output of LOS branchat 119894th path in the fading channel weighing generator is

119904119894LOS

[119896] = radic119896119894

1 + 119896119894

times exp(1198952120587 (119891119889119894

cos 120579119894+ 119891119900119894

)119896

119891119904dop

)

119896 = 1 2 119873

(A4)

Furthermore 119908119894[119896] is interpolated by factor 119868 to get the

sequence V119894[1198961015840] with sampling rate 119891sig = 119868 times 119891

119904dop

V119894[1198961015840] =

119908119894[1198961015840

119868] 119896

1015840= 119868 2119868 119873119868

0 otherwise(A5)

The image signal of V119894[1198961015840] is removed by an interpolation

low pass filter with unit impulse response ℎ119868[1198961015840]The interpo-

lated fading envelop signal 119903119894[1198961015840] is stored in the register bank

as

119903119894[1198961015840] =

infin

sum

119897=minusinfin

V119894 [119897] ℎ119868 [119896 minus 119897] 119896

1015840= 1 2 119873119868 (A6)

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 5: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

International Journal of Antennas and Propagation 5

The fine channel estimations for those data subcarrierslocated in the intervals of (0 119896

1) and (119896

119871 119873 minus 1) are deter-

mined with the fine correction factors 119862ℓ

1199011199021198961

and 119862ℓ

119901119902119896119871

respectively Therefore

1199011199021198961minus119887

= 119862ℓ

1199011199021198961minus119887

times ℓ

1199011199021198961minus119887

=

1199011199021198961

1199011199021198961

times ℓ

1199011199021198961minus119887 119887 = 1 2 119896

1

119901119902119896119871+119888

= 119862ℓ

119901119902119896119871+119888

times ℓ

119901119902119896119871+119888

=

119901119902119896119871

119901119902119896119871

times ℓ

119901119902119896119871+119888 119888 = 1 2 119873 minus 1 minus 119896

119871

(26)

Finally the fine channel estimate vector is given by

(Hℓ119901119902

)119873times1

= diag ℓ1199011199020

1199011199021

119901119902119873minus1 (27)

where ℓ119901119902119896

119896 = 0 1 119873 minus 1 are obtained from (24) (25)and (26)

Assume that the channel frequency responses H119901119902 for

119901 = 1 119899119879and 119902 = 1 119899

119877 are known or can be

estimated accurately at the receiver the space-frequencydecoder block constructs the even and odd parts of thedecision estimate vector X as

X119890= Hlowast

11119890Y1119890

+ H21119900

Ylowast1119900

+ Hlowast12119890

Y2119890

+ H22119900

Ylowast2119900

X119900= Hlowast

21119890Y1119890

minus H11119900

Ylowast1119900

+ Hlowast22119890

Y2119890

minus H12119900

Ylowast2119900

(28)

Substituting (8) into (28) yields

X119890= (

10038161003816100381610038161003816H11119890

10038161003816100381610038161003816+10038161003816100381610038161003816H21119890

10038161003816100381610038161003816+10038161003816100381610038161003816H12119890

10038161003816100381610038161003816+10038161003816100381610038161003816H22119890

10038161003816100381610038161003816)X119890

+ Hlowast11119890

V1119890

+ H21119900

Vlowast1119900

+ Hlowast12119890

V2119890

+ H22119900

Vlowast2119900

X119900= (

10038161003816100381610038161003816H11119900

10038161003816100381610038161003816+10038161003816100381610038161003816H21119900

10038161003816100381610038161003816+10038161003816100381610038161003816H12119900

10038161003816100381610038161003816+10038161003816100381610038161003816H22119900

10038161003816100381610038161003816)X119900

+ Hlowast21119890

V1119890

minus H11119900

Vlowast1119900

+ Hlowast22119890

V2119890

minus H12119900

Vlowast2119900

(29)

3 Adaptive Path NumberSelection Mechanism

Although MSE in channel frequency response estimatedecreases with the path number under the more seriousfrequency selective fading channel condition less selectedpath numbermay cause larger errorwhen the interpolation offine channel frequency response estimation is conducted forall the data subcarriers Therefore an adaptive path numberselection mechanism is proposed to choose appropriate pathnumber according to the characteristics of time-varyingfading channel The selection procedure of the path numberis described as follows In the first step of the proposedmechanism the pilot signals in the first OFDM data block

Calculations of 119888119901119902ℓ

and 119889119901119902ℓ

for ℓ = 2 3 4

if 1198881199011199022

ge 1198881199011199023

amp 1198881199011199022

ge 1198881199011199024

thenif (119889

1199011199022le 119889

1199011199023|| 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseif (1198891199011199023

le 1198891199011199022

amp 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseℓ = 4

endelseif 119888

1199011199023ge 1198881199011199022

amp 1198881199011199023

ge 1198881199011199024

thenif (119889

1199011199023le 119889

1199011199022|| 1198891199011199023

le 1198891199011199024

) then ℓ = 3

elseif (1198891199011199024

le 1198891199011199022

amp 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseℓ = 2

endelse

if (1198891199011199024

le 1198891199011199022

|| 1198891199011199024

le 1198891199011199023

) then ℓ = 4

elseif (1198891199011199022

le 1198891199011199023

amp 1198891199011199022

le 1198891199011199024

) then ℓ = 2

elseℓ = 3

endend

Algorithm 1 Algorithm of adaptive path number selection mech-anism for 119871 = 4

are used to estimate (h119901119902

)119871times1

In the second step thepreliminary estimates of channel frequency response at pilottones (Hℓ

119901119902)119871times1

for ℓ = 2 3 119871 are obtained from (19)and in the third step the fine correction factors at pilottones (Cℓ

119901119902)119871times1

are obtained from (20) and the fine channelfrequency response estimations (Hℓ

119901119902)119873times1

are determinedby (24) (25) and (26) In the fourth step the estimatedchannel frequency transfer function (Hlong

119901119902 )119873times1

=long119901119902119896

119896 =

0 1 119873 minus 1 obtained from two continuous long trainingsymbols which are defined in [9] is compared with the finechannel estimation for path number selectionThe differencevalues between the fine estimations of channel frequencyresponse (Hℓ)

119873times1and (Hlong

119901119902 )119873times1

= long119901119902119896

119896 = 0 1 119873minus

1 are compared with two times of noise variance of theMIMO-OFDM receiver respectively The total number ofcounts 119888

119901119902ℓwhich satisfy the condition of ℓ

119901119902119896minus

long119901119902119896

lt

21205902

119904is calculated

119888119901119902ℓ

= Num (ℓ

119901119902119896minus

long119901119902119896

lt 21205902

119904(threshold)

for 119896 = 0 1 119873 minus 1)

for ℓ = 2 3 119871

(30)

where 21205902

119904is defined as the threshold of ((Hℓ

119901119902)119873times1

minus

(Hlong119901119902 )

119873times1) With reference to the algorithm of adaptive

path number selection mechanism listed in Algorithm 1

6 International Journal of Antennas and Propagation

Table 1 Six-path OFDM channel model

Pathnumber

Tapnumber

Tap power(dBm) 119870

Path power(dBm)

Excessdelay (n s)

Path 119870

factorFreq offset(119891119889) in Hz

Spectrum half-width(119891119891) in Hz

Spectrumshape

1 1 0 102 minus00424 0 0 2646 mdash Freq shift2 1 minus24892 0 0 minus756 4763 Rounded3 1 minus21892 0 0 minus378 10017 Flat4 2 minus65 minus65 50 73 0 10886 Rounded5 3 minus144 minus144 100 47 0 12663 Rounded6 4 minus175 minus175 150 36 0 12663 Rounded

for 119871 = 4 1198891199011199022

1198891199011199023

and 119889119901119902119871

are defined as the MSEbetween (Hℓ

119901119902)119873times1

and (Hlong119901119902 )

119873times1and given by

119889119901119902ℓ

= 119864100381710038171003817100381710038171003817Hℓ119901119902119873times1

minus Hlong119901119902119873times1

100381710038171003817100381710038171003817

2

for ℓ = 2 3 119871

(31)

The number of paths can be adaptively selected for thelargest 119888

119901119902ℓand the smallest 119889

119901119902ℓin the first OFDM data

block or in each of the OFDM data blocks

4 Simulation Results

The function of the proposed adaptive path number selectionmechanism is simulated in MIMO-OFDM fading channelThe features for a mobile OFDM system include a bandwidthof 10MHz and 64 subcarriers the measured signal interval119879119898

= packet time = 840 120583sec Each transmitted packetcontains 100 OFDM data blocks the path number selectionsare conducted at the first data blocks Four equally spacedpilot subcarriers which are inserted in the positions of 8th24th 40th and 56th subcarriers in an OFDM data block areapplied for each of the transmitted OFDM data blocks Thesix-path channel model listed in Table 1 where the first threepaths have no path delay and the interpath delay time afterpath three is 50 nsec is employed to simulate mobile OFDMperformance so that 119871 = 4

Two-ray Rayleigh fading channel and six-path fadingchannel with 13 nsec delay spread are used to test the biterror rate (BER) performance of the OFDM transceiver InFigure 2 two-ray Rayleigh fading channel is used to validatesix-path fading channel with 13 nsec delay spread Figure 2(a)shows the BER performance of OFDM transceiver using 16-QAM Figure 2(b) shows the BER performance of OFDMtransceiver using 64-QAM For demonstration we have cho-sen 120 kmhr and 200 kmhr performance for high speedthat is 200 kmhr seems to degrade than the performance forsystem with less speed that is 120 kmhr because at higherspeed the channel behaves as a fast fading channel and forslower speed channel behaves as a slow fading channel [8]The test results show that the BER performance of the OFDMtransceiver in the high-speed time-varying fading channelwill be reduced to less than 10minus5 at the minimum SNR of12 dB for 16-QAM and 28 dB for 64-QAM at 120Kmhr For200Kmhr user speed the performance of 64-QAM OFDM

transceiver over six-path fading channel with 13 nsec delayspread degrades to unacceptable levels

For the purpose of the diversity gain a simple 2 times 2 SFBCis combined with the OFDM system where the adaptivepath number selection mechanism is employed for eachtransmit-receive antenna pair Let two frequency-domaindata signals at two consecutive subcarriers be encoded usingAlamouti code and transmitted from two antennas Since thechannel response for that subcarrier within one SFBC blockis stationary then the maximum-likelihood symbol detectoris used to detect the transmitted symbols

The BER performance of the 2 times 2 SFBC-OFDM systemin terms of 16-QAM and 64-QAMmodulations over the six-path fading channel with 13 nsec and 26 nsec delay spreadis shown in Figures 3 and 4 respectively where the userspeed is set as 200 kmh The calculations of 13 nsec and26 nsec root mean square (rms) delay spread are shown inthe appendix For OFDM system the channel is frequencynonselective fading if the delay spread is in the range of(0 20 nsec) and the channel is frequency selective fadingif the delay spread exceeds 20 nsec [8] It is observed thatthe acceptable BER (lt10minus5) for QAM modulated MIMO-OFDM systems operated in fast-varying fading channels canalways be achieved by employing the proposed path numberselection mechanism In Figure 4(a) the BER value of the16-QAM modulated MIMO-OFDM systems employing theproposed path number selection mechanism over frequencynonselective fast fading channels with 13 nsec delay spreadis lower than ℓ = 4 and slightly higher than ℓ = 2 and 3in the region of interest (BER lt 10

minus5) The required 119864

1198871198730

for the acceptable BER is low for all cases It indicates thatthe MIMO mode is not necessary to be used for the 16-QAM OFDM systems when the delay spread is small InFigure 4(b) the gain of the 64-QAM modulated MIMO-OFDM system employed the proposed adaptive path numberselection mechanism in frequency nonselective fast fadingchannel with 13 nsec delay spread exceeds 1 dB comparedwith ℓ = 4 and its BER value is slightly higher than ℓ = 2

and 3 in the region of interest In frequency nonselective fastfading channel choosing smaller number of paths can getthe smaller mean square error in channel impulse responseestimate Figure 4 shows that the BER value of the QAMmodulated MIMO-OFDM systems employing the proposedpath number selection mechanism over frequency selectivefast fading channels with 26 nsec delay spread is lower thanℓ = 2 and 3 and slightly higher than ℓ = 4 in the region

International Journal of Antennas and Propagation 7

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(a)

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(b)

Figure 2 BER of the OFDM transceiver over two-ray Rayleigh fading channel and six-path fading channel with 13 nsec delay spread for (a)16-QAM and (b) 64-QAM

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 3 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

of interest The error floors of the BER performance appearat an 119864

1198871198730of about 8 dB for 16-QAM (curve ℓ = 2) and

about 15 dB for 64-QAM (curves ℓ = 2 and 3) respectivelyThe frequency selectivity of the multipath fading channelincreases with its delay spread In a frequency selective fastfading channel the BER of the MIMO-OFDM decreaseswith an increase of the path number due to more linear

interpolation loss are generated by using less path number infrequency selective fast fading channel By examining Figures3 and 4 it is concluded that the pilot-based channel estimateusing the proposed path number selection mechanism at thefirst data block can satisfy the OFDM system performancerequirements under different operating conditions of time-varying fast fading channels

8 International Journal of Antennas and Propagation

EbN0 (dB)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 4 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

5 10 15 20

BER

10minus6

10minus4

10minus2

100

0EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 5 BER performance of OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b)64-QAMmodulation

In Figure 5 the BER value of theQAMmodulatedOFDMsystem employing the proposed path selection mechanismover time-varying fading channels with 13 ns delay spread islower than ℓ = 4 and slightly higher than ℓ = 2 and 3

Figure 6 shows that the BER value of the QAM modu-lated OFDM systems employing the proposed path selectionmechanism over time-varying fading channels with 26 nsdelay spread is lower than ℓ = 2 and 3 and slightly higher

than ℓ = 4 The frequency selectivity of the multipath fadingchannel increases with its delay spread

5 Conclusions

An adaptive path number selection mechanism is proposedto improve the accuracy of the pilot-based channel estima-tion approach for QAM modulated MIMO-OFDM systems

International Journal of Antennas and Propagation 9

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 6 BER performance of OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAM modulation and(b) 64-QAMmodulation

operating in time-varying fast fading channels The finecorrection factors are derived It is demonstrated that thenumber of paths is scalable and adaptively changed withthe characteristics of time-varying MIMO-OFDM fadingchannels to provide a suboptimum BER performance forQAMmodulated 2times 2 SFBC-OFDM systems operated eitherin frequency nonselective fast fading or in frequency selectivefast fading channels

Appendix

Calculations of Delay Spread 26 nsecand 13 nsec [8]

The fading channel generator at the 119894th path consists of twononline-of-sight (NLOS) branches and a LOS branch InNLOS branch two independent and identically distributed(iid) Gaussian signal sources are connected to identicalDoppler filters The channel weighing factor 119908

119894[1198961015840] is deter-

mined by

119908119894 [119896] = 119875

119894(119904119894 NLOS [119896] + 119904

119894 LOS [119896]) 119896 = 1 2 119873

(A1)

where the output of NLOS branch at the 119894th path in the fadingchannel weighing generator is

119904119894 NLOS [119896] = 119910

119894 [119896] times (1

radic1 + 119896119894

) 119896 = 1 2 119873

(A2)

where

119910119894 [119896] = (

infin

sum

119897=minusinfin

1199091 [119897] ℎ119894 [119896 minus 119897]) + 119895(

infin

sum

119897=minusinfin

1199092 [119897] ℎ119894 [119896 minus 119897])

119896 = 1 2 119873

(A3)

1199091and 119909

2are independent Gaussian functions and ℎ

119894is

impulse response of Doppler filterThe output of LOS branchat 119894th path in the fading channel weighing generator is

119904119894LOS

[119896] = radic119896119894

1 + 119896119894

times exp(1198952120587 (119891119889119894

cos 120579119894+ 119891119900119894

)119896

119891119904dop

)

119896 = 1 2 119873

(A4)

Furthermore 119908119894[119896] is interpolated by factor 119868 to get the

sequence V119894[1198961015840] with sampling rate 119891sig = 119868 times 119891

119904dop

V119894[1198961015840] =

119908119894[1198961015840

119868] 119896

1015840= 119868 2119868 119873119868

0 otherwise(A5)

The image signal of V119894[1198961015840] is removed by an interpolation

low pass filter with unit impulse response ℎ119868[1198961015840]The interpo-

lated fading envelop signal 119903119894[1198961015840] is stored in the register bank

as

119903119894[1198961015840] =

infin

sum

119897=minusinfin

V119894 [119897] ℎ119868 [119896 minus 119897] 119896

1015840= 1 2 119873119868 (A6)

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 6: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

6 International Journal of Antennas and Propagation

Table 1 Six-path OFDM channel model

Pathnumber

Tapnumber

Tap power(dBm) 119870

Path power(dBm)

Excessdelay (n s)

Path 119870

factorFreq offset(119891119889) in Hz

Spectrum half-width(119891119891) in Hz

Spectrumshape

1 1 0 102 minus00424 0 0 2646 mdash Freq shift2 1 minus24892 0 0 minus756 4763 Rounded3 1 minus21892 0 0 minus378 10017 Flat4 2 minus65 minus65 50 73 0 10886 Rounded5 3 minus144 minus144 100 47 0 12663 Rounded6 4 minus175 minus175 150 36 0 12663 Rounded

for 119871 = 4 1198891199011199022

1198891199011199023

and 119889119901119902119871

are defined as the MSEbetween (Hℓ

119901119902)119873times1

and (Hlong119901119902 )

119873times1and given by

119889119901119902ℓ

= 119864100381710038171003817100381710038171003817Hℓ119901119902119873times1

minus Hlong119901119902119873times1

100381710038171003817100381710038171003817

2

for ℓ = 2 3 119871

(31)

The number of paths can be adaptively selected for thelargest 119888

119901119902ℓand the smallest 119889

119901119902ℓin the first OFDM data

block or in each of the OFDM data blocks

4 Simulation Results

The function of the proposed adaptive path number selectionmechanism is simulated in MIMO-OFDM fading channelThe features for a mobile OFDM system include a bandwidthof 10MHz and 64 subcarriers the measured signal interval119879119898

= packet time = 840 120583sec Each transmitted packetcontains 100 OFDM data blocks the path number selectionsare conducted at the first data blocks Four equally spacedpilot subcarriers which are inserted in the positions of 8th24th 40th and 56th subcarriers in an OFDM data block areapplied for each of the transmitted OFDM data blocks Thesix-path channel model listed in Table 1 where the first threepaths have no path delay and the interpath delay time afterpath three is 50 nsec is employed to simulate mobile OFDMperformance so that 119871 = 4

Two-ray Rayleigh fading channel and six-path fadingchannel with 13 nsec delay spread are used to test the biterror rate (BER) performance of the OFDM transceiver InFigure 2 two-ray Rayleigh fading channel is used to validatesix-path fading channel with 13 nsec delay spread Figure 2(a)shows the BER performance of OFDM transceiver using 16-QAM Figure 2(b) shows the BER performance of OFDMtransceiver using 64-QAM For demonstration we have cho-sen 120 kmhr and 200 kmhr performance for high speedthat is 200 kmhr seems to degrade than the performance forsystem with less speed that is 120 kmhr because at higherspeed the channel behaves as a fast fading channel and forslower speed channel behaves as a slow fading channel [8]The test results show that the BER performance of the OFDMtransceiver in the high-speed time-varying fading channelwill be reduced to less than 10minus5 at the minimum SNR of12 dB for 16-QAM and 28 dB for 64-QAM at 120Kmhr For200Kmhr user speed the performance of 64-QAM OFDM

transceiver over six-path fading channel with 13 nsec delayspread degrades to unacceptable levels

For the purpose of the diversity gain a simple 2 times 2 SFBCis combined with the OFDM system where the adaptivepath number selection mechanism is employed for eachtransmit-receive antenna pair Let two frequency-domaindata signals at two consecutive subcarriers be encoded usingAlamouti code and transmitted from two antennas Since thechannel response for that subcarrier within one SFBC blockis stationary then the maximum-likelihood symbol detectoris used to detect the transmitted symbols

The BER performance of the 2 times 2 SFBC-OFDM systemin terms of 16-QAM and 64-QAMmodulations over the six-path fading channel with 13 nsec and 26 nsec delay spreadis shown in Figures 3 and 4 respectively where the userspeed is set as 200 kmh The calculations of 13 nsec and26 nsec root mean square (rms) delay spread are shown inthe appendix For OFDM system the channel is frequencynonselective fading if the delay spread is in the range of(0 20 nsec) and the channel is frequency selective fadingif the delay spread exceeds 20 nsec [8] It is observed thatthe acceptable BER (lt10minus5) for QAM modulated MIMO-OFDM systems operated in fast-varying fading channels canalways be achieved by employing the proposed path numberselection mechanism In Figure 4(a) the BER value of the16-QAM modulated MIMO-OFDM systems employing theproposed path number selection mechanism over frequencynonselective fast fading channels with 13 nsec delay spreadis lower than ℓ = 4 and slightly higher than ℓ = 2 and 3in the region of interest (BER lt 10

minus5) The required 119864

1198871198730

for the acceptable BER is low for all cases It indicates thatthe MIMO mode is not necessary to be used for the 16-QAM OFDM systems when the delay spread is small InFigure 4(b) the gain of the 64-QAM modulated MIMO-OFDM system employed the proposed adaptive path numberselection mechanism in frequency nonselective fast fadingchannel with 13 nsec delay spread exceeds 1 dB comparedwith ℓ = 4 and its BER value is slightly higher than ℓ = 2

and 3 in the region of interest In frequency nonselective fastfading channel choosing smaller number of paths can getthe smaller mean square error in channel impulse responseestimate Figure 4 shows that the BER value of the QAMmodulated MIMO-OFDM systems employing the proposedpath number selection mechanism over frequency selectivefast fading channels with 26 nsec delay spread is lower thanℓ = 2 and 3 and slightly higher than ℓ = 4 in the region

International Journal of Antennas and Propagation 7

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(a)

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(b)

Figure 2 BER of the OFDM transceiver over two-ray Rayleigh fading channel and six-path fading channel with 13 nsec delay spread for (a)16-QAM and (b) 64-QAM

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 3 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

of interest The error floors of the BER performance appearat an 119864

1198871198730of about 8 dB for 16-QAM (curve ℓ = 2) and

about 15 dB for 64-QAM (curves ℓ = 2 and 3) respectivelyThe frequency selectivity of the multipath fading channelincreases with its delay spread In a frequency selective fastfading channel the BER of the MIMO-OFDM decreaseswith an increase of the path number due to more linear

interpolation loss are generated by using less path number infrequency selective fast fading channel By examining Figures3 and 4 it is concluded that the pilot-based channel estimateusing the proposed path number selection mechanism at thefirst data block can satisfy the OFDM system performancerequirements under different operating conditions of time-varying fast fading channels

8 International Journal of Antennas and Propagation

EbN0 (dB)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 4 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

5 10 15 20

BER

10minus6

10minus4

10minus2

100

0EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 5 BER performance of OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b)64-QAMmodulation

In Figure 5 the BER value of theQAMmodulatedOFDMsystem employing the proposed path selection mechanismover time-varying fading channels with 13 ns delay spread islower than ℓ = 4 and slightly higher than ℓ = 2 and 3

Figure 6 shows that the BER value of the QAM modu-lated OFDM systems employing the proposed path selectionmechanism over time-varying fading channels with 26 nsdelay spread is lower than ℓ = 2 and 3 and slightly higher

than ℓ = 4 The frequency selectivity of the multipath fadingchannel increases with its delay spread

5 Conclusions

An adaptive path number selection mechanism is proposedto improve the accuracy of the pilot-based channel estima-tion approach for QAM modulated MIMO-OFDM systems

International Journal of Antennas and Propagation 9

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 6 BER performance of OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAM modulation and(b) 64-QAMmodulation

operating in time-varying fast fading channels The finecorrection factors are derived It is demonstrated that thenumber of paths is scalable and adaptively changed withthe characteristics of time-varying MIMO-OFDM fadingchannels to provide a suboptimum BER performance forQAMmodulated 2times 2 SFBC-OFDM systems operated eitherin frequency nonselective fast fading or in frequency selectivefast fading channels

Appendix

Calculations of Delay Spread 26 nsecand 13 nsec [8]

The fading channel generator at the 119894th path consists of twononline-of-sight (NLOS) branches and a LOS branch InNLOS branch two independent and identically distributed(iid) Gaussian signal sources are connected to identicalDoppler filters The channel weighing factor 119908

119894[1198961015840] is deter-

mined by

119908119894 [119896] = 119875

119894(119904119894 NLOS [119896] + 119904

119894 LOS [119896]) 119896 = 1 2 119873

(A1)

where the output of NLOS branch at the 119894th path in the fadingchannel weighing generator is

119904119894 NLOS [119896] = 119910

119894 [119896] times (1

radic1 + 119896119894

) 119896 = 1 2 119873

(A2)

where

119910119894 [119896] = (

infin

sum

119897=minusinfin

1199091 [119897] ℎ119894 [119896 minus 119897]) + 119895(

infin

sum

119897=minusinfin

1199092 [119897] ℎ119894 [119896 minus 119897])

119896 = 1 2 119873

(A3)

1199091and 119909

2are independent Gaussian functions and ℎ

119894is

impulse response of Doppler filterThe output of LOS branchat 119894th path in the fading channel weighing generator is

119904119894LOS

[119896] = radic119896119894

1 + 119896119894

times exp(1198952120587 (119891119889119894

cos 120579119894+ 119891119900119894

)119896

119891119904dop

)

119896 = 1 2 119873

(A4)

Furthermore 119908119894[119896] is interpolated by factor 119868 to get the

sequence V119894[1198961015840] with sampling rate 119891sig = 119868 times 119891

119904dop

V119894[1198961015840] =

119908119894[1198961015840

119868] 119896

1015840= 119868 2119868 119873119868

0 otherwise(A5)

The image signal of V119894[1198961015840] is removed by an interpolation

low pass filter with unit impulse response ℎ119868[1198961015840]The interpo-

lated fading envelop signal 119903119894[1198961015840] is stored in the register bank

as

119903119894[1198961015840] =

infin

sum

119897=minusinfin

V119894 [119897] ℎ119868 [119896 minus 119897] 119896

1015840= 1 2 119873119868 (A6)

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 7: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

International Journal of Antennas and Propagation 7

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(a)

0 5 10 15 20 25 30SNR (dB)

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

Two-ray Rayleigh fading channel ( = 120 kmhr)Two-ray Rayleigh fading channel ( = 200 kmhr)Six-path fading channel ( = 120 kmhr)Six-path fading channel ( = 200 kmhr)

(b)

Figure 2 BER of the OFDM transceiver over two-ray Rayleigh fading channel and six-path fading channel with 13 nsec delay spread for (a)16-QAM and (b) 64-QAM

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10 12EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 3 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

of interest The error floors of the BER performance appearat an 119864

1198871198730of about 8 dB for 16-QAM (curve ℓ = 2) and

about 15 dB for 64-QAM (curves ℓ = 2 and 3) respectivelyThe frequency selectivity of the multipath fading channelincreases with its delay spread In a frequency selective fastfading channel the BER of the MIMO-OFDM decreaseswith an increase of the path number due to more linear

interpolation loss are generated by using less path number infrequency selective fast fading channel By examining Figures3 and 4 it is concluded that the pilot-based channel estimateusing the proposed path number selection mechanism at thefirst data block can satisfy the OFDM system performancerequirements under different operating conditions of time-varying fast fading channels

8 International Journal of Antennas and Propagation

EbN0 (dB)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 4 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

5 10 15 20

BER

10minus6

10minus4

10minus2

100

0EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 5 BER performance of OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b)64-QAMmodulation

In Figure 5 the BER value of theQAMmodulatedOFDMsystem employing the proposed path selection mechanismover time-varying fading channels with 13 ns delay spread islower than ℓ = 4 and slightly higher than ℓ = 2 and 3

Figure 6 shows that the BER value of the QAM modu-lated OFDM systems employing the proposed path selectionmechanism over time-varying fading channels with 26 nsdelay spread is lower than ℓ = 2 and 3 and slightly higher

than ℓ = 4 The frequency selectivity of the multipath fadingchannel increases with its delay spread

5 Conclusions

An adaptive path number selection mechanism is proposedto improve the accuracy of the pilot-based channel estima-tion approach for QAM modulated MIMO-OFDM systems

International Journal of Antennas and Propagation 9

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 6 BER performance of OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAM modulation and(b) 64-QAMmodulation

operating in time-varying fast fading channels The finecorrection factors are derived It is demonstrated that thenumber of paths is scalable and adaptively changed withthe characteristics of time-varying MIMO-OFDM fadingchannels to provide a suboptimum BER performance forQAMmodulated 2times 2 SFBC-OFDM systems operated eitherin frequency nonselective fast fading or in frequency selectivefast fading channels

Appendix

Calculations of Delay Spread 26 nsecand 13 nsec [8]

The fading channel generator at the 119894th path consists of twononline-of-sight (NLOS) branches and a LOS branch InNLOS branch two independent and identically distributed(iid) Gaussian signal sources are connected to identicalDoppler filters The channel weighing factor 119908

119894[1198961015840] is deter-

mined by

119908119894 [119896] = 119875

119894(119904119894 NLOS [119896] + 119904

119894 LOS [119896]) 119896 = 1 2 119873

(A1)

where the output of NLOS branch at the 119894th path in the fadingchannel weighing generator is

119904119894 NLOS [119896] = 119910

119894 [119896] times (1

radic1 + 119896119894

) 119896 = 1 2 119873

(A2)

where

119910119894 [119896] = (

infin

sum

119897=minusinfin

1199091 [119897] ℎ119894 [119896 minus 119897]) + 119895(

infin

sum

119897=minusinfin

1199092 [119897] ℎ119894 [119896 minus 119897])

119896 = 1 2 119873

(A3)

1199091and 119909

2are independent Gaussian functions and ℎ

119894is

impulse response of Doppler filterThe output of LOS branchat 119894th path in the fading channel weighing generator is

119904119894LOS

[119896] = radic119896119894

1 + 119896119894

times exp(1198952120587 (119891119889119894

cos 120579119894+ 119891119900119894

)119896

119891119904dop

)

119896 = 1 2 119873

(A4)

Furthermore 119908119894[119896] is interpolated by factor 119868 to get the

sequence V119894[1198961015840] with sampling rate 119891sig = 119868 times 119891

119904dop

V119894[1198961015840] =

119908119894[1198961015840

119868] 119896

1015840= 119868 2119868 119873119868

0 otherwise(A5)

The image signal of V119894[1198961015840] is removed by an interpolation

low pass filter with unit impulse response ℎ119868[1198961015840]The interpo-

lated fading envelop signal 119903119894[1198961015840] is stored in the register bank

as

119903119894[1198961015840] =

infin

sum

119897=minusinfin

V119894 [119897] ℎ119868 [119896 minus 119897] 119896

1015840= 1 2 119873119868 (A6)

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 8: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

8 International Journal of Antennas and Propagation

EbN0 (dB)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 4 BER performance of 2 times 2 SFBC-OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAMmodulation and (b) 64-QAMmodulation

BER

10minus6

10minus5

10minus4

10minus3

10minus2

10minus1

100

0 2 4 6 8 10EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

5 10 15 20

BER

10minus6

10minus4

10minus2

100

0EbN0 (dB)

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 5 BER performance of OFDM system over the six-path fading channel with 13 nsec delay spread for (a) 16-QAMmodulation and (b)64-QAMmodulation

In Figure 5 the BER value of theQAMmodulatedOFDMsystem employing the proposed path selection mechanismover time-varying fading channels with 13 ns delay spread islower than ℓ = 4 and slightly higher than ℓ = 2 and 3

Figure 6 shows that the BER value of the QAM modu-lated OFDM systems employing the proposed path selectionmechanism over time-varying fading channels with 26 nsdelay spread is lower than ℓ = 2 and 3 and slightly higher

than ℓ = 4 The frequency selectivity of the multipath fadingchannel increases with its delay spread

5 Conclusions

An adaptive path number selection mechanism is proposedto improve the accuracy of the pilot-based channel estima-tion approach for QAM modulated MIMO-OFDM systems

International Journal of Antennas and Propagation 9

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 6 BER performance of OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAM modulation and(b) 64-QAMmodulation

operating in time-varying fast fading channels The finecorrection factors are derived It is demonstrated that thenumber of paths is scalable and adaptively changed withthe characteristics of time-varying MIMO-OFDM fadingchannels to provide a suboptimum BER performance forQAMmodulated 2times 2 SFBC-OFDM systems operated eitherin frequency nonselective fast fading or in frequency selectivefast fading channels

Appendix

Calculations of Delay Spread 26 nsecand 13 nsec [8]

The fading channel generator at the 119894th path consists of twononline-of-sight (NLOS) branches and a LOS branch InNLOS branch two independent and identically distributed(iid) Gaussian signal sources are connected to identicalDoppler filters The channel weighing factor 119908

119894[1198961015840] is deter-

mined by

119908119894 [119896] = 119875

119894(119904119894 NLOS [119896] + 119904

119894 LOS [119896]) 119896 = 1 2 119873

(A1)

where the output of NLOS branch at the 119894th path in the fadingchannel weighing generator is

119904119894 NLOS [119896] = 119910

119894 [119896] times (1

radic1 + 119896119894

) 119896 = 1 2 119873

(A2)

where

119910119894 [119896] = (

infin

sum

119897=minusinfin

1199091 [119897] ℎ119894 [119896 minus 119897]) + 119895(

infin

sum

119897=minusinfin

1199092 [119897] ℎ119894 [119896 minus 119897])

119896 = 1 2 119873

(A3)

1199091and 119909

2are independent Gaussian functions and ℎ

119894is

impulse response of Doppler filterThe output of LOS branchat 119894th path in the fading channel weighing generator is

119904119894LOS

[119896] = radic119896119894

1 + 119896119894

times exp(1198952120587 (119891119889119894

cos 120579119894+ 119891119900119894

)119896

119891119904dop

)

119896 = 1 2 119873

(A4)

Furthermore 119908119894[119896] is interpolated by factor 119868 to get the

sequence V119894[1198961015840] with sampling rate 119891sig = 119868 times 119891

119904dop

V119894[1198961015840] =

119908119894[1198961015840

119868] 119896

1015840= 119868 2119868 119873119868

0 otherwise(A5)

The image signal of V119894[1198961015840] is removed by an interpolation

low pass filter with unit impulse response ℎ119868[1198961015840]The interpo-

lated fading envelop signal 119903119894[1198961015840] is stored in the register bank

as

119903119894[1198961015840] =

infin

sum

119897=minusinfin

V119894 [119897] ℎ119868 [119896 minus 119897] 119896

1015840= 1 2 119873119868 (A6)

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 9: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

International Journal of Antennas and Propagation 9

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(a)

BER

10minus6

10minus7

10minus5

10minus4

10minus3

10minus2

10minus1

100

EbN0 (dB)0 5 10 15 20 25

Path selection985747 = 4

985747 = 3

985747 = 2

(b)

Figure 6 BER performance of OFDM system over the six-path fading channel with 26 nsec delay spread for (a) 16-QAM modulation and(b) 64-QAMmodulation

operating in time-varying fast fading channels The finecorrection factors are derived It is demonstrated that thenumber of paths is scalable and adaptively changed withthe characteristics of time-varying MIMO-OFDM fadingchannels to provide a suboptimum BER performance forQAMmodulated 2times 2 SFBC-OFDM systems operated eitherin frequency nonselective fast fading or in frequency selectivefast fading channels

Appendix

Calculations of Delay Spread 26 nsecand 13 nsec [8]

The fading channel generator at the 119894th path consists of twononline-of-sight (NLOS) branches and a LOS branch InNLOS branch two independent and identically distributed(iid) Gaussian signal sources are connected to identicalDoppler filters The channel weighing factor 119908

119894[1198961015840] is deter-

mined by

119908119894 [119896] = 119875

119894(119904119894 NLOS [119896] + 119904

119894 LOS [119896]) 119896 = 1 2 119873

(A1)

where the output of NLOS branch at the 119894th path in the fadingchannel weighing generator is

119904119894 NLOS [119896] = 119910

119894 [119896] times (1

radic1 + 119896119894

) 119896 = 1 2 119873

(A2)

where

119910119894 [119896] = (

infin

sum

119897=minusinfin

1199091 [119897] ℎ119894 [119896 minus 119897]) + 119895(

infin

sum

119897=minusinfin

1199092 [119897] ℎ119894 [119896 minus 119897])

119896 = 1 2 119873

(A3)

1199091and 119909

2are independent Gaussian functions and ℎ

119894is

impulse response of Doppler filterThe output of LOS branchat 119894th path in the fading channel weighing generator is

119904119894LOS

[119896] = radic119896119894

1 + 119896119894

times exp(1198952120587 (119891119889119894

cos 120579119894+ 119891119900119894

)119896

119891119904dop

)

119896 = 1 2 119873

(A4)

Furthermore 119908119894[119896] is interpolated by factor 119868 to get the

sequence V119894[1198961015840] with sampling rate 119891sig = 119868 times 119891

119904dop

V119894[1198961015840] =

119908119894[1198961015840

119868] 119896

1015840= 119868 2119868 119873119868

0 otherwise(A5)

The image signal of V119894[1198961015840] is removed by an interpolation

low pass filter with unit impulse response ℎ119868[1198961015840]The interpo-

lated fading envelop signal 119903119894[1198961015840] is stored in the register bank

as

119903119894[1198961015840] =

infin

sum

119897=minusinfin

V119894 [119897] ℎ119868 [119896 minus 119897] 119896

1015840= 1 2 119873119868 (A6)

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 10: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

10 International Journal of Antennas and Propagation

where the sampling interval of 119903119894[1198961015840] is

Δ119905 =1

119891sig (A7)

The parameters listed in Table 1 represent for rms delayspread 120591rms = 23 nsec As an example steps involved in thecalculation of 120591rms = 23 nsec using the values in Table 1will be shown From Table 1 the Tap powers (119875

119894) are 0 dB

minus65 dBminus144 dB andminus175 dB at Excess delay 0 nsec 50 nsec100 nsec and 150 nsec respectively We first normalize theseTap powers to get values 09751W 02183W 00354Wand 00173W at Excess delay 0 nsec 50 nsec 100 nsec and150 nsec respectively

Normalized tap delay powers are weighed using weighingfactor 119908

119894[1198961015840] As an example if weighing factors were found

to be 07099ndash04263i minus06830ndash03211i minus0393ndash04039i andminus00443ndash00841i for excess delay at 0 ns 50 ns 100 ns and150 ns respectively Taking the absolute values for the tapdelay power and the weighing factor we get final tap powers08074 01648 00200 and 00016 at Excess delay 0 nsec50 nsec 100 nsec and 150 nsec respectively thus calculatingrms delay spread using (A8) [12]

120591drms =radic1205912minus (120591)

2 (A8)

where the mean excess delay 120591 is defined as

120591 =sum1198961198862

119896120591119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 120591119896

sum119896119875 (120591

119896)

(A9)

and 1205912 is defined as

1205912=

sum1198961198862

1198961205912

119896

sum1198961198862

119896

=sum119896119875 (120591

119896) 1205912

119896

sum119896119875 (120591

119896)

(A10)

Similarly tap powers 0 db minus185 dB minus214 dB and minus245 dBfor Excess delay 0 ns 50 ns 100 ns and 150 ns respectivelyfor 120591rms = 13 nsec and tap powers 0 db minus65 dB minus75 dB andminus85 dB for Excess delay 0 ns 50 ns 100 ns and 150 ns respec-tively for 120591rms = 26 nsec

Acknowledgment

This work is supported in part by research grants fromNational ScienceCouncil Taiwan (NSC 102-2218-E-155-001)

References

[1] S R Saunders and A A Zavala Antennas and Propagationfor Wireless Communication Systems John Wiley amp Sons 2ndedition 2007

[2] T D Chiueh and P Y TsaiOFDMBaseband Receiver Design forWireless Communications John Wiley amp Sons 2007

[3] J Chen Y Tang and S Li ldquoAnalysis and optimization ofpilot-symbol-assisted M-OAM for OFDM systemsrdquo WirelessCommunications and Mobile Computing vol 5 no 1 pp 15ndash222005

[4] O Simeone Y Bar-Ness and U Spagnolini ldquoPilot-basedchannel estimation for OFDM systems by tracking the delay-subspacerdquo IEEE Transactions on Wireless Communications vol3 no 1 pp 315ndash325 2004

[5] M Torabi S Aıssa and M R Soleymani ldquoOn the BERperformance of space-frequency block coded OFDM systemsin fading MIMO channelsrdquo IEEE Transactions on WirelessCommunications vol 6 no 4 pp 1366ndash1373 2007

[6] I Cosovic and G Auer ldquoCapacity of MIMO-OFDM withpilot-aided channel estimationrdquo Eurasip Journal on WirelessCommunications and Networking vol 2007 Article ID 324602007

[7] J Kim R W Heath Jr and E J Powers ldquoReceiver designs forAlamouti coded OFDM systems in fast fading channelsrdquo IEEETransactions onWireless Communications vol 4 no 2 pp 550ndash559 2005

[8] J Mar C-C Kuo Y-R Lin and T-H Lung ldquoDesign ofsoftware-defined radio channel simulator for wireless commu-nications case study with DSRC and UWB channelsrdquo IEEETransactions on Instrumentation and Measurement vol 58 no8 pp 2755ndash2766 2009

[9] ldquoStandard Specification for Telecommunications and Infor-mation Exchange Between Roadside and Vehicle Systemmdash5Ghz Band Dedicated Short Range Communications (DSRC)Medium Access Control (MAC) and Physical Layer (PHY)Specificationsrdquo IEEE 802 December 2005

[10] R Negi and J Cioffi ldquoPilot tone selection for channel estimationin a mobile ofdm systemrdquo IEEE Transactions on ConsumerElectronics vol 44 no 3 pp 1122ndash1128 1998

[11] J Rinne and M Renfors ldquoPilot spacing in Orthogonal Fre-quency Division Multiplexing systems on practical channelsrdquoIEEE Transactions on Consumer Electronics vol 42 no 4 pp959ndash962 1996

[12] T S RappaportWireless Communications Principles and Prac-tice Prentice Hall 2nd edition 2002

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of

Page 11: Research Article Improved Pilot-Aided Channel Estimation ...downloads.hindawi.com/journals/ijap/2013/978420.pdf · An improved pilot-aided channel estimation scheme is proposed to

International Journal of

AerospaceEngineeringHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

RoboticsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Active and Passive Electronic Components

Control Scienceand Engineering

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

RotatingMachinery

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporation httpwwwhindawicom

Journal ofEngineeringVolume 2014

Submit your manuscripts athttpwwwhindawicom

VLSI Design

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Shock and Vibration

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Civil EngineeringAdvances in

Acoustics and VibrationAdvances in

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Electrical and Computer Engineering

Journal of

Advances inOptoElectronics

Hindawi Publishing Corporation httpwwwhindawicom

Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

SensorsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Modelling amp Simulation in EngineeringHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Chemical EngineeringInternational Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Navigation and Observation

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

DistributedSensor Networks

International Journal of


Recommended