+ All Categories
Home > Documents > Research Article Integrated Analysis for Identifying Radix...

Research Article Integrated Analysis for Identifying Radix...

Date post: 19-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
12
Research Article Integrated Analysis for Identifying Radix Astragali and Its Adulterants Based on DNA Barcoding Sihao Zheng, 1 Dewang Liu, 2 Weiguang Ren, 1 Juan Fu, 1 Linfang Huang, 1 and Shilin Chen 3 1 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China 2 School of Pharmacy, Inner Mongolia Medical University, Inner Mongolia 010080, China 3 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China Correspondence should be addressed to Linfang Huang; [email protected] Received 15 June 2014; Accepted 22 July 2014; Published 27 August 2014 Academic Editor: Robert Henry Copyright © 2014 Sihao Zheng et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Radix Astragali is a popular herb used in traditional Chinese medicine for its proimmune and antidiabetic properties. However, methods are needed to help distinguish Radix Astragali from its varied adulterants. DNA barcoding is a widely applicable molecular method used to identify medicinal plants. Yet, its use has been hampered by genetic distance, base variation, and limitations of the bio-NJ tree. Herein, we report the validation of an integrated analysis method for plant species identification using DNA barcoding that focuses on genetic distance, identification efficiency, inter- and intraspecific variation, and barcoding gap. We collected 478 sequences from six candidate DNA barcodes (ITS2, ITS, psbA-trnH, rbcL, matK, and COI) from 29 species of Radix Astragali and adulterants. e internal transcribed spacer (ITS) sequence was demonstrated as the optimal barcode for identifying Radix Astragali and its adulterants. is new analysis method is helpful in identifying Radix Astragali and expedites the utilization and data mining of DNA barcoding. 1. Introduction Radix Astragali (Huang Qi), a commonly used Chinese medicinal material, is mainly sourced from the plants of Astragalus membranaceus and Astragalus mongholicus according to Chinese Pharmacopoeia (2010 edition). Radix Astragali is widely used for its antiperspirant, antidiuretic, and antidiabetic properties and as a tonic drug [13]. It possesses various beneficial compounds, including astraga- losides, isoflavonoids, isoflavones, isoflavan, and pterocarpan glycosides [46]. Due to the high market demand for Radix Astragali, a diverse group of adulterants with similar-morphological characteristics from genuses, such as Astragalus, Hedysarum, and Malva are oſten used in its stead [7]. e traditional methods used to identify Radix Astragali for use as a medicinal material, such as morphological and microscopic identification [8], thin-layer chromatography and Ultraviolet spectroscopy [9], Fourier Transform infrared spectroscopy (FTIR) [10], and high performance liquid chromatography (HPLC) [11], all, require specialized equipment and training. Several PCR-based molecular methods have been developed, providing an alternative means of identification. Multiplex PCR methods of DNA fragment analysis, such as randomly amplified polymorphic DNA (RAPD) [12] or amplified frag- ment length polymorphism (AFLP) [13], are unstable for the results to identify. DNA barcoding is a widely used molecular marker technology, first proposed by Hebert et al. [14, 15]. It uses a standardized and conserved, but diverse, DNA sequence to identify species and uncover biological diversity [16, 17]. In previous studies, various coding sequences for identifying Radix Astragali and its adulterants have been used, such as the 5S-rRNA spacer domain [18], 3 untrans- lated region (3 UTR) [19], ITS (internal transcribed spacer region) and 18S rRNA [3, 20, 21], ITS2 [22], ITS1 [6], matK (maturase K) and rbcL (ribulose 1, 5-bisphosphate carboxy- lase) of chloroplast genome, and coxI (cytochrome c oxidase 1) of the mitochondrial genome [23]. However, sequence analysis was mainly focused on genetic distance, variable sites, amplified polymorphisms, and the use of a modified neighbor-joining (NJ) algorithm, Bio-NJ tree, which were basic analyses limited to particular species. A more effective Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2014, Article ID 843923, 11 pages http://dx.doi.org/10.1155/2014/843923
Transcript
Page 1: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

Research ArticleIntegrated Analysis for Identifying Radix Astragali and ItsAdulterants Based on DNA Barcoding

Sihao Zheng1 Dewang Liu2 Weiguang Ren1 Juan Fu1 Linfang Huang1 and Shilin Chen3

1 Institute ofMedicinal Plant Development Chinese Academy ofMedical Sciences Peking UnionMedical College Beijing 100193 China2 School of Pharmacy Inner Mongolia Medical University Inner Mongolia 010080 China3 Institute of Chinese Materia Medica China Academy of Chinese Medical Sciences Beijing 100700 China

Correspondence should be addressed to Linfang Huang lfhuangimpladaccn

Received 15 June 2014 Accepted 22 July 2014 Published 27 August 2014

Academic Editor Robert Henry

Copyright copy 2014 Sihao Zheng et al This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

Radix Astragali is a popular herb used in traditional Chinese medicine for its proimmune and antidiabetic properties Howevermethods are needed to help distinguish Radix Astragali from its varied adulterants DNAbarcoding is a widely applicablemolecularmethod used to identify medicinal plants Yet its use has been hampered by genetic distance base variation and limitations of thebio-NJ tree Herein we report the validation of an integrated analysis method for plant species identification using DNA barcodingthat focuses on genetic distance identification efficiency inter- and intraspecific variation and barcoding gap We collected 478sequences from six candidate DNA barcodes (ITS2 ITS psbA-trnH rbcL matK and COI) from 29 species of Radix Astragaliand adulterants The internal transcribed spacer (ITS) sequence was demonstrated as the optimal barcode for identifying RadixAstragali and its adulterants This new analysis method is helpful in identifying Radix Astragali and expedites the utilization anddata mining of DNA barcoding

1 Introduction

Radix Astragali (Huang Qi) a commonly used Chinesemedicinal material is mainly sourced from the plantsof Astragalus membranaceus and Astragalus mongholicusaccording to Chinese Pharmacopoeia (2010 edition) RadixAstragali is widely used for its antiperspirant antidiureticand antidiabetic properties and as a tonic drug [1ndash3] Itpossesses various beneficial compounds including astraga-losides isoflavonoids isoflavones isoflavan and pterocarpanglycosides [4ndash6]

Due to the high market demand for Radix Astragalia diverse group of adulterants with similar-morphologicalcharacteristics from genuses such as AstragalusHedysarumand Malva are often used in its stead [7] The traditionalmethods used to identify Radix Astragali for use as amedicinal material such as morphological and microscopicidentification [8] thin-layer chromatography and Ultravioletspectroscopy [9] Fourier Transform infrared spectroscopy(FTIR) [10] and high performance liquid chromatography(HPLC) [11] all require specialized equipment and training

Several PCR-based molecular methods have been developedproviding an alternative means of identification MultiplexPCR methods of DNA fragment analysis such as randomlyamplified polymorphic DNA (RAPD) [12] or amplified frag-ment length polymorphism (AFLP) [13] are unstable for theresults to identify DNA barcoding is a widely usedmolecularmarker technology first proposed by Hebert et al [14 15]It uses a standardized and conserved but diverse DNAsequence to identify species and uncover biological diversity[16 17] In previous studies various coding sequences foridentifying Radix Astragali and its adulterants have beenused such as the 5S-rRNA spacer domain [18] 31015840 untrans-lated region (31015840 UTR) [19] ITS (internal transcribed spacerregion) and 18S rRNA [3 20 21] ITS2 [22] ITS1 [6] matK(maturase K) and rbcL (ribulose 1 5-bisphosphate carboxy-lase) of chloroplast genome and coxI (cytochrome c oxidase1) of the mitochondrial genome [23] However sequenceanalysis was mainly focused on genetic distance variablesites amplified polymorphisms and the use of a modifiedneighbor-joining (NJ) algorithm Bio-NJ tree which werebasic analyses limited to particular species A more effective

Hindawi Publishing CorporationEvidence-Based Complementary and Alternative MedicineVolume 2014 Article ID 843923 11 pageshttpdxdoiorg1011552014843923

2 Evidence-Based Complementary and Alternative Medicine

Table 1 Taxon sampling information of astragalus and its adulterants

Experiment number species Sampling spotS1-S5 Astragalus membranaceus Shaanxi ChinaSD1-SD9 Astragalus membranaceus Shaanxi ChinaGS1-GS6 Astragalus mongholicus Gansu ChinaNM1-NM10 Astragalus mongholicus Neimeng ChinaSX1-SX10 Astragalus mongholicus Shanxi ChinaHHQ1-HHQ7 Astragalus chinensis Beijing ChinaCY1-CY6 Astragalus scaberrimus Beijing ChinaJK1-JK3 Malva pusilla Shaanxi ChinaMX Medicago sativa Shaanxi ChinaHH1-HH7 Melilotus officinalis Shaanxi ChinaHQ1-HQ12 Hedysarum polybotrys Gansu ChinaXJ Astragalus adsurgens Beijing China

method of molecular identification is necessary The currentstudy evaluates the identification reliability and efficiency ofDNAbarcoding for the identification of RadixAstragali usingsix indicators of genetic distance identification efficiencyintra- and interspecific variation gap rate and barcoding gapSix barcodes were selected for identification because theyare commonly used in plant especially in medicinal plantWe collected Radix Astragaliand several of its adulterantsreported in previous research and downloaded the geneticsequences from the GenBank database A total of 29 species(including 19 species of Astragalus) and 478 sequences fromsix barcodes were used to validate the new method foridentifying Radix Astragali and adulterants and to acceleratethe data utilization of DNA barcoding

2 Materials and Methods

21 Materials Information A total of 77 specimens werecollected from two origins of Radix Astragali along withseven adulterants Radix Astragali specimens were collectedfrom Inner Mongolia Shaan xi and Gan su provinces in thePeoplersquos Republic of China which are the main producingareas The collection information is shown in Table 1 Allcorresponding voucher specimens were deposited in theHerbariumof the Institute ofMedicinal PlantDevelopment atthe Chinese Academy of Medical Sciences in Beijing ChinaThe GenBank accession number of the ITS2 in this experi-ment was orderly KJ999296ndashKJ999344 the accession num-ber of ITS sequences was orderly KJ999345ndashKJ999416 andthe accession number of psbA-trnH was orderly KJ999256ndashKJ999295 The sequences added in the subsequent analysisincluding ITS ITS2 psbA-trnHmatK and rbcL were down-loaded from the GenBank database

22 DNA Extraction PCR Amplification and SequencingThe material specimens were naturally dried and 30mgof dried plant material was used for the DNA extractionSamples were rubbed for two minutes at a frequency of30 rs in a FastPrep bead mill (Retsch MM400 Germany)and total genomic DNA was isolated from the crushedmaterial according to the manufacturerrsquos instructions (Plant

Genomic DNA Kit Tiangen Biotech Co China) We madethe following modifications to the protocol chloroform wasdiluted with isoamyl alcohol (24 1 in the same volume) andbuffer solution GP2 with isopropanol (same volume) Thepowder 700120583L of 65∘C GP1 and 1 120583L 120573-mercaptoethanolweremixed for 10ndash20 s before being incubated for 60minutesat 65∘C Then 700120583L of the chloroformisoamyl alcoholmixture was added and the solution was centrifuged for 5minutes at 12000 rpm (sim13400timesg) Supernatant was removedand placed into a new tube before adding 700 120583L isopropanoland blending for 15ndash20minutesThemixture was centrifugedin CB3 spin columns for 40 s at 12000 rpm The filtratewas discarded and 500120583L GD (adding quantitative anhy-drous ethanol before use) was added before centrifuging at12000 rpm for 40 s The filtrate was discarded and 700120583LPW (adding quantitative anhydrous ethanol before use) wasused to wash the membrane before centrifuging for 40 s at12000 rpm This step was repeated with 500120583L PW followedby a final centrifuge for 2 minutes at 12000 rpm to removeresidual wash buffer The spin column was dried at roomtemperature for 3ndash5 minutes and then centrifuged for 2minutes at 12000 rpm to obtain the total DNA

General PCR reaction conditions and universal DNAbarcode primers were used for the ITS ITS2 and psbA-trnHbarcodes as presented in Table 2 [24ndash26] PCR amplificationwas performed on 25-120583L reaction mixtures containing 2120583LDNA template (20ndash100 ng) 85 120583L ddH2O 125 120583L 2times TaqPCRMaster Mix (Beijing TransGen Biotech Co China) and11-120583L forwardreverse (FR) primers (25 120583M) The reactionmixtures were amplified in a 9700 GeneAmp PCR system(Applied Biosystems USA) Amplicons were visualized byelectrophoresis on 1 agarose gels Purified PCR productswere sequenced in both directions using the ABI 3730XLsequencer (Applied Biosystems USA)

23 Sequence Assembly Alignment and Analysis Sequencingpeak diagramswere obtained and proofread and then contigswere assembled using a CodonCode Aligner 501 (Codon-Code Co USA) Complete ITS2 sequences were obtainedusing the HMMer annotation method based on the HiddenMarkov model (HMM) [27] All of the sequences were

Evidence-Based Complementary and Alternative Medicine 3

Table 2 Primers and PCR reaction conditions

Primer name Primer sequences (51015840-31015840) PCR reaction conditionITS2

2F ATGCGATACTTGGTGTGAAT 94∘C 5min

3R GACGCTTCTCCAGACTACAAT94∘C 30 s 56∘C 30 s72∘C 45 s 40 cycles

72∘C 10minITS

4R TCCTCCGCTTATTGATATGC 94∘C 5min

5F GGAAGTAAAAGTCGTAACAAGG94∘C 1min 50∘C 1min

72∘C 15min + 3 scycle 30 cycles72∘C 7min

psbAfwdPA GTTATGCATGAACGTAATGCTC 94∘C 4min

trnH

rev TH CGCGCATGGTGGATTCACAATCC94∘C 30 s 55∘C 1min72∘C 1min 35 cycles

72∘C 10min

aligned using ClustalW in combination with 317 sequencesfrom six commonly used barcodes (ITS2 ITS psbA-trnHmatK rbcL and COI) which were downloaded from theGenBank database (Table 3) Sequence genetic distance andGC content were calculated using the maximum compositelikelihoodmodel Maximum likelihood (ML) trees were con-structed based on the Tamura-Nei model and bootstrap testswere conducted using 1000 repeats to assess the confidenceof the phylogenetic relationships byMEGA 60 software [28]The barcoding gap defined as the spacer region betweenintra- and interspecific genetic variations and identificationefficiency based on BLAST1 and K2P nearest distance wereperformed by the Perl language algorithm (Putty) [25 29 30]

3 Results

31 Sequence Information and Identification Efficiency Atotal of 478 sequences for six barcodes were analyzed fromwhich 161 sequences were obtained from Astragalus Radixand its adulterants Sequence information and identificationsuccess rates are listed in Table 4 The average GC contentof six barcodes was discrepant and ITS and ITS2 regionsfrom nuclear ribosomal DNA performed higher than otherbarcodes (5297 versus 5080) Among the six barcodesITS2 provided the largest average genetic distance (10792)and rbcL was the smallest (00349) All of the six barcodesobtained a zero value for the minimum genetic distance Interms of identification efficiency the nearest distancemethodwas superior to the BLAST1method for all of the six barcodesMoreover ITS and the psbA-trnHandmatK regions provideda higher rate of success than the other three barcodes usingthe BLAST1 method However matK ITS and psbA-trnHperformed better than the other three barcodes based on thenearest distancemethod ITS and psbA-trnHobtained highergenetic distances so thematK ITS and psbA-trnH barcodeswere the preferable methods for identifying Radix Astragali

and its adulterants based on superior sequencing efficiencyand identification efficiency

32 Intra- and Interspecific Variation Analysis Using SixParameters Six parameters to analyze intraspecific variationand interspecific divergence were employed to assess theutility of six DNA barcodes (Table 5) We expected theldquominimum interspecific distancerdquo would be higher than theldquocoalescent depthrdquo (maximum intraspecific distance) There-fore we first utilized the ldquogap raterdquo to indicate the distinctnesscalculated by the formula (minimum interspecific distance minusmaximum intraspecific distance)minimum interspecific dis-tance Results show that the ITS2 COI matK and rbcLregions outperformed the ITS and psbA-trnH regions for gaprates However when we compared all of the average inter-and intraspecific distances the ITS2 rbcL matK and psbA-trnH regions performed better than the ITS and COI regionsTherefore in terms of intra- and interspecific variation ITS2matK and rbcL are the preferable options for identifyingRadix Astragali and its adulterants

33 Barcoding Gap Analysis Analysis of the DNA barcod-ing gap presents the divergence of inter- and intraspeciesand indicates separate nonoverlapping distribution betweenspecimens in an ideal situation [25] In our study (Figure 1)the rbcL COI ITS and matK regions possessed less relativedistribution of inter- and intraspecific variation than psbA-trnH and ITS2 although there were no nonoverlappingregions for the six barcodes Hence the rbcL COI ITS andmatK regions are more successful at identifying Radix Astra-gali and its adulterants from the standpoint of barcoding gapanalysis

34MLTreeAnalysis Maximum likelihood (ML) is a generalstatistical criterion in widespread use for the inference ofmolecular phylogenies [31] An ML tree visually revealed therelationship between species As the results show (Figure 2)

4 Evidence-Based Complementary and Alternative Medicine

Table 3 Sequences from GenBank for identifying Astragalus and its adulterants

Region Family Species Accession number

ITS2

Fabaceae Melilotus officinalis U50765 Z97687Fabaceae Astragalus adsurgens L10757 GU217639 GU217640 GU217641Fabaceae Astragalus chinensis GQ434365 GQ434366Fabaceae Hedysarum polybotrys GQ434367Fabaceae Astragalus mongholicus GQ434368 GU217643Fabaceae Astragalus mongholicus var dahuricus GU217635Fabaceae Astragalus membranaceus GU217642 JF421475Fabaceae Caragana sinica GU217654Fabaceae Medicago sativa GU217662 Z99236 AF028417 JN617208Fabaceae Medicago sativa subsp caerulea AF028418Fabaceae Medicago sativa subsp glomerata AF028419Fabaceae Medicago falcata AF028420Malvaceae Alcea rosea AF303023

ITS

Fabaceae Astragalus membranaceus

AF359749 EF685968 EU852042 FJ572044 GU289659GU289660 GU289661 GU289662 GU289663 GU289664HM142272 HM142273 HM142274 HM142275 HM142276HM142277 HM142278 HM142279 HM142280 HM142281HQ891827 JX017320 JX017321 JX017322 JX017323JX017324 JX017325 JX017326 JX017327 JX017328JX017329 JX017330 JX017331 JX017332 AF121675

Fabaceae Astragalus mongholicus

AF359750 EF685969 HM142282 HM142283 HM142284HM142285 HM142286 HM142287 HM142288 HM142289HM142290 JF736665 JF736666 JF736667 JF736668JF736669 AB787166

Fabaceae Astragalus propinquus AF359751Fabaceae Astragalus lepsensis AF359752Fabaceae Astragalus aksuensis AF359753 AB231091Fabaceae Astragalus hoantchy AF359754 AF521952Fabaceae Astragalus hoantchy subsp dshimensis AF359755Fabaceae Astragalus lehmannianus AF359756Fabaceae Astragalus sieversianus AF359757Fabaceae Astragalus austrosibiricus AF359758Fabaceae Astragalus uliginosus EF685970Fabaceae Astragalus scaberrimus AB051988Fabaceae Astragalus chinensis FJ980292 HM142297 AF121681

Fabaceae Astragalus borealimongolicus HM142291 HM142292 HM142293 HM142294 HM142295HM142296

Fabaceae Astragalus adsurgens HM142298 HM142299 HQ199326Fabaceae Astragalus mongholicus var dahuricus HM142300 KC262199Fabaceae Astragalus zacharensis HM142301Fabaceae Astragalus melilotoides HM142302Fabaceae Astragalus scaberrimus HM142303Fabaceae Astragalus sieversianus AB741299Fabaceae Oxytropis anertii EF685971Fabaceae Caragana sinica DQ914785 FJ537284 GQ338283Fabaceae Glycyrrhiza pallidiflora EU591998 GQ246130Fabaceae Melilotus officinalis AB546796 JF461307 JF461308 JF461309 DQ311985

Fabaceae Medicago sativa GQ488541 AF053142 AY256392 JX017335 JX017336JX017337 KF938697

Fabaceae Oxytropis caerulea GU217599 HQ199316Fabaceae Hedysarum vicioides HM142304 HM142305Fabaceae Hedysarum polybotrys JX017333 JX017334 KF032294Malvaceae Malva neglecta EF419478 EF419479Malvaceae Alcea rosea AH010172 EF419544 EF679714 JX017319

Evidence-Based Complementary and Alternative Medicine 5

Table 3 Continued

Region Family Species Accession number

psbA-trnH

Fabaceae Astragalus membranaceus f pallidipurpureus GQ139474Fabaceae Astragalus adsurgens GU396749 GU396750 GU396751 KF011553Fabaceae Astragalus mongholicus GU396754 AB787167

Fabaceae Astragalus membranaceusGQ139475 GQ139476 GQ139477 GQ139478 GQ139479GQ139480 GQ139481 GQ139482 GQ139483 GU396752GU396753

Fabaceae Caragana sinica GU396767 KJ025053Fabaceae Oxytropis caerulea GU396771Fabaceae Medicago sativa GU396781 HQ596768 HE966707Fabaceae Glycyrrhiza pallidiflora GU396807Fabaceae Melilotus officinalis HE966710Malvaceae Malva neglecta EF419597 EF419598 HQ596765 HQ596765Malvaceae Alcea rosea EF419662 EF679744

matK

Fabaceae Astragalus membranaceusEF685992 HM142232 HM142233 HM142234 HM142235HM142236 HM142237 HM142238 HM142239 HM142240HM142254

Fabaceae Astragalus mongholicus EF685993 HM142241 HM142242 HM142243 HM142244HM142245 HM142246 HM142247 HM142255 HM142256

Fabaceae Astragalus uliginosus EF685994 HM142262Fabaceae Astragalus mongholicus var dahuricus HM049531 HM142260Fabaceae Astragalus chinensis HM049533 HM142263Fabaceae Astragalus adsurgens HM049537 HM142258 HM142259 AY920437

Fabaceae Astragalus borealimongolicus HM142248 HM142249 HM142250 HM142251 HM142252HM142253

Fabaceae Astragalus zacharensis HM142261Fabaceae Astragalus melilotoides HM142264Fabaceae Astragalus scaberrimus HM142265Fabaceae Astragalus sieversianus AB741343

Fabaceae Medicago sativa AF522108 HQ593363 HM851138 AY386881 HE967439AF169289

Fabaceae Oxytropis anertii EF685995 HM142266Fabaceae Oxytropis caerulea HM049544Fabaceae Glycyrrhiza pallidiflora EF685997 HM142269 JQ619944Fabaceae Hedysarum vicioides EF685996 HM142257 HM142267Fabaceae Caragana sinica HM049541Fabaceae Melilotus officinalis HE970723

Malvaceae Malva neglecta EU346788 HQ593360 JN894566 JN894571 JN895781JQ412262

Malvaceae Alcea rosea EU346805

rbcL

Fabaceae Medicago sativa Z70173

Fabaceae Astragalus membranaceusEF685978 HM142199 HM142200 HM142201 HM142202HM142203 HM142204 HM142205 HM142206 HM142207HM142221

Fabaceae Astragalus mongholicus EF685979 HM142208 HM142209 HM142210 HM142211HM142212 HM142213 HM142214 HM142222 HM142223

Fabaceae Astragalus uliginosus EF685980 HM142225Fabaceae Hedysarum vicioides EF685982 U74246 HM142224 HM142227Fabaceae Astragalus adsurgens EF685984

Fabaceae Astragalus borealimongolicus HM142215 HM142216 HM142217 HM142218 HM142219HM142220

Fabaceae Oxytropis anertii EF685981 HM142226Fabaceae Glycyrrhiza pallidiflora EF685983 AB012129 HM142228Fabaceae Caragana sinica FJ537233Fabaceae Melilotus officinalis JQ933405 JX848463

6 Evidence-Based Complementary and Alternative Medicine

Table 4 The information of identification efficiency for six barcodes

Markers COI ITS2 ITS matK rbcL psbA-trnHNumber of sequences 39 72 185 65 43 74Average GC content 4329 5080 5297 3114 4288 2177Genetic distance

Min 00000 00000 00000 00000 00000 00000Max 00086 79494 53130 02801 00349 22701Average 00019 10792 03508 00711 00116 05080

Identification efficiencyBLAST 1 1026 1250 3081 2923 2326 2973Nearest distance 3333 2778 5243 6615 3721 4189

Table 5 Analysis of interspecific divergence and intraspecific variation for six barcodes

Marker (Mean plusmn SD) COI ITS2 ITS matK rbcL psbA-trnHTheta 22260 plusmn 62961 00030 plusmn 00046 00271 plusmn 00404 00021 plusmn 00035 00011 plusmn 00020 02415 plusmn 04777Coalescent depth 00001 plusmn 00004 00040 plusmn 00046 01423 plusmn 03958 00032 plusmn 00050 00016 plusmn 00030 04109 plusmn 05683All intraspecific distance 93280 plusmn 00003 00021 plusmn 00024 01153 plusmn 03051 00014 plusmn 00022 00002 plusmn 00011 03093 plusmn 04300Theta prime 00012 plusmn 00008 00617 plusmn 00302 00603 plusmn 00371 00091 plusmn 00061 00024 plusmn 00035 03083 plusmn 02887Minimum interspecific distance 00008 plusmn 00010 00440 plusmn 00386 00168 plusmn 00196 00066 plusmn 00066 00023 plusmn 00035 00423 plusmn 00380All interspecific distance 00007 plusmn 00010 00343 plusmn 00389 01066 plusmn 02833 00071 plusmn 00064 00015 plusmn 00029 03166 plusmn 04070Gap rate 8750 9091 5152 3043

psbA-trnH successfully differentiated Radix Astragali andits adulterants Furthermore it produced areas of obviousseparation for Radix Astragali The remaining five barcodesalso differentiated Radix Astragali and its adulterants Eachspecies clustered together separate from other species Con-sidering the difficult amplification and sequencing and fastand accurate identification purpose of DNA barcoding wedid not add all the sequence data of ITS2 and psbA-trnH tobuild ML tree and subsequent analysis

4 Discussion and Conclusions

Radix Astragali is reported to possess 47 bioactive com-pounds and has many bioactive properties [32ndash37] VariousRadix Astragali preparations are commercially availablenot only in China as a TCM component but also in theUnited States as dietary supplements [38] However due toincreasing demand substitutes and adulterants have floodedthe market Traditional identification methods such as mor-phological and microscopic methods are limited by the lackof explicit criteria for character selection or coding and thusmainly depend on subjective assessments Although chemicalmethods are able to distinguish between different species itis difficult to differentiate sibling species that possess similarchemical compositions In addition chemical methods areunable to provide accurate species authentication Severaltypes of molecular markers for characterizing genotypes areuseful in identifying plant species For example RAPD hasbeen used to estimate genetic diversity in plant populationsbased on amplification of random DNA fragments andcomparisons of common polymorphisms DNA barcoding

is advocated for species identification due to its universalapplicability simplicity and scientific accuracy Howeverthe analysis methods for DNA barcodes were limited Withthe development of molecular biology and bioinformaticsa more improved analytic method for DNA barcoding canbe established to identify Radix Astragali and closely relatedspecies

In this study we validated a new analytical method foridentifying Radix Astragali using DNA barcoding Seventy-seven specimens of Radix Astragali and its adulterants werecollected and the sequences of 29 species reported in theliterature were downloaded from the GenBank databaseBased on the 478 sequences for six barcodes (ITS2 ITS fromnuclear genome psbA-trnH rbcL andmatK fromchloroplastgenome COI from mitochondrial genome) genetic distanceand ML Tree were calculated by MEGA 60 software andidentification efficiency intra- and interspecific variationand barcoding gap were calculated using the Perl languagealgorithm Results of the six indicators assessed are shownin Table 6 ITS and psbA-trnH outperformed other barcodesin terms of identification efficiency ITS2 performed better interms of genetic distance gap rate and inter- and intraspecificvariation RbcL performed better in terms of barcoding gapand inter- and intraspecific variation Although ITS2was partof the ITS sequence it performed poorly in identificationefficiency Therefore we suggest that the ITS sequence isthe optimal barcode and that the psbA-trnH region is acomplementary barcode for identifying Radix Astragali andits adulterants

In conclusion we describe a new analytical method forthe use of DNA barcoding in the identification of Radix

Evidence-Based Complementary and Alternative Medicine 7

0102030405060708090100 COI

0

IntraspeciesInterspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

(a)

0

10

20

30

40

50

60ITS2

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(b)

0102030405060

ITS

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(c)

010203040506070

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

matK

gt02

Interspecies

(d)

0102030405060708090100

rbcL

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(e)

05101520253035 psbA-trnH

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(f)

Figure 1 Barcoding gap for six barcodes

Astragali Six indicators including average genetic distanceBLAST1 and the nearest distance method for identificationefficiency inter- and intraspecific variation and gap rate weretested to evaluate six DNA barcodes using bioinformaticssoftware and the Perl language algorithm The ITS sequence

was the optimal barcode for identifying Radix Astragali andits adulterants This method provides a novel means foraccurate identification of Radix Astragali and its adulterantsand improves the utilization of DNA barcoding in identifyingmedicinal plant species

8 Evidence-Based Complementary and Alternative Medicine

HM142329

HM142330

HM142328

HM142327

HM142326

HM142325

HM142

324

HM1423

23

HM142322

HM142321

HM142320HM142319HM142318HM142317

HM142316HM142315

HM142314

HM142313

HM142312

HM142311

HM142310H

M142309

HM142308

HM142307

HM142306

EF685985

EF6859

86EF6859

87HM142334

62EF685988HM142335 62

EF685991

HM142332

HM14233385

98

EF685990

HM142338

91

EF685989HM

142331HM142336

7698

COI

(a)

GU217642

GU217643

GQ434368

SX8

SX10

SX1

SD8

SD7

SD6

SD5

SD4SD3SD2SD1S4S3S1NM9NM5NM4NM10NM1GS6GS1GS2GS4GS5NM2NM3NM6

NM7

NM8

S2S5SX2SX3SX4SX5SX6SX7SX9

JF421475

65

GS3

99

HHQ1

HHQ2

HHQ3HHQ4HH

Q5HHQ6HHQ7GQ

434365GQ4

34366 99 85GU2

17635L10757GU217639GU217640

GU217641

97

GQ434367GU217654 90

83

Z99236MX

GU217662

AF028417

AF028418

AF028419

AF028420

JN617208

6598

Z97687U50765

99

AF303023JK1JK2

9999

ITS2

8798

(b)

HM142255

HM142256

HM142254

HM142253

HM142252

HM142251

HM142250

HM142249

HM142248

HM142

247

HM142

246

HM142

245

HM142243HM

142244

HM142242

HM142241HM142236HM142235HM142234HM142233HM142232EF685993

70

EF685992HM142237HM142238

HM142239

HM142240

88

67

AB741343

HM049533

HM142263

70

63

EF685994

HM142262

90HM142261

HM142265

HM049537

HM142258

HM142259

AY920437

87

HM049531

HM142260

99

68

HM049544

HM142264HM

142266

EF685995

99 99 10

0

HM049

541EF68599

6

HM142

257HM14226

7 6510058HE970723HE967439

AF169289 62HQ593363AF522108

HM851138

AY38688189879999

50

JQ619944

EF685997 96100

100

JQ412262HM142269

EU346805

EU346788JN894566

HQ593360JN894571

JN895781

6297

100

95

matK

(c)

GS1

GS2

GS3

GS4

GS5

GS6

NM1

NM10

NM2

NM3

NM4

NM5

NM6

NM7

NM8

NM9S1S2S3S4S5SD1SD2SD3SD4SD5SD6SD7SD8SD9SX1SX10

SX2SX3SX4SX5SX6SX7SX8SX

9

GU396744

GU396749

GU396750

GU396751

GU396752GU396753

GU396754

84

KF011553

GU396807

HE966

710

92

GU396

771GU

396745GQ

434966EF41

9597EF419598 92EF419662EF679744

99

99

99GU396767GU396781HE966707 84

GQ139474

GQ139475

GQ139476

GQ139477

GQ139478

GQ139479

GQ139480

GQ139481

GQ139482

GQ139483AB787167

99

HQ596765HQ596768

KJ02505387

98

psbA-trnH

(d)

HM142222

HM142223

HM142221

HM142220

HM142219

HM142218

HM142

217

HM142

216

HM1422

15

HM142214

HM142213HM142212HM142211HM142210HM142209

HM142208HM142207

HM142206

HM142205

HM142204

HM142203

HM142202

HM142201H

M142200

HM142199

EF685979

EF685978

71

EF685984

98

EF685

980HM

142225

99 87

EF68598

1HM142226 100

100EF685982

HM142224U74246

HM142227100

FJ537233

59

JQ933405

JX848463100

Z70173

100

AB012129EF685983

HM142228

9810059

rbcL

(e)

Figure 2 Continued

Evidence-Based Complementary and Alternative Medicine 9

JX017329

JXJX017330

JX0101

7328

JX0177326

JX017325

JX0173324

JX0173

23JX01732

JX01732122

JF736668

0JF736665

HM1

M144

228

H M14

2289

H MM14

2287

H M142228

6H M1142

272

H42

275

H U289

274

G U289

6643

G U289666

G 28U2896623

G U 28

9661

G U 5296

60

G U8059

E

42

EF685

969

SX9SX7SX6SX5SX4SX3NM

8NM

7NM3NM2GS5GS4S2GG S1

AB787166

JF736666

65 JF736669JF736667

61

GS3GS6NM1NM10NM4NNM5NM6S3M9

SSDD1

SD 2SD 3SD 5SX 7SX810

F68AF35975

AF359749EJ572 596 0FM14 044 8

HM14 227

H227 2

HM1422776

H142278M

H1M42279

H14M2280

HM142281

HM142283

M1422

HM1422 84

H

85

HM142288

HM142293

HM142294

HM142295

HM142296

H42M1291

H42M1292

H89127Q8

17331JX0JX017327733JX01

167 2

AF12219 5

KC2675 9

F35952 1

59

AF35975

AF35973

A

B2310919951

55

73

AM142297

HF121681

A AFA

359756F359757

AB741299

AF359755

AF5

AF35975421952

9972

76

HHQ1

HHQ2

HHQ3

HQ4

HHQ5

HHQ6

HQ7

9973

EM14223

0 2H HFJ980292

F68597030

HM144230 1

HM1

32 0

HH

6XJ

9675

AF

8Q1

99

HM142298

HM142299

35975

78

CY1CY2CY

6

CY5

CY4

F68597

1

HM142

303

AB051

988

94

74 719468 80

E

9Q33

82

HQ199

316

GU217

599FJ5372

84

94

Q83 9999HQ

514

GD

78598

F032294

K

HQ1HQ1

1HQ2

HQ10HQ4HQ9Q1 64HH 2

HHQ6Q3

HQ7

142304Q8HM

HM142305JX017333

54

9991 67

JX0173348

GQ24EU591996130

60

S1S26

9999

SSDSD9D8

99

JX017337938697

3KFX0173

7336

J 5

MX

GQ1

JX01AY256392

AF053142

8854

99

4HH2HH5

HH4HH3HH6

HH1

JF461309

F461308

A

J B

6HH7

01JF4613070101

Q31198554679

65

99

95

D AH X73

72J F4195

1967

679744

E EF14

99JK2JK1

F41

EF4194797053

SX24JK14 9

E78

6099

99

ITS

HM142290

(f)

Figure 2 ML tree for six barcodes lowastThe different color and shape for different species in clusters presented the identification of differentbarcodes

Table 6 Six indicators assessed for DNA barcoding

DNA barcodes

Parameters

Average geneticdistance

Identification efficiency Gap rateInter- to

intraspecificvariation

Barcoding gap Total scoreBLAST1 Nearest

distancesITS2 8 12 8 8 8 4 48ITS 6 28 22 0 0 6 62psbA-trnH 6 26 18 0 2 2 54rbcL 4 12 14 4 6 8 48matK 4 14 24 4 4 2 52COI 2 6 10 6 0 6 30lowastThe total score of six parameters was set by 10 30 30 10 10 and 10 in order Identification efficiency based on two methods was set by 30 score because of itsimportance for identification

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 2: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

2 Evidence-Based Complementary and Alternative Medicine

Table 1 Taxon sampling information of astragalus and its adulterants

Experiment number species Sampling spotS1-S5 Astragalus membranaceus Shaanxi ChinaSD1-SD9 Astragalus membranaceus Shaanxi ChinaGS1-GS6 Astragalus mongholicus Gansu ChinaNM1-NM10 Astragalus mongholicus Neimeng ChinaSX1-SX10 Astragalus mongholicus Shanxi ChinaHHQ1-HHQ7 Astragalus chinensis Beijing ChinaCY1-CY6 Astragalus scaberrimus Beijing ChinaJK1-JK3 Malva pusilla Shaanxi ChinaMX Medicago sativa Shaanxi ChinaHH1-HH7 Melilotus officinalis Shaanxi ChinaHQ1-HQ12 Hedysarum polybotrys Gansu ChinaXJ Astragalus adsurgens Beijing China

method of molecular identification is necessary The currentstudy evaluates the identification reliability and efficiency ofDNAbarcoding for the identification of RadixAstragali usingsix indicators of genetic distance identification efficiencyintra- and interspecific variation gap rate and barcoding gapSix barcodes were selected for identification because theyare commonly used in plant especially in medicinal plantWe collected Radix Astragaliand several of its adulterantsreported in previous research and downloaded the geneticsequences from the GenBank database A total of 29 species(including 19 species of Astragalus) and 478 sequences fromsix barcodes were used to validate the new method foridentifying Radix Astragali and adulterants and to acceleratethe data utilization of DNA barcoding

2 Materials and Methods

21 Materials Information A total of 77 specimens werecollected from two origins of Radix Astragali along withseven adulterants Radix Astragali specimens were collectedfrom Inner Mongolia Shaan xi and Gan su provinces in thePeoplersquos Republic of China which are the main producingareas The collection information is shown in Table 1 Allcorresponding voucher specimens were deposited in theHerbariumof the Institute ofMedicinal PlantDevelopment atthe Chinese Academy of Medical Sciences in Beijing ChinaThe GenBank accession number of the ITS2 in this experi-ment was orderly KJ999296ndashKJ999344 the accession num-ber of ITS sequences was orderly KJ999345ndashKJ999416 andthe accession number of psbA-trnH was orderly KJ999256ndashKJ999295 The sequences added in the subsequent analysisincluding ITS ITS2 psbA-trnHmatK and rbcL were down-loaded from the GenBank database

22 DNA Extraction PCR Amplification and SequencingThe material specimens were naturally dried and 30mgof dried plant material was used for the DNA extractionSamples were rubbed for two minutes at a frequency of30 rs in a FastPrep bead mill (Retsch MM400 Germany)and total genomic DNA was isolated from the crushedmaterial according to the manufacturerrsquos instructions (Plant

Genomic DNA Kit Tiangen Biotech Co China) We madethe following modifications to the protocol chloroform wasdiluted with isoamyl alcohol (24 1 in the same volume) andbuffer solution GP2 with isopropanol (same volume) Thepowder 700120583L of 65∘C GP1 and 1 120583L 120573-mercaptoethanolweremixed for 10ndash20 s before being incubated for 60minutesat 65∘C Then 700120583L of the chloroformisoamyl alcoholmixture was added and the solution was centrifuged for 5minutes at 12000 rpm (sim13400timesg) Supernatant was removedand placed into a new tube before adding 700 120583L isopropanoland blending for 15ndash20minutesThemixture was centrifugedin CB3 spin columns for 40 s at 12000 rpm The filtratewas discarded and 500120583L GD (adding quantitative anhy-drous ethanol before use) was added before centrifuging at12000 rpm for 40 s The filtrate was discarded and 700120583LPW (adding quantitative anhydrous ethanol before use) wasused to wash the membrane before centrifuging for 40 s at12000 rpm This step was repeated with 500120583L PW followedby a final centrifuge for 2 minutes at 12000 rpm to removeresidual wash buffer The spin column was dried at roomtemperature for 3ndash5 minutes and then centrifuged for 2minutes at 12000 rpm to obtain the total DNA

General PCR reaction conditions and universal DNAbarcode primers were used for the ITS ITS2 and psbA-trnHbarcodes as presented in Table 2 [24ndash26] PCR amplificationwas performed on 25-120583L reaction mixtures containing 2120583LDNA template (20ndash100 ng) 85 120583L ddH2O 125 120583L 2times TaqPCRMaster Mix (Beijing TransGen Biotech Co China) and11-120583L forwardreverse (FR) primers (25 120583M) The reactionmixtures were amplified in a 9700 GeneAmp PCR system(Applied Biosystems USA) Amplicons were visualized byelectrophoresis on 1 agarose gels Purified PCR productswere sequenced in both directions using the ABI 3730XLsequencer (Applied Biosystems USA)

23 Sequence Assembly Alignment and Analysis Sequencingpeak diagramswere obtained and proofread and then contigswere assembled using a CodonCode Aligner 501 (Codon-Code Co USA) Complete ITS2 sequences were obtainedusing the HMMer annotation method based on the HiddenMarkov model (HMM) [27] All of the sequences were

Evidence-Based Complementary and Alternative Medicine 3

Table 2 Primers and PCR reaction conditions

Primer name Primer sequences (51015840-31015840) PCR reaction conditionITS2

2F ATGCGATACTTGGTGTGAAT 94∘C 5min

3R GACGCTTCTCCAGACTACAAT94∘C 30 s 56∘C 30 s72∘C 45 s 40 cycles

72∘C 10minITS

4R TCCTCCGCTTATTGATATGC 94∘C 5min

5F GGAAGTAAAAGTCGTAACAAGG94∘C 1min 50∘C 1min

72∘C 15min + 3 scycle 30 cycles72∘C 7min

psbAfwdPA GTTATGCATGAACGTAATGCTC 94∘C 4min

trnH

rev TH CGCGCATGGTGGATTCACAATCC94∘C 30 s 55∘C 1min72∘C 1min 35 cycles

72∘C 10min

aligned using ClustalW in combination with 317 sequencesfrom six commonly used barcodes (ITS2 ITS psbA-trnHmatK rbcL and COI) which were downloaded from theGenBank database (Table 3) Sequence genetic distance andGC content were calculated using the maximum compositelikelihoodmodel Maximum likelihood (ML) trees were con-structed based on the Tamura-Nei model and bootstrap testswere conducted using 1000 repeats to assess the confidenceof the phylogenetic relationships byMEGA 60 software [28]The barcoding gap defined as the spacer region betweenintra- and interspecific genetic variations and identificationefficiency based on BLAST1 and K2P nearest distance wereperformed by the Perl language algorithm (Putty) [25 29 30]

3 Results

31 Sequence Information and Identification Efficiency Atotal of 478 sequences for six barcodes were analyzed fromwhich 161 sequences were obtained from Astragalus Radixand its adulterants Sequence information and identificationsuccess rates are listed in Table 4 The average GC contentof six barcodes was discrepant and ITS and ITS2 regionsfrom nuclear ribosomal DNA performed higher than otherbarcodes (5297 versus 5080) Among the six barcodesITS2 provided the largest average genetic distance (10792)and rbcL was the smallest (00349) All of the six barcodesobtained a zero value for the minimum genetic distance Interms of identification efficiency the nearest distancemethodwas superior to the BLAST1method for all of the six barcodesMoreover ITS and the psbA-trnHandmatK regions provideda higher rate of success than the other three barcodes usingthe BLAST1 method However matK ITS and psbA-trnHperformed better than the other three barcodes based on thenearest distancemethod ITS and psbA-trnHobtained highergenetic distances so thematK ITS and psbA-trnH barcodeswere the preferable methods for identifying Radix Astragali

and its adulterants based on superior sequencing efficiencyand identification efficiency

32 Intra- and Interspecific Variation Analysis Using SixParameters Six parameters to analyze intraspecific variationand interspecific divergence were employed to assess theutility of six DNA barcodes (Table 5) We expected theldquominimum interspecific distancerdquo would be higher than theldquocoalescent depthrdquo (maximum intraspecific distance) There-fore we first utilized the ldquogap raterdquo to indicate the distinctnesscalculated by the formula (minimum interspecific distance minusmaximum intraspecific distance)minimum interspecific dis-tance Results show that the ITS2 COI matK and rbcLregions outperformed the ITS and psbA-trnH regions for gaprates However when we compared all of the average inter-and intraspecific distances the ITS2 rbcL matK and psbA-trnH regions performed better than the ITS and COI regionsTherefore in terms of intra- and interspecific variation ITS2matK and rbcL are the preferable options for identifyingRadix Astragali and its adulterants

33 Barcoding Gap Analysis Analysis of the DNA barcod-ing gap presents the divergence of inter- and intraspeciesand indicates separate nonoverlapping distribution betweenspecimens in an ideal situation [25] In our study (Figure 1)the rbcL COI ITS and matK regions possessed less relativedistribution of inter- and intraspecific variation than psbA-trnH and ITS2 although there were no nonoverlappingregions for the six barcodes Hence the rbcL COI ITS andmatK regions are more successful at identifying Radix Astra-gali and its adulterants from the standpoint of barcoding gapanalysis

34MLTreeAnalysis Maximum likelihood (ML) is a generalstatistical criterion in widespread use for the inference ofmolecular phylogenies [31] An ML tree visually revealed therelationship between species As the results show (Figure 2)

4 Evidence-Based Complementary and Alternative Medicine

Table 3 Sequences from GenBank for identifying Astragalus and its adulterants

Region Family Species Accession number

ITS2

Fabaceae Melilotus officinalis U50765 Z97687Fabaceae Astragalus adsurgens L10757 GU217639 GU217640 GU217641Fabaceae Astragalus chinensis GQ434365 GQ434366Fabaceae Hedysarum polybotrys GQ434367Fabaceae Astragalus mongholicus GQ434368 GU217643Fabaceae Astragalus mongholicus var dahuricus GU217635Fabaceae Astragalus membranaceus GU217642 JF421475Fabaceae Caragana sinica GU217654Fabaceae Medicago sativa GU217662 Z99236 AF028417 JN617208Fabaceae Medicago sativa subsp caerulea AF028418Fabaceae Medicago sativa subsp glomerata AF028419Fabaceae Medicago falcata AF028420Malvaceae Alcea rosea AF303023

ITS

Fabaceae Astragalus membranaceus

AF359749 EF685968 EU852042 FJ572044 GU289659GU289660 GU289661 GU289662 GU289663 GU289664HM142272 HM142273 HM142274 HM142275 HM142276HM142277 HM142278 HM142279 HM142280 HM142281HQ891827 JX017320 JX017321 JX017322 JX017323JX017324 JX017325 JX017326 JX017327 JX017328JX017329 JX017330 JX017331 JX017332 AF121675

Fabaceae Astragalus mongholicus

AF359750 EF685969 HM142282 HM142283 HM142284HM142285 HM142286 HM142287 HM142288 HM142289HM142290 JF736665 JF736666 JF736667 JF736668JF736669 AB787166

Fabaceae Astragalus propinquus AF359751Fabaceae Astragalus lepsensis AF359752Fabaceae Astragalus aksuensis AF359753 AB231091Fabaceae Astragalus hoantchy AF359754 AF521952Fabaceae Astragalus hoantchy subsp dshimensis AF359755Fabaceae Astragalus lehmannianus AF359756Fabaceae Astragalus sieversianus AF359757Fabaceae Astragalus austrosibiricus AF359758Fabaceae Astragalus uliginosus EF685970Fabaceae Astragalus scaberrimus AB051988Fabaceae Astragalus chinensis FJ980292 HM142297 AF121681

Fabaceae Astragalus borealimongolicus HM142291 HM142292 HM142293 HM142294 HM142295HM142296

Fabaceae Astragalus adsurgens HM142298 HM142299 HQ199326Fabaceae Astragalus mongholicus var dahuricus HM142300 KC262199Fabaceae Astragalus zacharensis HM142301Fabaceae Astragalus melilotoides HM142302Fabaceae Astragalus scaberrimus HM142303Fabaceae Astragalus sieversianus AB741299Fabaceae Oxytropis anertii EF685971Fabaceae Caragana sinica DQ914785 FJ537284 GQ338283Fabaceae Glycyrrhiza pallidiflora EU591998 GQ246130Fabaceae Melilotus officinalis AB546796 JF461307 JF461308 JF461309 DQ311985

Fabaceae Medicago sativa GQ488541 AF053142 AY256392 JX017335 JX017336JX017337 KF938697

Fabaceae Oxytropis caerulea GU217599 HQ199316Fabaceae Hedysarum vicioides HM142304 HM142305Fabaceae Hedysarum polybotrys JX017333 JX017334 KF032294Malvaceae Malva neglecta EF419478 EF419479Malvaceae Alcea rosea AH010172 EF419544 EF679714 JX017319

Evidence-Based Complementary and Alternative Medicine 5

Table 3 Continued

Region Family Species Accession number

psbA-trnH

Fabaceae Astragalus membranaceus f pallidipurpureus GQ139474Fabaceae Astragalus adsurgens GU396749 GU396750 GU396751 KF011553Fabaceae Astragalus mongholicus GU396754 AB787167

Fabaceae Astragalus membranaceusGQ139475 GQ139476 GQ139477 GQ139478 GQ139479GQ139480 GQ139481 GQ139482 GQ139483 GU396752GU396753

Fabaceae Caragana sinica GU396767 KJ025053Fabaceae Oxytropis caerulea GU396771Fabaceae Medicago sativa GU396781 HQ596768 HE966707Fabaceae Glycyrrhiza pallidiflora GU396807Fabaceae Melilotus officinalis HE966710Malvaceae Malva neglecta EF419597 EF419598 HQ596765 HQ596765Malvaceae Alcea rosea EF419662 EF679744

matK

Fabaceae Astragalus membranaceusEF685992 HM142232 HM142233 HM142234 HM142235HM142236 HM142237 HM142238 HM142239 HM142240HM142254

Fabaceae Astragalus mongholicus EF685993 HM142241 HM142242 HM142243 HM142244HM142245 HM142246 HM142247 HM142255 HM142256

Fabaceae Astragalus uliginosus EF685994 HM142262Fabaceae Astragalus mongholicus var dahuricus HM049531 HM142260Fabaceae Astragalus chinensis HM049533 HM142263Fabaceae Astragalus adsurgens HM049537 HM142258 HM142259 AY920437

Fabaceae Astragalus borealimongolicus HM142248 HM142249 HM142250 HM142251 HM142252HM142253

Fabaceae Astragalus zacharensis HM142261Fabaceae Astragalus melilotoides HM142264Fabaceae Astragalus scaberrimus HM142265Fabaceae Astragalus sieversianus AB741343

Fabaceae Medicago sativa AF522108 HQ593363 HM851138 AY386881 HE967439AF169289

Fabaceae Oxytropis anertii EF685995 HM142266Fabaceae Oxytropis caerulea HM049544Fabaceae Glycyrrhiza pallidiflora EF685997 HM142269 JQ619944Fabaceae Hedysarum vicioides EF685996 HM142257 HM142267Fabaceae Caragana sinica HM049541Fabaceae Melilotus officinalis HE970723

Malvaceae Malva neglecta EU346788 HQ593360 JN894566 JN894571 JN895781JQ412262

Malvaceae Alcea rosea EU346805

rbcL

Fabaceae Medicago sativa Z70173

Fabaceae Astragalus membranaceusEF685978 HM142199 HM142200 HM142201 HM142202HM142203 HM142204 HM142205 HM142206 HM142207HM142221

Fabaceae Astragalus mongholicus EF685979 HM142208 HM142209 HM142210 HM142211HM142212 HM142213 HM142214 HM142222 HM142223

Fabaceae Astragalus uliginosus EF685980 HM142225Fabaceae Hedysarum vicioides EF685982 U74246 HM142224 HM142227Fabaceae Astragalus adsurgens EF685984

Fabaceae Astragalus borealimongolicus HM142215 HM142216 HM142217 HM142218 HM142219HM142220

Fabaceae Oxytropis anertii EF685981 HM142226Fabaceae Glycyrrhiza pallidiflora EF685983 AB012129 HM142228Fabaceae Caragana sinica FJ537233Fabaceae Melilotus officinalis JQ933405 JX848463

6 Evidence-Based Complementary and Alternative Medicine

Table 4 The information of identification efficiency for six barcodes

Markers COI ITS2 ITS matK rbcL psbA-trnHNumber of sequences 39 72 185 65 43 74Average GC content 4329 5080 5297 3114 4288 2177Genetic distance

Min 00000 00000 00000 00000 00000 00000Max 00086 79494 53130 02801 00349 22701Average 00019 10792 03508 00711 00116 05080

Identification efficiencyBLAST 1 1026 1250 3081 2923 2326 2973Nearest distance 3333 2778 5243 6615 3721 4189

Table 5 Analysis of interspecific divergence and intraspecific variation for six barcodes

Marker (Mean plusmn SD) COI ITS2 ITS matK rbcL psbA-trnHTheta 22260 plusmn 62961 00030 plusmn 00046 00271 plusmn 00404 00021 plusmn 00035 00011 plusmn 00020 02415 plusmn 04777Coalescent depth 00001 plusmn 00004 00040 plusmn 00046 01423 plusmn 03958 00032 plusmn 00050 00016 plusmn 00030 04109 plusmn 05683All intraspecific distance 93280 plusmn 00003 00021 plusmn 00024 01153 plusmn 03051 00014 plusmn 00022 00002 plusmn 00011 03093 plusmn 04300Theta prime 00012 plusmn 00008 00617 plusmn 00302 00603 plusmn 00371 00091 plusmn 00061 00024 plusmn 00035 03083 plusmn 02887Minimum interspecific distance 00008 plusmn 00010 00440 plusmn 00386 00168 plusmn 00196 00066 plusmn 00066 00023 plusmn 00035 00423 plusmn 00380All interspecific distance 00007 plusmn 00010 00343 plusmn 00389 01066 plusmn 02833 00071 plusmn 00064 00015 plusmn 00029 03166 plusmn 04070Gap rate 8750 9091 5152 3043

psbA-trnH successfully differentiated Radix Astragali andits adulterants Furthermore it produced areas of obviousseparation for Radix Astragali The remaining five barcodesalso differentiated Radix Astragali and its adulterants Eachspecies clustered together separate from other species Con-sidering the difficult amplification and sequencing and fastand accurate identification purpose of DNA barcoding wedid not add all the sequence data of ITS2 and psbA-trnH tobuild ML tree and subsequent analysis

4 Discussion and Conclusions

Radix Astragali is reported to possess 47 bioactive com-pounds and has many bioactive properties [32ndash37] VariousRadix Astragali preparations are commercially availablenot only in China as a TCM component but also in theUnited States as dietary supplements [38] However due toincreasing demand substitutes and adulterants have floodedthe market Traditional identification methods such as mor-phological and microscopic methods are limited by the lackof explicit criteria for character selection or coding and thusmainly depend on subjective assessments Although chemicalmethods are able to distinguish between different species itis difficult to differentiate sibling species that possess similarchemical compositions In addition chemical methods areunable to provide accurate species authentication Severaltypes of molecular markers for characterizing genotypes areuseful in identifying plant species For example RAPD hasbeen used to estimate genetic diversity in plant populationsbased on amplification of random DNA fragments andcomparisons of common polymorphisms DNA barcoding

is advocated for species identification due to its universalapplicability simplicity and scientific accuracy Howeverthe analysis methods for DNA barcodes were limited Withthe development of molecular biology and bioinformaticsa more improved analytic method for DNA barcoding canbe established to identify Radix Astragali and closely relatedspecies

In this study we validated a new analytical method foridentifying Radix Astragali using DNA barcoding Seventy-seven specimens of Radix Astragali and its adulterants werecollected and the sequences of 29 species reported in theliterature were downloaded from the GenBank databaseBased on the 478 sequences for six barcodes (ITS2 ITS fromnuclear genome psbA-trnH rbcL andmatK fromchloroplastgenome COI from mitochondrial genome) genetic distanceand ML Tree were calculated by MEGA 60 software andidentification efficiency intra- and interspecific variationand barcoding gap were calculated using the Perl languagealgorithm Results of the six indicators assessed are shownin Table 6 ITS and psbA-trnH outperformed other barcodesin terms of identification efficiency ITS2 performed better interms of genetic distance gap rate and inter- and intraspecificvariation RbcL performed better in terms of barcoding gapand inter- and intraspecific variation Although ITS2was partof the ITS sequence it performed poorly in identificationefficiency Therefore we suggest that the ITS sequence isthe optimal barcode and that the psbA-trnH region is acomplementary barcode for identifying Radix Astragali andits adulterants

In conclusion we describe a new analytical method forthe use of DNA barcoding in the identification of Radix

Evidence-Based Complementary and Alternative Medicine 7

0102030405060708090100 COI

0

IntraspeciesInterspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

(a)

0

10

20

30

40

50

60ITS2

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(b)

0102030405060

ITS

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(c)

010203040506070

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

matK

gt02

Interspecies

(d)

0102030405060708090100

rbcL

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(e)

05101520253035 psbA-trnH

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(f)

Figure 1 Barcoding gap for six barcodes

Astragali Six indicators including average genetic distanceBLAST1 and the nearest distance method for identificationefficiency inter- and intraspecific variation and gap rate weretested to evaluate six DNA barcodes using bioinformaticssoftware and the Perl language algorithm The ITS sequence

was the optimal barcode for identifying Radix Astragali andits adulterants This method provides a novel means foraccurate identification of Radix Astragali and its adulterantsand improves the utilization of DNA barcoding in identifyingmedicinal plant species

8 Evidence-Based Complementary and Alternative Medicine

HM142329

HM142330

HM142328

HM142327

HM142326

HM142325

HM142

324

HM1423

23

HM142322

HM142321

HM142320HM142319HM142318HM142317

HM142316HM142315

HM142314

HM142313

HM142312

HM142311

HM142310H

M142309

HM142308

HM142307

HM142306

EF685985

EF6859

86EF6859

87HM142334

62EF685988HM142335 62

EF685991

HM142332

HM14233385

98

EF685990

HM142338

91

EF685989HM

142331HM142336

7698

COI

(a)

GU217642

GU217643

GQ434368

SX8

SX10

SX1

SD8

SD7

SD6

SD5

SD4SD3SD2SD1S4S3S1NM9NM5NM4NM10NM1GS6GS1GS2GS4GS5NM2NM3NM6

NM7

NM8

S2S5SX2SX3SX4SX5SX6SX7SX9

JF421475

65

GS3

99

HHQ1

HHQ2

HHQ3HHQ4HH

Q5HHQ6HHQ7GQ

434365GQ4

34366 99 85GU2

17635L10757GU217639GU217640

GU217641

97

GQ434367GU217654 90

83

Z99236MX

GU217662

AF028417

AF028418

AF028419

AF028420

JN617208

6598

Z97687U50765

99

AF303023JK1JK2

9999

ITS2

8798

(b)

HM142255

HM142256

HM142254

HM142253

HM142252

HM142251

HM142250

HM142249

HM142248

HM142

247

HM142

246

HM142

245

HM142243HM

142244

HM142242

HM142241HM142236HM142235HM142234HM142233HM142232EF685993

70

EF685992HM142237HM142238

HM142239

HM142240

88

67

AB741343

HM049533

HM142263

70

63

EF685994

HM142262

90HM142261

HM142265

HM049537

HM142258

HM142259

AY920437

87

HM049531

HM142260

99

68

HM049544

HM142264HM

142266

EF685995

99 99 10

0

HM049

541EF68599

6

HM142

257HM14226

7 6510058HE970723HE967439

AF169289 62HQ593363AF522108

HM851138

AY38688189879999

50

JQ619944

EF685997 96100

100

JQ412262HM142269

EU346805

EU346788JN894566

HQ593360JN894571

JN895781

6297

100

95

matK

(c)

GS1

GS2

GS3

GS4

GS5

GS6

NM1

NM10

NM2

NM3

NM4

NM5

NM6

NM7

NM8

NM9S1S2S3S4S5SD1SD2SD3SD4SD5SD6SD7SD8SD9SX1SX10

SX2SX3SX4SX5SX6SX7SX8SX

9

GU396744

GU396749

GU396750

GU396751

GU396752GU396753

GU396754

84

KF011553

GU396807

HE966

710

92

GU396

771GU

396745GQ

434966EF41

9597EF419598 92EF419662EF679744

99

99

99GU396767GU396781HE966707 84

GQ139474

GQ139475

GQ139476

GQ139477

GQ139478

GQ139479

GQ139480

GQ139481

GQ139482

GQ139483AB787167

99

HQ596765HQ596768

KJ02505387

98

psbA-trnH

(d)

HM142222

HM142223

HM142221

HM142220

HM142219

HM142218

HM142

217

HM142

216

HM1422

15

HM142214

HM142213HM142212HM142211HM142210HM142209

HM142208HM142207

HM142206

HM142205

HM142204

HM142203

HM142202

HM142201H

M142200

HM142199

EF685979

EF685978

71

EF685984

98

EF685

980HM

142225

99 87

EF68598

1HM142226 100

100EF685982

HM142224U74246

HM142227100

FJ537233

59

JQ933405

JX848463100

Z70173

100

AB012129EF685983

HM142228

9810059

rbcL

(e)

Figure 2 Continued

Evidence-Based Complementary and Alternative Medicine 9

JX017329

JXJX017330

JX0101

7328

JX0177326

JX017325

JX0173324

JX0173

23JX01732

JX01732122

JF736668

0JF736665

HM1

M144

228

H M14

2289

H MM14

2287

H M142228

6H M1142

272

H42

275

H U289

274

G U289

6643

G U289666

G 28U2896623

G U 28

9661

G U 5296

60

G U8059

E

42

EF685

969

SX9SX7SX6SX5SX4SX3NM

8NM

7NM3NM2GS5GS4S2GG S1

AB787166

JF736666

65 JF736669JF736667

61

GS3GS6NM1NM10NM4NNM5NM6S3M9

SSDD1

SD 2SD 3SD 5SX 7SX810

F68AF35975

AF359749EJ572 596 0FM14 044 8

HM14 227

H227 2

HM1422776

H142278M

H1M42279

H14M2280

HM142281

HM142283

M1422

HM1422 84

H

85

HM142288

HM142293

HM142294

HM142295

HM142296

H42M1291

H42M1292

H89127Q8

17331JX0JX017327733JX01

167 2

AF12219 5

KC2675 9

F35952 1

59

AF35975

AF35973

A

B2310919951

55

73

AM142297

HF121681

A AFA

359756F359757

AB741299

AF359755

AF5

AF35975421952

9972

76

HHQ1

HHQ2

HHQ3

HQ4

HHQ5

HHQ6

HQ7

9973

EM14223

0 2H HFJ980292

F68597030

HM144230 1

HM1

32 0

HH

6XJ

9675

AF

8Q1

99

HM142298

HM142299

35975

78

CY1CY2CY

6

CY5

CY4

F68597

1

HM142

303

AB051

988

94

74 719468 80

E

9Q33

82

HQ199

316

GU217

599FJ5372

84

94

Q83 9999HQ

514

GD

78598

F032294

K

HQ1HQ1

1HQ2

HQ10HQ4HQ9Q1 64HH 2

HHQ6Q3

HQ7

142304Q8HM

HM142305JX017333

54

9991 67

JX0173348

GQ24EU591996130

60

S1S26

9999

SSDSD9D8

99

JX017337938697

3KFX0173

7336

J 5

MX

GQ1

JX01AY256392

AF053142

8854

99

4HH2HH5

HH4HH3HH6

HH1

JF461309

F461308

A

J B

6HH7

01JF4613070101

Q31198554679

65

99

95

D AH X73

72J F4195

1967

679744

E EF14

99JK2JK1

F41

EF4194797053

SX24JK14 9

E78

6099

99

ITS

HM142290

(f)

Figure 2 ML tree for six barcodes lowastThe different color and shape for different species in clusters presented the identification of differentbarcodes

Table 6 Six indicators assessed for DNA barcoding

DNA barcodes

Parameters

Average geneticdistance

Identification efficiency Gap rateInter- to

intraspecificvariation

Barcoding gap Total scoreBLAST1 Nearest

distancesITS2 8 12 8 8 8 4 48ITS 6 28 22 0 0 6 62psbA-trnH 6 26 18 0 2 2 54rbcL 4 12 14 4 6 8 48matK 4 14 24 4 4 2 52COI 2 6 10 6 0 6 30lowastThe total score of six parameters was set by 10 30 30 10 10 and 10 in order Identification efficiency based on two methods was set by 30 score because of itsimportance for identification

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 3: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

Evidence-Based Complementary and Alternative Medicine 3

Table 2 Primers and PCR reaction conditions

Primer name Primer sequences (51015840-31015840) PCR reaction conditionITS2

2F ATGCGATACTTGGTGTGAAT 94∘C 5min

3R GACGCTTCTCCAGACTACAAT94∘C 30 s 56∘C 30 s72∘C 45 s 40 cycles

72∘C 10minITS

4R TCCTCCGCTTATTGATATGC 94∘C 5min

5F GGAAGTAAAAGTCGTAACAAGG94∘C 1min 50∘C 1min

72∘C 15min + 3 scycle 30 cycles72∘C 7min

psbAfwdPA GTTATGCATGAACGTAATGCTC 94∘C 4min

trnH

rev TH CGCGCATGGTGGATTCACAATCC94∘C 30 s 55∘C 1min72∘C 1min 35 cycles

72∘C 10min

aligned using ClustalW in combination with 317 sequencesfrom six commonly used barcodes (ITS2 ITS psbA-trnHmatK rbcL and COI) which were downloaded from theGenBank database (Table 3) Sequence genetic distance andGC content were calculated using the maximum compositelikelihoodmodel Maximum likelihood (ML) trees were con-structed based on the Tamura-Nei model and bootstrap testswere conducted using 1000 repeats to assess the confidenceof the phylogenetic relationships byMEGA 60 software [28]The barcoding gap defined as the spacer region betweenintra- and interspecific genetic variations and identificationefficiency based on BLAST1 and K2P nearest distance wereperformed by the Perl language algorithm (Putty) [25 29 30]

3 Results

31 Sequence Information and Identification Efficiency Atotal of 478 sequences for six barcodes were analyzed fromwhich 161 sequences were obtained from Astragalus Radixand its adulterants Sequence information and identificationsuccess rates are listed in Table 4 The average GC contentof six barcodes was discrepant and ITS and ITS2 regionsfrom nuclear ribosomal DNA performed higher than otherbarcodes (5297 versus 5080) Among the six barcodesITS2 provided the largest average genetic distance (10792)and rbcL was the smallest (00349) All of the six barcodesobtained a zero value for the minimum genetic distance Interms of identification efficiency the nearest distancemethodwas superior to the BLAST1method for all of the six barcodesMoreover ITS and the psbA-trnHandmatK regions provideda higher rate of success than the other three barcodes usingthe BLAST1 method However matK ITS and psbA-trnHperformed better than the other three barcodes based on thenearest distancemethod ITS and psbA-trnHobtained highergenetic distances so thematK ITS and psbA-trnH barcodeswere the preferable methods for identifying Radix Astragali

and its adulterants based on superior sequencing efficiencyand identification efficiency

32 Intra- and Interspecific Variation Analysis Using SixParameters Six parameters to analyze intraspecific variationand interspecific divergence were employed to assess theutility of six DNA barcodes (Table 5) We expected theldquominimum interspecific distancerdquo would be higher than theldquocoalescent depthrdquo (maximum intraspecific distance) There-fore we first utilized the ldquogap raterdquo to indicate the distinctnesscalculated by the formula (minimum interspecific distance minusmaximum intraspecific distance)minimum interspecific dis-tance Results show that the ITS2 COI matK and rbcLregions outperformed the ITS and psbA-trnH regions for gaprates However when we compared all of the average inter-and intraspecific distances the ITS2 rbcL matK and psbA-trnH regions performed better than the ITS and COI regionsTherefore in terms of intra- and interspecific variation ITS2matK and rbcL are the preferable options for identifyingRadix Astragali and its adulterants

33 Barcoding Gap Analysis Analysis of the DNA barcod-ing gap presents the divergence of inter- and intraspeciesand indicates separate nonoverlapping distribution betweenspecimens in an ideal situation [25] In our study (Figure 1)the rbcL COI ITS and matK regions possessed less relativedistribution of inter- and intraspecific variation than psbA-trnH and ITS2 although there were no nonoverlappingregions for the six barcodes Hence the rbcL COI ITS andmatK regions are more successful at identifying Radix Astra-gali and its adulterants from the standpoint of barcoding gapanalysis

34MLTreeAnalysis Maximum likelihood (ML) is a generalstatistical criterion in widespread use for the inference ofmolecular phylogenies [31] An ML tree visually revealed therelationship between species As the results show (Figure 2)

4 Evidence-Based Complementary and Alternative Medicine

Table 3 Sequences from GenBank for identifying Astragalus and its adulterants

Region Family Species Accession number

ITS2

Fabaceae Melilotus officinalis U50765 Z97687Fabaceae Astragalus adsurgens L10757 GU217639 GU217640 GU217641Fabaceae Astragalus chinensis GQ434365 GQ434366Fabaceae Hedysarum polybotrys GQ434367Fabaceae Astragalus mongholicus GQ434368 GU217643Fabaceae Astragalus mongholicus var dahuricus GU217635Fabaceae Astragalus membranaceus GU217642 JF421475Fabaceae Caragana sinica GU217654Fabaceae Medicago sativa GU217662 Z99236 AF028417 JN617208Fabaceae Medicago sativa subsp caerulea AF028418Fabaceae Medicago sativa subsp glomerata AF028419Fabaceae Medicago falcata AF028420Malvaceae Alcea rosea AF303023

ITS

Fabaceae Astragalus membranaceus

AF359749 EF685968 EU852042 FJ572044 GU289659GU289660 GU289661 GU289662 GU289663 GU289664HM142272 HM142273 HM142274 HM142275 HM142276HM142277 HM142278 HM142279 HM142280 HM142281HQ891827 JX017320 JX017321 JX017322 JX017323JX017324 JX017325 JX017326 JX017327 JX017328JX017329 JX017330 JX017331 JX017332 AF121675

Fabaceae Astragalus mongholicus

AF359750 EF685969 HM142282 HM142283 HM142284HM142285 HM142286 HM142287 HM142288 HM142289HM142290 JF736665 JF736666 JF736667 JF736668JF736669 AB787166

Fabaceae Astragalus propinquus AF359751Fabaceae Astragalus lepsensis AF359752Fabaceae Astragalus aksuensis AF359753 AB231091Fabaceae Astragalus hoantchy AF359754 AF521952Fabaceae Astragalus hoantchy subsp dshimensis AF359755Fabaceae Astragalus lehmannianus AF359756Fabaceae Astragalus sieversianus AF359757Fabaceae Astragalus austrosibiricus AF359758Fabaceae Astragalus uliginosus EF685970Fabaceae Astragalus scaberrimus AB051988Fabaceae Astragalus chinensis FJ980292 HM142297 AF121681

Fabaceae Astragalus borealimongolicus HM142291 HM142292 HM142293 HM142294 HM142295HM142296

Fabaceae Astragalus adsurgens HM142298 HM142299 HQ199326Fabaceae Astragalus mongholicus var dahuricus HM142300 KC262199Fabaceae Astragalus zacharensis HM142301Fabaceae Astragalus melilotoides HM142302Fabaceae Astragalus scaberrimus HM142303Fabaceae Astragalus sieversianus AB741299Fabaceae Oxytropis anertii EF685971Fabaceae Caragana sinica DQ914785 FJ537284 GQ338283Fabaceae Glycyrrhiza pallidiflora EU591998 GQ246130Fabaceae Melilotus officinalis AB546796 JF461307 JF461308 JF461309 DQ311985

Fabaceae Medicago sativa GQ488541 AF053142 AY256392 JX017335 JX017336JX017337 KF938697

Fabaceae Oxytropis caerulea GU217599 HQ199316Fabaceae Hedysarum vicioides HM142304 HM142305Fabaceae Hedysarum polybotrys JX017333 JX017334 KF032294Malvaceae Malva neglecta EF419478 EF419479Malvaceae Alcea rosea AH010172 EF419544 EF679714 JX017319

Evidence-Based Complementary and Alternative Medicine 5

Table 3 Continued

Region Family Species Accession number

psbA-trnH

Fabaceae Astragalus membranaceus f pallidipurpureus GQ139474Fabaceae Astragalus adsurgens GU396749 GU396750 GU396751 KF011553Fabaceae Astragalus mongholicus GU396754 AB787167

Fabaceae Astragalus membranaceusGQ139475 GQ139476 GQ139477 GQ139478 GQ139479GQ139480 GQ139481 GQ139482 GQ139483 GU396752GU396753

Fabaceae Caragana sinica GU396767 KJ025053Fabaceae Oxytropis caerulea GU396771Fabaceae Medicago sativa GU396781 HQ596768 HE966707Fabaceae Glycyrrhiza pallidiflora GU396807Fabaceae Melilotus officinalis HE966710Malvaceae Malva neglecta EF419597 EF419598 HQ596765 HQ596765Malvaceae Alcea rosea EF419662 EF679744

matK

Fabaceae Astragalus membranaceusEF685992 HM142232 HM142233 HM142234 HM142235HM142236 HM142237 HM142238 HM142239 HM142240HM142254

Fabaceae Astragalus mongholicus EF685993 HM142241 HM142242 HM142243 HM142244HM142245 HM142246 HM142247 HM142255 HM142256

Fabaceae Astragalus uliginosus EF685994 HM142262Fabaceae Astragalus mongholicus var dahuricus HM049531 HM142260Fabaceae Astragalus chinensis HM049533 HM142263Fabaceae Astragalus adsurgens HM049537 HM142258 HM142259 AY920437

Fabaceae Astragalus borealimongolicus HM142248 HM142249 HM142250 HM142251 HM142252HM142253

Fabaceae Astragalus zacharensis HM142261Fabaceae Astragalus melilotoides HM142264Fabaceae Astragalus scaberrimus HM142265Fabaceae Astragalus sieversianus AB741343

Fabaceae Medicago sativa AF522108 HQ593363 HM851138 AY386881 HE967439AF169289

Fabaceae Oxytropis anertii EF685995 HM142266Fabaceae Oxytropis caerulea HM049544Fabaceae Glycyrrhiza pallidiflora EF685997 HM142269 JQ619944Fabaceae Hedysarum vicioides EF685996 HM142257 HM142267Fabaceae Caragana sinica HM049541Fabaceae Melilotus officinalis HE970723

Malvaceae Malva neglecta EU346788 HQ593360 JN894566 JN894571 JN895781JQ412262

Malvaceae Alcea rosea EU346805

rbcL

Fabaceae Medicago sativa Z70173

Fabaceae Astragalus membranaceusEF685978 HM142199 HM142200 HM142201 HM142202HM142203 HM142204 HM142205 HM142206 HM142207HM142221

Fabaceae Astragalus mongholicus EF685979 HM142208 HM142209 HM142210 HM142211HM142212 HM142213 HM142214 HM142222 HM142223

Fabaceae Astragalus uliginosus EF685980 HM142225Fabaceae Hedysarum vicioides EF685982 U74246 HM142224 HM142227Fabaceae Astragalus adsurgens EF685984

Fabaceae Astragalus borealimongolicus HM142215 HM142216 HM142217 HM142218 HM142219HM142220

Fabaceae Oxytropis anertii EF685981 HM142226Fabaceae Glycyrrhiza pallidiflora EF685983 AB012129 HM142228Fabaceae Caragana sinica FJ537233Fabaceae Melilotus officinalis JQ933405 JX848463

6 Evidence-Based Complementary and Alternative Medicine

Table 4 The information of identification efficiency for six barcodes

Markers COI ITS2 ITS matK rbcL psbA-trnHNumber of sequences 39 72 185 65 43 74Average GC content 4329 5080 5297 3114 4288 2177Genetic distance

Min 00000 00000 00000 00000 00000 00000Max 00086 79494 53130 02801 00349 22701Average 00019 10792 03508 00711 00116 05080

Identification efficiencyBLAST 1 1026 1250 3081 2923 2326 2973Nearest distance 3333 2778 5243 6615 3721 4189

Table 5 Analysis of interspecific divergence and intraspecific variation for six barcodes

Marker (Mean plusmn SD) COI ITS2 ITS matK rbcL psbA-trnHTheta 22260 plusmn 62961 00030 plusmn 00046 00271 plusmn 00404 00021 plusmn 00035 00011 plusmn 00020 02415 plusmn 04777Coalescent depth 00001 plusmn 00004 00040 plusmn 00046 01423 plusmn 03958 00032 plusmn 00050 00016 plusmn 00030 04109 plusmn 05683All intraspecific distance 93280 plusmn 00003 00021 plusmn 00024 01153 plusmn 03051 00014 plusmn 00022 00002 plusmn 00011 03093 plusmn 04300Theta prime 00012 plusmn 00008 00617 plusmn 00302 00603 plusmn 00371 00091 plusmn 00061 00024 plusmn 00035 03083 plusmn 02887Minimum interspecific distance 00008 plusmn 00010 00440 plusmn 00386 00168 plusmn 00196 00066 plusmn 00066 00023 plusmn 00035 00423 plusmn 00380All interspecific distance 00007 plusmn 00010 00343 plusmn 00389 01066 plusmn 02833 00071 plusmn 00064 00015 plusmn 00029 03166 plusmn 04070Gap rate 8750 9091 5152 3043

psbA-trnH successfully differentiated Radix Astragali andits adulterants Furthermore it produced areas of obviousseparation for Radix Astragali The remaining five barcodesalso differentiated Radix Astragali and its adulterants Eachspecies clustered together separate from other species Con-sidering the difficult amplification and sequencing and fastand accurate identification purpose of DNA barcoding wedid not add all the sequence data of ITS2 and psbA-trnH tobuild ML tree and subsequent analysis

4 Discussion and Conclusions

Radix Astragali is reported to possess 47 bioactive com-pounds and has many bioactive properties [32ndash37] VariousRadix Astragali preparations are commercially availablenot only in China as a TCM component but also in theUnited States as dietary supplements [38] However due toincreasing demand substitutes and adulterants have floodedthe market Traditional identification methods such as mor-phological and microscopic methods are limited by the lackof explicit criteria for character selection or coding and thusmainly depend on subjective assessments Although chemicalmethods are able to distinguish between different species itis difficult to differentiate sibling species that possess similarchemical compositions In addition chemical methods areunable to provide accurate species authentication Severaltypes of molecular markers for characterizing genotypes areuseful in identifying plant species For example RAPD hasbeen used to estimate genetic diversity in plant populationsbased on amplification of random DNA fragments andcomparisons of common polymorphisms DNA barcoding

is advocated for species identification due to its universalapplicability simplicity and scientific accuracy Howeverthe analysis methods for DNA barcodes were limited Withthe development of molecular biology and bioinformaticsa more improved analytic method for DNA barcoding canbe established to identify Radix Astragali and closely relatedspecies

In this study we validated a new analytical method foridentifying Radix Astragali using DNA barcoding Seventy-seven specimens of Radix Astragali and its adulterants werecollected and the sequences of 29 species reported in theliterature were downloaded from the GenBank databaseBased on the 478 sequences for six barcodes (ITS2 ITS fromnuclear genome psbA-trnH rbcL andmatK fromchloroplastgenome COI from mitochondrial genome) genetic distanceand ML Tree were calculated by MEGA 60 software andidentification efficiency intra- and interspecific variationand barcoding gap were calculated using the Perl languagealgorithm Results of the six indicators assessed are shownin Table 6 ITS and psbA-trnH outperformed other barcodesin terms of identification efficiency ITS2 performed better interms of genetic distance gap rate and inter- and intraspecificvariation RbcL performed better in terms of barcoding gapand inter- and intraspecific variation Although ITS2was partof the ITS sequence it performed poorly in identificationefficiency Therefore we suggest that the ITS sequence isthe optimal barcode and that the psbA-trnH region is acomplementary barcode for identifying Radix Astragali andits adulterants

In conclusion we describe a new analytical method forthe use of DNA barcoding in the identification of Radix

Evidence-Based Complementary and Alternative Medicine 7

0102030405060708090100 COI

0

IntraspeciesInterspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

(a)

0

10

20

30

40

50

60ITS2

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(b)

0102030405060

ITS

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(c)

010203040506070

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

matK

gt02

Interspecies

(d)

0102030405060708090100

rbcL

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(e)

05101520253035 psbA-trnH

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(f)

Figure 1 Barcoding gap for six barcodes

Astragali Six indicators including average genetic distanceBLAST1 and the nearest distance method for identificationefficiency inter- and intraspecific variation and gap rate weretested to evaluate six DNA barcodes using bioinformaticssoftware and the Perl language algorithm The ITS sequence

was the optimal barcode for identifying Radix Astragali andits adulterants This method provides a novel means foraccurate identification of Radix Astragali and its adulterantsand improves the utilization of DNA barcoding in identifyingmedicinal plant species

8 Evidence-Based Complementary and Alternative Medicine

HM142329

HM142330

HM142328

HM142327

HM142326

HM142325

HM142

324

HM1423

23

HM142322

HM142321

HM142320HM142319HM142318HM142317

HM142316HM142315

HM142314

HM142313

HM142312

HM142311

HM142310H

M142309

HM142308

HM142307

HM142306

EF685985

EF6859

86EF6859

87HM142334

62EF685988HM142335 62

EF685991

HM142332

HM14233385

98

EF685990

HM142338

91

EF685989HM

142331HM142336

7698

COI

(a)

GU217642

GU217643

GQ434368

SX8

SX10

SX1

SD8

SD7

SD6

SD5

SD4SD3SD2SD1S4S3S1NM9NM5NM4NM10NM1GS6GS1GS2GS4GS5NM2NM3NM6

NM7

NM8

S2S5SX2SX3SX4SX5SX6SX7SX9

JF421475

65

GS3

99

HHQ1

HHQ2

HHQ3HHQ4HH

Q5HHQ6HHQ7GQ

434365GQ4

34366 99 85GU2

17635L10757GU217639GU217640

GU217641

97

GQ434367GU217654 90

83

Z99236MX

GU217662

AF028417

AF028418

AF028419

AF028420

JN617208

6598

Z97687U50765

99

AF303023JK1JK2

9999

ITS2

8798

(b)

HM142255

HM142256

HM142254

HM142253

HM142252

HM142251

HM142250

HM142249

HM142248

HM142

247

HM142

246

HM142

245

HM142243HM

142244

HM142242

HM142241HM142236HM142235HM142234HM142233HM142232EF685993

70

EF685992HM142237HM142238

HM142239

HM142240

88

67

AB741343

HM049533

HM142263

70

63

EF685994

HM142262

90HM142261

HM142265

HM049537

HM142258

HM142259

AY920437

87

HM049531

HM142260

99

68

HM049544

HM142264HM

142266

EF685995

99 99 10

0

HM049

541EF68599

6

HM142

257HM14226

7 6510058HE970723HE967439

AF169289 62HQ593363AF522108

HM851138

AY38688189879999

50

JQ619944

EF685997 96100

100

JQ412262HM142269

EU346805

EU346788JN894566

HQ593360JN894571

JN895781

6297

100

95

matK

(c)

GS1

GS2

GS3

GS4

GS5

GS6

NM1

NM10

NM2

NM3

NM4

NM5

NM6

NM7

NM8

NM9S1S2S3S4S5SD1SD2SD3SD4SD5SD6SD7SD8SD9SX1SX10

SX2SX3SX4SX5SX6SX7SX8SX

9

GU396744

GU396749

GU396750

GU396751

GU396752GU396753

GU396754

84

KF011553

GU396807

HE966

710

92

GU396

771GU

396745GQ

434966EF41

9597EF419598 92EF419662EF679744

99

99

99GU396767GU396781HE966707 84

GQ139474

GQ139475

GQ139476

GQ139477

GQ139478

GQ139479

GQ139480

GQ139481

GQ139482

GQ139483AB787167

99

HQ596765HQ596768

KJ02505387

98

psbA-trnH

(d)

HM142222

HM142223

HM142221

HM142220

HM142219

HM142218

HM142

217

HM142

216

HM1422

15

HM142214

HM142213HM142212HM142211HM142210HM142209

HM142208HM142207

HM142206

HM142205

HM142204

HM142203

HM142202

HM142201H

M142200

HM142199

EF685979

EF685978

71

EF685984

98

EF685

980HM

142225

99 87

EF68598

1HM142226 100

100EF685982

HM142224U74246

HM142227100

FJ537233

59

JQ933405

JX848463100

Z70173

100

AB012129EF685983

HM142228

9810059

rbcL

(e)

Figure 2 Continued

Evidence-Based Complementary and Alternative Medicine 9

JX017329

JXJX017330

JX0101

7328

JX0177326

JX017325

JX0173324

JX0173

23JX01732

JX01732122

JF736668

0JF736665

HM1

M144

228

H M14

2289

H MM14

2287

H M142228

6H M1142

272

H42

275

H U289

274

G U289

6643

G U289666

G 28U2896623

G U 28

9661

G U 5296

60

G U8059

E

42

EF685

969

SX9SX7SX6SX5SX4SX3NM

8NM

7NM3NM2GS5GS4S2GG S1

AB787166

JF736666

65 JF736669JF736667

61

GS3GS6NM1NM10NM4NNM5NM6S3M9

SSDD1

SD 2SD 3SD 5SX 7SX810

F68AF35975

AF359749EJ572 596 0FM14 044 8

HM14 227

H227 2

HM1422776

H142278M

H1M42279

H14M2280

HM142281

HM142283

M1422

HM1422 84

H

85

HM142288

HM142293

HM142294

HM142295

HM142296

H42M1291

H42M1292

H89127Q8

17331JX0JX017327733JX01

167 2

AF12219 5

KC2675 9

F35952 1

59

AF35975

AF35973

A

B2310919951

55

73

AM142297

HF121681

A AFA

359756F359757

AB741299

AF359755

AF5

AF35975421952

9972

76

HHQ1

HHQ2

HHQ3

HQ4

HHQ5

HHQ6

HQ7

9973

EM14223

0 2H HFJ980292

F68597030

HM144230 1

HM1

32 0

HH

6XJ

9675

AF

8Q1

99

HM142298

HM142299

35975

78

CY1CY2CY

6

CY5

CY4

F68597

1

HM142

303

AB051

988

94

74 719468 80

E

9Q33

82

HQ199

316

GU217

599FJ5372

84

94

Q83 9999HQ

514

GD

78598

F032294

K

HQ1HQ1

1HQ2

HQ10HQ4HQ9Q1 64HH 2

HHQ6Q3

HQ7

142304Q8HM

HM142305JX017333

54

9991 67

JX0173348

GQ24EU591996130

60

S1S26

9999

SSDSD9D8

99

JX017337938697

3KFX0173

7336

J 5

MX

GQ1

JX01AY256392

AF053142

8854

99

4HH2HH5

HH4HH3HH6

HH1

JF461309

F461308

A

J B

6HH7

01JF4613070101

Q31198554679

65

99

95

D AH X73

72J F4195

1967

679744

E EF14

99JK2JK1

F41

EF4194797053

SX24JK14 9

E78

6099

99

ITS

HM142290

(f)

Figure 2 ML tree for six barcodes lowastThe different color and shape for different species in clusters presented the identification of differentbarcodes

Table 6 Six indicators assessed for DNA barcoding

DNA barcodes

Parameters

Average geneticdistance

Identification efficiency Gap rateInter- to

intraspecificvariation

Barcoding gap Total scoreBLAST1 Nearest

distancesITS2 8 12 8 8 8 4 48ITS 6 28 22 0 0 6 62psbA-trnH 6 26 18 0 2 2 54rbcL 4 12 14 4 6 8 48matK 4 14 24 4 4 2 52COI 2 6 10 6 0 6 30lowastThe total score of six parameters was set by 10 30 30 10 10 and 10 in order Identification efficiency based on two methods was set by 30 score because of itsimportance for identification

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 4: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

4 Evidence-Based Complementary and Alternative Medicine

Table 3 Sequences from GenBank for identifying Astragalus and its adulterants

Region Family Species Accession number

ITS2

Fabaceae Melilotus officinalis U50765 Z97687Fabaceae Astragalus adsurgens L10757 GU217639 GU217640 GU217641Fabaceae Astragalus chinensis GQ434365 GQ434366Fabaceae Hedysarum polybotrys GQ434367Fabaceae Astragalus mongholicus GQ434368 GU217643Fabaceae Astragalus mongholicus var dahuricus GU217635Fabaceae Astragalus membranaceus GU217642 JF421475Fabaceae Caragana sinica GU217654Fabaceae Medicago sativa GU217662 Z99236 AF028417 JN617208Fabaceae Medicago sativa subsp caerulea AF028418Fabaceae Medicago sativa subsp glomerata AF028419Fabaceae Medicago falcata AF028420Malvaceae Alcea rosea AF303023

ITS

Fabaceae Astragalus membranaceus

AF359749 EF685968 EU852042 FJ572044 GU289659GU289660 GU289661 GU289662 GU289663 GU289664HM142272 HM142273 HM142274 HM142275 HM142276HM142277 HM142278 HM142279 HM142280 HM142281HQ891827 JX017320 JX017321 JX017322 JX017323JX017324 JX017325 JX017326 JX017327 JX017328JX017329 JX017330 JX017331 JX017332 AF121675

Fabaceae Astragalus mongholicus

AF359750 EF685969 HM142282 HM142283 HM142284HM142285 HM142286 HM142287 HM142288 HM142289HM142290 JF736665 JF736666 JF736667 JF736668JF736669 AB787166

Fabaceae Astragalus propinquus AF359751Fabaceae Astragalus lepsensis AF359752Fabaceae Astragalus aksuensis AF359753 AB231091Fabaceae Astragalus hoantchy AF359754 AF521952Fabaceae Astragalus hoantchy subsp dshimensis AF359755Fabaceae Astragalus lehmannianus AF359756Fabaceae Astragalus sieversianus AF359757Fabaceae Astragalus austrosibiricus AF359758Fabaceae Astragalus uliginosus EF685970Fabaceae Astragalus scaberrimus AB051988Fabaceae Astragalus chinensis FJ980292 HM142297 AF121681

Fabaceae Astragalus borealimongolicus HM142291 HM142292 HM142293 HM142294 HM142295HM142296

Fabaceae Astragalus adsurgens HM142298 HM142299 HQ199326Fabaceae Astragalus mongholicus var dahuricus HM142300 KC262199Fabaceae Astragalus zacharensis HM142301Fabaceae Astragalus melilotoides HM142302Fabaceae Astragalus scaberrimus HM142303Fabaceae Astragalus sieversianus AB741299Fabaceae Oxytropis anertii EF685971Fabaceae Caragana sinica DQ914785 FJ537284 GQ338283Fabaceae Glycyrrhiza pallidiflora EU591998 GQ246130Fabaceae Melilotus officinalis AB546796 JF461307 JF461308 JF461309 DQ311985

Fabaceae Medicago sativa GQ488541 AF053142 AY256392 JX017335 JX017336JX017337 KF938697

Fabaceae Oxytropis caerulea GU217599 HQ199316Fabaceae Hedysarum vicioides HM142304 HM142305Fabaceae Hedysarum polybotrys JX017333 JX017334 KF032294Malvaceae Malva neglecta EF419478 EF419479Malvaceae Alcea rosea AH010172 EF419544 EF679714 JX017319

Evidence-Based Complementary and Alternative Medicine 5

Table 3 Continued

Region Family Species Accession number

psbA-trnH

Fabaceae Astragalus membranaceus f pallidipurpureus GQ139474Fabaceae Astragalus adsurgens GU396749 GU396750 GU396751 KF011553Fabaceae Astragalus mongholicus GU396754 AB787167

Fabaceae Astragalus membranaceusGQ139475 GQ139476 GQ139477 GQ139478 GQ139479GQ139480 GQ139481 GQ139482 GQ139483 GU396752GU396753

Fabaceae Caragana sinica GU396767 KJ025053Fabaceae Oxytropis caerulea GU396771Fabaceae Medicago sativa GU396781 HQ596768 HE966707Fabaceae Glycyrrhiza pallidiflora GU396807Fabaceae Melilotus officinalis HE966710Malvaceae Malva neglecta EF419597 EF419598 HQ596765 HQ596765Malvaceae Alcea rosea EF419662 EF679744

matK

Fabaceae Astragalus membranaceusEF685992 HM142232 HM142233 HM142234 HM142235HM142236 HM142237 HM142238 HM142239 HM142240HM142254

Fabaceae Astragalus mongholicus EF685993 HM142241 HM142242 HM142243 HM142244HM142245 HM142246 HM142247 HM142255 HM142256

Fabaceae Astragalus uliginosus EF685994 HM142262Fabaceae Astragalus mongholicus var dahuricus HM049531 HM142260Fabaceae Astragalus chinensis HM049533 HM142263Fabaceae Astragalus adsurgens HM049537 HM142258 HM142259 AY920437

Fabaceae Astragalus borealimongolicus HM142248 HM142249 HM142250 HM142251 HM142252HM142253

Fabaceae Astragalus zacharensis HM142261Fabaceae Astragalus melilotoides HM142264Fabaceae Astragalus scaberrimus HM142265Fabaceae Astragalus sieversianus AB741343

Fabaceae Medicago sativa AF522108 HQ593363 HM851138 AY386881 HE967439AF169289

Fabaceae Oxytropis anertii EF685995 HM142266Fabaceae Oxytropis caerulea HM049544Fabaceae Glycyrrhiza pallidiflora EF685997 HM142269 JQ619944Fabaceae Hedysarum vicioides EF685996 HM142257 HM142267Fabaceae Caragana sinica HM049541Fabaceae Melilotus officinalis HE970723

Malvaceae Malva neglecta EU346788 HQ593360 JN894566 JN894571 JN895781JQ412262

Malvaceae Alcea rosea EU346805

rbcL

Fabaceae Medicago sativa Z70173

Fabaceae Astragalus membranaceusEF685978 HM142199 HM142200 HM142201 HM142202HM142203 HM142204 HM142205 HM142206 HM142207HM142221

Fabaceae Astragalus mongholicus EF685979 HM142208 HM142209 HM142210 HM142211HM142212 HM142213 HM142214 HM142222 HM142223

Fabaceae Astragalus uliginosus EF685980 HM142225Fabaceae Hedysarum vicioides EF685982 U74246 HM142224 HM142227Fabaceae Astragalus adsurgens EF685984

Fabaceae Astragalus borealimongolicus HM142215 HM142216 HM142217 HM142218 HM142219HM142220

Fabaceae Oxytropis anertii EF685981 HM142226Fabaceae Glycyrrhiza pallidiflora EF685983 AB012129 HM142228Fabaceae Caragana sinica FJ537233Fabaceae Melilotus officinalis JQ933405 JX848463

6 Evidence-Based Complementary and Alternative Medicine

Table 4 The information of identification efficiency for six barcodes

Markers COI ITS2 ITS matK rbcL psbA-trnHNumber of sequences 39 72 185 65 43 74Average GC content 4329 5080 5297 3114 4288 2177Genetic distance

Min 00000 00000 00000 00000 00000 00000Max 00086 79494 53130 02801 00349 22701Average 00019 10792 03508 00711 00116 05080

Identification efficiencyBLAST 1 1026 1250 3081 2923 2326 2973Nearest distance 3333 2778 5243 6615 3721 4189

Table 5 Analysis of interspecific divergence and intraspecific variation for six barcodes

Marker (Mean plusmn SD) COI ITS2 ITS matK rbcL psbA-trnHTheta 22260 plusmn 62961 00030 plusmn 00046 00271 plusmn 00404 00021 plusmn 00035 00011 plusmn 00020 02415 plusmn 04777Coalescent depth 00001 plusmn 00004 00040 plusmn 00046 01423 plusmn 03958 00032 plusmn 00050 00016 plusmn 00030 04109 plusmn 05683All intraspecific distance 93280 plusmn 00003 00021 plusmn 00024 01153 plusmn 03051 00014 plusmn 00022 00002 plusmn 00011 03093 plusmn 04300Theta prime 00012 plusmn 00008 00617 plusmn 00302 00603 plusmn 00371 00091 plusmn 00061 00024 plusmn 00035 03083 plusmn 02887Minimum interspecific distance 00008 plusmn 00010 00440 plusmn 00386 00168 plusmn 00196 00066 plusmn 00066 00023 plusmn 00035 00423 plusmn 00380All interspecific distance 00007 plusmn 00010 00343 plusmn 00389 01066 plusmn 02833 00071 plusmn 00064 00015 plusmn 00029 03166 plusmn 04070Gap rate 8750 9091 5152 3043

psbA-trnH successfully differentiated Radix Astragali andits adulterants Furthermore it produced areas of obviousseparation for Radix Astragali The remaining five barcodesalso differentiated Radix Astragali and its adulterants Eachspecies clustered together separate from other species Con-sidering the difficult amplification and sequencing and fastand accurate identification purpose of DNA barcoding wedid not add all the sequence data of ITS2 and psbA-trnH tobuild ML tree and subsequent analysis

4 Discussion and Conclusions

Radix Astragali is reported to possess 47 bioactive com-pounds and has many bioactive properties [32ndash37] VariousRadix Astragali preparations are commercially availablenot only in China as a TCM component but also in theUnited States as dietary supplements [38] However due toincreasing demand substitutes and adulterants have floodedthe market Traditional identification methods such as mor-phological and microscopic methods are limited by the lackof explicit criteria for character selection or coding and thusmainly depend on subjective assessments Although chemicalmethods are able to distinguish between different species itis difficult to differentiate sibling species that possess similarchemical compositions In addition chemical methods areunable to provide accurate species authentication Severaltypes of molecular markers for characterizing genotypes areuseful in identifying plant species For example RAPD hasbeen used to estimate genetic diversity in plant populationsbased on amplification of random DNA fragments andcomparisons of common polymorphisms DNA barcoding

is advocated for species identification due to its universalapplicability simplicity and scientific accuracy Howeverthe analysis methods for DNA barcodes were limited Withthe development of molecular biology and bioinformaticsa more improved analytic method for DNA barcoding canbe established to identify Radix Astragali and closely relatedspecies

In this study we validated a new analytical method foridentifying Radix Astragali using DNA barcoding Seventy-seven specimens of Radix Astragali and its adulterants werecollected and the sequences of 29 species reported in theliterature were downloaded from the GenBank databaseBased on the 478 sequences for six barcodes (ITS2 ITS fromnuclear genome psbA-trnH rbcL andmatK fromchloroplastgenome COI from mitochondrial genome) genetic distanceand ML Tree were calculated by MEGA 60 software andidentification efficiency intra- and interspecific variationand barcoding gap were calculated using the Perl languagealgorithm Results of the six indicators assessed are shownin Table 6 ITS and psbA-trnH outperformed other barcodesin terms of identification efficiency ITS2 performed better interms of genetic distance gap rate and inter- and intraspecificvariation RbcL performed better in terms of barcoding gapand inter- and intraspecific variation Although ITS2was partof the ITS sequence it performed poorly in identificationefficiency Therefore we suggest that the ITS sequence isthe optimal barcode and that the psbA-trnH region is acomplementary barcode for identifying Radix Astragali andits adulterants

In conclusion we describe a new analytical method forthe use of DNA barcoding in the identification of Radix

Evidence-Based Complementary and Alternative Medicine 7

0102030405060708090100 COI

0

IntraspeciesInterspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

(a)

0

10

20

30

40

50

60ITS2

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(b)

0102030405060

ITS

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(c)

010203040506070

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

matK

gt02

Interspecies

(d)

0102030405060708090100

rbcL

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(e)

05101520253035 psbA-trnH

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(f)

Figure 1 Barcoding gap for six barcodes

Astragali Six indicators including average genetic distanceBLAST1 and the nearest distance method for identificationefficiency inter- and intraspecific variation and gap rate weretested to evaluate six DNA barcodes using bioinformaticssoftware and the Perl language algorithm The ITS sequence

was the optimal barcode for identifying Radix Astragali andits adulterants This method provides a novel means foraccurate identification of Radix Astragali and its adulterantsand improves the utilization of DNA barcoding in identifyingmedicinal plant species

8 Evidence-Based Complementary and Alternative Medicine

HM142329

HM142330

HM142328

HM142327

HM142326

HM142325

HM142

324

HM1423

23

HM142322

HM142321

HM142320HM142319HM142318HM142317

HM142316HM142315

HM142314

HM142313

HM142312

HM142311

HM142310H

M142309

HM142308

HM142307

HM142306

EF685985

EF6859

86EF6859

87HM142334

62EF685988HM142335 62

EF685991

HM142332

HM14233385

98

EF685990

HM142338

91

EF685989HM

142331HM142336

7698

COI

(a)

GU217642

GU217643

GQ434368

SX8

SX10

SX1

SD8

SD7

SD6

SD5

SD4SD3SD2SD1S4S3S1NM9NM5NM4NM10NM1GS6GS1GS2GS4GS5NM2NM3NM6

NM7

NM8

S2S5SX2SX3SX4SX5SX6SX7SX9

JF421475

65

GS3

99

HHQ1

HHQ2

HHQ3HHQ4HH

Q5HHQ6HHQ7GQ

434365GQ4

34366 99 85GU2

17635L10757GU217639GU217640

GU217641

97

GQ434367GU217654 90

83

Z99236MX

GU217662

AF028417

AF028418

AF028419

AF028420

JN617208

6598

Z97687U50765

99

AF303023JK1JK2

9999

ITS2

8798

(b)

HM142255

HM142256

HM142254

HM142253

HM142252

HM142251

HM142250

HM142249

HM142248

HM142

247

HM142

246

HM142

245

HM142243HM

142244

HM142242

HM142241HM142236HM142235HM142234HM142233HM142232EF685993

70

EF685992HM142237HM142238

HM142239

HM142240

88

67

AB741343

HM049533

HM142263

70

63

EF685994

HM142262

90HM142261

HM142265

HM049537

HM142258

HM142259

AY920437

87

HM049531

HM142260

99

68

HM049544

HM142264HM

142266

EF685995

99 99 10

0

HM049

541EF68599

6

HM142

257HM14226

7 6510058HE970723HE967439

AF169289 62HQ593363AF522108

HM851138

AY38688189879999

50

JQ619944

EF685997 96100

100

JQ412262HM142269

EU346805

EU346788JN894566

HQ593360JN894571

JN895781

6297

100

95

matK

(c)

GS1

GS2

GS3

GS4

GS5

GS6

NM1

NM10

NM2

NM3

NM4

NM5

NM6

NM7

NM8

NM9S1S2S3S4S5SD1SD2SD3SD4SD5SD6SD7SD8SD9SX1SX10

SX2SX3SX4SX5SX6SX7SX8SX

9

GU396744

GU396749

GU396750

GU396751

GU396752GU396753

GU396754

84

KF011553

GU396807

HE966

710

92

GU396

771GU

396745GQ

434966EF41

9597EF419598 92EF419662EF679744

99

99

99GU396767GU396781HE966707 84

GQ139474

GQ139475

GQ139476

GQ139477

GQ139478

GQ139479

GQ139480

GQ139481

GQ139482

GQ139483AB787167

99

HQ596765HQ596768

KJ02505387

98

psbA-trnH

(d)

HM142222

HM142223

HM142221

HM142220

HM142219

HM142218

HM142

217

HM142

216

HM1422

15

HM142214

HM142213HM142212HM142211HM142210HM142209

HM142208HM142207

HM142206

HM142205

HM142204

HM142203

HM142202

HM142201H

M142200

HM142199

EF685979

EF685978

71

EF685984

98

EF685

980HM

142225

99 87

EF68598

1HM142226 100

100EF685982

HM142224U74246

HM142227100

FJ537233

59

JQ933405

JX848463100

Z70173

100

AB012129EF685983

HM142228

9810059

rbcL

(e)

Figure 2 Continued

Evidence-Based Complementary and Alternative Medicine 9

JX017329

JXJX017330

JX0101

7328

JX0177326

JX017325

JX0173324

JX0173

23JX01732

JX01732122

JF736668

0JF736665

HM1

M144

228

H M14

2289

H MM14

2287

H M142228

6H M1142

272

H42

275

H U289

274

G U289

6643

G U289666

G 28U2896623

G U 28

9661

G U 5296

60

G U8059

E

42

EF685

969

SX9SX7SX6SX5SX4SX3NM

8NM

7NM3NM2GS5GS4S2GG S1

AB787166

JF736666

65 JF736669JF736667

61

GS3GS6NM1NM10NM4NNM5NM6S3M9

SSDD1

SD 2SD 3SD 5SX 7SX810

F68AF35975

AF359749EJ572 596 0FM14 044 8

HM14 227

H227 2

HM1422776

H142278M

H1M42279

H14M2280

HM142281

HM142283

M1422

HM1422 84

H

85

HM142288

HM142293

HM142294

HM142295

HM142296

H42M1291

H42M1292

H89127Q8

17331JX0JX017327733JX01

167 2

AF12219 5

KC2675 9

F35952 1

59

AF35975

AF35973

A

B2310919951

55

73

AM142297

HF121681

A AFA

359756F359757

AB741299

AF359755

AF5

AF35975421952

9972

76

HHQ1

HHQ2

HHQ3

HQ4

HHQ5

HHQ6

HQ7

9973

EM14223

0 2H HFJ980292

F68597030

HM144230 1

HM1

32 0

HH

6XJ

9675

AF

8Q1

99

HM142298

HM142299

35975

78

CY1CY2CY

6

CY5

CY4

F68597

1

HM142

303

AB051

988

94

74 719468 80

E

9Q33

82

HQ199

316

GU217

599FJ5372

84

94

Q83 9999HQ

514

GD

78598

F032294

K

HQ1HQ1

1HQ2

HQ10HQ4HQ9Q1 64HH 2

HHQ6Q3

HQ7

142304Q8HM

HM142305JX017333

54

9991 67

JX0173348

GQ24EU591996130

60

S1S26

9999

SSDSD9D8

99

JX017337938697

3KFX0173

7336

J 5

MX

GQ1

JX01AY256392

AF053142

8854

99

4HH2HH5

HH4HH3HH6

HH1

JF461309

F461308

A

J B

6HH7

01JF4613070101

Q31198554679

65

99

95

D AH X73

72J F4195

1967

679744

E EF14

99JK2JK1

F41

EF4194797053

SX24JK14 9

E78

6099

99

ITS

HM142290

(f)

Figure 2 ML tree for six barcodes lowastThe different color and shape for different species in clusters presented the identification of differentbarcodes

Table 6 Six indicators assessed for DNA barcoding

DNA barcodes

Parameters

Average geneticdistance

Identification efficiency Gap rateInter- to

intraspecificvariation

Barcoding gap Total scoreBLAST1 Nearest

distancesITS2 8 12 8 8 8 4 48ITS 6 28 22 0 0 6 62psbA-trnH 6 26 18 0 2 2 54rbcL 4 12 14 4 6 8 48matK 4 14 24 4 4 2 52COI 2 6 10 6 0 6 30lowastThe total score of six parameters was set by 10 30 30 10 10 and 10 in order Identification efficiency based on two methods was set by 30 score because of itsimportance for identification

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 5: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

Evidence-Based Complementary and Alternative Medicine 5

Table 3 Continued

Region Family Species Accession number

psbA-trnH

Fabaceae Astragalus membranaceus f pallidipurpureus GQ139474Fabaceae Astragalus adsurgens GU396749 GU396750 GU396751 KF011553Fabaceae Astragalus mongholicus GU396754 AB787167

Fabaceae Astragalus membranaceusGQ139475 GQ139476 GQ139477 GQ139478 GQ139479GQ139480 GQ139481 GQ139482 GQ139483 GU396752GU396753

Fabaceae Caragana sinica GU396767 KJ025053Fabaceae Oxytropis caerulea GU396771Fabaceae Medicago sativa GU396781 HQ596768 HE966707Fabaceae Glycyrrhiza pallidiflora GU396807Fabaceae Melilotus officinalis HE966710Malvaceae Malva neglecta EF419597 EF419598 HQ596765 HQ596765Malvaceae Alcea rosea EF419662 EF679744

matK

Fabaceae Astragalus membranaceusEF685992 HM142232 HM142233 HM142234 HM142235HM142236 HM142237 HM142238 HM142239 HM142240HM142254

Fabaceae Astragalus mongholicus EF685993 HM142241 HM142242 HM142243 HM142244HM142245 HM142246 HM142247 HM142255 HM142256

Fabaceae Astragalus uliginosus EF685994 HM142262Fabaceae Astragalus mongholicus var dahuricus HM049531 HM142260Fabaceae Astragalus chinensis HM049533 HM142263Fabaceae Astragalus adsurgens HM049537 HM142258 HM142259 AY920437

Fabaceae Astragalus borealimongolicus HM142248 HM142249 HM142250 HM142251 HM142252HM142253

Fabaceae Astragalus zacharensis HM142261Fabaceae Astragalus melilotoides HM142264Fabaceae Astragalus scaberrimus HM142265Fabaceae Astragalus sieversianus AB741343

Fabaceae Medicago sativa AF522108 HQ593363 HM851138 AY386881 HE967439AF169289

Fabaceae Oxytropis anertii EF685995 HM142266Fabaceae Oxytropis caerulea HM049544Fabaceae Glycyrrhiza pallidiflora EF685997 HM142269 JQ619944Fabaceae Hedysarum vicioides EF685996 HM142257 HM142267Fabaceae Caragana sinica HM049541Fabaceae Melilotus officinalis HE970723

Malvaceae Malva neglecta EU346788 HQ593360 JN894566 JN894571 JN895781JQ412262

Malvaceae Alcea rosea EU346805

rbcL

Fabaceae Medicago sativa Z70173

Fabaceae Astragalus membranaceusEF685978 HM142199 HM142200 HM142201 HM142202HM142203 HM142204 HM142205 HM142206 HM142207HM142221

Fabaceae Astragalus mongholicus EF685979 HM142208 HM142209 HM142210 HM142211HM142212 HM142213 HM142214 HM142222 HM142223

Fabaceae Astragalus uliginosus EF685980 HM142225Fabaceae Hedysarum vicioides EF685982 U74246 HM142224 HM142227Fabaceae Astragalus adsurgens EF685984

Fabaceae Astragalus borealimongolicus HM142215 HM142216 HM142217 HM142218 HM142219HM142220

Fabaceae Oxytropis anertii EF685981 HM142226Fabaceae Glycyrrhiza pallidiflora EF685983 AB012129 HM142228Fabaceae Caragana sinica FJ537233Fabaceae Melilotus officinalis JQ933405 JX848463

6 Evidence-Based Complementary and Alternative Medicine

Table 4 The information of identification efficiency for six barcodes

Markers COI ITS2 ITS matK rbcL psbA-trnHNumber of sequences 39 72 185 65 43 74Average GC content 4329 5080 5297 3114 4288 2177Genetic distance

Min 00000 00000 00000 00000 00000 00000Max 00086 79494 53130 02801 00349 22701Average 00019 10792 03508 00711 00116 05080

Identification efficiencyBLAST 1 1026 1250 3081 2923 2326 2973Nearest distance 3333 2778 5243 6615 3721 4189

Table 5 Analysis of interspecific divergence and intraspecific variation for six barcodes

Marker (Mean plusmn SD) COI ITS2 ITS matK rbcL psbA-trnHTheta 22260 plusmn 62961 00030 plusmn 00046 00271 plusmn 00404 00021 plusmn 00035 00011 plusmn 00020 02415 plusmn 04777Coalescent depth 00001 plusmn 00004 00040 plusmn 00046 01423 plusmn 03958 00032 plusmn 00050 00016 plusmn 00030 04109 plusmn 05683All intraspecific distance 93280 plusmn 00003 00021 plusmn 00024 01153 plusmn 03051 00014 plusmn 00022 00002 plusmn 00011 03093 plusmn 04300Theta prime 00012 plusmn 00008 00617 plusmn 00302 00603 plusmn 00371 00091 plusmn 00061 00024 plusmn 00035 03083 plusmn 02887Minimum interspecific distance 00008 plusmn 00010 00440 plusmn 00386 00168 plusmn 00196 00066 plusmn 00066 00023 plusmn 00035 00423 plusmn 00380All interspecific distance 00007 plusmn 00010 00343 plusmn 00389 01066 plusmn 02833 00071 plusmn 00064 00015 plusmn 00029 03166 plusmn 04070Gap rate 8750 9091 5152 3043

psbA-trnH successfully differentiated Radix Astragali andits adulterants Furthermore it produced areas of obviousseparation for Radix Astragali The remaining five barcodesalso differentiated Radix Astragali and its adulterants Eachspecies clustered together separate from other species Con-sidering the difficult amplification and sequencing and fastand accurate identification purpose of DNA barcoding wedid not add all the sequence data of ITS2 and psbA-trnH tobuild ML tree and subsequent analysis

4 Discussion and Conclusions

Radix Astragali is reported to possess 47 bioactive com-pounds and has many bioactive properties [32ndash37] VariousRadix Astragali preparations are commercially availablenot only in China as a TCM component but also in theUnited States as dietary supplements [38] However due toincreasing demand substitutes and adulterants have floodedthe market Traditional identification methods such as mor-phological and microscopic methods are limited by the lackof explicit criteria for character selection or coding and thusmainly depend on subjective assessments Although chemicalmethods are able to distinguish between different species itis difficult to differentiate sibling species that possess similarchemical compositions In addition chemical methods areunable to provide accurate species authentication Severaltypes of molecular markers for characterizing genotypes areuseful in identifying plant species For example RAPD hasbeen used to estimate genetic diversity in plant populationsbased on amplification of random DNA fragments andcomparisons of common polymorphisms DNA barcoding

is advocated for species identification due to its universalapplicability simplicity and scientific accuracy Howeverthe analysis methods for DNA barcodes were limited Withthe development of molecular biology and bioinformaticsa more improved analytic method for DNA barcoding canbe established to identify Radix Astragali and closely relatedspecies

In this study we validated a new analytical method foridentifying Radix Astragali using DNA barcoding Seventy-seven specimens of Radix Astragali and its adulterants werecollected and the sequences of 29 species reported in theliterature were downloaded from the GenBank databaseBased on the 478 sequences for six barcodes (ITS2 ITS fromnuclear genome psbA-trnH rbcL andmatK fromchloroplastgenome COI from mitochondrial genome) genetic distanceand ML Tree were calculated by MEGA 60 software andidentification efficiency intra- and interspecific variationand barcoding gap were calculated using the Perl languagealgorithm Results of the six indicators assessed are shownin Table 6 ITS and psbA-trnH outperformed other barcodesin terms of identification efficiency ITS2 performed better interms of genetic distance gap rate and inter- and intraspecificvariation RbcL performed better in terms of barcoding gapand inter- and intraspecific variation Although ITS2was partof the ITS sequence it performed poorly in identificationefficiency Therefore we suggest that the ITS sequence isthe optimal barcode and that the psbA-trnH region is acomplementary barcode for identifying Radix Astragali andits adulterants

In conclusion we describe a new analytical method forthe use of DNA barcoding in the identification of Radix

Evidence-Based Complementary and Alternative Medicine 7

0102030405060708090100 COI

0

IntraspeciesInterspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

(a)

0

10

20

30

40

50

60ITS2

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(b)

0102030405060

ITS

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(c)

010203040506070

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

matK

gt02

Interspecies

(d)

0102030405060708090100

rbcL

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(e)

05101520253035 psbA-trnH

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(f)

Figure 1 Barcoding gap for six barcodes

Astragali Six indicators including average genetic distanceBLAST1 and the nearest distance method for identificationefficiency inter- and intraspecific variation and gap rate weretested to evaluate six DNA barcodes using bioinformaticssoftware and the Perl language algorithm The ITS sequence

was the optimal barcode for identifying Radix Astragali andits adulterants This method provides a novel means foraccurate identification of Radix Astragali and its adulterantsand improves the utilization of DNA barcoding in identifyingmedicinal plant species

8 Evidence-Based Complementary and Alternative Medicine

HM142329

HM142330

HM142328

HM142327

HM142326

HM142325

HM142

324

HM1423

23

HM142322

HM142321

HM142320HM142319HM142318HM142317

HM142316HM142315

HM142314

HM142313

HM142312

HM142311

HM142310H

M142309

HM142308

HM142307

HM142306

EF685985

EF6859

86EF6859

87HM142334

62EF685988HM142335 62

EF685991

HM142332

HM14233385

98

EF685990

HM142338

91

EF685989HM

142331HM142336

7698

COI

(a)

GU217642

GU217643

GQ434368

SX8

SX10

SX1

SD8

SD7

SD6

SD5

SD4SD3SD2SD1S4S3S1NM9NM5NM4NM10NM1GS6GS1GS2GS4GS5NM2NM3NM6

NM7

NM8

S2S5SX2SX3SX4SX5SX6SX7SX9

JF421475

65

GS3

99

HHQ1

HHQ2

HHQ3HHQ4HH

Q5HHQ6HHQ7GQ

434365GQ4

34366 99 85GU2

17635L10757GU217639GU217640

GU217641

97

GQ434367GU217654 90

83

Z99236MX

GU217662

AF028417

AF028418

AF028419

AF028420

JN617208

6598

Z97687U50765

99

AF303023JK1JK2

9999

ITS2

8798

(b)

HM142255

HM142256

HM142254

HM142253

HM142252

HM142251

HM142250

HM142249

HM142248

HM142

247

HM142

246

HM142

245

HM142243HM

142244

HM142242

HM142241HM142236HM142235HM142234HM142233HM142232EF685993

70

EF685992HM142237HM142238

HM142239

HM142240

88

67

AB741343

HM049533

HM142263

70

63

EF685994

HM142262

90HM142261

HM142265

HM049537

HM142258

HM142259

AY920437

87

HM049531

HM142260

99

68

HM049544

HM142264HM

142266

EF685995

99 99 10

0

HM049

541EF68599

6

HM142

257HM14226

7 6510058HE970723HE967439

AF169289 62HQ593363AF522108

HM851138

AY38688189879999

50

JQ619944

EF685997 96100

100

JQ412262HM142269

EU346805

EU346788JN894566

HQ593360JN894571

JN895781

6297

100

95

matK

(c)

GS1

GS2

GS3

GS4

GS5

GS6

NM1

NM10

NM2

NM3

NM4

NM5

NM6

NM7

NM8

NM9S1S2S3S4S5SD1SD2SD3SD4SD5SD6SD7SD8SD9SX1SX10

SX2SX3SX4SX5SX6SX7SX8SX

9

GU396744

GU396749

GU396750

GU396751

GU396752GU396753

GU396754

84

KF011553

GU396807

HE966

710

92

GU396

771GU

396745GQ

434966EF41

9597EF419598 92EF419662EF679744

99

99

99GU396767GU396781HE966707 84

GQ139474

GQ139475

GQ139476

GQ139477

GQ139478

GQ139479

GQ139480

GQ139481

GQ139482

GQ139483AB787167

99

HQ596765HQ596768

KJ02505387

98

psbA-trnH

(d)

HM142222

HM142223

HM142221

HM142220

HM142219

HM142218

HM142

217

HM142

216

HM1422

15

HM142214

HM142213HM142212HM142211HM142210HM142209

HM142208HM142207

HM142206

HM142205

HM142204

HM142203

HM142202

HM142201H

M142200

HM142199

EF685979

EF685978

71

EF685984

98

EF685

980HM

142225

99 87

EF68598

1HM142226 100

100EF685982

HM142224U74246

HM142227100

FJ537233

59

JQ933405

JX848463100

Z70173

100

AB012129EF685983

HM142228

9810059

rbcL

(e)

Figure 2 Continued

Evidence-Based Complementary and Alternative Medicine 9

JX017329

JXJX017330

JX0101

7328

JX0177326

JX017325

JX0173324

JX0173

23JX01732

JX01732122

JF736668

0JF736665

HM1

M144

228

H M14

2289

H MM14

2287

H M142228

6H M1142

272

H42

275

H U289

274

G U289

6643

G U289666

G 28U2896623

G U 28

9661

G U 5296

60

G U8059

E

42

EF685

969

SX9SX7SX6SX5SX4SX3NM

8NM

7NM3NM2GS5GS4S2GG S1

AB787166

JF736666

65 JF736669JF736667

61

GS3GS6NM1NM10NM4NNM5NM6S3M9

SSDD1

SD 2SD 3SD 5SX 7SX810

F68AF35975

AF359749EJ572 596 0FM14 044 8

HM14 227

H227 2

HM1422776

H142278M

H1M42279

H14M2280

HM142281

HM142283

M1422

HM1422 84

H

85

HM142288

HM142293

HM142294

HM142295

HM142296

H42M1291

H42M1292

H89127Q8

17331JX0JX017327733JX01

167 2

AF12219 5

KC2675 9

F35952 1

59

AF35975

AF35973

A

B2310919951

55

73

AM142297

HF121681

A AFA

359756F359757

AB741299

AF359755

AF5

AF35975421952

9972

76

HHQ1

HHQ2

HHQ3

HQ4

HHQ5

HHQ6

HQ7

9973

EM14223

0 2H HFJ980292

F68597030

HM144230 1

HM1

32 0

HH

6XJ

9675

AF

8Q1

99

HM142298

HM142299

35975

78

CY1CY2CY

6

CY5

CY4

F68597

1

HM142

303

AB051

988

94

74 719468 80

E

9Q33

82

HQ199

316

GU217

599FJ5372

84

94

Q83 9999HQ

514

GD

78598

F032294

K

HQ1HQ1

1HQ2

HQ10HQ4HQ9Q1 64HH 2

HHQ6Q3

HQ7

142304Q8HM

HM142305JX017333

54

9991 67

JX0173348

GQ24EU591996130

60

S1S26

9999

SSDSD9D8

99

JX017337938697

3KFX0173

7336

J 5

MX

GQ1

JX01AY256392

AF053142

8854

99

4HH2HH5

HH4HH3HH6

HH1

JF461309

F461308

A

J B

6HH7

01JF4613070101

Q31198554679

65

99

95

D AH X73

72J F4195

1967

679744

E EF14

99JK2JK1

F41

EF4194797053

SX24JK14 9

E78

6099

99

ITS

HM142290

(f)

Figure 2 ML tree for six barcodes lowastThe different color and shape for different species in clusters presented the identification of differentbarcodes

Table 6 Six indicators assessed for DNA barcoding

DNA barcodes

Parameters

Average geneticdistance

Identification efficiency Gap rateInter- to

intraspecificvariation

Barcoding gap Total scoreBLAST1 Nearest

distancesITS2 8 12 8 8 8 4 48ITS 6 28 22 0 0 6 62psbA-trnH 6 26 18 0 2 2 54rbcL 4 12 14 4 6 8 48matK 4 14 24 4 4 2 52COI 2 6 10 6 0 6 30lowastThe total score of six parameters was set by 10 30 30 10 10 and 10 in order Identification efficiency based on two methods was set by 30 score because of itsimportance for identification

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 6: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

6 Evidence-Based Complementary and Alternative Medicine

Table 4 The information of identification efficiency for six barcodes

Markers COI ITS2 ITS matK rbcL psbA-trnHNumber of sequences 39 72 185 65 43 74Average GC content 4329 5080 5297 3114 4288 2177Genetic distance

Min 00000 00000 00000 00000 00000 00000Max 00086 79494 53130 02801 00349 22701Average 00019 10792 03508 00711 00116 05080

Identification efficiencyBLAST 1 1026 1250 3081 2923 2326 2973Nearest distance 3333 2778 5243 6615 3721 4189

Table 5 Analysis of interspecific divergence and intraspecific variation for six barcodes

Marker (Mean plusmn SD) COI ITS2 ITS matK rbcL psbA-trnHTheta 22260 plusmn 62961 00030 plusmn 00046 00271 plusmn 00404 00021 plusmn 00035 00011 plusmn 00020 02415 plusmn 04777Coalescent depth 00001 plusmn 00004 00040 plusmn 00046 01423 plusmn 03958 00032 plusmn 00050 00016 plusmn 00030 04109 plusmn 05683All intraspecific distance 93280 plusmn 00003 00021 plusmn 00024 01153 plusmn 03051 00014 plusmn 00022 00002 plusmn 00011 03093 plusmn 04300Theta prime 00012 plusmn 00008 00617 plusmn 00302 00603 plusmn 00371 00091 plusmn 00061 00024 plusmn 00035 03083 plusmn 02887Minimum interspecific distance 00008 plusmn 00010 00440 plusmn 00386 00168 plusmn 00196 00066 plusmn 00066 00023 plusmn 00035 00423 plusmn 00380All interspecific distance 00007 plusmn 00010 00343 plusmn 00389 01066 plusmn 02833 00071 plusmn 00064 00015 plusmn 00029 03166 plusmn 04070Gap rate 8750 9091 5152 3043

psbA-trnH successfully differentiated Radix Astragali andits adulterants Furthermore it produced areas of obviousseparation for Radix Astragali The remaining five barcodesalso differentiated Radix Astragali and its adulterants Eachspecies clustered together separate from other species Con-sidering the difficult amplification and sequencing and fastand accurate identification purpose of DNA barcoding wedid not add all the sequence data of ITS2 and psbA-trnH tobuild ML tree and subsequent analysis

4 Discussion and Conclusions

Radix Astragali is reported to possess 47 bioactive com-pounds and has many bioactive properties [32ndash37] VariousRadix Astragali preparations are commercially availablenot only in China as a TCM component but also in theUnited States as dietary supplements [38] However due toincreasing demand substitutes and adulterants have floodedthe market Traditional identification methods such as mor-phological and microscopic methods are limited by the lackof explicit criteria for character selection or coding and thusmainly depend on subjective assessments Although chemicalmethods are able to distinguish between different species itis difficult to differentiate sibling species that possess similarchemical compositions In addition chemical methods areunable to provide accurate species authentication Severaltypes of molecular markers for characterizing genotypes areuseful in identifying plant species For example RAPD hasbeen used to estimate genetic diversity in plant populationsbased on amplification of random DNA fragments andcomparisons of common polymorphisms DNA barcoding

is advocated for species identification due to its universalapplicability simplicity and scientific accuracy Howeverthe analysis methods for DNA barcodes were limited Withthe development of molecular biology and bioinformaticsa more improved analytic method for DNA barcoding canbe established to identify Radix Astragali and closely relatedspecies

In this study we validated a new analytical method foridentifying Radix Astragali using DNA barcoding Seventy-seven specimens of Radix Astragali and its adulterants werecollected and the sequences of 29 species reported in theliterature were downloaded from the GenBank databaseBased on the 478 sequences for six barcodes (ITS2 ITS fromnuclear genome psbA-trnH rbcL andmatK fromchloroplastgenome COI from mitochondrial genome) genetic distanceand ML Tree were calculated by MEGA 60 software andidentification efficiency intra- and interspecific variationand barcoding gap were calculated using the Perl languagealgorithm Results of the six indicators assessed are shownin Table 6 ITS and psbA-trnH outperformed other barcodesin terms of identification efficiency ITS2 performed better interms of genetic distance gap rate and inter- and intraspecificvariation RbcL performed better in terms of barcoding gapand inter- and intraspecific variation Although ITS2was partof the ITS sequence it performed poorly in identificationefficiency Therefore we suggest that the ITS sequence isthe optimal barcode and that the psbA-trnH region is acomplementary barcode for identifying Radix Astragali andits adulterants

In conclusion we describe a new analytical method forthe use of DNA barcoding in the identification of Radix

Evidence-Based Complementary and Alternative Medicine 7

0102030405060708090100 COI

0

IntraspeciesInterspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

(a)

0

10

20

30

40

50

60ITS2

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(b)

0102030405060

ITS

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(c)

010203040506070

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

matK

gt02

Interspecies

(d)

0102030405060708090100

rbcL

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(e)

05101520253035 psbA-trnH

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(f)

Figure 1 Barcoding gap for six barcodes

Astragali Six indicators including average genetic distanceBLAST1 and the nearest distance method for identificationefficiency inter- and intraspecific variation and gap rate weretested to evaluate six DNA barcodes using bioinformaticssoftware and the Perl language algorithm The ITS sequence

was the optimal barcode for identifying Radix Astragali andits adulterants This method provides a novel means foraccurate identification of Radix Astragali and its adulterantsand improves the utilization of DNA barcoding in identifyingmedicinal plant species

8 Evidence-Based Complementary and Alternative Medicine

HM142329

HM142330

HM142328

HM142327

HM142326

HM142325

HM142

324

HM1423

23

HM142322

HM142321

HM142320HM142319HM142318HM142317

HM142316HM142315

HM142314

HM142313

HM142312

HM142311

HM142310H

M142309

HM142308

HM142307

HM142306

EF685985

EF6859

86EF6859

87HM142334

62EF685988HM142335 62

EF685991

HM142332

HM14233385

98

EF685990

HM142338

91

EF685989HM

142331HM142336

7698

COI

(a)

GU217642

GU217643

GQ434368

SX8

SX10

SX1

SD8

SD7

SD6

SD5

SD4SD3SD2SD1S4S3S1NM9NM5NM4NM10NM1GS6GS1GS2GS4GS5NM2NM3NM6

NM7

NM8

S2S5SX2SX3SX4SX5SX6SX7SX9

JF421475

65

GS3

99

HHQ1

HHQ2

HHQ3HHQ4HH

Q5HHQ6HHQ7GQ

434365GQ4

34366 99 85GU2

17635L10757GU217639GU217640

GU217641

97

GQ434367GU217654 90

83

Z99236MX

GU217662

AF028417

AF028418

AF028419

AF028420

JN617208

6598

Z97687U50765

99

AF303023JK1JK2

9999

ITS2

8798

(b)

HM142255

HM142256

HM142254

HM142253

HM142252

HM142251

HM142250

HM142249

HM142248

HM142

247

HM142

246

HM142

245

HM142243HM

142244

HM142242

HM142241HM142236HM142235HM142234HM142233HM142232EF685993

70

EF685992HM142237HM142238

HM142239

HM142240

88

67

AB741343

HM049533

HM142263

70

63

EF685994

HM142262

90HM142261

HM142265

HM049537

HM142258

HM142259

AY920437

87

HM049531

HM142260

99

68

HM049544

HM142264HM

142266

EF685995

99 99 10

0

HM049

541EF68599

6

HM142

257HM14226

7 6510058HE970723HE967439

AF169289 62HQ593363AF522108

HM851138

AY38688189879999

50

JQ619944

EF685997 96100

100

JQ412262HM142269

EU346805

EU346788JN894566

HQ593360JN894571

JN895781

6297

100

95

matK

(c)

GS1

GS2

GS3

GS4

GS5

GS6

NM1

NM10

NM2

NM3

NM4

NM5

NM6

NM7

NM8

NM9S1S2S3S4S5SD1SD2SD3SD4SD5SD6SD7SD8SD9SX1SX10

SX2SX3SX4SX5SX6SX7SX8SX

9

GU396744

GU396749

GU396750

GU396751

GU396752GU396753

GU396754

84

KF011553

GU396807

HE966

710

92

GU396

771GU

396745GQ

434966EF41

9597EF419598 92EF419662EF679744

99

99

99GU396767GU396781HE966707 84

GQ139474

GQ139475

GQ139476

GQ139477

GQ139478

GQ139479

GQ139480

GQ139481

GQ139482

GQ139483AB787167

99

HQ596765HQ596768

KJ02505387

98

psbA-trnH

(d)

HM142222

HM142223

HM142221

HM142220

HM142219

HM142218

HM142

217

HM142

216

HM1422

15

HM142214

HM142213HM142212HM142211HM142210HM142209

HM142208HM142207

HM142206

HM142205

HM142204

HM142203

HM142202

HM142201H

M142200

HM142199

EF685979

EF685978

71

EF685984

98

EF685

980HM

142225

99 87

EF68598

1HM142226 100

100EF685982

HM142224U74246

HM142227100

FJ537233

59

JQ933405

JX848463100

Z70173

100

AB012129EF685983

HM142228

9810059

rbcL

(e)

Figure 2 Continued

Evidence-Based Complementary and Alternative Medicine 9

JX017329

JXJX017330

JX0101

7328

JX0177326

JX017325

JX0173324

JX0173

23JX01732

JX01732122

JF736668

0JF736665

HM1

M144

228

H M14

2289

H MM14

2287

H M142228

6H M1142

272

H42

275

H U289

274

G U289

6643

G U289666

G 28U2896623

G U 28

9661

G U 5296

60

G U8059

E

42

EF685

969

SX9SX7SX6SX5SX4SX3NM

8NM

7NM3NM2GS5GS4S2GG S1

AB787166

JF736666

65 JF736669JF736667

61

GS3GS6NM1NM10NM4NNM5NM6S3M9

SSDD1

SD 2SD 3SD 5SX 7SX810

F68AF35975

AF359749EJ572 596 0FM14 044 8

HM14 227

H227 2

HM1422776

H142278M

H1M42279

H14M2280

HM142281

HM142283

M1422

HM1422 84

H

85

HM142288

HM142293

HM142294

HM142295

HM142296

H42M1291

H42M1292

H89127Q8

17331JX0JX017327733JX01

167 2

AF12219 5

KC2675 9

F35952 1

59

AF35975

AF35973

A

B2310919951

55

73

AM142297

HF121681

A AFA

359756F359757

AB741299

AF359755

AF5

AF35975421952

9972

76

HHQ1

HHQ2

HHQ3

HQ4

HHQ5

HHQ6

HQ7

9973

EM14223

0 2H HFJ980292

F68597030

HM144230 1

HM1

32 0

HH

6XJ

9675

AF

8Q1

99

HM142298

HM142299

35975

78

CY1CY2CY

6

CY5

CY4

F68597

1

HM142

303

AB051

988

94

74 719468 80

E

9Q33

82

HQ199

316

GU217

599FJ5372

84

94

Q83 9999HQ

514

GD

78598

F032294

K

HQ1HQ1

1HQ2

HQ10HQ4HQ9Q1 64HH 2

HHQ6Q3

HQ7

142304Q8HM

HM142305JX017333

54

9991 67

JX0173348

GQ24EU591996130

60

S1S26

9999

SSDSD9D8

99

JX017337938697

3KFX0173

7336

J 5

MX

GQ1

JX01AY256392

AF053142

8854

99

4HH2HH5

HH4HH3HH6

HH1

JF461309

F461308

A

J B

6HH7

01JF4613070101

Q31198554679

65

99

95

D AH X73

72J F4195

1967

679744

E EF14

99JK2JK1

F41

EF4194797053

SX24JK14 9

E78

6099

99

ITS

HM142290

(f)

Figure 2 ML tree for six barcodes lowastThe different color and shape for different species in clusters presented the identification of differentbarcodes

Table 6 Six indicators assessed for DNA barcoding

DNA barcodes

Parameters

Average geneticdistance

Identification efficiency Gap rateInter- to

intraspecificvariation

Barcoding gap Total scoreBLAST1 Nearest

distancesITS2 8 12 8 8 8 4 48ITS 6 28 22 0 0 6 62psbA-trnH 6 26 18 0 2 2 54rbcL 4 12 14 4 6 8 48matK 4 14 24 4 4 2 52COI 2 6 10 6 0 6 30lowastThe total score of six parameters was set by 10 30 30 10 10 and 10 in order Identification efficiency based on two methods was set by 30 score because of itsimportance for identification

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 7: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

Evidence-Based Complementary and Alternative Medicine 7

0102030405060708090100 COI

0

IntraspeciesInterspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

(a)

0

10

20

30

40

50

60ITS2

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(b)

0102030405060

ITS

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(c)

010203040506070

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

matK

gt02

Interspecies

(d)

0102030405060708090100

rbcL

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(e)

05101520253035 psbA-trnH

0

Intraspecies

0000ndash0

010

0010ndash0

020

0020ndash0

030

0030ndash0

040

0040ndash0

050

0050ndash0

060

0060ndash0

070

0070ndash0

080

0080ndash0

090

0090ndash0

100

0100ndash0

110

0110ndash0

120

0120ndash0

130

0130ndash0

140

0140ndash0

150

0150ndash0

160

0160ndash0

170

0170ndash0

180

0180ndash0

190

gt02

Interspecies

(f)

Figure 1 Barcoding gap for six barcodes

Astragali Six indicators including average genetic distanceBLAST1 and the nearest distance method for identificationefficiency inter- and intraspecific variation and gap rate weretested to evaluate six DNA barcodes using bioinformaticssoftware and the Perl language algorithm The ITS sequence

was the optimal barcode for identifying Radix Astragali andits adulterants This method provides a novel means foraccurate identification of Radix Astragali and its adulterantsand improves the utilization of DNA barcoding in identifyingmedicinal plant species

8 Evidence-Based Complementary and Alternative Medicine

HM142329

HM142330

HM142328

HM142327

HM142326

HM142325

HM142

324

HM1423

23

HM142322

HM142321

HM142320HM142319HM142318HM142317

HM142316HM142315

HM142314

HM142313

HM142312

HM142311

HM142310H

M142309

HM142308

HM142307

HM142306

EF685985

EF6859

86EF6859

87HM142334

62EF685988HM142335 62

EF685991

HM142332

HM14233385

98

EF685990

HM142338

91

EF685989HM

142331HM142336

7698

COI

(a)

GU217642

GU217643

GQ434368

SX8

SX10

SX1

SD8

SD7

SD6

SD5

SD4SD3SD2SD1S4S3S1NM9NM5NM4NM10NM1GS6GS1GS2GS4GS5NM2NM3NM6

NM7

NM8

S2S5SX2SX3SX4SX5SX6SX7SX9

JF421475

65

GS3

99

HHQ1

HHQ2

HHQ3HHQ4HH

Q5HHQ6HHQ7GQ

434365GQ4

34366 99 85GU2

17635L10757GU217639GU217640

GU217641

97

GQ434367GU217654 90

83

Z99236MX

GU217662

AF028417

AF028418

AF028419

AF028420

JN617208

6598

Z97687U50765

99

AF303023JK1JK2

9999

ITS2

8798

(b)

HM142255

HM142256

HM142254

HM142253

HM142252

HM142251

HM142250

HM142249

HM142248

HM142

247

HM142

246

HM142

245

HM142243HM

142244

HM142242

HM142241HM142236HM142235HM142234HM142233HM142232EF685993

70

EF685992HM142237HM142238

HM142239

HM142240

88

67

AB741343

HM049533

HM142263

70

63

EF685994

HM142262

90HM142261

HM142265

HM049537

HM142258

HM142259

AY920437

87

HM049531

HM142260

99

68

HM049544

HM142264HM

142266

EF685995

99 99 10

0

HM049

541EF68599

6

HM142

257HM14226

7 6510058HE970723HE967439

AF169289 62HQ593363AF522108

HM851138

AY38688189879999

50

JQ619944

EF685997 96100

100

JQ412262HM142269

EU346805

EU346788JN894566

HQ593360JN894571

JN895781

6297

100

95

matK

(c)

GS1

GS2

GS3

GS4

GS5

GS6

NM1

NM10

NM2

NM3

NM4

NM5

NM6

NM7

NM8

NM9S1S2S3S4S5SD1SD2SD3SD4SD5SD6SD7SD8SD9SX1SX10

SX2SX3SX4SX5SX6SX7SX8SX

9

GU396744

GU396749

GU396750

GU396751

GU396752GU396753

GU396754

84

KF011553

GU396807

HE966

710

92

GU396

771GU

396745GQ

434966EF41

9597EF419598 92EF419662EF679744

99

99

99GU396767GU396781HE966707 84

GQ139474

GQ139475

GQ139476

GQ139477

GQ139478

GQ139479

GQ139480

GQ139481

GQ139482

GQ139483AB787167

99

HQ596765HQ596768

KJ02505387

98

psbA-trnH

(d)

HM142222

HM142223

HM142221

HM142220

HM142219

HM142218

HM142

217

HM142

216

HM1422

15

HM142214

HM142213HM142212HM142211HM142210HM142209

HM142208HM142207

HM142206

HM142205

HM142204

HM142203

HM142202

HM142201H

M142200

HM142199

EF685979

EF685978

71

EF685984

98

EF685

980HM

142225

99 87

EF68598

1HM142226 100

100EF685982

HM142224U74246

HM142227100

FJ537233

59

JQ933405

JX848463100

Z70173

100

AB012129EF685983

HM142228

9810059

rbcL

(e)

Figure 2 Continued

Evidence-Based Complementary and Alternative Medicine 9

JX017329

JXJX017330

JX0101

7328

JX0177326

JX017325

JX0173324

JX0173

23JX01732

JX01732122

JF736668

0JF736665

HM1

M144

228

H M14

2289

H MM14

2287

H M142228

6H M1142

272

H42

275

H U289

274

G U289

6643

G U289666

G 28U2896623

G U 28

9661

G U 5296

60

G U8059

E

42

EF685

969

SX9SX7SX6SX5SX4SX3NM

8NM

7NM3NM2GS5GS4S2GG S1

AB787166

JF736666

65 JF736669JF736667

61

GS3GS6NM1NM10NM4NNM5NM6S3M9

SSDD1

SD 2SD 3SD 5SX 7SX810

F68AF35975

AF359749EJ572 596 0FM14 044 8

HM14 227

H227 2

HM1422776

H142278M

H1M42279

H14M2280

HM142281

HM142283

M1422

HM1422 84

H

85

HM142288

HM142293

HM142294

HM142295

HM142296

H42M1291

H42M1292

H89127Q8

17331JX0JX017327733JX01

167 2

AF12219 5

KC2675 9

F35952 1

59

AF35975

AF35973

A

B2310919951

55

73

AM142297

HF121681

A AFA

359756F359757

AB741299

AF359755

AF5

AF35975421952

9972

76

HHQ1

HHQ2

HHQ3

HQ4

HHQ5

HHQ6

HQ7

9973

EM14223

0 2H HFJ980292

F68597030

HM144230 1

HM1

32 0

HH

6XJ

9675

AF

8Q1

99

HM142298

HM142299

35975

78

CY1CY2CY

6

CY5

CY4

F68597

1

HM142

303

AB051

988

94

74 719468 80

E

9Q33

82

HQ199

316

GU217

599FJ5372

84

94

Q83 9999HQ

514

GD

78598

F032294

K

HQ1HQ1

1HQ2

HQ10HQ4HQ9Q1 64HH 2

HHQ6Q3

HQ7

142304Q8HM

HM142305JX017333

54

9991 67

JX0173348

GQ24EU591996130

60

S1S26

9999

SSDSD9D8

99

JX017337938697

3KFX0173

7336

J 5

MX

GQ1

JX01AY256392

AF053142

8854

99

4HH2HH5

HH4HH3HH6

HH1

JF461309

F461308

A

J B

6HH7

01JF4613070101

Q31198554679

65

99

95

D AH X73

72J F4195

1967

679744

E EF14

99JK2JK1

F41

EF4194797053

SX24JK14 9

E78

6099

99

ITS

HM142290

(f)

Figure 2 ML tree for six barcodes lowastThe different color and shape for different species in clusters presented the identification of differentbarcodes

Table 6 Six indicators assessed for DNA barcoding

DNA barcodes

Parameters

Average geneticdistance

Identification efficiency Gap rateInter- to

intraspecificvariation

Barcoding gap Total scoreBLAST1 Nearest

distancesITS2 8 12 8 8 8 4 48ITS 6 28 22 0 0 6 62psbA-trnH 6 26 18 0 2 2 54rbcL 4 12 14 4 6 8 48matK 4 14 24 4 4 2 52COI 2 6 10 6 0 6 30lowastThe total score of six parameters was set by 10 30 30 10 10 and 10 in order Identification efficiency based on two methods was set by 30 score because of itsimportance for identification

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 8: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

8 Evidence-Based Complementary and Alternative Medicine

HM142329

HM142330

HM142328

HM142327

HM142326

HM142325

HM142

324

HM1423

23

HM142322

HM142321

HM142320HM142319HM142318HM142317

HM142316HM142315

HM142314

HM142313

HM142312

HM142311

HM142310H

M142309

HM142308

HM142307

HM142306

EF685985

EF6859

86EF6859

87HM142334

62EF685988HM142335 62

EF685991

HM142332

HM14233385

98

EF685990

HM142338

91

EF685989HM

142331HM142336

7698

COI

(a)

GU217642

GU217643

GQ434368

SX8

SX10

SX1

SD8

SD7

SD6

SD5

SD4SD3SD2SD1S4S3S1NM9NM5NM4NM10NM1GS6GS1GS2GS4GS5NM2NM3NM6

NM7

NM8

S2S5SX2SX3SX4SX5SX6SX7SX9

JF421475

65

GS3

99

HHQ1

HHQ2

HHQ3HHQ4HH

Q5HHQ6HHQ7GQ

434365GQ4

34366 99 85GU2

17635L10757GU217639GU217640

GU217641

97

GQ434367GU217654 90

83

Z99236MX

GU217662

AF028417

AF028418

AF028419

AF028420

JN617208

6598

Z97687U50765

99

AF303023JK1JK2

9999

ITS2

8798

(b)

HM142255

HM142256

HM142254

HM142253

HM142252

HM142251

HM142250

HM142249

HM142248

HM142

247

HM142

246

HM142

245

HM142243HM

142244

HM142242

HM142241HM142236HM142235HM142234HM142233HM142232EF685993

70

EF685992HM142237HM142238

HM142239

HM142240

88

67

AB741343

HM049533

HM142263

70

63

EF685994

HM142262

90HM142261

HM142265

HM049537

HM142258

HM142259

AY920437

87

HM049531

HM142260

99

68

HM049544

HM142264HM

142266

EF685995

99 99 10

0

HM049

541EF68599

6

HM142

257HM14226

7 6510058HE970723HE967439

AF169289 62HQ593363AF522108

HM851138

AY38688189879999

50

JQ619944

EF685997 96100

100

JQ412262HM142269

EU346805

EU346788JN894566

HQ593360JN894571

JN895781

6297

100

95

matK

(c)

GS1

GS2

GS3

GS4

GS5

GS6

NM1

NM10

NM2

NM3

NM4

NM5

NM6

NM7

NM8

NM9S1S2S3S4S5SD1SD2SD3SD4SD5SD6SD7SD8SD9SX1SX10

SX2SX3SX4SX5SX6SX7SX8SX

9

GU396744

GU396749

GU396750

GU396751

GU396752GU396753

GU396754

84

KF011553

GU396807

HE966

710

92

GU396

771GU

396745GQ

434966EF41

9597EF419598 92EF419662EF679744

99

99

99GU396767GU396781HE966707 84

GQ139474

GQ139475

GQ139476

GQ139477

GQ139478

GQ139479

GQ139480

GQ139481

GQ139482

GQ139483AB787167

99

HQ596765HQ596768

KJ02505387

98

psbA-trnH

(d)

HM142222

HM142223

HM142221

HM142220

HM142219

HM142218

HM142

217

HM142

216

HM1422

15

HM142214

HM142213HM142212HM142211HM142210HM142209

HM142208HM142207

HM142206

HM142205

HM142204

HM142203

HM142202

HM142201H

M142200

HM142199

EF685979

EF685978

71

EF685984

98

EF685

980HM

142225

99 87

EF68598

1HM142226 100

100EF685982

HM142224U74246

HM142227100

FJ537233

59

JQ933405

JX848463100

Z70173

100

AB012129EF685983

HM142228

9810059

rbcL

(e)

Figure 2 Continued

Evidence-Based Complementary and Alternative Medicine 9

JX017329

JXJX017330

JX0101

7328

JX0177326

JX017325

JX0173324

JX0173

23JX01732

JX01732122

JF736668

0JF736665

HM1

M144

228

H M14

2289

H MM14

2287

H M142228

6H M1142

272

H42

275

H U289

274

G U289

6643

G U289666

G 28U2896623

G U 28

9661

G U 5296

60

G U8059

E

42

EF685

969

SX9SX7SX6SX5SX4SX3NM

8NM

7NM3NM2GS5GS4S2GG S1

AB787166

JF736666

65 JF736669JF736667

61

GS3GS6NM1NM10NM4NNM5NM6S3M9

SSDD1

SD 2SD 3SD 5SX 7SX810

F68AF35975

AF359749EJ572 596 0FM14 044 8

HM14 227

H227 2

HM1422776

H142278M

H1M42279

H14M2280

HM142281

HM142283

M1422

HM1422 84

H

85

HM142288

HM142293

HM142294

HM142295

HM142296

H42M1291

H42M1292

H89127Q8

17331JX0JX017327733JX01

167 2

AF12219 5

KC2675 9

F35952 1

59

AF35975

AF35973

A

B2310919951

55

73

AM142297

HF121681

A AFA

359756F359757

AB741299

AF359755

AF5

AF35975421952

9972

76

HHQ1

HHQ2

HHQ3

HQ4

HHQ5

HHQ6

HQ7

9973

EM14223

0 2H HFJ980292

F68597030

HM144230 1

HM1

32 0

HH

6XJ

9675

AF

8Q1

99

HM142298

HM142299

35975

78

CY1CY2CY

6

CY5

CY4

F68597

1

HM142

303

AB051

988

94

74 719468 80

E

9Q33

82

HQ199

316

GU217

599FJ5372

84

94

Q83 9999HQ

514

GD

78598

F032294

K

HQ1HQ1

1HQ2

HQ10HQ4HQ9Q1 64HH 2

HHQ6Q3

HQ7

142304Q8HM

HM142305JX017333

54

9991 67

JX0173348

GQ24EU591996130

60

S1S26

9999

SSDSD9D8

99

JX017337938697

3KFX0173

7336

J 5

MX

GQ1

JX01AY256392

AF053142

8854

99

4HH2HH5

HH4HH3HH6

HH1

JF461309

F461308

A

J B

6HH7

01JF4613070101

Q31198554679

65

99

95

D AH X73

72J F4195

1967

679744

E EF14

99JK2JK1

F41

EF4194797053

SX24JK14 9

E78

6099

99

ITS

HM142290

(f)

Figure 2 ML tree for six barcodes lowastThe different color and shape for different species in clusters presented the identification of differentbarcodes

Table 6 Six indicators assessed for DNA barcoding

DNA barcodes

Parameters

Average geneticdistance

Identification efficiency Gap rateInter- to

intraspecificvariation

Barcoding gap Total scoreBLAST1 Nearest

distancesITS2 8 12 8 8 8 4 48ITS 6 28 22 0 0 6 62psbA-trnH 6 26 18 0 2 2 54rbcL 4 12 14 4 6 8 48matK 4 14 24 4 4 2 52COI 2 6 10 6 0 6 30lowastThe total score of six parameters was set by 10 30 30 10 10 and 10 in order Identification efficiency based on two methods was set by 30 score because of itsimportance for identification

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 9: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

Evidence-Based Complementary and Alternative Medicine 9

JX017329

JXJX017330

JX0101

7328

JX0177326

JX017325

JX0173324

JX0173

23JX01732

JX01732122

JF736668

0JF736665

HM1

M144

228

H M14

2289

H MM14

2287

H M142228

6H M1142

272

H42

275

H U289

274

G U289

6643

G U289666

G 28U2896623

G U 28

9661

G U 5296

60

G U8059

E

42

EF685

969

SX9SX7SX6SX5SX4SX3NM

8NM

7NM3NM2GS5GS4S2GG S1

AB787166

JF736666

65 JF736669JF736667

61

GS3GS6NM1NM10NM4NNM5NM6S3M9

SSDD1

SD 2SD 3SD 5SX 7SX810

F68AF35975

AF359749EJ572 596 0FM14 044 8

HM14 227

H227 2

HM1422776

H142278M

H1M42279

H14M2280

HM142281

HM142283

M1422

HM1422 84

H

85

HM142288

HM142293

HM142294

HM142295

HM142296

H42M1291

H42M1292

H89127Q8

17331JX0JX017327733JX01

167 2

AF12219 5

KC2675 9

F35952 1

59

AF35975

AF35973

A

B2310919951

55

73

AM142297

HF121681

A AFA

359756F359757

AB741299

AF359755

AF5

AF35975421952

9972

76

HHQ1

HHQ2

HHQ3

HQ4

HHQ5

HHQ6

HQ7

9973

EM14223

0 2H HFJ980292

F68597030

HM144230 1

HM1

32 0

HH

6XJ

9675

AF

8Q1

99

HM142298

HM142299

35975

78

CY1CY2CY

6

CY5

CY4

F68597

1

HM142

303

AB051

988

94

74 719468 80

E

9Q33

82

HQ199

316

GU217

599FJ5372

84

94

Q83 9999HQ

514

GD

78598

F032294

K

HQ1HQ1

1HQ2

HQ10HQ4HQ9Q1 64HH 2

HHQ6Q3

HQ7

142304Q8HM

HM142305JX017333

54

9991 67

JX0173348

GQ24EU591996130

60

S1S26

9999

SSDSD9D8

99

JX017337938697

3KFX0173

7336

J 5

MX

GQ1

JX01AY256392

AF053142

8854

99

4HH2HH5

HH4HH3HH6

HH1

JF461309

F461308

A

J B

6HH7

01JF4613070101

Q31198554679

65

99

95

D AH X73

72J F4195

1967

679744

E EF14

99JK2JK1

F41

EF4194797053

SX24JK14 9

E78

6099

99

ITS

HM142290

(f)

Figure 2 ML tree for six barcodes lowastThe different color and shape for different species in clusters presented the identification of differentbarcodes

Table 6 Six indicators assessed for DNA barcoding

DNA barcodes

Parameters

Average geneticdistance

Identification efficiency Gap rateInter- to

intraspecificvariation

Barcoding gap Total scoreBLAST1 Nearest

distancesITS2 8 12 8 8 8 4 48ITS 6 28 22 0 0 6 62psbA-trnH 6 26 18 0 2 2 54rbcL 4 12 14 4 6 8 48matK 4 14 24 4 4 2 52COI 2 6 10 6 0 6 30lowastThe total score of six parameters was set by 10 30 30 10 10 and 10 in order Identification efficiency based on two methods was set by 30 score because of itsimportance for identification

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 10: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

10 Evidence-Based Complementary and Alternative Medicine

Conflict of Interests

The authors declare that there is no conflict of interestsregarding the publication of this paper

Acknowledgments

Thanks are due to the National Natural Science Foun-dation of China (nos 81274013 8130069 and 81473315)and the National Science and Technology Major Projectsfor ldquoMajor New Drugs Innovation and Developmentrdquo (no2011BAI07B01)

References

[1] Y Kuo W Tsai S Loke T Wu and W Chiou ldquoAstragalusmembranaceus flavonoids (AMF) ameliorate chronic fatiguesyndrome induced by food intake restriction plus forced swim-mingrdquo Journal of Ethnopharmacology vol 122 no 1 pp 28ndash342009

[2] W C S Cho and K N Leung ldquoIn vitro and in vivoimmunomodulating and immunorestorative effects of Astra-galus membranaceusrdquo Journal of Ethnopharmacology vol 113no 1 pp 132ndash141 2007

[3] T T X Dong X Q Ma C Clarke et al ldquoPhylogeny ofAstragalus in China molecular evidence f rom the DNAsequences of 5S rRNA spacer ITS and 18S rRNArdquo Journal ofAgricultural and Food Chemistry vol 51 no 23 pp 6709ndash67142003

[4] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPreparativeisolation and purification of two isoflavones from Astragalusmembranaceus Bge var mongholicus (Bge) Hsiao by high-speed counter-current chromatographyrdquo Journal of Chromatog-raphy A vol 992 no 1-2 pp 193ndash197 2003

[5] X Ma P Tu Y Chen T Zhang Y Wei and Y Ito ldquoPrepar-ative isolation and purification of isoflavan and pterocarpanglycosides fromAstragalusmembranaceusBge varmongholicus(Bge) Hsiao by high-speed counter-current chromatographyrdquoJournal of Chromatography A vol 1023 no 2 pp 311ndash315 2004

[6] P Y Yip andH S Kwan ldquoMolecular identification of Astragalusmembranaceus at the species and locality levelsrdquo Journal ofEthnopharmacology vol 106 no 2 pp 222ndash229 2006

[7] Y Z Zhao ldquoInvestigation the source and distribution of RadixAstraglirdquo Chinese Traditional and Herbal Drugs vol 35 no 10pp 1189ndash1190 2004

[8] Y H Zhang LM Zhang X B Liu et al ldquoStudy onmorpholog-ical andmicroscopic identification for different producing areasof Radix Astragalirdquo Journal of Chinese Medicinal Materials vol36 no 10 pp 1602ndash1604 2013

[9] L Wei and F T Zeng ldquoUsing thin-layer chromatography andultra-violet spectroscopy to identify Radix Astragali and itsadulterantsrdquo Journal of Chinese Medicinal Materials vol 16 no12 pp 14ndash17 1993

[10] G Li H Zhao Y Liu et al ldquoStudy on Chinese herb astragalusmembranceus by FTIR fingerprintrdquo Spectroscopy and SpectralAnalysis vol 30 no 6 pp 1493ndash1497 2010

[11] X Q Ma Q Shi J A Duan T T X Dong and K W K TsimldquoChemical analysis of Radix Astragali (Huangqi) in Chinaa comparison with its adulterants and seasonal variationsrdquoJournal of Agricultural and Food Chemistry vol 50 no 17 pp4861ndash4866 2002

[12] H J Na J Y Um S C Kim et al ldquoMolecular discrimination ofmedicinal Astragali radix by RAPD analysisrdquo Immunopharma-cology and Immunotoxicology vol 26 no 2 pp 265ndash272 2004

[13] L X Duan T L Chen M Li et al ldquoUse of the metabolomicsapproach to characterize chinese medicinal material HuangqirdquoMolecular Plant vol 5 no 2 pp 376ndash386 2012

[14] P D N Hebert A Cywinska S L Ball and J R DeWaardldquoBiological identifications through DNA barcodesrdquo Proceedingsof the Royal Society B Biological Sciences vol 270 no 1512 pp313ndash321 2003

[15] P D N Hebert E H Penton J M Burns D H Janzen andWHallwachs ldquoTen species in one DNA barcoding reveals crypticspecies in the neotropical skipper butterflyAstraptes fulgeratorrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 101 no 41 pp 14812ndash14817 2004

[16] S H Zheng X Jiang L B Wu Z H Wang and L F HuangldquoChemical and genetic discrimination of cistanches herba basedon UPLC-QTOFMS and DNA barcodingrdquo PLoS ONE vol 9no 5 Article ID e98061 2014

[17] L F Huang S H Zheng L B Wu X Jiang and S LChen ldquoEcotypes of Cistanche deserticolabased on chemicalcomponent and molecular traitsrdquo Scientia Sinica Vitae vol 44no 3 pp 318ndash328 2014

[18] X Q Ma J A Duan D Y Zhu T T X Dong and K W KTsim ldquoSpecies identification of Radix Astragali (Huangqi) byDNA sequence of its 5S-rRNA spacer domainrdquo Phytochemistryvol 54 no 4 pp 363ndash368 2000

[19] G Chen X L Wang W S Wong X D Liu B Xia and N LildquoApplication of 31015840 Untranslated Region (UTR) sequence-basedamplified polymorphism analysis in the rapid authentication ofRadix astragalirdquo Journal of Agricultural and FoodChemistry vol53 no 22 pp 8551ndash8556 2005

[20] J Liu H-B Chen B-L Gou Z-Z Zhao Z-T Liang and TYi ldquoStudy of the relationship between genetics and geographyin determining the quality of Astragali Radixrdquo Biological andPharmaceutical Bulletin vol 34 no 9 pp 1404ndash1412 2011

[21] Z H Cui Y Li Q J Yuan L Zhou and M Li ldquoMolecularidentification of Astragali Radix and its adulterants by ITSsequencesrdquo China Journal of Chinese Materia Medica vol 37no 24 pp 3773ndash3776 2012

[22] T Gao H Yao X Y Ma Y J Zhu and J Y Song ldquoIdentificationof Astragalus plants in China using the region ITS2rdquo WorldScience and TechnologyModernization of Traditional ChineseMedicine and Materia Medica vol 12 no 2 pp 222ndash227 2010

[23] H-Y Guo W-W Wang N Yang et al ldquoDNA barcoding pro-vides distinction between Radix Astragali and its adulterantsrdquoScience China Life Sciences vol 53 no 8 pp 992ndash999 2010

[24] CBOL Plant Working Group ldquoA DNA barcode for land plantsrdquoProceedings of the National Academy of Sciences of United Statesof America vol 106 no 31 pp 12794ndash12797 2009

[25] S L Chen H Yao J P Han et al ldquoValidation of the ITS2 regionas a novelDNAbarcode for identifyingmedicinal plant speciesrdquoPLoS ONE vol 5 no 1 Article ID e8613 2010

[26] W J Kress K J Wurdack E A Zimmer L A Weigt and DH Janzen ldquoUse of DNA barcodes to identify flowering plantsrdquoProceedings of the National Academy of Sciences of the UnitedStates of America vol 102 no 23 pp 8369ndash8374 2005

[27] A Keller T Schleicher J Schultz T Muller T Dandekar andM Wolf ldquo58S-28S rRNA interaction and HMM-based ITS2annotationrdquo Gene vol 430 no 1-2 pp 50ndash57 2009

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 11: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

Evidence-Based Complementary and Alternative Medicine 11

[28] K Tamura G Stecher D Peterson A Filipski and S KumarldquoMEGA6 molecular evoluationaay genetics analysis version60rdquoMolecular Biology and Evolution vol 30 no 12 pp 2725ndash2729 2013

[29] C P Meyer and G Paulay ldquoDNA barcoding error rates basedon comprehensive samplingrdquo PLoS Biology vol 3 no 12 articlee422 2005

[30] H A Ross S Murugan and W L S Li ldquoTesting the reliabilityof genetic methods of species identification via simulationrdquoSystematic Biology vol 57 no 2 pp 216ndash230 2008

[31] D A Morrison ldquoIncreasing the efficiency of searches for themaximum likelihood tree in a phylogenetic analysis of up to150 nucleotide sequencesrdquo Systematic Biology vol 56 no 6 pp988ndash1010 2007

[32] Y P Zhang M K Nie S Y Shi et al ldquoIntegration of mag-netic solid phase fishing and off-line two-dimensional high-performance liquid chromatographydiode array detectormassspectrometry for screening and identification of human serumalbumin binders from Radix Astragalirdquo Food Chemistry vol146 no 1 pp 56ndash64 2014

[33] X H Liu L G Zhao J Liang et al ldquoComponent analysisand structure identification of active substances for anti-gastriculcer effects in Radix Astragali by liquid chromatography andtandem mass spectrometryrdquo Journal of Chromatography B vol960 no 1 pp 43ndash51 2014

[34] C Chu H-X Cai M-T Ren et al ldquoCharacterization of novelastragalosidemalonates fromRadix Astragali byHPLCwith ESIquadrupole TOFMSrdquo Journal of Separation Science vol 33 no4-5 pp 570ndash581 2010

[35] J Fu L F Huang H T Zhang S H Yang and S LChen ldquoStructural features of a polysaccharide from Astragalusmembranaceus (Fisch) Bge var mongholicus (Bge) HsiaordquoJournal of Asian Natural Products Research vol 15 no 6 pp687ndash692 2013

[36] X Huang Y Liu F Song Z Liu and S Liu ldquoStudies on prin-cipal components and antioxidant activity of different RadixAstragali samples using high-performance liquid chromatogra-phyelectrospray ionization multiple-stage tandem mass spec-trometryrdquo Talanta vol 78 no 3 pp 1090ndash1101 2009

[37] A Nalbantsoy T Nesil O Yilmaz-Dilsiz G Aksu S Khan andE Bedir ldquoEvaluation of the immunomodulatory properties inmice and in vitro anti-inflammatory activity of cycloartane typesaponins from Astragalus speciesrdquo Journal of Ethnopharmacol-ogy vol 139 no 2 pp 574ndash581 2012

[38] W L Xiao T J Motley U J Unachukwu et al ldquoChemical andgenetic assessment of variability in commercial Radix Astragali(Astragalus spp) by ion trap LC-MS and nuclear ribosomalDNA barcoding sequence analysesrdquo Journal of Agricultural andFood Chemistry vol 59 no 5 pp 1548ndash1556 2011

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom

Page 12: Research Article Integrated Analysis for Identifying Radix ...downloads.hindawi.com/journals/ecam/2014/843923.pdf · data mining of DNA barcoding. 1. Introduction Radix Astragali

Submit your manuscripts athttpwwwhindawicom

Stem CellsInternational

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MEDIATORSINFLAMMATION

of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Behavioural Neurology

EndocrinologyInternational Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Disease Markers

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

BioMed Research International

OncologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

PPAR Research

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Immunology ResearchHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

ObesityJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Computational and Mathematical Methods in Medicine

OphthalmologyJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Diabetes ResearchJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Research and TreatmentAIDS

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Gastroenterology Research and Practice

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Parkinsonrsquos Disease

Evidence-Based Complementary and Alternative Medicine

Volume 2014Hindawi Publishing Corporationhttpwwwhindawicom


Recommended